
Efficient Hessian Calculations using Automatic

Differentiation and the Adjoint Method

Markus P. Rumpfkeil∗ and Dimitri J. Mavriplis †

University of Wyoming, Laramie, 82071, USA

In this paper an efficient general algorithm to calculate the Hessian of a steady or
unsteady functional of interest in the context of computational fluid dynamics is outlined,
validated and applied to an aerodynamic optimization and to an extrapolation example.
The successful extrapolation is then applied to approximate Monte Carlo simulations for
artificial geometric uncertainty analysis. The presented optimization examples demonstrate
that the combination of automatic differentiation and an adjoint method to calculate the
Hessian of a steady or unsteady objective function, and thereby obtaining second order
information, can be an efficient tool for optimization and uncertainty quantification.

Nomenclature

α Angle of attack
Cn

d Drag coefficient at time step n
Cn

l Lift coefficient at time step n
D Design variables
Djk, djk Derivative operators
Lg Unsteady objective function
Ln Objective function at time step n
f Steady objective function
df

dDj
Gradient of steady objective function

d2f
dDjdDk

Hessian of steady objective function
L Lagrangian
M Total number of design variables
M∞ Free-stream Mach number
N Total number of time steps
qn Flow variables at time step n

qn
j = dqn

dDj
Derivative of flow variables w.r.t. design variables at time step n

Rn Unsteady flow residual
(∇qnRn)−T Inverse of the transpose of the unsteady flow Jacobian
R Steady flow residual
sn Unsteady grid residual
(∇xnsn)−T Inverse of the transpose of the unsteady grid Jacobian
s Steady grid residual
T Final time
Wi Weights
xn Grid variables at time step n

xn
j = dxn

dDj
Derivative of grid variables w.r.t. design variables at time step n

λn Mesh adjoint variables at time step n
µJ Mean of objective function
ψn Flow adjoint variables at time step n

∗Postdoctoral Research Associate, Department of Mechanical Engineering; mrumpfke@uwyo.edu, Member AIAA
†Professor, Department of Mechanical Engineering; mavripl@uwyo.edu, Associate Fellow AIAA

1 of 19

American Institute of Aeronautics and Astronautics

48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
4 - 7 January 2010, Orlando, Florida

AIAA 2010-1268

Copyright © 2010 by Rumpfkeil and Mavriplis. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

σJ Standard deviation of objective function
σDj Standard deviation of design variable j

∗ Target value

I. Introduction and Motivation

The concept of using automatic differentiation (AD) in combination with an adjoint method to calcu-
late the Hessian was initially investigated by Taylor et al.1 and refined for a steady computational fluid
dynamics (CFD) code by Ghate and Giles.2 Tortorelli and Michaleris3 worked on structural optimization
and computed the Hessian matrix using discrete direct and adjoint formulations and Papadimitriou and
Giannakoglou4 used a continuous adjoint formulation to calculate the Hessian for a Newton based optimizer
to reconstruct ducts and cascade airfoils for a known pressure distribution at inviscid flow conditions. The
Hessian, once obtained, has various applications such as optimization, extrapolation, Monte-Carlo (MC)
simulations, surrogate modeling and uncertainty analysis.

The most widely used method of finite differencing to obtain the Hessian is sensitive to step-size selection
and is computationally expensive. On the other hand, the use of AD to calculate the Jacobian or Hessian
is appealing since this method is accurate to machine precision5 and it helps through its automation to
keep the linearized version synchronized with potentially frequent changes made to the nonlinear code (very
easily accomplished with the help of a Makefile). There are many mature AD tools (ADOL-C, ADIFOR,
TAPENADE, etc.) available and for this work TAPENADE6 is employed.

The concept of calculating Hessians using AD has been addressed by the AD community for more than a
decade.7 There are two commonly used methods: forward-on-forward and forward-on-reverse. Forward-on-
forward is a straightforward double differentiation of the entire original code in forward mode. Similarly, in
forward-on-reverse the entire code is first differentiated in reverse and then in forward mode. However, the
computational cost of using either of the two methods for entire large iterative solution codes is prohibitively
expensive. The general algorithm presented here mitigates some of these expenses by employing an adjoint
method as well as using AD very judiciously only on selected routines.

In Section II the basic algorithm for calculating the Hessian of a general steady problem using AD and an
adjoint method is outlined. Section III then extends these ideas to unsteady problems and Section IV shows
some validation results and the application to an aerodynamic inverse design optimization problem. Finally,
Sections V.A and V.B show the use of the Hessian for the extrapolation of a functional and uncertainty
analysis, respectively. Section VI concludes this paper.

II. Basic Formulation for General Steady Problems

We derive the Hessian of a steady functional of interest (such as lift or drag)

f(D) = F (D,x(D), q(D)), f ∈ R (1)

with respect to the independent design variables D ∈ RM such that the grid coordinate variables x(D) ∈ RX

and flow variables q(D) ∈ RQ satisfy the grid deformation residual equation

s(D,x(D)) = 0, s ∈ RX (2)

and flow residual equation
R(D,x(D), q(D)) = 0, R ∈ RQ. (3)

The presented derivation is very similar to the one given by Ghate and Giles.2

The first derivative of f with respect to one individual component of D is given by

df

dDj
=

∂F

∂Dj
+

∂F

∂x

dx

dDj
+

∂F

∂q

dq

dDj
. (4)

Differentiating equation (4) again yields

d2f

dDjdDk
= DjkF +

∂F

∂x

d2x

dDjdDk
+

∂F

∂q

d2q

dDjdDk
, (5)

2 of 19

American Institute of Aeronautics and Astronautics

where

DjkF =
∂2F

∂Dj∂Dk
+

∂2F

∂Dj∂x
xk +

∂2F

∂Dk∂x
xj +

∂2F

∂Dj∂q
qk +

∂2F

∂Dk∂q
qj

+
∂2F

∂x∂q
(qjxk + xjqk) +

∂2F

∂x2
xjxk +

∂2F

∂q2
qjqk, (6)

with xj := dx
dDj

and qj := dq
dDj

.

