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The formulation and solution of the adjoint problem for unsteady flow simulations using
the Reynolds-averaged Navier-Stokes equations in the presence of dynamically deforming
unstructured meshes is demonstrated. A discrete adjoint approach is used, and the full
linearization is built up in a systematic and modular fashion. Discrete conservation in the
analysis problem is ensured through the geometric conservation law, which is linearized
consistently for the adjoint problem. An agglomeration multigrid scheme is used to solve
the time-implicit problem at each time step for both the analysis problem, the adjoint
problem, and the mesh and mesh adjoint problems. The methodology is demonstrated
through a simple time-dependent pitching wing optimization problem.

I. Introduction

The use of the adjoint equations has become a popular approach for solving aerodynamic design opti-
mization problems based on computational fluid dynamics.1–5 Adjoint equations are a very powerful tool in
the sense that they allow the computation of sensitivity derivatives of an objective function with respect to
a set of given inputs at a cost which is essentially independent of the number of inputs.

The use of adjoint equations either in continuous or discrete form for solving steady-state aerodynamic
optimization problems1,3, 5–7 is now fairly well established. However, relatively little work has been done
in applying these methods for unsteady time-dependent problems.8–10 In the context of unsteady flows,
frequency domain methods which allow for reduced computational expense, particularly for problems with
strong periodic behavior, have been investigated by various authors .11,12 However, there are many problems
for which time-domain approaches are preferable, such as problems with no dominant periodic behavior, and
frequency domain techniques are to be viewed as complementary approaches to time domain methods.

One of the difficulties associated with time-dependent adjoint formulations is that they result in the need
to integrate the adjoint equations backwards in time, from the final time value to the initial condition of the
unsteady simulation, in order to compute the complete unsteady sensitivity vector. For non-linear problems,
as in the case of the governing equations of fluid dynamics, this requires the complete time history of the
unsteady analysis solution to be stored, for later use by the adjoint solver as it proceeds backwards in time.
Another challenge lies in the formulation of the adjoint problem itself, which can become relatively complex
for unsteady problems, particularly in the presence of dynamically deforming meshes, which requires the
flow problem to be written in arbitrary Lagrangian Eulerian (ALE) form, and where special consideration
of the Geometric Conservation Law (GCL) is required in order to ensure discrete conservation.13–15

In previous work, a systematic approach for formulating the discrete adjoint problem for steady-state
problems on unstructured meshes has been developed and applied initially to two-dimensional16 and sub-
sequently to three-dimensional6 problems. In follow-on work, this same approach was used to derive, im-
plement and solve the unsteady adjoint problem for two-dimensional cases.10 In the current paper, the
unsteady adjoint formulation developed for two-dimensional problems is extended to three-dimensional un-
steady problems involving the unsteady Reynolds-averaged Navier-Stokes equations on unstructured meshes
in ALE form. This work also relies on previous developments in a unifying formulation of the discrete con-
servation law applicable to various time integration schemes15 as well as previous work on efficient mesh
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deformation techniques.17 One of the principal challenges in the three-dimensional setting is the efficient
storage of the time history of the solution, as required by time-domain unsteady adjoint formulations. In
this work, the time history of the unsteady analysis solution is written out to disk during the analysis run,
and read back into the adjoint solver during the reverse integration procedure.

II. Analysis Problem Formulation

A. Governing Equations of the Flow Problem in ALE Form

The conservative form of the Navier-Stokes equations are used in solving the flow problem. These may be
written as:

∂w(x, t)
∂t

+∇ · F(w) = 0 (1)

Applying the divergence theorem and integrating over a moving control volume V (t) yields:∫
V (t)

∂w
∂t

dV +
∫

dB(t)

F(w) · ndB = 0 (2)

Using the differential identity:

∂

∂t

∫
V (t)

wdV =
∫

V (t)

∂w
∂t

dV +
∫

dB(t)

(ẋ · n)dB (3)

equation (2) is rewritten as:

∂

∂t

∫
V (t)

wdV +
∫

dB(t)

[F(w)− ẋw] · ndB = 0 (4)

or when considering cell-averaged values for the state w as:

∂V w
∂t

+
∫

dB(t)

[F(w)− ẋw] · ndB = 0 (5)

This is the Arbitrary-Lagrangian-Eulerian (ALE) finite-volume form of the governing equations. The equa-
tions are required in ALE form since the problem involves deforming meshes where mesh elements change
in shape and size at each time-step. Here V refers to the area of the control volume, ẋ is the vector of mesh
face or edge velocities, and n is the unit normal of the face or edge. w denotes the state vector of conserved
variables and the flux vector F contains both inviscid and viscous fluxes. The single equation turbulence
model of Spalart and Allmaras18 is used to simulate turbulence effects. This equation is discretized in a
similar fashion to the Navier-Stokes equations shown above, and solved in a fully coupled manner.

