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The paper presents an adjoint based approach for determining global error in the time domain that is
relevant to functional outputs from unsteady flow simulations. The algorithm is derived for the unsteady
Euler equations that are discretized for second-order accuracy in both space and time and takes into account
the effect of dynamic meshes. In addition to error due to temporal resolution, the formulation also takes
into account algebraic error arising from partial convergence of the governing equations. The resulting error
distributions are then used to drive adaptation of the temporal resolution and the convergence tolerances for
the governing equations at each time-step. The method is demonstrated in the context of both time-integrated
and non-time-integrated functionals and the results are compared against traditional adaptation methods.

I. Introduction

The time-integration process in unsteady flow problems is typically carried out using a uniform time-step which
is applied throughout the time domain of interest. The limitation on the size of the time-step is mainly governed
by the temporal resolution required to capture essential unsteady flow features and deliver acceptably low temporal
error. The traditional approach is to use a uniform time-step of a size that by engineering knowledge is known to
be sufficient to capture essential flow features. However, the inherent non-linearity of the flow equations makes it
difficult to determine the temporal scales of the flow features that are relevant to the functional output of interest from
the unsteady simulation. Additionally, the disadvantage of using a uniform time-step is that it becomes expensive
due to high resolution in the regions of the time domain where such resolution may not be necessary. While the
overall cost of an unsteady simulation may be correlated against the resolution of the time domain, the primary cost of
obtaining the solution of the flow equations at each time level arises from the non-linear iterative solution procedure
employed. Typically the equations are never solved to machine precision unless the spatial resolution of the problem
under consideration is relatively coarse. Convergence to small tolerance levels can become time consuming for stiff
problems particularly in the presence of anisotropic mesh effects. A sensible guideline for determining suitable implicit
system convergence levels is that the algebraic error resulting from incomplete system convergence at each time-
step be reduced to levels below the local temporal discretization error at each time-step.1, 2 However, this requires a
good measure of the local temporal error as well as some estimate of the algebraic error due to incomplete system
convergence, and is seldom enforced. The end result is that, as in the case of temporal resolution, some predetermined
constant convergence limit is set based purely on engineering judgement such that the resulting solution has acceptably
low overall error at practical computational expense. It is quite possible that the equations converged to limits set
by such ad-hoc methods could result in unnecessarily restrictive convergence in some regions of the time domain
and insufficient convergence in others. Under most circumstances the effect or error due to insufficient convergence
becomes difficult to quantify and even harder to remedy.

An adjoint variable based approach permits the estimation of error relevant to a functional, and the corresponding
distribution of this error in the time domain. The method relies on applying time-dependent discrete adjoint equations
on a Taylor expansion of the functional. A linear approximation of the error in the functional between temporal
meshes of two different resolutions can be estimated by solving the flow problem and the adjoint problem on the
coarser temporal mesh, and then projecting the flow and adjoint solutions to the finer temporal mesh. It should be
noted that adjoint methods only predict the error in the flow solution that is relevant to the functional of interest
between two different temporal resolutions and not against the exact analytic value of the functional. Adjoint based
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approaches also permit distinct identification of the contributions to this error as arising from the two primary sources,
namely the temporal resolution and the effect of partial convergence of the equations at each time-step. Additional
separation of the error into flow and mesh components provides the criteria necessary to target specifically the set of
governing equations that influences the functional the most. This is uniquely different from common adaptation or
time-step control schemes which are based on estimates of the local temporal error at each time-step, in that the global
temporal error in the functional can be estimated and adapted on.

The total error incurred in time-dependent simulations can be broken down into spatial error, temporal error, and
algebraic error. For steady-state problems, adjoint methods have been used successfully to drive adaptive mesh re-
finement schemes for reducing the spatial discretization error for output functionals of interest.3–6 For time-dependent
solutions, the use of adaptive mesh refinement techniques requires the construction of a new refined mesh at each time-
step, which results in discontinuous processes in time, as new grid points are added and deleted between time-steps.
While the full error reduction and control problem for time-dependent problems must involve simultaneous adaptation
in time and in space, the current work is restricted to adaptation in the time domain, in order to reduce temporal error,
with no attempt to reduce spatial discretization error. However, algebraic error due to incomplete convergence of the
governing equations at each time-step is targeted in this work.

Much work has been done on temporal adaptation and error control in the absence of spatial adaptation, particularly
for ordinary differential equations.7, 8 The most common approach consists of using local temporal error estimation
to drive time-step size selection, where the temporal error at a given time-step is estimated by discretizing the time
derivative with different orders-of-accuracy and comparing the corresponding results.9 Also, such methods implicitly
assume that any solutions obtained are numerically exact, or at least converged to levels below the local temporal
discretization error, and do not consider the effect of partially converged solutions. While local error estimation
has been used successfully for temporal refinement, a more appealing approach would be one that targets the global
temporal error for a functional of interest directly, since for any particular functional, there is no guarantee that a
gradient based or any other local error based adaptation of the time domain would necessarily lead to an improved
estimate of the functional. As in the case of spatial error estimation, this arises from the fact that there may be little
or no correlation between the flow solution gradients in the time domain and the functional of interest. If direct
information such as the sensitivity of the functional to the solution at each time interval, which in turn is a function
of the time-step size and convergence criterion at that interval were available, a more targeted and efficient time
adaptation scheme can be developed. While adjoint methods have been used in the spatial domain for goal oriented
error estimation and control, their use in the time domain has mostly been confined to simpler problems such as those
involving ordinary differential equations.10–12

II. Analysis Problem Formulation

A. Governing Equations of the Flow Problem in ALE Form

The conservative form of the Euler equations is used in solving the flow problem. The paper is limited to inviscid flow
problems since the primary focus is the development and verification of an unsteady adjoint method for the estimation
of functional relevant temporal error. Extension of the algorithm to viscous flow problems with the inclusion of
turbulence models should prove to be relatively straightforward. The differences arise only in the linearization of the
additional flux contributions and not in the base formulation presented in this paper. In vectorial form the conservative
form of the Euler equations may be written as:

∂U(x, t)
∂t

+∇ ·F(U) = 0 (1)

where the state vector U of conserved variables and the cartesian inviscid flux vector F = (Fx,Fy) are:

U =


ρ

ρu
ρv
Et

 , Fx =


ρu

ρu2 + p
ρuv

u(Et + p)

 , Fy =


ρv
ρuv

ρv2 + p
v(Et + p)

 , (2)

Here ρ is the fluid density, (u,v) are the cartesian fluid velocity components, p is the pressure and Et is the total energy.
For an ideal gas, the equation of state relates the pressure to total energy by:

p = (γ−1)
[

Et −
1
2

ρ(u2 + v2)
]

(3)
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where γ = 1.4 is the ratio of specific heats. Applying the divergence theorem and integrating over a moving control
volume A(t) that is bounded by the control surface B(t) yields:Z

A(t)

∂U
∂t

dA+
Z

B(t)
F(U) ·ndB = 0 (4)

Using the differential identity:

∂

∂t

Z
A(t)

UdA =
Z

A(t)

∂U
∂t

dA+
Z

B(t)
(ẋ ·n)dB (5)

equation (4) is rewritten as:
∂

∂t

Z
A(t)

UdA+
Z

B(t)
[F(U)− ẋU] ·ndB = 0 (6)

or when considering cell-averaged values for the state U as:

dAU
dt

+
Z

B(t)
[F(U)− ẋU] ·ndB = 0 (7)

This is the Arbitrary-Lagrangian-Eulerian (ALE) finite-volume form of the Euler equations. The equations are required
in ALE form since the problem involves deforming meshes where mesh elements change in shape and size at each
time-step. Here A refers to the area or volume of the element, ẋ is the vector of mesh face or edge velocities, n is the
unit normal of the face or edge, and B refers to the area or length of the bounding surface or edge.

