
GPU Parallelization of an Unstructured Overset Grid

Incompressible Navier-Stokes Solver for Moving Bodies

Dominic D.J. Chandar� , Jay Sitaramany

and Dimitri Mavriplisz

In pursuit of obtaining high �delity solutions to the uid ow equations in a short span
of time, Graphics Processing Units (GPUs) which were originally intended for gaming
applications, are currently being used to accelerate Computational Fluid Dynamics codes.
With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favorable for
many high resolution computations. One such computation that involves a lot of number
crunching, is computing time accurate ow solutions past apping wings at low speeds.
The aim of the present paper is thus to discuss the development of an incompressible
Navier-Stokes (INS) solver on unstructured and overset grids, and its implementation on
GPUs. In its present form, the GPUINS solver solves the uid ow equations on an un-
structured/hybrid grid in the full Pressure-Poisson formulation with consistent treatment
of the derivatives for the Pressure-Poisson equation (PPE) in three-dimensions. Since the
equations are solved in a semi-implicit form (with viscous terms treated implicitly), the
discretization results in a set of linear equations also for velocity. Hence the backbone of the
GPU computation relies on developing e�cient iterative linear solvers. The BiCGSTAB1

iterative algorithm is parallelized in a matrix free approach using several GPU kernels such
as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations
are implemented using the CU++ET2 approach where kernels are automatically generated
at compile time. The solver is validated using standard test cases such as the (1) ow in a
driven cavity, (2) ow past a cylinder, (3) ow past a plunging airfoil and (3) ow past a
sphere (with and without overset grids).

I. Introduction and Background

GPUs are increasingly becoming popular among the CFD community owing to its high throughput/cost.
Writing codes that run on a GPU require an intermediate low level interface (a GPU front end) that can
transfer data between the CPU and GPU, and perform the required computation on the GPU. NVIDIA’s
CUDA architecture3 is one such interface that supports native C/C++ language constructs. Similar to the
MPI standard, where commands are concurrently executed on various processors, the CUDA programming
model relies on kernels that execute on multiple threads. Kernels are similar to standard programming
language functions, except for the manner in which these functions are invoked from the main program. One
can write kernels for each arithmetic expression, or wrap a set of expressions into one kernel. A single call
to a kernel will automatically spawn as many as processes the user wants, provided the number of processes
is within the limits of the GPU. The last couple of years has seen a steep growth in the use of GPUs to
accelerate CFD codes.4{8 Corringan et al.9 developed a Python based script to automatically port the ow
solver FEFLO to the GPU. A good overview of GPU based methods including performance/memory issues
for uid ow problems can also be found in Corringan et al.9 In this paper, we discuss the development of an
Incompressible Navier-Stokes solver (GPUINS) on unstructured hybrid and overset grids which is aimed at
understanding the ow physics behind apping wings. For moving body problems, the grid motion is easily
handled using overset grid methodologies.10{12 Moreover for rigid moving bodies, the grids surrounding
individual bodies need not be regenerated which makes this approach very suitable for the present problem.
An example of an overset grid used in the present paper is shown in �gure(1). Presently, the solver works on

�Postdoctoral Research Associate, Department of Mechanical Engineering, University of Wyoming
yAssistant Professor, Department of Mechanical Engineering, University of Wyoming
zProfessor, Department of Mechanical Engineering, University of Wyoming

1 of 25

American Institute of Aeronautics and Astronautics

50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
09 - 12 January 2012, Nashville, Tennessee

AIAA 2012-0723

Copyright © 2012 by Dominic Chandar. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

fully unstructured or unstructured hybrid moving grids in two-dimensions and unstructured and non-moving
overset grids in three-dimensions. For three-dimensional cases, the domain connectivity between individual
component grids is handled using the approach described in Soni et al.13 This paper is organized as follows:
In Section II, the computational methodology for solving the incompressible Navier-Stokes equations is
discussed in detail; In Section III, the GPU implementation of the various functions is discussed and in
Section IV, sample test cases are investigated to test the GPU performance and accuracy of the numerical
method.

Figure 1. Overset Grid Surrounding a Sphere

II. Computational Modeling

The equations governing unsteady incompressible ow with moving grid terms are given by:

@U

@t
+ (U � UG) � rU = �rp+ �r2U (1)

r � U = 0 (2)

where U is the velocity vector, p is the pressure normalized by density, and UG is a vector of grid speeds.
Solving Eq.(1) coupled with the divergence constraint Eq.(2) is not straightforward, and has resulted in a
lot of confusion in the literature. Reference is made to Gresho,14 Brown et al.,15 Minion and Brown16 for
a comprehensive discussion on various solution methods to the incompressible Navier-Stokes equations. In
the present paper, we use the Pressure-Poisson formulation (PPE) of Henshaw et al.,17 where the divergence
constraint Eq.(2) is replaced by a Pressure-Poisson equation by taking the divergence of the momentum
equation. However, the manner in which this divergence is taken is di�erent in the present approach and is
discussed subsequently. We list two forms of the PPE, the full conservative PPE,

r � (rp) = �r � ((U � UG) � rU) +r � (��r�r� U) (3)

and the simpli�ed PPE (SPPE),

r2p = �

"�
@u

@x

�2

+ 2
@u

@y

@v

@x
+

�
@v

@y

�2
#

(4)