B. Discretization and Solution Strategies

The spatial discretization relies on a vertex-based median-dual control volume formulation which is second-
order accurate in space.6,19,20 The time derivative term in the governing equations is discretized using either
the first-order accurate backward-difference formula (BDF1):

∂V w
∂t

=
V nwn − V n−1wn−1

∆t
(6)

or a second-order accurate backwards difference formula (BDF2) requiring storage of an additional previous
time level:

∂V w
∂t

=
3
2V nwn − 2V n−1wn−1 + 1

2V n−2wn−2

∆t
(7)

where the index n is used to indicate the current time-level, and n−1 and n−2 refer to previous time levels.
V refers to the vector of mesh control volumes, and is indexed by the time level n, since for dynamic mesh
problems these values change at each time step.
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Denoting the spatially discretized terms at time level n by the operator Sn(wn), the resulting system
of non-linear equations to be solved at each time step can be denoted as (shown for the case of the BDF1
scheme for simplicity):

Rn =
V nwn − V n−1wn−1

∆t
+ Sn (wn) = 0 (8)

At each time step, an agglomeration multigrid algorithm21 is used to converge this unsteady residual to
small values. On each mesh level, a line-implicit block-tridiagonal algorithm22 is used to further accelerate
the convergence of the multigrid algorithm for highly-stretched unstructured meshes in boundary layer and
wake regions.

C. Mesh Deformation Strategy

Deformation of the mesh is achieved through the linear tension spring analogy which approximates the mesh
as a network of inter-connected springs. Although previous work has concentrated on the development of
more robust mesh deformation techniques based on linear elasticity,17,23,24 the spring analogy approach is
used for simplicity in the current work. Three independent force balance equations are formulated for each
grid point based on the displacements of neighboring grid points, using spring coefficients taken as inversely
proportional to the squared length of the mesh edges. This results in a nearest neighbor stencil for the final
linear system to be solved. The linear system that relates the interior vertex displacements in the mesh to
known displacements on the boundaries is given as:

[K]δxint = δxsurf (9)

The stiffness matrix [K] is a sparse block matrix that can be treated as a constant since it is based on the
initial configuration of the mesh and remains unchanged through the time-integration process. The mesh
motion equations are elliptic in nature and can be solved efficiently using the same line-implicit agglomeration
multigrid strategy employed for the flow equations.6,10

D. The Discrete Geometric Conservation Law (GCL)

The solution of the mesh motion equations (9) at each time step results in the determination of the mesh
coordinates xn at the new time level, based on the prescribed motion of the boundary grid points. While
these values are required to generate the new mesh control volumes and other metrics at the new time level,
the governing equations in ALE form also require the determination of the mesh velocities ẋ, as seen from
equation (5). The determination of these terms must be considered carefully in order to maintain discrete
conservation in ALE form. This property is embodied in the Geometric Conservation Law (GCL), which
states that a uniform flow must remain an exact solution to the discretized equations in the presence of
arbitrary mesh deformation.14,15 Substituting w =constant into equation (5), and noting that the integral
of the flux term F(w) in this case vanishes around a closed boundary, the mathematical statement of the
GCL becomes:

∂V

∂t
=
∫

dB(t)

ẋ · ndB (10)

which provides a constraint on the method of evaluation of the grid velocity terms, which depends on the
specific time discretization scheme chosen for the left hand side of this equation. In reference15 a method for
constructing the required grid velocities which discretely satisfy equation (10) is developed for BDF schemes
as well as implicit Runge-Kutta time discretizations. In the case of BDF schemes, the general difference form
of the BDF time discretization is first written as a sequence of incremental differences between neighboring
time levels and the face-integrated grid velocities are then individually equated to the volume swept by each
control volume face between neighboring time levels. The exact calculation of the volume swept by a mesh
face in three-dimensions requires the use of a two point quadrature rule between each neighboring time
level.15,25 Thus, for BDF1 schemes this results in a two point time-integration rule, while for BDF2 schemes
this results in a four point time-integration rule. On the other hand, for BDF1 schemes, the final functional
dependence of the face-integrated grid velocities depends only on the coordinate values xn and xn−1, while
for BDF2 schemes, these values depend on xn and xn−1 and xn−1 . Note that in this formulation, it is the
face-integrated grid velocities (i.e. the right-hand side of equation (10)) and not the grid velocities themselves
which are computed, and used in the ALE formulation. Therefore, in the remainder of this paper, we use the
notation ẋ to denote the face-integrated values in the place of the actual grid point velocities, for simplicity.
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E. Functional Form of Unsteady Residual

The determination of the functional form of the unsteady residual is important for the linearization to be
undertaken in the formulation of the adjoint problem discussed subsequently. By definition, for backwards
difference schemes, the spatial discretization terms are to be evaluated exclusively at the most recent time
level n. Noting that the volumes V are functions of the grid coordinates, we obtain for BDF2:

Rn =
3

2∆t
V (xn)wn − 2

∆t
V (xn−1)wn−1 1

2∆t
V (xn−2)wn−2 + Sn(wn,xn, ẋn) (11)

However, given the functional form of the face-integrated grid velocities discussed above, the spatial residual
ends up with dependencies on previous time levels as well, and the entire unsteady residual functional
dependence becomes:

Rn(wn,wn−1,wn−2,xn,xn−1,xn−2) = (12)
3

2∆t
V (xn)wn − 2

∆t
V (xn−1)wn−1 +

1
2∆t

V (xn−2)wn−2 + Sn(wn,xn,xn−1,xn−2) (13)

with the corresponding expression depending only on n and n− 1 values for the BDF1 case:

Rn(wn,wn−1,xn,xn−1) = (14)
1

∆t
V (xn)wn − 1

∆t
V (xn−1)wn−1 + Sn(wn,xn,xn−1) (15)

III. Sensitivity Formulation

A. General Sensitivity Formulation

Before deriving the adjoint equations for time dependent problems, we first consider the general approach to
sensitivity formulation. Consider a simulation which produces various outputs L each of which constitutes
an objective function which we wish to minimize by varying certain parameters or design variables D in the
simulation. The entire simulation begins with the specification of the design variables D, and may involve
the evaluation of multiple functions Fi or sequential steps to finally obtain the values of the objectives L.
For steady-state problems, these various functional dependencies may include steps such as flow solution and
mesh deformation, while for unsteady problems, each step may consist of the integration of current values
to a new time level, either for the flow variables or the mesh motion problem, or both. Thus, the entire
procedure may be written as:

L(D) = L(Fn−1(Fn−2(....F2(F1(D))....)))) (16)

A variation in the design variables δD produces a corresponding variation the the objectives δL as:

δL =
dL
dD

δD (17)

where the sensitivity derivative may be calculated as:

dL
dD

=
∂L

∂Fn−1
.
∂Fn−1

∂Fn−2
.....

∂F2

∂F1
.
∂F1

∂D
(18)

For an arbitrary number of design variables and objective functions, these sensitivity derivatives constitute
a rectangular matrix which will generally be costly to evaluate. However, we consider two special cases,
firstly the case where we have a single design variable and an arbitrary number of objective functions, and
secondly the case where we have a single objective function and an arbitrary number of design variables. In
the first case, the derivative ∂F1

∂D constitutes a vector which is either given, or may be assumed to be easily
computable. Since only the first derivative on the right-hand side of equation (18) depends on L, it proves
economical to precompute the product of all the other derivatives as:

dL
dD

=
∂L

∂Fn−1
.

[
∂Fn−1

∂Fn−2

[
.....

[
∂F2

∂F1

[
∂F1

∂D

]]]]
(19)
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Thus, the final result in brackets is a vector which is obtained as a series of matrix-vector products.
This vector may be stored and then used to compute the entire vector dL

dD (one element for each individual
objective function L) in a single matrix-vector multiplication. This constitutes the forward differentiation
model or the tangent model.

In the case where a single objective function is specified but multiple design variables are present, the
adjoint model provides the most economical approach for the calculation of dL

dD . For this purpose, we
transpose equation (18), obtaining:

dL
dD

T

=
∂F1

∂D

T

.
∂F2

∂F1

T

.
∂Fn−1

∂Fn−2

T

.....
∂L

∂Fn−1

T

(20)

Noting that ∂L
∂Fn−1

T
is a simple vector which is either given or easily computable, and ∂F1

∂D

T
is the only term

which depends on the multitude of design variables, the corresponding strategy is to precompute the right
most derivatives as:

dL
dD

T

=
∂F1

∂D

T

.

[
∂F2

∂F1

T

.

[
∂Fn−1

∂Fn−2

T

.

[
.....

[
∂L

∂Fn−1

T
]]]]

(21)

The vector of sensitivities for all design variables dL
dD

T
may then be obtained with a single matrix vector mul-

tiplication involving the matrix ∂F1
∂D

T
with the precomputed vector obtained from the sequence of bracketed

operations.

B. Steady-State Problems

Although the application of the above procedure to steady-state shape-optimization problems has been
discussed in detail in previous work,6 the resulting procedure is outlined in this section for completeness
prior to discussing the time-dependent formulation.