The method presented in the paper for the estimation of global temporal error involves projections of the flow
and adjoint solutions from a given temporal mesh onto a temporal mesh of higher resolution. In order to remove the
dependence of the order-of-magnitude of the computed adjoint variables on the temporal mesh resolution we utilize
the time-integrated form of equation (7) asZ

T

{
dAU

dt
+

Z
B(t)

[F(U)− ẋU] ·ndB
}

dt = 0 (8)

or in a discrete sense when considering a temporal element of size ∆t as{
dAU

dt

}
∆t +

{Z
B(t)

[F(U)− ẋU] ·ndB
}

∆t = 0 (9)

B. Temporal Discretization

The time derivative term is discretized using a second-order accurate BDF2 (Backward Difference Formula 2) scheme.
Since the goal of the paper is to adapt the temporal mesh, the base scheme requires modification to handle non-uniform
temporal mesh spacing. The modified BDF2 scheme for non-uniform temporal meshes is shown below.

dAU
dt

= c0AnUn + c1An−1Un−1 + c2An−2Un−2 (10)

c0 =
2∆t1∆t2 +∆t2

2
∆t1∆t2(∆t1 +∆t2)

c1 =
−(∆t1 +∆t2)2

∆t1∆t2(∆t1 +∆t2)

c2 =
∆t2

1
∆t1∆t2(∆t1 +∆t2)

∆t1 = T n−T n−1

∆t2 = T n−1−T n−2

Although not a sufficient test, substituting (∆t = ∆t1 = ∆t2) should verify that a standard second-order accurate back-
ward difference can be recovered. The BDF2 discretization on uniformly spaced temporal meshes with mesh spacing
∆t is shown below.

dAU
dt

=
3
2 AnUn−2An−1Un−1 + 1

2 An−2Un−2

∆t
(11)
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C. Spatial discretization

The flow solver uses a cell-centered finite-volume formulation where the inviscid flux integral S around a closed
control volume is discretized as

S =
Z

dB(t)
[F(U)− ẋU] ·ndB =

nedge

∑
i=1

F⊥ei
(Vei ,U,nei)Bei (12)

where Be is the edge length, Ve is the normal edge velocity, ne is the unit normal of the edge, and F⊥e is the normal
flux across the edge. The normal flux across the edge is computed using the second-order accurate matrix dissipation
scheme13 as the sum of a central difference and an artificial dissipation term as shown below,

F⊥e =
1
2
{

F⊥L (UL,Ve,ne)+F⊥R (UR,Ve,ne)+κ
(4)[T ]|[λ]|[T ]−1{(∇2U)L− (∇2U)R

}}
(13)

where UL, UR are the left and right state vectors and (∇2U)L, (∇2U)R are the left and right undivided Laplacians
computed for any element i as

(∇2U)i =
neighbors

∑
k=1

(Uk−Ui) (14)

The matrix [λ] is diagonal and consists of the eigenvalues (adjusted by normal edge velocity Ve) of the flux Jacobian
matrix ∂F⊥

∂U , and the matrix [T ] consists of the corresponding eigenvectors. The scalar parameter κ(4) is empirically
determined and controls the amount of artificial dissipation added to the centrally differenced flux. For transonic
problems this is usually taken as 0.1. The advantage of using the difference of the undivided Laplacians in the con-
struction of the convective flux is that it offers second-order spatial accuracy without the need for state reconstruction
techniques. The normal native flux vector is computed as

F⊥ =


ρ(V⊥−Ve)

ρ(V⊥−Ve)u+ n̂x p
ρ(V⊥−Ve)v+ n̂y p
Et(V⊥−Ve)+ pV⊥

 (15)

where the fluid velocity normal to the edge V⊥ is defined as un̂x +vn̂y, where n̂x and n̂y are the unit edge normal vector
components.

D. Mesh deformation strategy

Deformation of the mesh is achieved through the linear tension spring analogy14, 15 which approximates the mesh as a
network of inter-connected springs. The spring coefficient is assumed to be inversely proportional to the edge length.
Two independent force balance equations are formulated for each node based on displacements of neighbors. This
results in a nearest neighbor stencil for the final linear system to be solved. The linear system that relates the interior
node displacements in the mesh to known displacements on the boundaries is given as

[K]δxint = δxsur f (16)

where [K] is the stiffness matrix assembled using the spring coefficients of each of the edges in the computational
mesh. As in the case of the governing flow equations, the mesh motion and the mesh adjoint solutions have to be
projected between temporal meshes of different resolutions, and in order to avoid projection related scaling issues we
redefine the mesh motion equations in the form of a discrete time-integrated mesh residual as

G(x) = ∆t
{
[K]δxint −δxsur f

}
= 0 (17)

E. The Discrete Geometric Conservation Law (GCL)

The discrete geometric conservation law (GCL) requires that a uniform flow field be preserved when equation (7) is
integrated in time. In other words the deformation of the computational mesh should not introduce conservation errors
in the solution of the flow problem. This translates into U =constant being an exact solution of equation (7). For
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a conservative scheme, the integral of the inviscid fluxes around a closed contour goes to zero when U =constant.
Applying these conditions to equation (7) results in the mathematical description of the GCL as stated below.

∂A
∂t
−

Z
dB(t)

ẋ ·ndB = 0 (18)

For the second-order BDF2 time-integration scheme utilized in this work, this can be discretely represented using
equations (10) and (12) as: (

c0An + c1An−1 + c2An−2)− nedge

∑
i=1

VeiBi = 0 (19)

The edge velocities Vei for each of the edges encompassing the element must therefore be chosen such that equa-
tion (19) is satisfied. While various methods for computing the edge velocities satisfying the GCL have been developed
for different temporal discretizations,16, 17 a unifying approach applicable to first, second and third-order backwards
differencing schemes (BDF) as well as higher-order accurate implicit Runge-Kutta (IRK) schemes has been developed
in reference.18 Following the procedure outlined in reference,18 the edge velocity V n

ei
at time-step n can be written as

a linear combination of the area swept by the edge between three temporal locations n,n−1 and n−2 as:

V n
ei

= k1(∆Ω
n)+ k2(∆Ω

n−1) (20)
(21)

Here Ωn refers to the area swept by the edge between time-steps n and n− 1, while Ωn−1 is the area swept between
n−1 and n−2. The coefficients k1 and k2 are functions of the time-step sizes ∆t1 and ∆t2 and are given by:

k1 =
2∆t1∆t2 +∆t2

2
∆t1∆t2(∆t1 +∆t2)

(22)

k2 =
−∆t2

1
∆t1∆t2(∆t1 +∆t2)

(23)