The grid speed and viscous terms do not appear in Eq.(4) as a result of the divergence free condition. It
is essential to note at this point that the SPPE has been derived from the conservative PPE through exact
di�erentiation. In the above equation, the Laplacian r2U has been replaced by the cross product of vorticity
�r�r� U using the relation r2U = �r�r� U +r (r � U), and by setting the divergence to zero.

2 of 25

American Institute of Aeronautics and Astronautics

II.A. Boundary Conditions and the Incompressibility Constraint

Boundary conditions for both velocity and pressure are straightforward if consistent discretization is adopted.
For the velocity, a Dirichlet boundary condition on the wall which corresponds to the local velocity of the
body, and a free-stream velocity at the far-�eld can be speci�ed. However, for the pressure, the boundary
conditions are derived from the governing equations themselves. The pressure gradients at the boundary (
derived from Eq.(1) in two-dimensions) are given by

@p

@x
= �(u� ug)

@u

@x
� (v � vg)

@u

@y
� � (r�r� U)x � _ug (5)

@p

@y
= �(u� ug)

@v

@x
� (v � vg)

@v

@y
� � (r�r� U)y � _vg (6)

(7)

Since pressure gradients are speci�ed on all boundaries in the domain, the Poisson equation Eq.(3) has
in�nite number of solutions provided the following discrete compatibility condition Eq.(8),(9) is satis�ed
corresponding to the two forms of the PPE. Otherwise it has no solution.Z

d

rhp:ndS = �
Z

r � ((U � UG) � rhU) +r � (��rh �rh � U) dV (8)Z
d

rhp:ndS = �
Z

 "�
�u

�x

�2

+ 2
�u

�y

�v

�x
+

�
�v

�y

�2
#!

dV (9)

where the su�x h, and the operator � are used to represent the discrete form. Abdallah18 demonstrates
numerically, how the discrete compatibility condition is violated on non-staggered grids when the pressure
Laplacian is derived in an inconsistent form on Cartesian grids. The inconsistency in his case was due to the
fact that the R.H.S of the PPE was conservative, but the Laplacian was non-conservative. We demonstrate
in this work that by making both the Laplacian and the R.H.S conservative, the compatibility constraint
is satis�ed exactly. Henshaw et al.17 uses the SPPE with a non-conservative Laplacian and adds an extra
equation for pressure, that sets the mean pressure to be zero on the domain. This results in the compatibility
constraint to be satis�ed approximately. The SPPE can also be forced to satisfy the compatibility constraint
by �xing the solution at an arbitrary location. In this case, the compatibility constraint is satis�ed as the
linear solver iteration proceeds. Since this is a �nite volume method, the Laplacian is always conservative,
and when the conservative PPE is used (conservative R.H.S), the compatibility constraint is satis�ed au-
tomatically for every linear solver iteration, and converges faster than the SPPE. The satisfaction of the
discrete compatibility constraint is proved as follows:

For simplicity, consider the discrete, steady, inviscid form of the momentum equation Eq.(1). Addition
of unsteady and viscous terms does alter the proof.

u
�u

�x
+ v

�u

�y
= � �p

�x
(10)

u
�v

�x
+ v

�v

�y
= ��p

�y
(11)

(12)

If the gradients are estimated up to qth order accuracy, then by Taylor’s expansion, the following can be
assumed.

�p

�x
� @p

@x
+ Chq

@q+1p

@xq+1
(13)

�p

�y
� @p

@y
+ Chq

@q+1p

@yq+1
(14)

(15)

where the constant C depends on the grid. The PPE is formed by taking the approximate divergence of the
momentum equations as follows:

� �

�x

�
�p

�x

�
� �

�y

�
�p

�y

�
=

�

�x

�
u
�u

�x
+ v

�u

�y

�
+

�

�y

�
u
�v

�x
+ v

�v

�y

�
(16)

3 of 25

American Institute of Aeronautics and Astronautics

Integrating the L.H.S of Eq.(16) over the domain,Z

� �

�x

�
�p

�x

�
� �

�y

�
�p

�y

�
dV =

Z

� @

@x

�
�p

�x

�
�Chq @

q+1

@xq+1

�
�p

�x

�
� @

@y

�
�p

�y

�
�Chq @

q+1

@yq+1

�
�p

�y

�
dV (17)