In this case, the simulation objective is only a function of the steady-state flow variables and grid point
coordinates, and the sensitivity vector can be written using the chain rule as:

dL

dD
=

∂L

∂x
∂x
∂D

+
∂L

∂w
∂w
∂D

(22)

The last term corresponds to the flow variable sensitivities, which are determined by the constraint

R (w(D),x(D)) = 0 (23)

which merely states that the flow equation residuals must vanish at steady state. Linearization of equation
(23) provides the expression for the flow sensitivities:[

∂R
∂w

]
∂w
∂D

= −∂R
∂x

∂x
∂D

(24)

which is then substituted back into equation (22). For the adjoint problem, the resulting equation must be
transposed, leading to the expression:

dL

dD

T

=
∂x
∂D

T
[

∂L

∂x

T

− ∂R
∂x

T [∂R
∂w

]−T
∂L

∂w

T
]

(25)

We next define the flow adjoint variable as

Λw =
[
∂R
∂w

]−T
∂L

∂w

T

(26)

and note that the mesh deformation equation which relates interior grid point displacement to changes in
the shape governed by the design variables D as:

[K] δx = δD (27)

5 of 17

American Institute of Aeronautics and Astronautics



leads to the following expression for the mesh sensitivities

∂x
∂D

= [K]−1 (28)

where [K] represents the stiffness matrix for the mesh deformation problem. When these expressions are
inserted into equation (25), the final expression becomes:

dL

dD

T

= [K]−T

[
∂L

∂x

T

− ∂R
∂x

T

Λw

]
(29)

Therefore, in order to compute the steady-state sensitivities using equation (29), a flow adjoint problem (c.f.
equation (26)) must be solved, followed by the rectangular matrix-vector product defined by the last term
in equation (29), and finishing with a grid deformation adjoint problem, given by the [K]−T operator in
equation (29).

C. Application to Time-Dependent Problems

For time-dependent problems, the objective may consist of an output computed at the final time of the
simulation, or may be constructed as a time-integrated quantity. We consider the formulation for a time
integrated objective, since this corresponds to the most general case. Thus, our general objective can be
written as:

Lg =
∫ T

0

L(t)dt (30)

When discretized in time, the integral form becomes

Lg(D) =
n=nf∑
n=0

ωnLn(wn(D), xn(D)) (31)

where ωn represents the quadrature weight associated with each time step value, and Ln represents the
objective evaluated at the time step n, which depends directly only on the grid coordinates and flow variables
at the time level n. Using the chain rule, the sensitivity vector of this objective is given as:

dLg

dD
=

n=nf∑
n=0

ωn

[
∂Ln

∂wn

∂wn

∂D
+

∂Ln

∂xn

∂xn

∂D

]
(32)

As previously, the flow sensitivities are given by the constraint that the flow equations at each implicit time
step must be satisfied. However, in the time-dependent case, the flow residuals depend on values at previous
time steps in addition to values at the current time step n. Considering a BDF1 time-integration scheme for
simplicity, the flow residuals at time level n can be written as:

Rn(wn(D),wn−1(D),xn(D),xn−1(D)) = 0 (33)

which gives the following expression for the flow sensitivities at time level n:[
∂Rn

∂wn

]
∂wn

∂D
= −

[
∂Rn

∂xn

∂xn

∂D
+

∂Rn

∂xn−1

∂xn−1

∂D
+

∂Rn

∂wn−1

∂wn−1

∂D

]
(34)

Similarly, the mesh sensitivities at time level n can be written as a function of the mesh sensitivities at the
previous time level as:

∂xn

∂D
= [Kn]−1 ∂xn−1

∂D
(35)

where [Kn]−1 corresponds to a representation of the mesh motion in going from time level n − 1 to time
level n.
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The above equations illustrate how the forward sensitivity or tangent problem reduces to a forward
integration in time. Assuming the values of the flow and mesh sensitivities are known at the previous time
level n− 1, the values at the new time level n are obtained through the solution of equations (34) and (35),
respectively. Substituting these values into equation (32) and proceeding to the next time step, the process
is repeated until the final time level is reached, thus generating the final sensitivities for the time-integrated
objective Lg.

If the process is initiated with a constant initial flow field, then the initial flow sensitivities at time level
n = 0 vanish, whereas if the process is initiated from a steady state solution, the initial flow sensitivities
correspond to the steady-state flow sensitivities which are obtained through the solution of equation (24).
On the other hand, the mesh sensitivities at the initial time level must be computed through the solution
of the mesh deformation equations at n = 0 (e.g. [Ko]) even though no time-dependent mesh motion is
present, since even the initial mesh will vary with the values of the design variables which define the shape of
the geometry. Additionally, the mesh motion between any two consecutive time steps can consist either of a
mesh deformation problem, or a solid body mesh transformation, or both. In the former case, the (iterative)
solution of the mesh motion equations will be required at each new time step, whereas in the latter case, the
[Kn]−1 matrix is defined explicitly by the translation/rotation matrices used to displace the mesh.