III. Error Formulation

A. Error due to temporal resolution

Consider a functional computed based on the unsteady solutions of the flow and mesh motion equations. Mathemati-
cally this may be represented as L = L(U,x) where L is the functional, U is the unsteady flow solution set and x is the
set of unsteady mesh solutions. The functional evaluated on two different temporal meshes of discrete resolutions h
and H can represented by Lh(Uh,xh) and LH(UH ,xH). For the purpose of this paper, H refers to some arbitrary coarse
resolution temporal mesh and h is a fine resolution temporal mesh constructed by nested subdivision of H using a ratio
of 2-to-1. An estimate of Lh(Uh,xh) can be obtained based on the Taylor expansion around the functional Lh(UH

h ,xH
h ),

where UH
h and xH

h refer to projections of the flow and mesh solutions from the coarse to the fine level. Assuming that
the coarse time domain flow solution UH and the coarse time domain mesh coordinates xH have been obtained via full
convergence of the respective equations, the Taylor series expansion of the exact fine time domain functional can be
written as:

Lh(Uh,xh) = Lh(UH
h ,xH

h )+
[

∂L
∂U

]
UH

h ,xH
h

(
Uh−UH

h
)
+
[

∂L
∂x

]
xH

h ,UH
h

(
xh−xH

h
)
+ · · · (24)

If nsteps is defined as the number of time-steps in the temporal mesh h, and if ncells and nnodes are the number of
elements and nodes in the spatial mesh, then Uh, UH

h , xh and xH
h are vectors of size [nsteps× 1] where each element

in the vectors are by themselves a vector of size [ncells× 1] for the flow variables and a vector of size [nnodes× 1]
for the mesh variables. This indicates that [∂L/∂U]UH

h ,xH
h

is a vector of size [1× nsteps], where each element in the
vector is again a vector of size [1×ncells]. The same argument applies for the sensitivity of the functional to the mesh
coordinates.

The procedure for computing an unsteady solution involves obtaining the solution to the non-linear residual oper-
ator R(U,x) at each time interval. The non-linear operator R(U,x) is constructed by some appropriate discretization
of the governing flow equations and for this work, we use a cell-centered finite-volume discretization of the Euler
equations on an unstructured triangular mesh. When the time derivative term in the Euler equations is based on the
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second-order BDF2 discretization, the non-linear residual is defined as Rn = Rn(Un,Un−1,Un−2,xn,xn−1,xn−2) = 0,
where n refers to the time index. The solution of the non-linear system can then be obtained at each time interval using
Newton iterations of the form:

[
∂R(Uk,x)

∂Uk

]
δUk =−R(Uk,x) (25)

Uk+1 = Uk +δUk

δUk→ 0,Uk+1 = Un

Expanding a fine time-domain residual set about the coarse time domain set of residuals yields:

Rh(Uh,xh) = Rh(UH
h ,xH

h )+
[

∂R
∂U

]
UH

h ,xH
h

(
Uh−UH

h
)
+
[

∂R
∂x

]
xH

h ,UH
h

(
xh−xH

h
)
+ · · ·= 0 (26)

and since the non-linear residual operator R must vanish for a converged solution at each time interval, an estimate for
the error vector (Uh−UH

h ) at each time interval in equation (24) can obtained by rearranging equation (26) as:

(
Uh−UH

h
)
≈−

[
∂R
∂U

]−1

UH
h ,xH

h

{
Rh(UH

h ,xH
h )+

[
∂R
∂x

]
xH

h ,UH
h

(
xh−xH

h
)}

(27)

It should be noted that this is merely an estimate for the error between Uh and UH
h since higher-order terms in the

Taylor expansion are ignored. Substituting equation (27) into equation (24) results in:

Lh(Uh,xh)≈ Lh(UH
h ,xH

h )−
[

∂L
∂U

]
UH

h ,xH
h

[
∂R
∂U

]−1

UH
h ,xH

h

{
Rh(UH

h ,xH
h )+

[
∂R
∂x

]
xH

h ,UH
h

(
xh−xH

h
)}

+
[

∂L
∂x

]
xH

h ,UH
h

(
xh−xH

h
)

︸ ︷︷ ︸
εcc

(28)

The right-hand-side in equation (28) can be described as an estimate for the exact functional evaluated directly on
the fine time domain. Based on the derivation it is approximately equal to the sum of the functional evaluated on the
fine time domain using a projected solution and projected mesh coordinates from the coarse domain and a computable
correction term εcc.

The correction term εcc as defined above is:

εcc =−
[

∂L
∂U

]
UH

h ,xH
h

[
∂R
∂U

]−1

UH
h ,xH

h

{
Rh(UH

h ,xH
h )+

[
∂R
∂x

]
xH

h ,UH
h

(
xh−xH

h
)}

+
[

∂L
∂x

]
xH

h ,UH
h

(
xh−xH

h
)

(29)

Since computing, storing and inverting the flow Jacobian matrix is expensive, a flow adjoint variable ΛU is defined to
aid the evaluation procedure. The flow adjoint variable is defined as:

ΛU
T
h |UH

h xH
h

=−
[

∂L
∂U

]
UH

h ,xH
h

[
∂R
∂U

]−1

UH
h xH

h

(30)

Transposing and rearranging equation (30) yields[
∂Rh

∂Uh

]T

UH
h xH

h

ΛUh|UH
h ,xH

h
=−

[
∂L
∂U

]T

UH
h ,xH

h

(31)

The solution of equation (31) involves projecting the coarse time domain solution and mesh coordinates onto the fine
time domain, reconstructing the flow Jacobian matrices on the fine time domain and then solving the linear system
iteratively for the flow adjoint variable. Since the goal is to avoid direct solutions of any nature on the fine time domain,
an approximation is used where the adjoint is evaluated on the coarse time domain and then projected onto the fine
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domain. This circumvents the expensive evaluations on the fine time domain. Equation (31) recast on the coarse time
domain becomes: [

∂R
∂U

]T

UH ,xH

ΛUH =−
[

∂L
∂U

]T

UH ,xH

(32)

The coarse adjoint variable can then be projected onto to the fine domain as:

ΛUh = IH
h ΛUH (33)

where IH
h is some appropriate projection operator. Once the vector of adjoint variables ΛUH has been obtained the first

contributions to the computable correction term may be determined by projecting the flow adjoint onto the fine time
domain and then evaluating a vector inner product as follows:

εcc1 = ΛU
H
h

T
Rh(UH

h ,xH
h ) (34)

εcc1 represents the contribution from the flow equations to the error arising due to insufficient temporal mesh resolu-
tion. The residual Rh(UH

h ,xH
h ) is non-zero since it is computed using the projection of the coarse time domain flow

solution onto the fine time domain. Closer examination reveals that equation (34) is actually a summation of the vec-
tor inner products of the flow adjoint and the non-zero residual at each time-step on fine time domain. The remaining
contributions to the total correction term may be written in combined form as:

εcc2 =

{
ΛU

T
h

[
∂Rh

∂xh

]
UH

h xH
h

+
[

∂Lh

∂xh

]
xH

h

}(
xh−xH

h
)

= λx
(
xh−xH

h
)

(35)

using the notation λx as shorthand for the large bracketed term in the middle of the above equation. We now write a
Taylor expansion of the mesh residual equation G on the fine time domain about its value constructed using projected
mesh coordinates from the coarse to the fine domain as:

G(xh) = G(xH
h )+

[
∂G
∂x

]
xH

h

(xh−xH
h )+ · · ·= 0 (36)

Here the residual G(xH
h ) is evaluated using the projected values for xint from the coarse time domain to the fine domain

and the exact values of xsur f on the fine time domain. The surface coordinates xsur f are only a function of time and can
be easily evaluated on the fine time domain. Rearranging and simplifying the mesh residual Taylor expansion yields:

(xh−xH
h ) =−

[
∂G
∂x

]−1

xH
h

G(xH
h ) (37)

However, refering to Equation (16) it is seen that the linearization of the mesh residual G with respect to the mesh
coordinates x is simply the mesh stiffness matrix [K] multiplied by the local temporal element size ∆t. Therefore,

(xh−xH
h ) =−

(
1
∆t

)
[K]−1G(xH

h ) (38)

Substituting this back into equation (35) gives us an expression for the second and final contribution to the computable
correction term as:

εcc2 =−λxh

(
1
∆t

)
[K]−1G(xH

h ) (39)

Defining a mesh adjoint variable Λx permits an iterative solution and avoids inversion of the stiffness matrix.

[K]T Λxh =−
(

1
∆t

)
λxh

T (40)

As in the case of the flow adjoint, the above system is solved on the coarse time domain and the coarse mesh adjoint
variable then projected onto the fine time domain by some appropriate operator as:

[K]T ΛxH =−
(

1
∆t

)
λxH

T (41)

Λxh = IH
h ΛxH (42)
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Both a mesh adjoint variable vector and a flow adjoint variable vector must be solved for at each time-step during the
backward sweep in time. Details on the exact solution process involving the backward sweep in time can be found in
reference.19 The final form for the second contribution to the correction term can now be expressed as:

εcc2 = Λx
H
h

T G(xH
h ) (43)

εcc2 represents the contribution from the mesh motion equations to the temporal resolution error. Just as in the case of
the temporal resolution error due to the flow equations, equation (43) represents a summation of vector products of the
mesh adjoint and the mesh residual at each time interval. Although the mesh motion equations are linear, the resulting
mesh coordinate variations in time are not linear, since these are driven by the prescribed surface mesh displacements,
which in our following examples are non-linear in time. This causes the mesh residual to be non-zero when computed
on the fine time domain using projected mesh coordinates from the coarse time domain.

The contribution to the total correction from each individual time-step can be interpreted as the representation of
the error in the functional arising from that time interval. From the derivation it is clear that there are two distinct
sources of error, specifically the flow and the mesh that contribute to the total temporal resolution error. The resulting
distribution in time of the total error εcc can thus be conveniently used as the criteria for identifying regions that require
higher temporal resolution.

B. Error due to partial convergence

Consider the solution of the problem on the coarse time domain. Previously we assumed that the solutions on the
coarse time domain were obtained by full convergence of the flow and mesh motion equations. This translates into
the flow residual and the mesh residual equations evaluating to zero on the coarse time domain. However, we now
consider the functional L evaluated on the coarse time domain using partially converged solutions. If the flow and mesh
equations were partially converged on the coarse time domain, the error resulting in the functional as a consequence
may be linearly approximated as:

LH(UH ,xH)−LH(ŪH , x̄H)≈
[

∂L
∂U

]
ŪH ,x̄H

(UH − ŪH)+
[

∂L
∂x

]
x̄H ,ŪH

(xH − x̄H) (44)

where ŪH and x̄H refer to the approximate values of the flow variables and mesh coordinates obtained through partial
convergence of the respective equations. Evaluating the flow and mesh residual equations using partially converged
solutions would result in non-zero residuals. The fully converged zero residuals can then be written using a Taylor
expansion about the partially converged values as:

R(UH ,xH) = R(ŪH , x̄H)+
[

∂R
∂U

]
ŪH ,x̄H

(UH − ŪH)+
[

∂R
∂x

]
x̄H ,ŪH

(xH − x̄H)+ · · ·= 0 (45)

G(xH) = G(x̄H)+
[

∂G
∂x

]
x̄H

(xH − x̄H)+ · · ·= 0 (46)

At this point the similarity with the derivation of the temporal resolution error becomes clear. Following the same
procedure as the temporal resolution error derivation, we can obtain two contributions that add up to the total error due
to partial convergence as:

εcc1p = ΛUH
T R(ŪH , x̄H) (47)

εcc2p = ΛxH
T G(x̄H) (48)

where the adjoint variables are solved for as:[
∂R
∂U

]T

ŪH ,x̄H

ΛUH = −
[

∂L
∂U

]T

ŪH ,x̄H

(49)

[K]T ΛxH = −
(

1
∆t

)
λx

T
H (50)

λxH =

{
ΛU

T
H

[
∂R
∂x

]
ŪH ,x̄H

+
[

∂L
∂x

]
x̄H ,ŪH

}
(51)
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Closer examination reveals that these systems are nearly identical to equations (32) and (41) with the only difference
being that all quantities are evaluated using the partially converged flow and mesh solutions on the coarse time domain,
rather than the fully converged values. In the case of the temporal resolution error, the adjoint variables were solved for
on the coarse time domain using the fully converged coarse time domain flow solution and mesh coordinates. These
were then projected onto the fine time domain and multiplied with the non-zero residuals constructed on the fine time
domain. The residuals on the fine time domain were non-zero due to the projection of the flow solution and mesh
coordinates from the coarse to the fine time domain. In the case of partial convergence on the coarse time domain,
there are no projections involved and the error due to partial convergence on the coarse time domain can be estimated
directly by multiplying the non-zero partially converged coarse residuals with the coarse adjoint variables.

Relaxing the assumption of fully converged coarse time domain solutions for the temporal resolution error does
not affect the error estimated by that procedure. The important realization is that the error computed as temporal
resolution error by relaxing this assumption includes the error due to the partial convergence of the flow and mesh
equations on the coarse time domain. The temporal resolution error in reality is blind to what solution is projected
from the coarse time domain, since our only enforcement in the derivation is that Rh(UH

h ,xH
h ) = 0 which can also be

enforced as Rh(ŪH
h , x̄H

h ) = 0. The error due to temporal resolution can be separated from the total error by subtraction
of the error due to partial convergence which is computed on the coarse time domain.

The distributions in time of εcc1p and εcc2p arise from the error due to partial convergence of the flow and mesh
equations respectively and can be used to drive adaptation of the convergence tolerances of the corresponding disci-
plines.

IV. General Implementation Details

A. Solver details

The adaptive solver consists of two parts namely the forward flow solver and backward adjoint solver. The projection
and error computation routines are built into the adjoint solver. The flow solver performs the forward integration in
time and writes out the flow solution, mesh solution and partially converged residual values to the hard drive in a
piecewise manner (i.e. at each time level). The adjoint solver reads in the flow and mesh solutions and performs the
backward sweep in time to compute the flow and adjoint variables at each time level. The adjoint solver also reads in
the non-zero partially converged flow and mesh residuals written out by the flow solver and multiplies them with the
corresponding adjoint variables to determine the algebraic partial convergence error at each time-step. A simple linear
interpolation of the flow solution, mesh coordinates and the adjoint variables on the coarse time domain is used as the
projection operator to determine unknown values on the fine time domain. We use a refinement ratio of 2-to-1 where
each temporal element in the coarse level temporal mesh is divided into two. Although more advanced interpolation
techniques such as third- and fifth-order splines may be used as the projection operator, it has been determined through
our own work that they do not offer any significant advantages in terms of gain in accuracy compared to a simpler
linear interpolation. This is a useful finding since a linear interpolation is much easier to construct and there are
fewer file I/O operations and flop operations resulting in faster code. The adjoint solver also constructs the non-zero
residuals resulting from the projected solutions from the coarse to the fine time levels and multiplies them with the
corresponding projected adjoint variables to determine the total error (resolution+algebraic) at each time level. The
algebraic or partial convergence error at each time-step is then subtracted out of the total error in order to obtain the
temporal resolution error.