Thus, the calculation of the symmetric Hessian (d2f
dDjdDk

= d2f
dDkdDj

) requires the first as well as second
order sensitivities of x and q with respect to the design variables. The computational cost of this calculation
is

• one (nonlinear) baseline solution for x using the grid residual equation (2)

• one nonlinear baseline solution for q using the flow residual equation (3)

• M linear solutions each for xj = dx
dDj

and qj = dq
dDj

using equation (7) and (10), respectively

• M(M + 1)/2 linear solutions each for d2x
dDjdDk

and d2q
dDjdDk

using equation (8) and (11), respectively

• M(M + 1)/2 evaluations of the right-hand side of equation (5)

II.A. More Computationally Efficient Formulation using the Adjoint

Differentiating the grid residual equation (2) gives

∂s

∂Dj
+

∂s

∂x

dx

dDj
= 0, (7)

and differentiating again results in

djks +
∂s

∂x

d2x

dDjdDk
= 0, (8)

with

djks =
∂2s

∂Dj∂Dk
+

∂2s

∂Dj∂x
xk +

∂2s

∂Dk∂x
xj +

∂2s

∂x2
xjxk. (9)

Similarly, differentiating the flow residual equation (3) gives

∂R

∂Dj
+

∂R

∂x

dx

dDj
+

∂R

∂q

dq

dDj
= 0, (10)

and differentiating again we obtain,

DjkR +
∂R

∂x

d2x

dDjdDk
+

∂R

∂q

d2q

dDjdDk
= 0, (11)

with DjkR defined analogues to equation (6)

DjkR =
∂2R

∂Dj∂Dk
+

∂2R

∂Dj∂x
xk +

∂2R

∂Dk∂x
xj +

∂2R

∂Dj∂q
qk +

∂2R

∂Dk∂q
qj

+
∂2R

∂x∂q
(qjxk + xjqk) +

∂2R

∂x2
xjxk +

∂2R

∂q2
qjqk. (12)

Solving equation (8) for d2x
dDjdDk

and equation (11) for d2q
dDjdDk

and substituting the resulting expressions
into equation (5) yields

d2f

dDjdDk
= DjkF − ∂F

∂x

(
∂s

∂x

)−1

djks − ∂F

∂q

(
∂R

∂q

)−1
[
DjkR − ∂R

∂x

(
∂s

∂x

)−1

djks

]
. (13)

3 of 19

American Institute of Aeronautics and Astronautics

Defining the following flow adjoint problem as an intermediate problem(
∂R

∂q

)T

ψ = −
(

∂F

∂q

)T

(14)

simplifies equation (13) to

d2f

dDjdDk
= DjkF + ψT DjkR −

[
∂F

∂x
+ ψT ∂R

∂x

] (
∂s

∂x

)−1

djks. (15)

Similarly, defining the grid deformation adjoint problem as(
∂s

∂x

)T

λ = −
[
∂F

∂x
+ ψT ∂R

∂x

]T

(16)

simplifies equation (15) to
d2f

dDjdDk
= DjkF + ψT DjkR + λT djks. (17)

In order to calculate the complicated derivatives arising from the two derivative operators Djk and djk one
can use AD. One simple way of doing this is to have, for example, a routine which returns the grid residual
s given the inputs D and x. This routine can then be double differentiated in the forward mode using the
AD software.

Note that the two adjoint variables ψ and λ can also be used to calculate the first derivative of the
functional of interest given by equation (4) more efficiently:

df

dDj
=

∂F

∂Dj
+ λT ∂s

∂Dj
+ ψT ∂R

∂Dj
. (18)

In order to calculate the terms xj = dx
dDj

and qj = dq
dDj

required for DjkF , DjkR, and djks one can solve
equations (7) and (10) to obtain

dx

dDj
= −

(
∂s

∂x

)−1
∂s

∂Dj
, (19)

and
dq

dDj
= −

(
∂R

∂q

)−1 [
∂R

∂Dj
+

∂R

∂x

∂x

∂Dj

]
. (20)

The computational cost for calculating the Hessian is now reduced to

• one (nonlinear) baseline solution for x using the grid residual equation (2)

• one nonlinear baseline solution for q using the flow residual equation (3)

• one linear adjoint solution each for ψ and λ using equation (14) and (16), respectively

• M linear solutions each for xj = dx
dDj

and qj = dq
dDj

using equation (19) and (20), respectively

• M(M + 1)/2 cheap evaluations of the right-hand side of equation (17)

Note that if one can employ a linear solver which efficiently supports multiple right-hand sides, the
computational cost can be even further reduced since the left-hand sides in equations (19) and (20) do
not change. Theoretically, one could even combine this solver with the linear adjoint solutions given by
equations (14) and (16) which also use the same left-hand side, only transposed. It is almost needless to say
that one should use expensive but effective forms of preconditioning since this cost is easily amortized over
a large number of right-hand sides (design variables). One last idea is to parallelize the adjoint solutions
for ψ and λ and the M linear solutions each for xj = dx

dDj
and qj = dq

dDj
as M + 1 processes. Assuming no

limitations in the number of processors available, one can obtain the Hessian at the same time one calculates
the gradient.

Another important observation is that third order tensors are never explicitly needed (e.g. ∂2R
∂q2) but

rather the result of these tensors pre-multiplied with the corresponding adjoint variable and post-multiplied
with combinations of qj and xk. A very efficient way of obtaining the result of ∂2R

∂q2 qjqk, for example, is
simply to call the corresponding double differentiated routine with the two “perturbation” vectors qj and qk

to get the desired result as an output from the routine with only one call.

4 of 19

American Institute of Aeronautics and Astronautics

II.B. Validation

As recommended by Ghate and Giles2 one should always introduce validation checks to ensure the correctness
of the implementation. Obviously, one should confirm that

s(D,x(D)) = 0, R(D,x(D), q(D)) = 0,

as well as
∂s

∂Dj
+

∂s

∂x
xj = 0, and

∂R

∂Dj
+

∂R

∂x
xj +

∂R

∂q
qj = 0

are fulfilled to machine precision. One should also verify that the computed Hessian is symmetric, i.e.
d2f

dDjdDk
= d2f

dDkdDj
.

However, the final validation is the comparison with finite difference results. A second-order accurate
central finite difference approximation is given by

d2f

dDjdDj
=

f(D + hj) − 2f(D) + f(D − hj)
h2

(21)

for the diagonal and

d2f

dDjdDk
=

f(D + hj + hk) − f(D + hj − hk) − f(D − hj + hk) + f(D − hj − hk)
4h2

(22)

for the off-diagonal elements. Here, h ≈ 10−5 and hj is a perturbation for the jth design variable. Thus,
calculating only the upper triangular portion of the Hessian matrix by central finite differences requires
2M + 4M(M−1)

2 = 2M2 additional solutions of the grid and flow residual equations.
Slightly cheaper but also less accurate is a first-order forward finite difference approximation for the

off-diagonal elements given by

d2f

dDjdDk
=

f(D + hj + hk) − f(D + hj) − f(D + hk) + f(D)
h2

(23)

leading to only 2M + M(M−1)
2 = 0.5M2 + 1.5M additional solutions of the grid and flow residual equations.

We present validation results in Section IV.