In order to formulate the time-dependent adjoint problem, the expressions given by equation (34) for the
flow sensitivities are substituted into equation (32), and the entire equation is transposed. Considering, for
the moment, only the contributions due to the objective value Ln at level n, we obtain:

∂Ln

∂D
=

∂xn

∂D

T ∂Ln

∂xn

T

−

[
∂xn

∂D

T ∂Rn

∂xn

T

+
∂xn−1

∂D

T
∂Rn

∂xn−1

T

+
∂wn−1

∂D

T
∂Rn

∂wn−1

T
] [

∂Rn

∂wn

]T
∂Ln

∂wn

T

(36)

If we now define a flow adjoint variable at time level n as:

Λn
w =

[
∂Rn

∂wn

]−T
∂Ln

∂wn

T

(37)

equation (36) can be rearranged as:

∂Ln

∂D
=

∂xn−1

∂D

T

[Kn]−T

[
∂Ln

∂xn

T

− ∂Rn

∂xn

T

Λn
w

]
− ∂xn−1

∂D

T
∂Rn

∂xn−1

T

Λn
w − ∂wn−1

∂D

T
∂Rn

∂wn−1

T

Λn
w (38)

The first term on the right-hand side of this equation is similar in form to the steady-state sensitivities
derived in equation (29). We next define a mesh adjoint variable at time level n as:

Λx
n = [Kn]−T

[
∂Ln

∂xn

T

− ∂Rn

∂xn

T

Λn
w

]
(39)

and note that this quantity is entirely computable at the end of the analysis run, given the solution values at
time level n. When substituted into equation (38), the remaining terms depend only on values at previous
time steps, thus leading to a backwards recurrence relation in time. In order to obtain expressions for the
remaining terms, we substitute into this equation the constraint equation for the flow sensitivities at time
level n− 1, which is similar to equation (34), although with different time level indices, i.e.[

∂Rn−1

∂wn−1

]
∂wn−1

∂D
= −

[
∂Rn−1

∂xn−1

∂xn−1

∂D
+

∂Rn−1

∂xn−2

∂xn−2

∂D
+

∂Rn−1

∂wn−2

∂wn−2

∂D

]
(40)

The procedure then consists of factorizing all terms multiplying ∂xn−1

∂D and premultiplying these by the mesh

adjoint operator
[
Kn−1

]T to obtain expressions in terms of the next preceding time level n− 2.
However, for the full time-integrated objective given in equation (31), the contributions from the Ln−1

sensitivities at the n− 1 time level must also be considered, namely, by analogy with equation (36):

∂Ln−1

∂D
=

∂xn−1

∂D

T
∂Ln−1

∂xn−1

T

−

[
∂xn−1

∂D

T
∂Rn−1

∂xn−1

T
] [

∂Rn−1

∂wn−1

]T
∂Ln−1

∂wn−1

T

+ ...... (41)
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When all these terms are substituted into equation (32) and factorized appropriately, the resulting expression
can be written as:

dLg

dD
=

∂xn−2

∂D

T

Λn−1
x + ...previous time step terms... (42)

with

Λn−1
x =

[
Kn−1

]−T

[
Λn

x −
∂Rn

∂xn−1

T

Λn
w + ωn−1

∂Ln−1

∂xn−1

T

− ∂Rn−1

∂xn−1

T

Λn−1
w

]
(43)

and

Λn−1
w =

[
∂Rn−1

∂wn−1

]−T
[
ωn−1

∂Ln−1

∂wn−1

T

− ∂Rn

∂wn−1

T

Λn
w

]
(44)

where the ωn, ωn−1, ... quadrature weights are included in order to obtain the global time-integrated sensi-
tivity as per equation (32). When equations (44) and (43) are solved and substituted into equation (42),
an expression depending only on n− 2 and earlier time levels is obtained, and the entire process may then
be repeated to advance to the next earlier time level. Thus, the unsteady adjoint sensitivity calculation
corresponds to a backwards integration in time, and requires the solution of one flow adjoint and one mesh
motion adjoint problem at each time step. In this sense, the time-dependent adjoint problem at each time
step is similar to a steady-state adjoint problem, although the right-hand side of the unsteady flow and mesh
adjoint problems contain additional terms. For example, at a given time level n = k, the flow and mesh
adjoint problems can be written as:

Λk
w =

[
∂Rk

∂wk

]−T
[
ωk

∂Lk

∂wk

T

−

(
∂Rk+1

∂wk

T

Λk+1
w

)]
(45)

and

Λk
x =

[
Kk
]−T

[
+ωk

∂Lk

∂xk

T

− ∂Rk

∂xk

T

Λk
w +

(
Λk+1

x − ∂Rk+1

∂xk

T

Λk+1
w

)]
(46)

respectively, where the bracketed expressions correspond to the additional terms not present in the steady
flow and mesh adjoint equations, and imply a recurrence relation from later to earlier time levels. Note also
that at the beginning of the adjoint time integration (i.e. at the final time step k = nf ), these terms vanish
since no later time step values k+1 exist, and the adjoint problems take on a form similar to the steady-state
flow and mesh adjoint problems at the final simulation time step, as given in equation (37).