B. Validation of method

The validation of the method is done in several steps where each component of the computed total error is individually
verified. The process can be broken down as follows.

1. Validate temporal resolution error without the effect of partially converged solutions.

2. Validate error due to partially converged flow equations without the effect of partially converged mesh equations
or temporal resolution.

3. Similarly validate error due to partially converged mesh equations.

4. Validate total combined error which includes temporal resolution and partial convergence of flow and mesh
equations.
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1. Temporal resolution error

Since the method computes a linear approximation of the error between temporal meshes successively refined using
a ratio of 2-to-1, it would be wise to choose a test problem that exhibits minimum non-linear behavior with respect
to increasing temporal resolution for the purpose of validation. Our approach is to consider a sinusoidally pitching
NACA64A010 airfoil and zoom into a small temporal window in the pitch cycle to use as our time domain of interest.
The purpose of this is to reduce the effect of non-linear behavior as the temporal resolution is increased. The conditions
chosen for the problem include a free-stream Mach number of 0.8, a zero mean angle-of-attack, an amplitude of pitch
of 5 degrees, a reduced frequency of 0.1 and a pitch center located two chord lengths ahead of the leading edge of the
airfoil. The time domain we consider is the first quarter of the first pitch period starting from a steady-state solution.
The functional of interest is the time-integrated lift coefficient given as

L =
nsteps

∑
n=1

∆tnCLn (52)

The coarsest temporal mesh consists of 8 temporal elements of uniform size and fine meshes are constructed by
successive nested subdivision of these 8 elements. The finest mesh consists of 128 elements. In order to remove the
effect of partially converged solutions and to validate only the error due to temporal resolution, all of the equations
(governing and corresponding adjoint) are converged to machine precision. At each temporal resolution we compare
against the exact functional computed directly on the next temporal mesh that has twice the resolution. Table 1 shows
the results from this study and indicates the expected trends. As the temporal resolution is increased, the ratio between
the predicted and exact errors asymptotically approaches unity.

Table 1. Validation of temporal resolution error prediction

Flow/Mesh Tol. H/h Lh(Uh,xh) Lh(UH
h ,xH

h ) Exact error Predicted Error Ratio
2e-14/1e-15 8/16 4.76277480754394 4.74199520631275 0.02077960123119 0.02222993864937449 1.069796210333793422
2e-14/1e-15 16/32 4.67691705294113 4.66023148160587 0.01668557133526 0.01616314584767658 0.968689985072346376
2e-14/1e-15 32/64 4.63524666709455 4.62579245127242 0.00945421582213 0.00945039877868234 0.999596260174352881
2e-14/1e-15 64/128 4.61497058797096 4.60972934648665 0.00524124148431 0.00524024148431455 0.999809205510099932

2. Flow partial convergence error

In order to validate the error only due to partial convergence of the flow, we fully converge the mesh motion equations
and partially converge the flow equations (to a tolerance of 1e−5) while performing all computations on a single
temporal mesh of some arbitrary resolution. This is done in order to remove the effect of mesh partial convergence and
temporal resolution. The chosen temporal mesh resolution consists of 8 uniform temporal elements. The comparison is
made against a functional computed on the same temporal mesh by fully converging both the flow and mesh equations.
Table 2 shows the results from the study. The predicted error due to partial convergence is very close to the exact error
as indicated by the near unity of the ratio between the two.

Table 2. Validation of flow partial convergence error prediction

Flow/Mesh Tol. H LH(UH ,xH) LH(ŪH ,xH) Exact error Predicted Error Ratio
1e-5/1e-15 8 4.94779073511526 4.93351322506854 0.01427751004672 0.01430150394530994 0.99832228144105021901

3. Mesh partial convergence error

The method is nearly identical to that of validating the flow partial convergence error, except now the flow equations
are fully converged while the mesh equations are partially converged to a tolerance of 1e−5. Table 3 shows the results
from the study and once again the near unity of the ratio between the predicted and exact errors establishes confidence
in the method.
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Table 3. Validation of mesh partial convergence error prediction

Flow/Mesh Tol. H LH(UH ,xH) LH(UH , x̄H) Exact error Predicted Error Ratio
2e-14/1e-5 8 4.94779073511526 4.94777035504003 2.038007523e-5 2.063119286591242e-5 1.01232172271585967055

4. Combined total error due to resolution and partial convergence

In this study we successively refine the temporal resolution and tighten the convergence tolerances from loosely set
values in order to validate the total predicted error. The coarsest temporal mesh consists of 2 equally sized temporal
elements while the finest mesh consists of 128 elements. The convergence tolerances for the flow equations and
mesh equations begin at 1e−5 and 1e−4 respectively on the coarsest temporal mesh and are tightened by an order-of-
magnitude during each refinement of the temporal resolution. These starting limits were chosen such that the algebraic
and resolution errors are roughly the same order-of-magnitude so as to not mask any discrepancies from either. The
comparison at each temporal resolution is made against the functional computed using full convergence of flow and
mesh equations on the next temporal mesh of double the resolution. It is important that the method be validated for the
total combined error prediction since it is to be applied in this form to adaptation problems in general. Table 4 shows
the results from this study and indicates the expected trend of more accurate predictions as the resolution is increased
while simultaneously convergence tolerances are tightened.

Table 4. Validation of combined temporal resolution and partial convergence error prediction

Flow/Mesh Tol. H/h Lh(Uh,xh) Lh(ŪH
h , x̄H

h ) Exact error Predicted Error Ratio
1e-5/1e-4 2/4 5.32871253250061 5.23618642920781 0.0925261032928 0.08974106868553147 0.96990001190847459028
1e-6/1e-5 4/8 4.94779073511524 4.91425748567510 0.0335332494401 0.03642497374223000 1.08623453886423978972
1e-7/1e-6 8/16 4.76277480754372 4.74199520631271 0.0207796012310 0.02222993863204701 1.06979620950919065488
1e-8/1e-7 16/32 4.67691705294096 4.66023148160566 0.0166855713353 0.01616314582262150 0.96868998356842259156
1e-9/1e-8 32/64 4.63524666709440 4.62579245127225 0.0094542158221 0.00945039872750963 0.99959625475955117896
1e-10/1e-9 64/128 4.61490428671639 4.60972934648651 0.0051749402298 0.00517385268336707 0.99978984367265443726