II.C. Approximation of the Hessian for Inverse-design-type Functionals

In the special case of inverse-design-type functionals for steady flows given by

f(D) =
1
2

I∑
i=1

Wi

(
Fi(D,x(D), q(D)) − F ∗

i

)2

, (24)

a computationally cheap approximation of the Hessian can be derived. Here, Fi can be a quantity such as
lift or drag, F ∗

i is a target lift or drag and Wi are weights. The first derivative of f with respect to one
individual component of D is given by

df

dDj
=

I∑
i=1

Wi

(
dFi

dDj

)T (
Fi − F ∗

i

)
. (25)

Differentiating equation (25) again yields

d2f

dDjdDk
=

I∑
i=1

Wi

(
dFi

dDj

)T
dFi

dDk
+

I∑
i=1

Wi

(
Fi − F ∗

i

) d2Fi

dDjdDk

≈
I∑

i=1

Wi

(
dFi

dDj

)T
dFi

dDk
. (26)

The last approximation is true if we are close to the optimum where Fi ≈ F ∗
i for i = 1, . . . , I. Equation (26)

implies that we can approximate the Hessian by only determining the first derivatives dFi

dDj
for i = 1, . . . , I

using equation (18). Unfortunately, an extension to unsteady inverse-design-type functionals is computa-
tionally expensive and one has to use the approach described in the next section instead.

5 of 19

American Institute of Aeronautics and Astronautics

III. Extension to Unsteady Problems

In the unsteady case a general functional of interest is given by

Lg(D) =
N∑

n=0

Ln(qn(D), xn(D), D), Lg ∈ R, (27)

where N is the number of time steps and D ∈ RM are the independent design variables. The time-dependent
grid variables xn(D) ∈ RX satisfy the unsteady grid residual equations

sn(xn(D), D) = 0 for n = 0, . . . , N. (28)

If one assumes a steady flow solve followed by one time step of a one-step time-marching method (e.g.
implicit Euler) and the use of a two-step time-marching method thereafter (e.g. BDF2, Leapfrog, AB2) then
the unsteady flow variables qn(D) ∈ RQ are implicitly defined via the following unsteady flow residuals

R0(q0(D), x0(D), D) = 0
R1(q1(D), x1(D), q0(D), x0(D), D) = 0 (29)

Rn(qn(D), xn(D), qn−1(D), xn−1(D), qn−2(D), xn−2(D), D) = 0 for n = 2, . . . , N.

The problem of minimizing the discrete objective function Lg given by equation (27) is then equivalent
to the unconstrained optimization problem of minimizing the Lagrangian function

L = L(q0, . . . , qN , x0, . . . , xN , ψ0, . . . , ψN , λ0, . . . , λN , D)

=
N∑

n=0

Ln(qn, xn, D) +
N∑

n=0

(ψn)T Rn +
N∑

n=0

(λn)T sn(xn, D) (30)

with respect to q0, . . . , qN , x0, . . . , xN , ψ0, . . . , ψN , λ0, . . . , λN and D, where ψn and λn are the Lagrange
multipliers. The following derivation is based on work by Rumpfkeil and Zingg.8,9 Since the states x0, . . . , xN

and q0, . . . , qN are calculated using the residuals given by equations (28) and (29), it is automatically
guaranteed that ∇ψnL = ∇λnL = 0 for n = 0, . . . , N .

The Lagrange multipliers ψn (or flow adjoints) must now be chosen such that ∇qnL = 0 for n = 0, . . . , N ,
which leads to

0 = ∇qnLn + (ψn)T ∇qnRn+ (ψn+1)T ∇qnRn+1+ (ψn+2)T ∇qnRn+2

for n = 0, . . . , N −2
0 = ∇qN−1LN−1 + (ψN)T ∇qN−1RN + (ψN−1)T ∇qN−1RN−1 (31)

0 = ∇qN LN + (ψN)T ∇qN RN ,

which can be written equivalently as

ψN = −(∇qN RN)−T
[
(∇qN LN)T

]
ψN−1 = −(∇qN−1RN−1)−T

[
(∇qN−1LN−1)T + (∇qN−1RN)T ψN

]
(32)

ψn = −(∇qnRn)−T
[
(∇qnLn)T + (∇qnRn+1)T ψn+1 + (∇qnRn+2)T ψn+2

]
for n=N−2, . . . , 0.

Similarly, the Lagrange multipliers λn (or mesh adjoints) must fulfill ∇xnL = 0 for n = 0, . . . , N , which
gives

0 = ∇xnLn + (ψn)T ∇xnRn+ (ψn+1)T ∇xnRn+1+ (ψn+2)T ∇xnRn+2 + (λn)T ∇xnsn

for n = 0, . . . , N −2 (33)
0 = ∇xN−1LN−1 + (ψN)T ∇xN−1RN + (ψN−1)T ∇xN−1RN−1 + (λN−1)T ∇xN−1sN−1

0 = ∇xN LN + (ψN)T ∇xN RN + (λN)T ∇xN sN ,

6 of 19

American Institute of Aeronautics and Astronautics

which can be written equivalently as

λN = −(∇xN sN)−T
[
(∇xN LN)T + (∇xN RN)T ψN

]
λN−1 = −(∇xN−1sN−1)−T

[
(∇xN−1LN−1)T + (∇xN−1RN)T ψN + (∇xN−1RN−1)T ψN−1

]
(34)

λn = −(∇xnsn)−T
[
(∇xnLn)T + (∇xnRn)T ψn + (∇xnRn+1)T ψn+1 + (∇xnRn+2)T ψn+2

]
for n=N−2, . . . , 0.

Finally, one can calculate the gradient of the unsteady functional (27) with respect to one individual
component of the design variables D:

dLg

dDj
=

∂L
∂Dj

∣∣∣∣
∂L

∂qn = ∂L
∂xn = ∂L

∂λn = ∂L
∂ψn =0

=
N∑

n=0

∂Ln(qn, xn, D)
∂Dj

+
N∑

n=0

(ψn)T ∂Rn

∂Dj
+

N∑
n=0

(λn)T ∂sn(xn, D)
∂Dj

. (35)

The Hessian of the unsteady functional Lg is given by

d2Lg

dDjdDk
=

N∑
n=0

(
DjkLn +

∂Ln

∂xn

d2xn

dDjdDk
+

∂Ln

∂qn

d2qn

dDjdDk

)
, (36)

where

DjkLn =
∂2Ln

∂(qn)2
qn
j qn

k +
∂2Ln

∂qn∂xn

(
qn
j xn

k + xn
j qn

k

)
+

∂2Ln

∂(xn)2
xn

j xn
k (37)

+
∂2Ln

∂Dj∂qn
qn
k +

∂2Ln

∂Dk∂qn
qn
j +

∂2Ln

∂Dj∂xn
xn

k +
∂2Ln

∂Dk∂xn
xn

j +
∂2Ln

∂Dj∂Dk
,

with xn
j := dxn

dDj
and qn

j := dqn

dDj
.