D. Additional Term Formulation

As can be seen from the above analysis, the unsteady adjoint problem may be implemented as a conceptually
straight-forward extension of the steady-state adjoint problem, replicating the steady adjoint flow and mesh
problems as well as solution strategies at each time level, with additional source terms as outlined above.
These additional source terms are constructed from linearization terms which are only present in the unsteady
residual, i.e. ∂Rn

∂wn−1 and ∂Rn

∂xn−1 . However, the other terms previously present in the steady-state formulation,
i.e. ∂Rn

∂wn and ∂Rn

∂xn must also be modified to take into account the different form of the unsteady residual, as
given by equation (8). In both instances, terms arising from the linearization of the residual with respect
to the flow variables are relatively straight-forward. For example, the Jacobian ∂Rn

∂wn must be augmented by
the diagonal term [I]V n

∆t , due to the linearization of the first term in the time discretization of equation (8).
Similarly, the linearization of the unsteady residual with respect to previous time level flow variables, for a
BDF1 scheme is seen to be:

∂Rn

∂wn−1
= [I]

V n−1

∆t
(47)

In the context of the adjoint formulation, the matrix-vector product involving this term (i.e. last term in
equation (45)) simply results in a rescaling of the adjoint vector Λn

w by the scalar value V n−1

∆t .
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On the other hand, the modifications required for the linearization of the residual with respect to the mesh
coordinates are more involved, as shown previously for two dimensions in reference.10 As in the steady-state
case,6 the term ∂Rn

∂xn must take into account the direct effect of coordinate changes on the residual, as well as
changes in all mesh metrics due to changes in the mesh coordinates at the current time level. However, for
the unsteady case, the face integrated grid speed terms ẋ also depend on the current grid coordinate values,
and must be linearized accordingly. Additionally, the leading term of the BDF time discretization depends
on the control volume values computed at the current time level V (xn). In general, ∂Rn

∂xn constitutes a sparse
rectangular matrix which can have a fairly complicated structure. However, since only the product of this
matrix with a field vector is required in the tangent or adjoint model, the forward matrix-vector product
may be evaluated as:

dRn

dxn
.δxn =

∂Rn

∂Vn
.
∂Vn

∂xn
δxn +

∂Rn

∂ẋn
.
∂ẋn

∂xn
δxn +

∂Rn

∂fnn .
∂fnn

∂xn
δxn +

∂Rn

∂xn
δxn (48)

where δxn represents the input vector, fnn represents the vector of control volume face normals over the
mesh (which are constructed using only the current time level mesh coordinates for BDF schemes), Vn

represents the vector of mesh control volumes, and ẋn represents the face-integrated grid velocities, which
depend both on current and previous time levels. The evaluation of this matrix-vector product is performed
in a multi-step procedure, given as

δVn =
∂Vn

∂xn
δxn (49)

δẋn =
∂ẋn

∂xn
δxn (50)

δfnn =
∂fnn

∂xn
δxn (51)

dRn

dxn
δx =

∂Rn

∂Vn
δVn +

∂Rn

∂fnn δfnn +
∂Rn

∂ẋn
δẋn +

∂Rn

∂xn
δxn (52)

Note that the first step involves a matrix-vector product based on the linearization of the volume terms, while
the second step involves the linearization of the the face-integrated grid velocity terms, and the third step is
based on the linearization of the mesh metric routines. Finally, the last step involves only the linearization
of the flow residual with respect to terms which appear directly in the residual routine (i.e. volumes, grid
velocities, mesh metrics, and direct dependence on coordinates). In the case of the adjoint model, the matrix-
vector product of equation (48) can be evaluated in a similar fashion. Taking the transpose of equation (48),
we obtain the relation:

dRn

dxn

T

Λn
w =

∂Vn

∂xn

T ∂Rn

∂Vn

T

Λn
w +

∂ẋn

∂xn

T ∂Rn

∂ẋn

T

Λn
w +

∂fnn

∂xn

T
∂Rn

∂fnn

T

Λn
w +

∂Rn

∂xn

T

Λn
w (53)

which can be evaluated in a multi-step procedure as:

δVn =
∂Rn

∂Vn

T

Λn
w (54)

δẋn =
∂Rn

∂ẋn

T

Λn
w (55)

δfnn =
∂Rn

∂fnn

T

Λn
w (56)

dRn

dxn

T

Λn
w =

∂Vn

∂xn

T

δVn +
∂ẋn

∂xn

T

δẋn +
∂fnn

∂xn

T

δfnn +
∂Rn

∂xn

T

Λn
w (57)

As in the previous case, a (transposed) linearization of each individual routine is invoked, but in the reverse
order of that used by the original discretization in the tangent model. For example, the first three steps involve
the linearization of the flow residual with respect to terms appearing directly in the residual construction
(i.e. volumes, grid velocities and grid metrics), while the last step incorporates the linearization of each of
these individual terms with respect to the grid coordinates.