C. Effect of initial condition and change of order during startup

An unsteady solution procedure that involves a higher-order time-integration scheme typically starts up with a lower-
order scheme. In the case of second-order temporal accuracy, the first time-step is normally treated using a first-order
accurate scheme. This is due to the unavailability of a stencil large enough to accommodate the BDF2 scheme at the
first time-step. Since the adjoint computation is based simply on the linearization of the governing flow equations,
this change in order during startup gets carried over to the adjoint solution process. In most circumstances, adjoint
variables vary smoothly throughout the entire time domain irrespective of the temporal resolution. The exception to
this is when there is a change in the order-of-accuracy of the temporal discretization between consecutive temporal
elements. Since this does happen at the very first time-step for the BDF2 scheme, there is a discontinuity in the adjoint
variable distribution at the first time-step. The method described in our paper relies on computing the adjoint variable
on a coarse level temporal mesh and then projecting it onto a finer temporal mesh rather than directly computing the
adjoint variable on the finer level mesh. Although the Taylor expansion requires that the adjoint variables be computed
directly on the fine level temporal mesh, we assume that computing and projecting the adjoint variables from the
coarser level will suffice for the purpose of error estimation. However, the discontinuity in the time variation of the
adjoint variables due to change in discretization order occurs at different temporal locations in the coarse and fine
meshes. In the case of 2-to-1 refinement between fine and coarse levels, the fine level discontinuity occurs at the
midpoint of the first temporal element on the coarse level. Figure (1) clearly shows the difference in the location of the
discontinuity when comparing adjoint variables computed on the fine and coarse levels. The implication is that using
a coarse level adjoint projected onto the fine level leads to significant inaccuracies in the predicted error. It is virtually
impossible for a linear or any higher-order projection operator to shift the location of this spike when going from the
coarse to the fine levels. As per theory the correct location for the spike is that captured when the adjoint variables are
computed directly on the fine level.

Two different methods, namely the application of a second-order accurate initial condition and the direct solution
of the fine level adjoint at only the start up location were investigated to remedy this problem. The second-order initial
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condition is analogous to a second-order boundary condition in space. A ghost temporal point is introduced with a
spacing equal to that of the first time-step on the coarse level and the explicit first-order backward Euler formula is used
to determine the state at this point. The purpose of this is to avoid a change in the order of the temporal discretization
within the time domain of interest thus avoiding the spike altogether. Table 5 shows the inaccuracy in the predicted
error between two levels due to this issue and the gains in accuracy using the two different methods proposed. It is
also evident from the table that both methods perform reasonably well. For our work we compute the adjoint variable
directly on the fine level at the first time-step. Although this is a solution on the fine level, the cost incurred in doing so
corresponds exactly to that of two additional time-steps in the coarse level temporal mesh. As the temporal resolution
increases, the cost of this additional computation becomes negligible.

Table 5. Treatment of error due to change in order of accuracy at startup

Ratio against exact error
Exact functional using 32 time-steps (BDF2) 0.0182487713384828 -
Exact functional using 16 time-steps (BDF2) 0.0182499683163204 -

Exact error between 32 and 16 time-steps -1.1969778376e-06 -
Prediction using coarse level adjoint -5.218147366e-07 0.43594

Prediction using coarse level adjoint and 2nd-order initial condition -1.1694744767e-06 0.97702
Prediction using coarse level adjoint + fine level adjoint for first coarse time-step only -1.212083697e-06 1.01262

Prediction using fine level adjoint -1.1949466580e-06 0.99830

D. Other shortcomings of projecting the adjoint variable

In the case of a first-order BDF1 time-integration scheme, the difference between coarse and fine level adjoint solutions
is minimal allowing a linear interpolant to capture the details of the fine level using the coarse level adjoint time
history. Increasing the order-of-accuracy of the temporal discretization however creates differences in the adjoint
variable distribution between the two levels that cannot be captured effectively by any interpolating operator due to the
lack of profile similarity between the coarse and fine level adjoint distributions. This problem is further exacerbated as
the resolution of the coarse level temporal mesh H increases. Figure (2) shows the difference in the time variation of
the fine level adjoint and the coarse level projected (third-order spline interpolant) adjoint for an arbitrary spatial point
between temporal resolutions of 32 and 16. While the details of this particular test problem are not important, it should
be noted that this problem has a tendency to surface mostly when dealing with non-time-integrated functionals. It is
likely that this is due to the primary source term for the adjoint variables occuring only at the end of the time-integration
process. The backward sweep in time appears to wash out the details in the adjoint distribution as it progresses farther
from the location of the main source term (i.e n = nsteps). This not so apparent for time-integrated functionals where
a functional linearization source term appears at each time level. Two different methods were investigated to improve
the accuracy of the adjoint variable as described below.

1. Utilizing fine level information in coarse adjoint solution

From a cost standpoint it is important that fine level solutions of the adjoint equations be avoided, but solving only the
coarse level adjoint equations and projecting the adjoint variable to the fine level leads to significant inaccuracies in the
predicted error for several cases. Accuracy gains while keeping costs similar to that of solving the coarse level adjoint
can be achieved by attempting a solution of the fine level adjoint equations but only at points on the fine level temporal
mesh that coincide with the coarse level mesh. The main difficulty is the construction of source terms for the adjoint
equations from fine level temporal mesh points that do not coincide with those on the coarse level since no adjoint
variable is available at these locations. This problem can be addressed by combining the projection operation with the
adjoint solution process. The unknown adjoint variables on the fine level temporal mesh are written as functions of
known adjoint variables located at points that coincide with the coarse level mesh and solved simultaneously. Both
linear and third-order operators chosen to represent the unknown adjoint variables indicate improvements although
the third-order spline operator fairs better. However, implementation of this method involves coding complexities
that result in increased computational cost thus rendering it only marginally cheaper than actually solving the adjoint
variable distribution directly at all fine level temporal mesh points. This method does significantly reduce the difference
between a coarse level adjoint projected to the fine level and the true fine level adjoint solution since it does not

12 of 25



completely ignore fine level information during the solution process on the coarse level. Figure (3) indicates significant
improvement at least in the qualitative sense.

2. Direct smoothing of error in adjoint variable on fine level

While fine level solutions are to be avoided, the projection of the coarse level adjoint variable onto the fine level
temporal mesh provides a good initial guess for the fine level adjoint equations. If the error between the coarse and
fine level adjoint solutions are in the high frequency range in the context of the fine level temporal mesh, solution of
the fine level adjoint equations starting with the coarse level estimates should in theory converge very rapidly using
conventional smoothing techniques such as Gauss-Seidel iterations. Although this is an increase in the overall cost of
the process and is actually a partial solution directly on the fine level temporal mesh, the gain in accuracy somewhat
justifies the increase in cost. Typically we have noticed anywhere between a 20% to 30% increase in cost compared to
solving only the coarse level equations.

In general it is not necessary that the computed adjoint distribution match exactly with the true fine level adjoint
distribution. The method as such being linear in nature cannot guarantee exact corrections between successively
refined temporal meshes. There is always the possibility that an increase in temporal resolution will lead to capturing
of smaller scale temporal features which may exhibit highly non-linear variation between the two levels. For the
method to be useful it is important that it be able to at least provide a good estimate of the error distribution relevant
to our functional of interest, even if the magnitude of the total error is not accurate.