We now can use the divergence theorem in the continuous form using Eq.(17) as the discrete derivatives have
been expressed in terms of their corresponding continuous ones. This gives,

�
Z
d

rhp:ndS � Chq
Z
d

@q

@xq

�
�p

�x

�
nxdS +

@q

@yq

�
�p

�y

�
nydS (18)

Now if the conservative PPE is used, the R.H.S of Eq.(16) is not di�erentiated, but used as it is in the
volume form. Eq.(16) is evaluated at the node as follows:Z

�

�x

�
u
�u

�x
+ v

�u

�y

�
+

�

�y

�
u
�v

�x
+ v

�v

�y

�
dV (19)

Expressing in terms of exact derivatives and using the divergence theorem for the truncation error terms,
we obtainZ

@

@x

�
u
�u

�x
+ v

�u

�y

�
+
@

@y

�
u
�v

�x
+ v

�v

�y

�
dV +Chq

Z
d

@q

@xq

�
u
�u

�x
+ v

�u

�y

�
nxdS+

@q

@yq

�
u
�v

�x
+ v

�v

�y

�
nydS

(20)
Using Eq.(10),(11) in Eq.(20), we obtain,Z

@

@x

�
u
�u

�x
+ v

�u

�y

�
+

@

@y

�
u
�v

�x
+ v

�v

�y

�
dV � Chq

Z
d

@q

@xq

�
�p

�x

�
nxdS +

@q

@yq

�
�p

�y

�
nydS (21)

using L.H.S=R.H.S, we obtain,

�
Z
d

rhp:ndS =

Z

@

@x

�
u
�u

�x
+ v

�u

�y

�
+

@

@y

�
u
�v

�x
+ v

�v

�y

�
dV (22)

or

�
Z
d

rhp:ndS =

Z

r � (U � rhU) dV (23)

which is the discrete compatibility condition equivalent to Eq.(8). We can see that the discrete compatibility
condition is satis�ed to any order q provided the conservative form of PPE is used. This aspect is also
demonstrated numerically later in the paper. Note that the integration over the volume of the complete
domain, and integration over boundary of the domain in Eq.(23) is continuous. We can replace them by
discrete quantities as follows.

�
X
d

rhp:n�S =
X

rh � (U � rhU) �V (24)

By virtue of the �nite volume method, and its conservative properties, we can decompose Eq.(24) as follows

�
X
i

X
d
ik

rhP:n�Sik =
X
i

X

i

rh � (U � rhU) �Vi (25)

For node-centered schemes, i represents the index of the dual cell constructed around node i, �Vi the
volume of the dual cell, and n�Sik the weighted outward normal on a dual cell face k from node i. The
above equation can be cast into a set of linear equations for each node i as followsX

i

Api =
X
i

Bi (26)

For cell-centered schemes, i would represent cell indices. In the context of iterative solvers such as the
Conjugate Gradient method (CG), or the Bi-Conjugate Stabilized method (BiCGSTAB), the quantity
Bi �Api represents the residual for any arbitrary pi. Thus, Eq.(26) which is the compatibility constraint is
just the sum of residuals on all nodes in the domain. Mathematically,X

i

(Bi �Api) =
X
i

Ri = 0 (27)

Thus when the discrete compatibility constraint is satis�ed exactly, the sum of the residuals across all nodes
must vanish.

4 of 25

American Institute of Aeronautics and Astronautics

II.B. Finite Volume Discretization and Time Stepping

The governing equations are discretized on a node-centered grid and cell-centered grid for two- and three-
dimensional computations respectively as shown in �gure(2). On a node-centered grid, a dual cell is con-
structed surrounding every node, and the conservation equations are discretized on this dual cell. For the
puporses of discretization, Eq.(1) is written in conservative form for each node i as follows:

Vi
@Ui
@t

+
X
k

F:ndSk = �
X
k

rU:ndSk (28)

where k represents the dual face index, and F , the non-linear terms inclusive of the pressure. Over any dual
face k, the non-linear and viscous uxes are computed as follows:

Fk =
1

2
(Fe1 + Fe2) (29)

rUk = r �Uk �
�
r �Uk � �12 �

Ue1 � Ue2
jxe1 � xe2j

�
�12 (30)

where

�12 =
xe1 � xe2
jxe1 � xe2j

(31)

r �Uk represents the average of the gradients at nodes e1 and e2. The gradients at any node i are computed
using Green-Gauss theorem. Similarly, on a cell-centered grid, the quantities e1, e2 represent the cell-centers
of neighboring cells that share a face k. Note that there is no implicit upwinding for the convective terms,
and the additional terms appearing in Eq.(30) are used to damp the high frequency modes occurring due to
a central scheme.19 Without this term, the solution will exhibit odd-even type of oscillations.