Differentiating the unsteady grid residual equations (28) gives

∂sn

∂Dj
+

∂sn

∂xn

dxn

dDj
= 0, (38)

and differentiating again results in

djksn +
∂sn

∂xn

d2xn

dDjdDk
= 0, (39)

with

djksn =
∂2sn

∂Dj∂Dk
+

∂2sn

∂Dj∂xn
xn

k +
∂2sn

∂Dk∂xn
xn

j +
∂2sn

∂(xn)2
xn

j xn
k . (40)

Similarly, differentiating the flow residual equations (29) gives

∂Rn

∂qn

dqn

dDj
+

∂Rn

∂xn

dxn

dDj
+

∂Rn

∂qn−1

dqn−1

dDj
+

∂Rn

∂xn−1

dxn−1

dDj

+
∂Rn

∂qn−2

dqn−2

dDj
+

∂Rn

∂xn−2

dxn−2

dDj
+

∂Rn

∂Dj
= 0, (41)

and differentiating again we obtain,

∂Rn

∂qn

d2qn

dDjdDk
+

∂Rn

∂xn

d2xn

dDjdDk
+ DjkRn

n

+
∂Rn

∂qn−1

d2qn−1

dDjdDk
+

∂Rn

∂xn−1

d2xn−1

dDjdDk
+ DjkRn

n−1 (42)

+
∂Rn

∂qn−2

d2qn−2

dDjdDk
+

∂Rn

∂xn−2

d2xn−2

dDjdDk
+ DjkRn

n−2 = 0,

7 of 19

American Institute of Aeronautics and Astronautics

with

DjkRn
n :=

∂2Rn

∂(qn)2
qn
j qn

k +
∂2Rn

∂(xn)2
xn

j xn
k +

∂2Rn

∂qn∂xn

(
qn
j xn

k + xn
j qn

k

)
(43)

+
∂2Rn

∂Dj∂qn
qn
k +

∂2Rn

∂Dk∂qn
qn
j +

∂2Rn

∂Dj∂xn
xn

k +
∂2Rn

∂Dk∂xn
xn

j +
∂2Rn

∂Dj∂Dk
,

DjkRn
n−1 :=

∂2Rn

∂(qn−1)2
qn−1
j qn−1

k +
∂2Rn

∂(xn−1)2
xn−1

j xn−1
k

+
∂2Rn

∂qn−1∂xn−1

(
qn−1
j xn−1

k + xn−1
j qn−1

k

)
+

∂2Rn

∂qn∂qn−1

(
qn
j qn−1

k + qn−1
j qn

k

)
+

∂2Rn

∂xn∂xn−1

(
xn

j xn−1
k + xn−1

j xn
k

)
(44)

+
∂2Rn

∂qn∂xn−1

(
qn
j xn−1

k + xn−1
j qn

k

)
+

∂2Rn

∂xn∂qn−1

(
xn

j qn−1
k + qn−1

j xn
k

)
+

∂2Rn

∂Dj∂qn−1
qn−1
k +

∂2Rn

∂Dk∂qn−1
qn−1
j +

∂2Rn

∂Dj∂xn−1
xn−1

k +
∂2Rn

∂Dk∂xn−1
xn−1

j ,

and

DjkRn
n−2 :=

∂2Rn

∂(qn−2)2
qn−2
j qn−2

k +
∂2Rn

∂(xn−2)2
xn−2

j xn−2
k

+
∂2Rn

∂qn−2∂xn−2

(
qn−2
j xn−2

k + xn−2
j qn−2

k

)
+

∂2Rn

∂qn∂qn−2

(
qn
j qn−2

k + qn−2
j qn

k

)
+

∂2Rn

∂xn∂xn−2

(
xn

j xn−2
k + xn−2

j xn
k

)
+

∂2Rn

∂qn∂xn−2

(
qn
j xn−2

k + xn−2
j qn

k

)
+

∂2Rn

∂xn∂qn−2

(
xn

j qn−2
k + qn−2

j xn
k

)
(45)

+
∂2Rn

∂qn−1∂qn−2

(
qn−1
j qn−2

k + qn−2
j qn−1

k

)
+

∂2Rn

∂xn−1∂xn−2

(
xn−1

j xn−2
k + xn−2

j xn−1
k

)
+

∂2Rn

∂qn−1∂xn−2

(
qn−1
j xn−2

k + xn−2
j qn−1

k

)
+

∂2Rn

∂xn−1∂qn−2

(
xn−1

j qn−2
k + qn−2

j xn−1
k

)
+

∂2Rn

∂Dj∂qn−2
qn−2
k +

∂2Rn

∂Dk∂qn−2
qn−2
j +

∂2Rn

∂Dj∂xn−2
xn−2

k +
∂2Rn

∂Dk∂xn−2
xn−2

j .

Substituting the adjoint variables from equations (32) and (34) into equation (36) and using equations (39)
and (42) to simplify the resulting equations leads to the following expression for the Hessian of the unsteady
functional Lg:

d2Lg

dDjdDk
=

N∑
n=0

(
DjkLn + (λn)T djksn + (ψn)T

n∑
m=n−2

DjkRn
m

)
. (46)

In order to calculate the terms xn
j = dxn

dDj
and qn

j = dqn

dDj
for n = 0, . . . , N required for DjkLn, DjkRn

m,
and djksn, one can solve equations (38) and (41) to obtain

dxn

dDj
= −

(
∂sn

∂xn

)−1
∂sn

∂Dj
, (47)

and

dqn

dDj
= −

(
∂Rn

∂qn

)−1 [
∂Rn

∂xn

dxn

dDj
+

∂Rn

∂qn−1

dqn−1

dDj
+

∂Rn

∂xn−1

dxn−1

dDj

+
∂Rn

∂qn−2

dqn−2

dDj
+

∂Rn

∂xn−2

dxn−2

dDj
+

∂Rn

∂Dj

]
. (48)

The computational cost for calculating the unsteady Hessian is

8 of 19

American Institute of Aeronautics and Astronautics

• One time-dependent (N + 1 (nonlinear) time steps) baseline solution for xn using the unsteady grid
residual equations (28)

• One time-dependent (N + 1 nonlinear time steps) baseline solution for qn using the unsteady flow
residual equations (29)