E. Adaptation Strategy

The adjoint based adaptation method involves the forward integration in time to determine the solution to the analysis
problem and a backward sweep in time to compute the time-dependent adjoint variables and the corresponding neces-
sary error distributions (resolution and algebraic). The sum of the individual error distributions gives us an estimate of
the correction from each type of error. The temporal elements are first sorted in decreasing order by their contribution
to the total error of each type. Then parsing down each of the lists, elements are flagged for refinement or tolerance
tightening until 99% of the total error of the type under consideration is reached. The method assures that only the
most offending elements are targeted in the case of an extremely non-uniform error distribution. The method also
assures that near uniform refinement or tolerance tightening is requested once the error in the temporal domain has
been equidistributed. Elements flagged for refinement are subdivided into two, while elements flagged for algebraic
error have their convergence tolerances tightened by a factor of three.

F. Comparative Methods

We present two example problems, one where the functional of interest is a non-time-integrated quantity measured at
the end of the time-integration process and the other where the functional is a time-integrated quantity. The purpose of
the examples presented is to demonstrate the advantage of using goal/adjoint based adaptation of the temporal domain
over traditional adaptation methods. To this end we compare our results against the more commonly used but basic
method of uniform temporal refinement till acceptable error levels are achieved, and the more sophisticated method of
utilizing temporal discretizations of varying orders-of-accuracy for estimating local temporal error.

The uniform refinement method we employ involves the doubling of the temporal mesh resolution at each adaptive
cycle using a 2-to-1 nested subdivision of temporal elements, while simultaneously tightening the convergence toler-
ances by a factor of three for all temporal elements. As for the estimation of local temporal error, the method proposed
in reference20 is used. The solution to the analysis problem obtained using the second-order accurate BDF2 scheme
is used to determine the temporal derivative term discretized based on a third-order accurate BDF3 time-integration
scheme. The estimate of the local error at each time-step is then computed as

elocal =

∣∣∣∣∣
[

dAU
dt

]
BDF3

−
[

dAU
dt

]
BDF2

∣∣∣∣∣ (53)

The adaptation for this method is based on refining temporal elements that have local error higher than the computed
mean of the local error distribution in the time domain. The convergence tolerances at each time-step are set to be
equal to that of the local temporal error in order to ensure that the algebraic error is less than or equal to the temporal
discretization error. Computational cost is measured using the systemclock intrinsic function built into FORTRAN95.
As a convention, the cost shown in the comparative plots at any particular adaptive cycle regardless of the adaptation
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method employed includes the cost of all preceding adaptive cycles. All adaptation methods are compared in reference
to numerically exact results computed using a uniform time domain of resolution at least two orders-of-magnitude
higher than those achieved through adaptation.

V. Results

A. Case (A): Example of a non-time-integrated functional

The first example consists of a pitching NACA64A010 airfoil where the angle-of-attack as a function of time is
prescribed. The functional of interest is the lift coefficient of the airfoil evaluated at the end of the time-integration
process. The computational mesh for this case consists of approximately 6,600 elements and is shown in Figure (4).
The airfoil operates at a Mach number of 0.3 and Figure (5(a)) shows the prescribed displacement in time. The
corresponding time variation of the lift coefficient of the airfoil is shown in Figure (5(b)). The prescribed motion
begins at an angle-of-attack of 0.5o and remains undisturbed for a short period before a spike (albeit continuous)
of 0.5o is introduced. The angle-of-attack then returns to the steady-state value of 0.5o where it remains for an
extended period before a shallow pitch down by 0.5o is followed by a rapid pitch up to 5o. Once the angle-of-attack
reaches the maximum of 5o, the motion of the airfoil is stopped and only transient effects remain in the flow. The
problem is well suited for the demonstration of the advantage in using goal based adaptation over local error based
adaptation. Figures (6(a)) and (6(b)) show the convergence of the functional and error in the functional using the
three different adaptation methods. The plots indicate that adjoint based adaptation is able to achieve similar error
levels to that of unguided uniform refinement with fewer time-steps. On average the method appears to provide a
factor of saving anywhere between 1.6 and 2 when considering only adaptation. The method however also provides
a correction term that can be used to improve the value of the functional computed using the adapted domain. When
including the correction term in the functional, the method far outperforms uniform refinement at least in terms of the
temporal resolution required for the same error levels. Figures (7(a)) and (7(b)) show the convergence with respect
to computational cost. When considering the adjoint based adapted curve in the plots, the costs appear similar to that
of uniform refinement for the same error levels. However, the method is still competitive when the correction term
is included in the functional. It should be noted that the adjoint based error distribution provides the correction term
and no additional work is necessary in order to compute it. Therefore, a fair comparison is that between the corrected
functional convergence and uniform refinement.

It is interesting to note from the plots that local error based adaptation performs very poorly for this particular
problem. This is expected since the problem was setup specifically to demonstrate the weakness of local error based
adaptation. Theoretically it is known that the spike occuring close to the start of the time-integration process has
no effect on the lift coefficient at the end of the time-integration since there is sufficient time after the spike for the
airfoil to recover its steady-state lift. Local error based adaptive methods however are blind to this effect and will
target the spike for adaptation since that would be the location of maximum temporal error. This is quite obvious from
Figure (8) where the distribution of local error shows significant differences compared to the adjoint based error, both
evaluated at the first adaptive cycle. Nearly all of the adaptive refinement during the first six adaptive cycles based
on local temporal error occurs at the location of the spike. It is only after the local temporal error at this location has
been brought down to the same levels as those closer to the end of the time-integration does the method actually start
attacking the correct regions relevant to the functional. As a consequence of this, local error based adaptation performs
less efficiently than even uniform refinement of the time domain. Figure (9) compares the distribution of the time-step
sizes between adjoint adaptation and local error based adaptation after the final adaptive cycle. It is clear from this
plot that local error based adaptation has refined the temporal mesh significantly in the vicinity of the spike, while the
adjoint based adaptation has almost completely ignored the spike.

The other aspect of the problem that is tackled by the adaptive procedure is the algebraic error at each time-step
due to partial convergence. Figures (10) and (11) show the distribution of the error due to partial convergence of the
flow and mesh equations at various adaptive cycles. The algebraic error is dominant in the region where the airfoil is
moving and also close to where the functional is evaluated. As in the case of temporal resolution, the temporal location
where the spike in the angle-of-attack occurs is irrelevant to the functional. Figure (12) shows the final distribution
of the convergence tolerances for the flow and mesh equations after termination of the adaptation. The tolerances
progressively become tighter for both sets of equations as the time-integration approaches the point of the functional
evaluation and this trend matches closely with intuition.
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B. Case (B): Example of a time-integrated functional