(a)

(b)

Figure 2. Discretization of the Governing Equations on (a) Node-Centered Grid and (b) Cell-Centered Grid

5 of 25

American Institute of Aeronautics and Astronautics

For temporal discretization, we use a second order Predictor-Corrector method, with the non-linear
terms treated explicitly, and the viscous terms implicitly. If we denote the non-linear term by HE and the
viscous(linear) term by HI , the predictor step is given by

Up � Un

�t
=

3

2
Hn
E �

1

2
Hn�1
E +

1

2
(Hp

I +Hn
I) (32)

Since HI is linear, we can cast it into a form AU where A is a linear operator. Rearranging the above
equation gives �

Up � ��t

2
AUp

�
=

�t

2

�
3Hn

E �Hn�1
E + �AUn

�
+ Un (33)

or

BUp =
�t

2

�
3Hn

E �Hn�1
E + �AUn

�
+ Un (34)

where B is a new linear operator. Note that the volume term Vi has been absorbed into the time step. The
pressure is now solved using Eq.(3) using the predicted values of the velocity. Using the predicted values of
pressure and velocity, the corrector step is executed as follows:

Un+1 � Un

�t
=

1

2
Hp
E +

1

2
Hn
E +

1

2

�
Hp
I +Hn+1

I

�
(35)

Rearranging and using the linear operator B de�ned above, we arrive at

BUn+1 =
�t

2
(Hn

E +Hp
E + �AUn) + Un (36)

In Eq.(34) and (36), the cross product of vorticity �r � r � U is used instead of the term AUn. The
pressure equation is again solved using corrected values of velocity. Eq.(34),(36) and the pressure equation
Eq.(3) represent a set of linear equations which are solved using the BiCGSTAB1 algorithm. It is to be noted

that while the discrete divergence of the momentum equation was taken, the term
@

@t
(r � U) is deliberately

left out. Although this assumption appears to be acceptable in the continuous sense, the divergence is in
fact non-zero in the discrete sense, and the absence of this term will result in the growth of divergence
in the solution as the iteration proceeds. Abdallah20 discretizes this divergence term using a backward
di�erence approximation. Henshaw17 avoids this term, but adds a damping coe�cient � Cr � U to the
pressure equation. In the present work we neglect this term, but project the velocities on to the space of
divergence free velocity �elds using Hodge decomposition after the predictor step. This amounts to solving
an extra Poisson equation, but arrests the growth of divergence over a period of time. Similar decomposition
is performed to make the initial condition divergence free.

II.C. Implementing Boundary Conditions

II.C.1. Two-Dimensions

Boundary conditions are needed for both velocity and pressure for solving the Poisson equations Eq.(34),(36),
and (3). Since two-dimensional computations are carried out on a node-centered grid, we construct a dual cell
surrounding the boundary point as shown in �gure(3a). For a Dirichlet boundary condition, the governing
equation at the boundary point is replaced by

IU = Ub (37)

where I is an identity matrix, and Ub is a vector of boundary values. This Dirichlet boundary condition
(D.B.C) is usually applied for the velocity components. For a Neumann boundary condition (N.B.C) for
the pressure equation, the governing equation is applied as follows: If B denotes the R.H.S of the Poisson
equation, Eq.(3), then the �nite volume discretization at point i2 is given byX

k

rpk � ndS = Bi2 (38)

6 of 25

American Institute of Aeronautics and Astronautics

(a)

(b)

Figure 3. Discretization of Boundary Conditions on a (a) Node-Centered Grid and (b) Cell-Centered Grid

where k denotes the dual cell face index. The above equation can be expanded using Eqns.(29)-(31) as:X
k

�
1

2
(rpi2 +rpik)�

�
1

2
(rpi2 +rpik) � �ik �

pi2 � pik
jxi2 � xikj

�
�ik

�
� ndS = Bi2 (39)

where the su�x ik denotes the neighboring node along the face k to node i2. Re-arranging Eq.(39), we
obtainX

k

�
1

2
rpik �

�
1

2
rpik � �ik �

pi2 � pik
jxi2 � xikj

�
�ik

�
� ndS = Bi2 �

X
k

�
1

2
rpi2 �

�
1

2
rpi2 � �ik

�
�ik

�
� ndS (40)

or
A

0
p = B0 (41)

The L.H.S of the above equation contain the unknowns p, and the R.H.S, the N.B.C rpi2. It is imperative
that the equations be represented in this form, else the iterative solver will fail to converge. When the face
k is perpendicular to the physical boundary (dual face intersecting the boundary at point im12 or im23 in
�gure(3a)), the gradient at im12 or im23 is computed using a simple average and moved to the R.H.S.