Similarly, evaluation of the matrix-vector product involving the linearization of the residual with respect
to previous time level grid coordinates is performed for the forward problem as:

dRn

dxn−1
.δxn−1 =

∂Rn

∂Vn−1
.
∂Vn−1

∂xn−1
δxn−1 +

∂Rn

∂ẋn
.

∂ẋn

∂xn−1
δxn−1 (58)
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and for the adjoint problem as:

dRn

dxn−1

T

Λn
w =

∂Vn−1

∂xn−1

T
∂Rn

∂Vn−1

T

Λn
w +

∂ẋn

∂xn−1

T ∂Rn

∂ẋn

T

Λn
w (59)

where it is seen that the only dependence on previous time levels (in this case for the BDF1 scheme) occurs
through the volume term evaluated at the previous time level arising from the second contribution to the
time discretization, and the face-integrated grid velocity terms present in the spatial residual.

IV. Results

A. Unsteady Test Problem

A three-dimensional pitching wing is employed as a test problem for validating and demonstrating the
unsteady adjoint formulation. The geometry consists of an ONERA M6 wing which oscillates about a
non-swept spanwise axis which intersects the symmetry plane at the quarter-chord of the root section. The
pitching motion is sinusoidal with an amplitude of 2.5o about a mean incidence of 5o, and a reduced frequency
of 0.1682, and the freestream Mach number is 0.3. An unstructured mesh of approximately 100,000 points
containing prismatic elements in the boundary layer region and tetrahedral elements in inviscid flow regions
is used to discretize the computational domain. The time-dependent mesh motion is determined by rotating
the entire mesh as a solid body at each time step, in response to the prescribed wing motion. The initial
condition consists of a precomputed steady-state flow-field for the wing at 5o incidence. A total of 20 time
steps are used to advance the solution for one period of the pitching motion, using the first-order accurate
BDF1 time integration scheme. The unsteady Reynolds-averaged Navier-Stokes equations are solved at each
time step in ALE form, using the Spalart-Allmaras turbulence model,18 although only first-order spatial
discretization is used for the convective terms in both the flow and turbulence equations. Figure 1 illustrates
the ONERA M6 wing and unstructured mesh used for the calculations. In Figure 2, the time history of the
computed lift and drag coefficients as a function of the pitching incidence are given.

Figure 1. Illustration of mixed prismatic-tetrahedral unstructured mesh used for calculation of pitching ON-
ERA M6 wing.
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Figure 2. Computed time history of lift and drag coefficients for one cycle of pitching wing problem using 20
implicit time steps.

11 of 17

American Institute of Aeronautics and Astronautics



B. Unsteady Objective Function Formulation

An approximation to a time-integrated objective function, as defined previously by equation (31) is used
in for this test case. The objective function is based on the summation of the differences between a target
and a computed objective value at each time level n. Figure 3 exemplifies the formulation of this unsteady
objective function. If Cn

L and Cn
D refer to the lift and drag coefficients computed on the wing at time-level

n during the pitch cycle, then the local objective at time-level n is defined as:

Ln = (δCn
L)2 + (δCn

D)2 (60)
δCn

L = (Cn
L − Cn

Ltarget) (61)
δCn

D = (Cn
D − Cn

Dtarget) (62)

The global or time-integrated objective is then constructed using equal unit weights at each time step as:

Lg =
n=nf∑
n=0

Ln (63)

This construction ensures that the computed time-dependent force coefficients are driven towards the target
distributions as the value of the objective function Lg is minimized.
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(a) Time dependent lift profile
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(b) Time dependent drag profile

Figure 3. Time dependent load profiles

C. Validation of Sensitivities

In order to validate the adjoint formulation for the calculation of sensitivities, comparisons with a finite-
difference approach were performed. The finite-difference approach consists of first calculating the objective
using the original geometry in analysis mode, and then repeating the calculation with a slightly perturbed
configuration. The sensitivity value is then given by the difference in the objective function calculated with
both configurations divided by the magnitude of the perturbation.

A finite-difference experiment was constructed by perturbing a point on the upper surface of the wing at
the 10% chord and 15% span location in the normal direction, and then deforming the computational mesh
in response to this perturbation via equation (9) prior to recomputing the flow solution.