• One time-dependent (N + 1 linear steps) adjoint solution each for ψn and λn using equations (32) and
(34), respectively

• M time-dependent (N + 1 linear steps) solutions each for xn
j = dxn

dDj
and qn

j = dqn

dDj
using equations (47)

and (48), respectively

• (N + 1) · M(M + 1)/2 cheap evaluations of the right-hand side of equation (46)

IV. Optimization Examples

We consider the steady inviscid flow around a NACA 0012 airfoil, as well as the unsteady case of a
sinusoidally pitching airfoil about its quarter-chord location as flow examples which are described in more
detail in Mani and Mavriplis.10 The governing Euler equations of the flow problem are formulated in the
arbitrary Lagrangian-Eulerian (ALE) finite volume form and time marching is achieved with the second-
order accurate backward difference formula (BDF2). The computational mesh has about 20, 000 triangular
elements and is shown in Figure 1. The required deformation and movement of the mesh is performed via a
linear tension spring analogy.10,11

X

Y

-0.5 0 0.5 1 1.5

-0.5

0

0.5

Figure 1. The computational mesh with approximately 20, 000 elements.

Figure 2. Non-dimensionalized pressure contours for M∞ = 0.755 and α = 0.016.

9 of 19

American Institute of Aeronautics and Astronautics

The free-stream Mach number is M∞ = 0.755 with a mean angle of attack of 0.016 degrees. The non-
dimensionalized pressure contours for the steady flow at the mean angle of attack are shown in Figure 2.
For the unsteady case, identical free-stream conditions are employed, and the time-dependent pitch has an
amplitude of 2.51 degrees and a reduced frequency of 0.0814. One pitching period is divided into 32 discrete
time steps and the entire simulation consists of N = 40 time steps after a steady-state solution with the
mean angle of attack. The resulting time-dependent lift and drag profiles are displayed in Figure 3.

Alpha (Degrees)

C
l

C
d

-2 -1 0 1 2 3

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
Lift distribution
Drag distribution

Figure 3. The time-dependent lift and drag profiles for the pitching NACA 0012.

The optimization examples consist of inverse designs given by the following unsteady objective function:

Lg(D) =
N∑

n=0

Ln(qn(D), xn(D)) =
N∑

n=0

1
2
(Cn

l − C∗n
l)2 +

100
2

(Cn
d − C∗n

d)2, (49)

where Cn
l and Cn

d are the lift and drag coefficients at time step n, respectively, a star denotes a target lift or
drag coefficient and the factor of one hundred is introduced because the drag coefficient is about an order of
magnitude smaller than the lift coefficient in this particular flow example. A steady case objective function
is thus simply given by

f(D) = F (q(D), x(D)) =
1
2
(Cl − C∗

l)2 +
100
2

(Cd − C∗
d)2. (50)

Both objective functions are always scaled such that their initial value is unity. We use two and six design
variables placed at upper and lower surface points which control the magnitude of Hicks-Henne sine bump
functions.12 Note that in this case both Lg (or f) and Rn (or R) are not explicitly dependent on the design
variables D which simplifies the equations presented in Sections II and III considerably.

The steady and unsteady inverse designs are initialized with the NACA 0012 airfoil profile and the target
coefficients are obtained by perturbing the two and six design variables. The initial and target airfoils are
shown in Figures 4 and 5.

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 4. The initial NACA 0012 airfoil (in gray) and the target airfoil obtained through the perturbation of two
design variables (in black).

10 of 19

American Institute of Aeronautics and Astronautics

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 5. The initial NACA 0012 airfoil (in gray) and the target airfoil obtained through the perturbation of six design
variables (in black).

In order to validate the gradient and Hessian calculations we compare the adjoint to finite difference
approaches as described in Subsection II.B. If we use second-order finite differences (fd) with a stepsize of
h = 10−8 to calculate the gradient at the first optimization iteration, for the steady case with two design
variables we obtain (

df

dDj

)
fd

= (−76.26469, −68.65205)

whereas the adjoint (ad) gradient yields(
df

dDj

)
ad

= (−76.26471, −68.65209).

Concurrently, for the second-order finite differenced Hessian with a stepsize of h = 10−5 we obtain(
d2f

dDjdDk

)
fd

=

(
3330.738 2335.429
2335.429 1699.565

)
and the adjoint approach results in(

d2f

dDjdDk

)
ad

=

(
3330.736 2336.586
2336.586 1699.563

)
.

Thus, both approaches yield very agreeable results. The approximation (approx) described in Subsection II.C
and given by equation (26) yields(

d2f

dDjdDk

)
approx

=

(
2908.812 2619.079
2619.079 2358.785

)
.

Similarly, for the unsteady case with two design variables we have(
dLg

dDj

)
fd

= (−75.83811, −70.04130)

whereas the adjoint yields (
dLg

dDj

)
ad

= (−75.83812, −70.04131).

For the unsteady Hessian with a stepsize of h = 10−6 we obtain(
d2Lg

dDjdDk

)
fd

=

(
3606.608 2672.880
2672.880 2639.794

)
which compares reasonably well with the adjoint approach(

d2Lg

dDjdDk

)
ad

=

(
3625.432 2672.493
2672.493 2658.547

)
.

Note that the finite difference approach for the calculation of the unsteady Hessian is very sensitive to the
chosen stepsize h as can be inferred from Figure 6.

11 of 19

American Institute of Aeronautics and Astronautics

Stepsize h

V
al

ue
of

M
at

rix
E

nt
ry

10-7 10-6 10-5 10-4 10-32000

3000

4000

5000

6000 First Diagonal Entry
Corresponding Adjoint
Second Diagonal Entry
Corresponding Adjoint
Off-diagonal Entry
Corresponding Adjoint

Figure 6. Stepsize sensitivity of the finite differenced entries of the unsteady Hessian for two design variables.

We use two different optimizers for the actual inverse designs: a quasi-Newton optimizer (LBFGS-B13,14)
which uses only function and gradient evaluations as well as a full Newton optimizer (KNITRO15) which
additionally requires the evaluation of the Hessian. Both optimizers can handle simple bound constraints
on the design variables which must be used to prevent the generation of invalid geometries from the mesh
movement algorithm. Figures 7 and 8 show the convergence histories for the steady and unsteady inverse
designs using two and six design variables, respectively.

Number of Function Calls

O
bj

ec
tiv

e
F

u
nc

tio
n

5 10 15 20 25 30 35 40 45 50 55

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Steady LBFGS
Steady KNITRO
Steady KNITRO with Approx. Hessian
Unsteady LBFGS
Unsteady KNITRO

Number of Function Calls

N
or

m
o

fG
ra

d
ie

nt

5 10 15 20 25 30 35 40 45 50 55
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Steady LBFGS
Steady KNITRO
Steady KNITRO with Approx. Hessian
Unsteady LBFGS
Unsteady KNITRO

Figure 7. Convergence histories of the steady and unsteady inverse designs using two design variables.