II.C.2. Three-Dimensions

Since in three-dimensions, a cell-centered approach is used, a di�erent formulation applies for the boundary
conditions. As it will be seen, applying a N.B.C is quite straightforward than applying a D.B.C. For a D.B.C,
following �gure(3b), for any quantity q, we project the value at the cell-center q(i2) on to the boundary qb
using a �rst order Taylor expansion.

qb = qi2 + �xib
@q

@x i2
+ �yib

@q

@y i2
+ �zib

@q

@z i2
(42)

7 of 25

American Institute of Aeronautics and Astronautics

Using Green-Gauss theorem, we express the gradients at the cell-center i2 as a function of the boundary
value qb as:

qb = qi2 +
1

Vi2

"
�xib

X
i

qinxdS + �yib
X
i

qinydS + �zib
X
i

qinzdS

#

+
1

Vi2
[�xibqbnxdS + �yibqbnydS + �zibqbnzdS]

(43)

where the index i represents internal faces and Vi2 the volume of the cell. Re-arranging, we obtain,

qi2 +
1

Vi2
�x �

X
i

qndS = qb

�
1� 1

Vi2
�x � ndS

�
(44)

Eq.(44) represents the governing equation for a cell whose boundary face is Dirichlet. Implementing a N.B.C
is similar to that of Eq.(40)

II.D. Computing Aerodynamic Forces

The forces acting on the body are computed using pressure p and shear stress tensor � = �

�
@ui
@xj

+
@uj
@xi

�
evaluated at the cell-center of the boundary cell:

F =

Z
d

(p� �)ndS (45)

where n represents the normal pointing into the solid. As the gradients of the velocity �eld are computed to
evaluate the R.H.S of the pressure Poisson equation, the same gradients are reused in this step to compute
the aerodynamic forces once the pressure �eld is available.

II.E. Hyperviscosity and Smallest Scale Dissipation

Since there is no implicit dissipation in the above algorithm, the method becomes non-robust and unstable
for small viscosities and coarse grids,16 i.e. when the ow is under-resolved. Addition of a small amount of
arti�cial viscosity such that the smallest scales are resolved within the given mesh produces stable solutions.
It is imperative to note that the ow is still under-resolved under these circumstances for the given viscosity,
but the numerical method is stable. Spurious oscillations might result in these circumstances in the current
implementation as well as for other robust methods such as the Pseudospectral method or the Godunov
Projection method.16 Based on the result of Henshaw et al.,21 the smallest scale hmin is proportional to the
velocity gradient as follows:

hmin �
r

�

rU
(46)

Based on this fact, we add arti�cial dissipation of the form

�a = (c1 + c2rU)h2 (47)

where c1, and c2 are constants, and h =
p
Vi and V

1=3
i for two- and three-dimensions respectively. Vi is

the volume of the dual cell in two-dimensions and the cell volume in three-dimensions. The above arti�cial
dissipation is added only to the momentum equations in the predictor Eq.(34) and corrector Eq.(36) steps
and not to the PPE. The modi�ed operator B is de�ned as follows:

B = I �
�

�t

2
� + �t�a

�
A (48)

A similar implementation of the above method on structured grids can be found in Henshaw et al.22

8 of 25

American Institute of Aeronautics and Astronautics

II.F. Overset Grid Connectivity for Three-Dimensional Problems

The GPU based overset grid assembly tool in three-dimensions is an extension of the implicit hole cutting
algorithm outlined in Soni et al.13 for two-dimensions. Given a set of meshes that overlap, the aim of the
assembly tool would be to �nd suitable donor-recipient relationships and interpolation strategies. At the
end of the algorithm, each cell would be classi�ed as either (a) a discretization point (b) a fringe point or (c)
a hole/unused point. If the point is a discretization point, it would also act as a potential donor for fringe
points of neighboring grids. The �eld variables at these fringe points would be interpolated from donor
cells. For the problems considered in this paper, the �eld values at fringe points are estimated using a �rst
order Taylor expansion about the donor point. Figure(4) shows a section of the overset grid surrounding a
sphere. The grid near the sphere consists of prisms which overlap with a Cartesian hex mesh. In the current
framework, the determination of donors, fringe, and hole points are performed in an o�ine mode where a
separate GPU program computes these parameters, hence the current capability is limited to non-moving
grids.
All of the procedures required for overset grid assembly have been implemented on the GPU. Briey, com-
putation of the overset grid assembly can be split into three separate procedures.

1. Preprocessing: In the preprocessing step, meta-data structures are constructed for each grid to aid
with point containment search (also called donor search). We utilize a structured auxiliary mesh for
facilitating the divide-and-conquer sequence desired in donor search. Details of this methodology have
been documented in our previous works,13.10

2. Donor search: Donor search, which entails �nding the cell that encompasses a given point, forms the
back bone of the overset grid assembly. We utilize a gradient search approach (also termed stencil-walk
in literature), which locates the actual donor cell by marching across potential donor cells based on
face-edge intersections - where face is any face belonging to a given cell and edge is a line segment
that connects the given point and cell center of the initial potential donor cell. Initial donor cells are
located with the aid of structured auxiliary mesh generated in the �rst step.