Table 1 depicts the results of the validation study. The finite difference sensitivities were computed using
various values of the perturbation magnitude, to investigate the effects of roundoff error, and values were
obtained for steady-state lift and drag objectives, as well as unsteady time-integrated lift and drag objectives
at 1 and 10 time steps. Both tangent and adjoint methods were used to calculate these sensitivities, displaying
agreement to within roundoff error between these two approaches, demonstrating the duality principle, while
good agreement between these values and the finite difference values is also observed.
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Table 1. Validation of Adjoint and Tangent Sensitivities

Steady State Time = 1 Time = 10
CL CD CL CD CL CD

FD: ε = 10−08 -0.3520915892 0.2643615382 -0.3768952150 0.2413373861 - -

FD: ε = 10−09 -0.3520720937 0.2642965013 -0.3768726442 0.2412741950 -0.3504422307 0.2730632664

FD: ε = 10−10 -0.3521249958 0.2642880359 -0.3768896306 0.2412681165 - -

Tangent -0.3516050678 0.2652594347 -0.3759034567 0.2425679122 -0.3494761235 0.2746345922

Adjoint -0.3516050677 0.2652594347 -0.3759034566 0.2425679122 -0.3494761233 0.2746345923

D. Time Dependent Optimization

The unsteady adjoint formulation is used to demonstrate a time-dependent optimization problem for the
pitching ONERA M6 wing problem. The target time-dependent lift and drag profiles depicted in Figure 4
are prescribed and used to construct the objective function defined by equations (63) and (60). In order to
ensure these profiles are realizable, they have been constructed by first deforming the original ONERA M6
wing surface, and computing the pitching wing problem with the deformed configuration. The optimization
problem thus consists of recovering this deformed configuration, starting from the initial ONERA M6 wing
geometry.

The optimization procedure follows the steepest descent approach described by Jameson.26,27 Once the
objective function sensitivities dL

dD have been computed using the method described above, an increment in
the design variables is prescribed as:

δD = −λ
d̃L

dD
(64)

where λ represents a small time step, chosen small enough to ensure convergence of the optimization proce-
dure, and d̃L

dD represents the smoothed gradients dL
dD , obtained using an implicit smoothing technique, which

is necessary to ensure smooth design shapes, as described in reference.26 The current implementation of the
steepest descent optimization procedure is not optimal, in that λ is determined empirically, but is sufficient
for demonstrating the utility of the adjoint solution techniques described herein.

All computations are run on 8 processors of a Linux computer cluster. A total of 25 design cycles are
used for the optimization problem. At each design cycle, an unsteady problem consisting of 20 implicit time
steps is first solved, followed by the solution of the adjoint problem proceeding backwards in time. At each
time level in the analysis procedure, the entire flow field and set of grid coordinates are written out to a
binary file, in partitioned format, resulting in two partitions being written out to the local disk on each node
of the dual core computer cluster. During the adjoint solution procedure, the partitioned solution and grid
coordinate files on each node are read back in by the code at each time step, prior to the calculation of
the sensitivity contributions at the given time step. Within the optimization run, the output and input of
these solution files is essentially invisible to the user, since they occur at each design cycle and overwrite the
previous files produced at earlier design iterations.

A total of 25 multigrid cycles were used to compute the flow and adjoint equations at each implicit time
step. Figure 5(a) illustrates the convergence of the flow equations and adjoint problem at a given implicit
time step, showing similar convergence rates using the line-implicit agglomeration multigrid algorithm. Due
to the use of solid body mesh motion for the pitching wing, the solution of the mesh deformation problem
and its adjoint are only required once for each design cycle (i.e. at the beginning of a new analysis run for
the mesh deformation problem, and at the end of an adjoint run for the mesh adjoint problem). Figure 5(b)
illustrates the convergence obtained for the mesh deformation and adjoint problem using the line-implicit
agglomeration multigrid scheme, also showing rapid convergence for both problems.

In Figure 6 the optimization procedure is seen to result in a reduction of the time-integrated objective
function by approximately three orders of magnitude over 25 design cycles. The main impediment to achiev-
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ing a more rapid decrease in the objective lies in the use of a more sophisticated optimization strategy such
as a line search or hessian-based approach. The current calculation required 3 hours on 8 cpus and produces
a maximum file set size of 200 Mbytes, which is distributed over four computer node local disks.
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Figure 4. Target and initial computed time history of lift and drag coefficients for pitching wing optimization
problem.

V. Conclusions

A time-dependent adjoint formulation for three-dimensional Reynolds-averaged Navier-Stokes flows with
dynamically deforming unstructured meshes has been developed, based on previous work for three-dimensional
steady-state adjoint formulations,6 and two-dimensional unsteady formulations.10 The current formulation
has been validated by comparing adjoint-computed sensitivities with finite-difference derived values, and
through the demonstration of a simple time-dependent optimization problem. Results have been confined
to first-order accuracy and relatively small test cases. Work is underway to validate this approach for
spatially and temporally second-order accurate simulations, and larger simulations involving several mil-
lion grid points and hundreds to thousands of time steps. Concurrently, the investigation of more effective
optimization strategies will be pursued in order to reduce the overall cost of time-dependent optimization
problems.
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