12 of 19

American Institute of Aeronautics and Astronautics

Number of Function Calls

O
bj

ec
tiv

e
F

u
nc

tio
n

5 10 15 20 25 30 35 40 45 50

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Steady LBFGS
Steady KNITRO
Steady KNITRO with Approx. Hessian
Unsteady LBFGS
Unsteady KNITRO

Number of Function Calls

N
or

m
o

fG
ra

d
ie

nt

5 10 15 20 25 30 35 40 45 50
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Steady LBFGS
Steady KNITRO
Steady KNITRO with Approx. Hessian
Unsteady LBFGS
Unsteady KNITRO

Figure 8. Convergence histories of the steady and unsteady inverse designs using six design variables.

Note that for the LBFGS-B optimizer the number of gradient calls is equal to the number of function
calls and that the line search algorithm stalls for the unsteady inverse design using two design variables
after the objective function is reduced by about three orders of magnitude. For the two design variable
case KNITRO required 14 and 10 gradient calls and 13 and 10 Hessian calls for the steady and unsteady
optimization case, respectively. For the six design variable case 6 and 21 gradient calls and 5 and 20 Hessian
calls were required. All examples show that it can be very beneficial in terms of computational cost to use
the Hessian information for optimization, at least if only a few design variables are involved since the cost
of computing the Hessian grows linearly with the number of design variables. As can be inferred from the
two figures, the use of the approximate Hessian as described in Subsection II.C for steady inverse designs is
a very promising technique since the cost of evaluating this approximate Hessian does not increase with the
number of design variables.

V. Extrapolation and Uncertainty Analysis

Another useful application of the Hessian is for extrapolation as discussed in Ghate and Giles.2 The
extrapolated function values can, for example, be used for an inexpensive Monte Carlo (IMC) simulation16

for uncertainty analysis since it is much cheaper to extrapolate the function value than to perform a full
nonlinear function evaluation for every sampling point. Uncertainty analysis is important since high fidelity
computations typically assume perfect knowledge of all parameters. In reality, however, there is much uncer-
tainty due to manufacturing tolerances,17 in-service wear-and-tear, and approximate modeling parameters18

which one should account for.

13 of 19

American Institute of Aeronautics and Astronautics

V.A. Basic Extrapolation

For our particular example, one shape design variable on the upper surface is varied from −1.2 × 10−2 to
1.2 × 10−2 in steps of 5 × 10−4 around the base solution of a NACA 0012 airfoil corresponding to a design
variable value of D0 = 0.0 (see Figure 9).

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 9. The baseline NACA 0012 (in black) and the upper and lower bounds (in gray) for the one design variable
variation.

We compare linear, quadratic and adjoint corrected linear extrapolation as well as adjoint corrected
function evaluations of linearly extrapolated terms with the full nonlinear solutions of two different cases:

1. The steady flow problem described in the previous section with objective function J (D) := Cl

2. The unsteady flow problem described in the previous section but only using five time steps rather than
fourty with objective function J (D) := 1

6

∑5
n=0 Cn

l

The linear extrapolation (Lin) is given by

JLin

(
D,x(D), q(D)

)
= J

(
D0, x(D0), q(D0)

)
+

dJ
dD

∣∣∣∣
D0

· (D − D0), (51)

the quadratic extrapolation (Quad) is

JQuad

(
D,x(D), q(D)

)
= JLin

(
D,x(D), q(D)

)
+

1
2

d2J
dD2

∣∣∣∣
D0

· (D − D0)2, (52)

the adjoint corrected linear extrapolation (ACLin) is

JACLin

(
D,x(D), q(D)

)
= JLin

(
D,x(D), q(D)

)
+ λT

D0
· s

(
D,x(D0) +

dx

dD

∣∣∣∣
D0

· (D − D0)
)

(53)

+ ψT
D0

· R
(
D,x(D0) +

dx

dD

∣∣∣∣
D0

· (D − D0), q(D0) +
dq

dD

∣∣∣∣
D0

· (D − D0)
)
,

and the adjoint corrected function evaluation of linearly extrapolated terms (ACLT) is

JACLT

(
D,x(D), q(D)

)
= J

(
D,x(D0) +

dx

dD

∣∣∣∣
D0

· (D − D0), q(D0) +
dq

dD

∣∣∣∣
D0

· (D − D0)
)

+ λT
D0

· s
(
D,x(D0) +

dx

dD

∣∣∣∣
D0

· (D − D0)
)

(54)

+ ψT
D0

· R
(
D,x(D0) +

dx

dD

∣∣∣∣
D0

· (D − D0), q(D0) +
dq

dD

∣∣∣∣
D0

· (D − D0)
)
.

One could also use an adjoint corrected function evaluation of constant terms (ACCT) given by

JACCT

(
D,x(D), q(D)

)
= J

(
D,x(D0), q(D0)

)
+ λT

D0
· s

(
D,x(D0)

)
(55)

+ ψT
D0

· R
(
D,x(D0), q(D0)

)
.

However, in our particular case neither J nor R are explicitly dependent on the design variable D and s is
linear in D which means that this approach is exactly equal to the linear extrapolation and is thus omitted.

14 of 19

American Institute of Aeronautics and Astronautics

D

E
rr

o
r

-0.01 -0.005 0 0.005 0.01
-0.005

-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

Nonlinear
Lin
Quad
ACLin
ACLT

D

E
rr

o
r

-0.01 -0.005 0 0.005 0.01

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Nonlinear
Lin
Quad
ACLin
ACLT

Figure 10. Error for the various extrapolation methods (left: steady case, right: unsteady case).

Figure 10 shows the errors between these extrapolations and the actual values of the objective functions
against the variation in the design variable value.

Overall, the quadratic extrapolation performs best and is essentially equivalent in cost to the adjoint
corrected linear extrapolation (ACLin) and the adjoint corrected function evaluation of linearly extrapolated
terms (ACLT) since calculating the terms dx

dD

∣∣
D0

and dq
dD

∣∣∣
D0

comprises the majority of the cost for all three

approaches. One can also see the quadratic error behavior for the linear extrapolation and the higher
order error behavior for all the other extrapolation methods. Note that in the unsteady case the adjoint
corrected approaches have difficulties with the evaluation of the flow residual for larger positive perturbations
which result in “not a number”. Lastly, the excellent agreements between the extrapolated and actual lift
coefficients for small perturbations are displayed in Figure 11.