3. Donor/Fringe/Hole classi�cation: We utilize an implicit overset grid assembly procedure, i.e. donor
are fringes are characterized based on their resolution. The main theme driving this process is to
establish an overset grid assembly where the highest resolution mesh is used to solve at any location
in space. Lower resolution meshes that overlap the same spatial location will interpolate from this
high resolution mesh. To achieve this, we search for all grid points of any mesh for potential donor
in all other meshes. Once potential donor are located, they are accepted or rejected based on the
resolution constraint. In addition, we also perform checks to make sure that no donor cells are fringes
and vice-versa. Minimum hole cutting, i.e removal of points inside solid boundaries is performed using
a simple bounding box check - where the bounding box encompasses all the wall boundary nodes. The
philosophy behind this approach is simple - any point that did not �nd a donor cell and is encompassed
by the wall node bounding box is inside the solid body.

In Figures 5, 6 and 7 we demonstrate the improved performance of the GPU based overset grid assembly
compared to corresponding CPU calculations. Figures 5 and 6 show the wall clock times and code-speedup
achieved for the donor search algorithm. A purely prizmatic near-body mesh with a million points is used as
the donor mesh and increasingly larger (from 1000 to 10 million) number of random points are searched in
this mesh for containment. It is very encouraging to note that the GPU computations outperform the CPU
calculations by a signi�cant amount with a peak speedup of 60 obtained for large number of points. In Figure
7 the wall clock times required for the complete overset grid assembly is shown for two sets of grids system
for the sphere geometry - a coarse grid system composed of 270,000 cells and a �ne grid system composed of
2.7 million cells. GPU calculations show consistent speedup for both preprocessing and connectivity (which
includes donor search and classi�cation). Preprocessing is more viable for parallelism and hence accelerated
by two orders of magnitude, while connectivity procedure (which include several forks and redirections in
kernels) are accelerated by a factor of 30. It is also worth noting that the speedup was not as signi�cant for
two dimensional calculations (about 6 as observed in Soni et al.13) compared to the dramatic improvement
observed in this work. It appears that dimensionality is a boon rather than a curse when it comes to utilizing
GPU architectures for overset grid assembly.

9 of 25

American Institute of Aeronautics and Astronautics

Figure 4. Overset Grid Surrounding a Sphere Showing Donor, Fringe and Hole Cells

10
3

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Nsearch

W
al

l t
im

e
(m

ill
is

ec
on

ds
)

CPU

GPU

Figure 5. Wall clock times for CPU and GPU implementation of donor search algorithm for increasing number of
search points (Nsearch).

III. GPU Implementation - The GPUINS Solver

III.A. Two-Dimensional Computations on Tesla C2050

Implementing the above algorithm on the GPU requires the user to write kernels similar to standard C/C++
functions. For example, kernels have to be written to compute the gradient, Laplacian, and reduction
operations etc. To start with, all arrays are declared both on the GPU and the CPU. However only the
arrays that reside on the GPU are used for computation. The basic building block of GPU programming
using CUDA involves partitioning the domain into several blocks such that each block holds a certain number
of threads. Each thread is assigned to an edge or a node depending on the type of loop that is involved(edge
based or node based). For the present work, we have four di�erent types of block and thread distributions.

10 of 25

American Institute of Aeronautics and Astronautics

10
3

10
4

10
5

10
6

10
7

10

20

30

40

50

60

70

Nsearch

S
pe

ed
up

 fr
om

 G
P

U

Figure 6. Speedup obtained using GPU for increasing number of search points Nsearch.

0.2713 2.7741

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Cells (millions)

lo
g 10

(w
al

l c
lo

ck
 ti

m
e)

CPU preprocessing

GPU preprocessing

CPU connectivity

GPU connectivity

Figure 7. Wall clock times for CPU and GPU computations for various procedures used in overset grid assembly -
results for two di�erent grid systems for the same geometry, one coarse and another �ne are shown.

1. Edge based, number of threads � number of edges

2. Node based, number of threads � number of nodes

3. Exact node based, number of threads = number of nodes (for reduction operation)

4. Boundary node based, number of threads � number of boundary nodes

11 of 25

American Institute of Aeronautics and Astronautics

For item (1),(2) and (4), threads more than the number of edges, nodes and boundary nodes are spawned
respectively, so that the threads per block equals 256. The threads per block must be a multiple of 32 (warp
size) to avoid thread divergence issues which results in poor performance. For reduction operations however,
the greatest common divisor of the number of nodes less than 512 (the maximum threads per block)is
used to avoid erroneous addition of array values. All these characteristics are preset by the user and can
be provided as an input �le to the main solver. Although the GPU device supports a two-dimensional data
layout, it is cumbersome to implement unstructured grid data in that form. Hence all thread and block dis-
tributions are one-dimensional. On the Tesla C2050 card, the maximum possible threads (nodes) that one
can use using a one-dimensional layout is given by maximum number of threads per block(1024)�Maximum
number of blocks in a direction(65536)�67 Million nodes. However, one may not reach this limit due to the
limitation in memory per GPU (3GB).