The second example demonstrates the method when the functional of interest is a time-integrated quantity. The
problem considers the interaction of a vortex with a pitching airfoil. The airfoil is a NACA0012 undergoing very
slow pitching at a reduced frequency of 0.001 in a flow with a freestream Mach number of 0.4225. The amplitude
of pitch is 5o with the pitch center located at the quarter chord of the airfoil. Figures (13(a)) and (13(b)) show the
computational spatial mesh and a zoomed in view of the airfoil within the mesh used for this example. The mesh
consists of approximately 8,600 elements. The vortex is seeded in the flow 15 chord lengths ahead and 2 chord lengths
below the airfoil, from where it is allowed to convect with the freestream and interact with the airfoil. Figure (14)
shows the density contours of the initial condition for the flow in the spatial domain. Figure (15) shows the time
variation of the lift coefficient of the airfoil with and without vortex interaction. The size of the time domain was
chosen such that at the end of the time-integration process the vortex is located approximately 15 chord lengths
downstream of the airfoil. The functional of interest is the time-integrated value of the lift coefficient as described in
Equation (52). The effect of the vortex on the airfoil should in theory increase as it approaches the airfoil and diminish
rapidly once it passes the airfoil. Engineering judgement tells us that in order to correctly predict the effect of the
vortex on the airfoil load, it must be convected to the region of interaction with the least amount of dissipation. Both
temporal and spatial errors contribute toward dissipating the vortex as it convects through the domain. The sources
of spatial error include the spatial discretization order-of-accuracy and the resolution of the spatial mesh. However,
since all comparisons are made on the same spatial mesh with identical spatial discretization, the spatial error can be
considered to be independent of the temporal error. Our goal is to identify and reduce the effect of temporal error on
the functional. The temporal error relevant to the functional most likely occurs in the region of the temporal domain
when the vortex is still ahead of the airfoil, and also in the region when it interacts with the airfoil. It is likely that the
temporal error once the vortex passes the airfoil is not relevant to the functional. The time-integration must therefore
use smaller time-steps while the vortex is still ahead of the airfoil in order to ensure minimal dissipation of the vortex,
and smaller time-steps have to be used during the interaction phase in order to ensure that all of the details in the
perturbation of the airfoil lift are captured. The adjoint method being goal based should predict the error distribution
in accordance with this expectation, while local error based adaptation will likely request refinement of the entire time
domain. This happens as a consequence of the vortex continuing to convect and dissipate downstream of the airfoil,
although its effect is not relevant to the load on the airfoil. Therefore local error based adaptation is likely to perform
no better than uniform refinement of the whole time domain.

Figures (16(a)) and (16(b)) show the convergence of the functional and functional error with respect to the tem-
poral mesh resolution, while Figures (17(a)) and (17(b)) compare the same with the computational expense. For this
particular case, adjoint based adaptation is able to achieve similar error levels as uniform refinement and local error
based adaptation with fewer than half the number of time-steps. From a cost perspective, the plots indicate that at least
initially the expense is similar between all methods but after a two to three adaptive cycles, adjoint based adaptation is
able to outperform uniform refinement and local error based adaptation. The plots also indicate the expected trend of
local error based adaptation performing similarly to uniform refinement. Figure (18) compares the distribution of the
temporal error computed using the adjoint and the local error method after three adaptive cycles. It is quite clear that
the local error distribution is fairly uniform throughout the time domain in contrast to the adjoint based error where
dominance is obvious prior to the vortex passing the airfoil. Figures (19) compares the time-step size distribution
between adjoint based and the local error based method after termination of the adaptation. The adjoint based method
has not touched the region in the time domain when the vortex has passed the airfoil, while local error based adaptation
has requested fairly small time-step sizes in this region.

The algebraic error distribution due to partial convergence of the governing equations is particularly interesting for
this problem. From Figures (20) and (21) it can be seen that the maximum algebraic error due to the flow equations at
the start of the adaptation occurs when the vortex interacts with the airfoil, while the maximum algebraic error due to
the mesh equations occurs not only during the interaction of the vortex with the airfoil but even after the vortex passes
the airfoil. By far the most counter-intuitive results are the algebraic error distributions for both the flow and mesh
equations after the termination of adaptation. Both sets of equations continue to show higher error when the vortex is
already downstream of the airfoil although adaptation of the convergence tolerances has occured mostly in this region
as shown in Figure (22). This is a good example where engineering judgement in lieu of a mathematically rigorous
procedure to determine convergence tolerances could potentially lead to poor results.
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VI. Conclusions

A method to determine global temporal error in unsteady flows was developed and tested. The algorithm replaces
the ambiguity and guess work typically involved in intuitive temporal adaptation with a rigorous mathematical con-
sistent procedure. Additionally, the method also accounts for the various sources of error, such as those due to partial
convergence of the governing equations for the mesh motion and the flow. Because global adjoint error estimation is
relatively expensive, due to the need to compute an unsteady adjoint solution which must be integrated in time, rapid
convergence of the adaptive procedure is required to make these techniques cost effective. On the other hand, the cur-
rent approach provides not only an error estimate for the functional of interest, but also a breakdown of the important
contributing sources of error. In principle, this technique can be extended to more complicated multiphysics simu-
lations, where the overall error sources from various disciplines such as fluid flow, structural analysis, or conjugate
heat transfer can be assessed, with implications for how best to deploy computational resources for maximum error
reduction impact. Another area of interest concerns the combination of spatial and temporal adaptation for functional
outputs. Considering the results demonstrated in this paper combined with existing work that has been done on spatial
adaptation, the machinery now exists to adapt both the spatial and time domains independently. The obvious path from
this point would be to address issues that arise from the coupling of spatial and temporal adaptation.
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Appendices
A. Third-order BDF3 discretization on uniform temporal meshes
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B. Third-order BDF3 discretization on non-uniform temporal meshes

(
dAU

dt

)n

= −
(

C2

C4

)
(AU)n−

(
C3

C4

)
(AU)n−1 +

(
1

C4

)
(AU)n−2−

(
C1

C4

)
(AU)n−3

C1 =
k2

2(k1− k2)
k2

3(k1− k3)

C2 = (1−C1)+
C1k3

3− k3
2

k3
1

C3 =
k3

2−C1k3
3

k3
1

C4 =
k2(k2

2− k2
1)+C1k3(k2

1− k2
3)

k2
1

k1 = ∆t1
k2 = ∆t1 +∆t2
k3 = ∆t1 +∆t2 +∆t3

∆t1 = T n−T n−1

∆t2 = T n−1−T n−2

∆t3 = T n−2−T n−3

T = Time

Time

F
lo

w
ad

jo
in

tv
ar

ia
bl

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

4

5

6

7
Coarse level adjoint
Fine level adjoint

Spike due to change
from BDF1 to BDF2
time-integration

Figure 1. Spike due to change in temporal order-of-accuracy (arbitrary spatial location)
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Figure 5. Prescribed displacement and corresponding variation of lift coefficient in time of the airfoil for Case (A)
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Figure 6. Convergence of functional and error with respect to temporal mesh resolution for Case (A)
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Figure 7. Convergence of functional and error with respect cost in terms of wall time for Case (A)
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Figure 10. Flow partial convergence error distribution for Case (A)
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Figure 11. Mesh partial convergence error distribution for Case (A)
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Figure 12. Flow and mesh convergence tolerances after final adaptive cycle for Case (A)
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Figure 16. Convergence of functional and error with respect to temporal mesh resolution for Case (B)
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Figure 17. Convergence of functional and error with respect cost in terms of wall time for Case (B)
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Figure 18. Comparison of adjoint based error distribution and local temporal error distribution for Case (B) after three adaptive cycles
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Figure 19. Comparison of time-step size distribution for adjoint based and local error based adaptation after final adaptive cycle for Case
(B)
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Figure 20. Flow partial convergence error distribution for Case (B)
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Figure 21. Mesh partial convergence error distribution for Case (B)
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Figure 22. Flow and mesh convergence tolerances after final adaptive cycle for Case (B)
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