D

C
l

-0.01 -0.005 0 0.005 0.01
-0.1

-0.05

0

0.05

0.1 Nonlinear
Lin
Quad
ACLin
ACLT

D

M
ea

n
lif

t

-0.01 -0.005 0 0.005 0.01

0.1

0.15

0.2

Nonlinear
Lin
Quad
ACLin
ACLT

Figure 11. Comparison between the various extrapolation methods and the actual objective function values (left:
steady case, right: unsteady case).

V.B. Uncertainty Analysis

The easiest and most accurate method for uncertainty analysis is a full nonlinear MC simulation16 which is
still prohibitively expensive for high fidelity computations. If one is only interested in the mean and standard
deviation of a random variable, moment methods can be a good choice.1,19 Unfortunately, higher order
moment methods require the computation of higher derivatives and no information about the probability
density function (PDF) is obtained. Moment methods are based on Taylor series expansions of the original
nonlinear objective function J (D) about the mean of the input D0 given standard deviations σDj . The
resulting mean µJ and standard deviation σJ of the objective function are given to first order (MM1) by

µ
(1)
J = J (D0) (56)

15 of 19

American Institute of Aeronautics and Astronautics

σ
(1)
J =

M∑
j=1

(
dJ
dDj

∣∣∣∣
D0

σDj

)2

, (57)

and to second order (MM2) by

µ
(2)
J = µ

(1)
J +

1
2

M∑
j=1

(
d2J
dD2

j

∣∣∣∣∣
D0

σ2
Dj

)
(58)

σ
(2)
J = σ

(1)
J +

1
2

M∑
j=1

M∑
k=1

(
d2J

dDjdDk

∣∣∣∣
D0

σDj
σDk

)2

. (59)

As already mentioned in the introduction of this section, extrapolation can be used for an IMC simulation
with the advantage of being much cheaper than a full nonlinear MC simulation while still being able to obtain
an approximate PDF. For the extrapolation, all the methods presented in Subsection V.A can theoretically
be applied. In practice however, the adjoint corrected approaches have difficulties with the evaluation
of the flow residual for large perturbations as discussed in the previous subsection. Another promising
approach for an IMC simulation is to use a hybrid of extrapolation and interpolation involving a few data
points Di, i = 0, . . . , I. The function values and the available derivatives at each data point are used to
construct an extrapolating function. At the point of evaluation D the extrapolations from all data points
are then weighted with a radial basis function (RBF) interpolant. This approach has been coined Dutch
Intrapolation20 (DI) and it has been shown that the order of accuracy of the intrapolant is equal to its
polynomial order, which is the highest order of accuracy that can be obtained. The Dutch extrapolation
functions are normal multivariate Taylor expansions of order n with a correction term given in multi-index
notation by20

T n(D,Di) =
|k|≤n∑
|k|≥0

an
k

k!
(D − Di)k∂kJ (Di) for i = 0, . . . , I (60)

with an
k = 1 − k/(n + 1). The solution of an interpolation problem using RBFs is given in the form21

JDI(D) =
I∑

i=0

βiφ(||D − Di||) + p(D). (61)

Here, JDI(D) is the interpolated function value at location D, φ is the adopted form of basis function
(see Wendland22 for options), and the Di are the locations of the centers for the RBFs. In this work
φ(||D − Di||) = φD,Di

= ||D − Di||3 has been found to produce good quality results. p(D) is an added
polynomial term to give the interpolation an underlying trend, and up to linear polynomials are added
here to ensure that translations and rotations are recovered. The coefficients βi are found by requiring
exact recovery of the original function; in our case the extrapolated function values T n(D,Di) given by
equation (60). When the polynomial term is included, the linear system to be solved is completed by the
additional “side condition”

I∑
i=0

βip
′(D) = 0 (62)

for all polynomials p′(D) with degree less than or equal to that of p(D). It is important to note that
although the Dutch Taylor expansions are discussed here for general order n, practical applications are
usually restricted to low values of n. The range of practical applicability is similar to that of “normal”
Taylor expansions. High order Taylor expansions are often used in theoretical formulations, however, in
practical applications their use is limited because the convergence with increasing order is typically very
slow, and the region of convergence very small. Thus, the Dutch Taylor expansions are to be used in small
regions where the function to be approximated is well represented by a low order polynomial, that is where
the Taylor expansion coefficients decrease quickly for increasing order. In this paper we use only up to
first-order terms in the Dutch Taylor expansions.

As a test case we allow one shape design variable on the upper surface and one on the lower surface to
vary in the same unsteady flow problem as described in the optimization section. The two design variables

16 of 19

American Institute of Aeronautics and Astronautics

are treated as random variables with normal distribution. The mean is set to zero (corresponding to the
NACA 0012 airfoil) and the standard deviations are taken to be σD1 = σD2 = 0.01. Figure 12 shows the
NACA 0012 airfoil and the airfoils resulting from perturbations of ±σDj

.

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 12. The NACA 0012 airfoil (in black) and airfoils resulting from perturbations of ±σDj
(in gray).

We use five data points for the Dutch intrapolation forming a square around the center given by the
mean value D0 = (0.0, 0.0). The four corners are D1 = (−σD1 , −σD2), D2 = (σD1 , −σD2), D3 = (σD1 , σD2),
and D4 = (−σD1 , σD2). Thus, the intrapolated function for each new point D = (Dx, Dy) is given by

JDI(D) = (1 Dx Dy φD,D0 φD,D1 φD,D2 φD,D3 φD,D4) · as with Cssas = Fs

where

as =



γ0

γx

γy

β0

β1

β2

β3

β4


Fs =



0
0
0

T 1(D,D0)
T 1(D,D1)
T 1(D,D2)
T 1(D,D3)
T 1(D,D4)


Css =



0 0 0 1 · · · 1
0 0 0 D0,x · · · D4,x

0 0 0 D0,y · · · D4,y

1 D0,x D0,y φD0,D0 · · · φD0,D4

...
...

...
...

. . .
...

1 D4,x D4,y φD4,D0 · · · φD4,D4



and p(D) = γ0 + γxDx + γyDy. Stratified sampling with a sample size of 10, 000 is used. One flow solve
takes about 15 minutes on four AMD processors with 2 GHz each and the adjoint solve for the gradient
as well as the forward solves for each design variable for the Hessian calculation take about the same time.
Comparisons of the mean and standard deviation predictions of the objective function (time-averaged lift)
using the various methods as well as approximate running times are displayed in Table 1.

Table 1. Comparison of Mean and Standard deviation predictions.