Having de�ned kernel properties, various kernels are written to handle setting up the initial conditions
and solving the system of linear equations (Laplacian, gradient and reduction kernels). The following listing
is a description of how the x-gradient is computed on the GPU on an unstructured grid using Green-Gauss
theorem.

Listing 1. CUDA Kernel to Compute the Gradient of a Function

g l o b a l void GRADX(in t N , r e a l � q , r e a l � ds1 , r e a l � ds3 ,
r e a l � edge1 , r e a l � edge2 ,
r e a l � dqx , r e a l � i v o l , r e a l � qeL , r e a l � qeR)

f
i n t tx = threadIdx . x ; // Thread ID l o c a l to a block
i n t bx = blockIdx . x ; // Block ID
in t bNx= blockDim . x ; // Total number o f b locks
i n t TID= tx + bx�bNx ; // Thread ID in a 1D layout

r e a l xmid1 , xmid2 , vec11 , vec21 , vec12 , vec22 ;

i f (TID < N) // Loop over I n t e r na l EDGES
f

i n t e1 = (i n t) edge1 [TID] ;
i n t e2 = (i n t) edge2 [TID] ;

r e a l qe1 = qeL [TID] ;
r e a l qe2 = qeR [TID] ;
r e a l qm = 0 .5� (qe1 + qe2) ;

r e a l dqlx = qm�ds1 [TID] ;
r e a l dqrx = qm�ds3 [TID] ;

r e a l sum = dqlx + dqrx ;

r e a l iv1 = i v o l [e1] ; // 1/volume (e1)
r e a l iv2 = i v o l [e2] ; // 1/volume (e2)
atomicAdd(&dqx [e1] , sum� i v1) ;
atomicAdd(&dqx [e2] ,�sum� i v2) ;

g
g

In the above listing, the gradient of a quantity q is sought. ds1, ds3 are weighted x-normals across the faces of
a dual cell. e1, e2 are according to �gure (2a). Using an edge based approach, this results in a race condition
for a node which is shared by multiple edges. In the author’s previous work,13 this race condition is avoided
by coloring various edges, and also by using a node based approach (codes run on Tesla C1060). However on
the Tesla C2050 (Fermi), atomic operations are very e�cient, and are found to be at least 1.2x faster than
the coloring or node based approach. These atomic operations are used to sum up the contribution from
various edges for a given node. For simple arithmetic operations, such as computing vorticity, divergence

12 of 25

American Institute of Aeronautics and Astronautics

or setting the R.H.S of the pressure Poisson equation, we use the CU + +ET framework2 where kernels
are automatically generated at compile time for any mathematical expression. As an example, the following
expressions compute the divergence, vorticity, and the R.H.S of the PPE respectively using the CU++ET
framework.

div(i) = ux(i) + vy(i) (49)

vor(i) = vx(i)� uy(i) (50)

rhs(i) = (divLapU(i)� dqx(i)� dqy(i)) � nodeV ol(i) (51)

i represents an index that runs through all node points and is declared as a distributedArray. It is worthy to
note that, there are no explicit kernel calls by the user, and these statements are automatically translated
to GPU kernels.

III.B. Three-Dimensional Computations on Tesla C2070

The thread and block distributions for the three-dimensional case have the following characteristics:

1. Face based, number of threads � number of faces

2. Cell based, number of threads � number of cells

The exact cell based approach is not used here as all reductions are performed using the Thrust library.23

In this preliminary implementation, we follow a mixed cell and face based approach where the the gradi-
ents/Laplacian are computed as a two step procedure. In the �rst step, a kernel is called to compute the
face-averaged �eld variables using a face based approach. In the subsequent step, another kernel is called
to sum up the contribution of all faces for a given cell using a cell based approach. The disadvantage of
this method is that each face value is read twice from global memory which might result in poor perfor-
mance. If one were to use a face based approach completely, it is unsure at this moment whether the use
of atomic operations for this purpose (similar to the two-dimensional implementation) will be bene�cial as
six atomic operations (2 per direction) per face are required (in contrast to 4 in two-dimensions) to com-
pute all gradients. As the number of atomic instructions increase, the GPU performance degrades, hence
using atomic operations for three-dimensional cases might not be bene�cial. Similar to the two-dimensional
implementation, a one-dimensional thread/block layout is used.