Mean Standard deviation Run time (minutes)

Nonlinear 5.55 × 10−2 1.07 × 10−2 150, 000

MM1 5.81 × 10−2 1.05 × 10−2 30

MM2 5.39 × 10−2 1.05 × 10−2 60

Lin 5.82 × 10−2 1.05 × 10−2 30

Quad 5.39 × 10−2 1.06 × 10−2 60

DI 5.66 × 10−2 1.13 × 10−2 150

The 99 per cent confidence interval for the mean calculated with the full nonlinear MC simulation
is [5.52 × 10−2, 5.58 × 10−2]. As can be seen MM1 and Lin yield very similar results as expected from
the leading error. Also, MM2 and Quad give similar results for the same reason. Overall, the Dutch
Intrapolation is the closest to the full nonlinear MC simulation results and it is beneficial to invest the extra
time in calculating the additional function and gradient values. Finally, as can be seen in Figure 13 the IMC
methods capture the actual histograms and consequently PDFs of the time-averaged lift distribution quite
well.

17 of 19

American Institute of Aeronautics and Astronautics

Time-averaged Lift Range

F
re

qu
en

cy

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

300

350

400

450

500
Nonlinear MC

Time-averaged Lift Range

F
re

qu
en

cy

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

Lin

Time-averaged Lift Range

F
re

qu
en

cy

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

100

200

300

400

500
Quad

Time-averaged Lift Range

F
re

qu
en

cy
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

100

200

300

400

500

DI

Figure 13. Histograms for time-averaged lift perturbations using various methods.

VI. Conclusions

An efficient general algorithm to calculate the Hessian of a steady or unsteady functional of interest in
the context of computational fluid dynamics has been described, validated, and applied to an aerodynamic
optimization problem and to an extrapolation of a functional of interest. The extrapolation, in turn, has
been successfully applied to inexpensive Monte Carlo simulations which yield a good estimate for the mean
and standard deviation of a time-averaged lift distribution as well as the probability density function for a
fraction of the cost of a full nonlinear Monte Carlo simulation. The validation and optimization results show
that this algorithm is accurate, effective, and efficient for practical applications. The concepts presented in
this paper are very general and easily allow the extension to more sophisticated, higher-order time-marching
methods for the unsteady CFD simulation. Lastly, the algorithm can be applied to different flow solvers and
to three dimensions in space in a straightforward manner.

Acknowledgments

This work was partially supported by the US Air Force Office of Scientific Research under AFOSR Grant
number FA9550-07-1-0164. We are also very grateful to Karthik Mani for making his flow and adjoint solver
available to us.

References

1Sherman, L. L., Taylor III, A. C., Green, L. L., and Newman, P. A., “First- and second-order aerodynamic sensitivity
derivatives via automatic differentiation with incremental iterative methods,” Journal of Computational Physics, Vol. 129,
1996, pp. 307 – 331.

2Ghate, D. P. and Giles, M. B., “Efficient Hessian Calculation using Automatic Differentiation,” AIAA, 2007-4059, 2007.
3Tortorelli, D. and Michaleris, P., “Design sensitivity analysis: overview and review,” Inverse Problems Eng, Vol. 1, 1994,

pp. 71 – 105.
4Papadimitriou, D. I. and Giannakoglou, K. C., “Computation of the Hessian matrix in aerodynamic inverse design using

continuous adjoint formulations,” Computers and Fluids, Vol. 37, 2008, pp. 1029 – 1039.
5Greiwank, A., Evaluating Derivatives, SIAM, Frontiers in Applied Mathematics, 2000.
6Hascoët, L., “TAPENADE: a tool for Automatic Differentiation of programs,” Proceedings of 4th European Congress on

18 of 19

American Institute of Aeronautics and Astronautics

Computational Methods, ECCOMAS’2004, Jyvaskyla, Finland , 2004.
7Christianson, B., “Automatic Hessians by reverse accumulation,” IMA Journal of Numerical Analysis, Vol. 12, 1992,

pp. 135 – 150.
8Rumpfkeil, M. P. and Zingg, D. W., “A General Framework for the Optimal Control of Unsteady Flows with Applications,”

AIAA, 2007-1128, 2007.
9Rumpfkeil, M. P. and Zingg, D. W., “The Optimal Control of Unsteady Flows with a Discrete Adjoint Method,” Opti-

mization and Engineering, doi:10.1007/s11081-008-9035-5, 2008.
10Mani, K. and Mavriplis, D. J., “Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with

Deforming Meshes,” AIAA Journal , Vol. 46 No. 6, 2008, pp. 1351–1364.
11Batina, J. T., “Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes,” AIAA Journal , Vol. 28, No. 8,

1990, pp. 1381 – 1388.
12Hicks, R. and Henne, P., “Wing Design by Numerical Optimization,” Journal of Aircraft , Vol. 15, No. 7, 1978, pp. 407

– 412.
13Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C., “A Limited Memory Algorithm for Bound Constrained Optimization,”

SIAM Journal on Scientific Computing 16 , Vol. 5, 1995, pp. 1190–1208.
14Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J., “L-BFGS-B: A Limited Memory FORTRAN Code for Solving Bound

Constrained Optimization Problems,” Tech. Rep. NAM-11, EECS Department, Northwestern University, 1994.
15Byrd, R. H., Nocedal, J., and Waltz, R. A., “KNITRO: An Integrated Package for Nonlinear Optimization,” Large-Scale

Nonlinear Optimization, di Pillo, G., Roma, M.(eds), Springer-Verlag, pp. 35-59, 2006.
16Ghate, D. and Giles, M. B., “Inexpensive Monte Carlo uncertainty analysis,” Recent Trends in Aerospace Design and

Optimization, Tata McGraw-Hill, New Delhi , 2006, pp. 203–210.
17Gumbert, C. R., Newman, P. A., and Hou, G. J., “Effect of random geometric uncertainty on the computational design

of 3-D wing,” AIAA, 2002-2806, June 2002.
18Luckring, J. M., Hemsch, M. J., and Morrison, J. H., “Uncertainty in computational aerodynamics,” AIAA, 2003-0409,

Jan. 2003.
19Putko, M. M., Newmann, P. A., Taylor III, A. C., and Green, L. L., “Approach for uncertainty propagation and robust

design in CFD using sensitivity derivatives,” AIAA, 2001-2528, 2001.
20Kraaijpoel, D. A., Seismic ray fields and ray field maps: theory and algorithms, Ph.D. thesis, Universiteit Utrecht, 2003.
21Buhmann, M., Radial Basis Functions (1st edn), Cambridge University Press: Cambridge, 2005.
22Wendland, H., Scattered Data Approximation (1st edn), Cambridge University Press: Cambridge, 2005.

19 of 19

American Institute of Aeronautics and Astronautics