IV. Numerical Validation and GPU Performance Tests

IV.A. Two-Dimensional Computations

Several validation cases have been considered to establish con�dence in the computed results using the
GPUINS solver. First, we demonstrate the satisfaction of the compatibility constraint Eq.(8),(9) numerically,
followed by accuracy test cases and some benchmark problems.

IV.A.1. Satisfaction of the Compatibility Constraint

We consider a driven cavity ow at Re = 400 on a square 0 � x � 1, 0 � y � 1 using 8300 nodes. Using
Eq.(27), we compute the sum of all the pressure residuals using the two forms of the PPE Eq.(8),(9) during

each BiCGSTAB iteration. Convergence is said to be obtained when the relative residual
jjB �Apjj2
jjBjj2

falls

below a tolerance. Tables(1)-(3) show the convergence for the two types of PPE considered. It is seen that
when the conservative form of the PPE is used, this residual is almost zero right from the initial iterate,
and converges in 241 iterations. However when the SPPE is used, the residual is non-zero, and the l2 norm
of the relative residual diverges. However, when the solution at an arbitrary point is �xed, the SPPE also
converges, but slowly as the iterate proceeds (�2x the number of iterations compared to the earlier PPE).

IV.A.2. Convergence Studies

To assess the accuracy of the discretization procedure adopted, we consider traveling wave solutions to the
incompressible Navier-Stokes equations16 on a doubly periodic unit square. These solutions do not introduce

13 of 25

American Institute of Aeronautics and Astronautics

Table 1. Convergence of the Conservative PPE

Iteration
P
iRi Relative Residual

1 -2.03�10�16 2.78

141 -9.76�10�17 5.9�10�5

241 -2.18�10�17 3.16�10�9

Table 2. Convergence of the Simpli�ed PPE

Iteration
P
iRi Relative Residual

1 -7.7�10�2 2.73

141 -7.7�10�2 2.5�10�2

241 -7.7�10�2 3.9�10�2

481 -7.7�10�2 7.11�108

source terms into the existing governing equations.

u(x; y; t) = 1 + 2cos(2�(x� t))sin(2�(y � t))e�8�2�t (52)

v(x; y; t) = 1� 2sin(2�(x� t))cos(2�(y � t))e�8�2�t (53)

p(x; y; t) = �(cos(4�(x� t)) + cos(4�(y � t))e�16�2�t (54)

The initial conditions are prescribed based on the above set of equations by setting t = 0. A Dirichlet
boundary condition for velocity based on the boundary values of the above equation is speci�ed. Pressure is
solved using the conservative PPE. A constant time step of �t = 10�6 is used for all grids ranging from 185
to 10600 nodes. Since the pressure obtained from BiCGSTAB is one of the in�nite set of solutions to the
Neumann problem, we choose to compare the computed pressure gradient with that of the exact gradient
rather than comparing pressure. Figure(8) shows the convergence rates after 100 time steps along with a
base 2nd order curve for velocity, pressure and divergence. We �nd that velocity has global second order
convergence, but the pressure gradient has second order convergence only in the interior nodes. This is
due to the fact that at boundaries, a non-compact stencil is used to compute the gradient, which lowers
the accuracy. However, in practical applications the mesh near the boundary will be very �ne, hence the
accuracy of the pressure gradient can be recovered. The order of convergence for divergence is between 1
and 2. We hope to improve this accuracy by using higher order discretization procedures. It is important
to note that these results depend on the type of unstructured grid, and are valid only if the grid has regular
equilateral triangles in most of the domain. For a completely irregular triangular mesh, it can be proved
that the global order of accuracy of gradients is between 1 and 2.

IV.A.3. Flow in a Driven Cavity at Re = 100

The ow in a driven cavity is of considerable interest to the CFD community as the problem is very simple,
has boundary conditions which are straightforward to implement, and the computation can be carried out
very quickly. The appearance of primary and secondary vortices make it more appealing and many ow

Table 3. Convergence of the Simpli�ed PPE When the Solution is Fixed at an Arbitrary Point

Iteration
P
iRi Relative Residual

1 -7.7�10�2 2.73

141 -7.4�10�2 4.1�10�2

241 -5.9�10�2 2.1�10�2

361 -3.7�10�4 4.3�10�4

461 -5.8�10�9 7.6�10�9

14 of 25

American Institute of Aeronautics and Astronautics

Figure 8. Convergence of the Traveling Wave Solution for Di�erent Grids

solvers are tested to reproduce these ow features. Ghia’s24 test case is considered one of the standard
benchmark cases to validate incompressible ow problems, as �ne grids with a vorticity-stream function
approach was used to compute the ow in a driven cavity for a wide range of Reynolds numbers. In the
current implementation, we demonstrate results for Re=100 in comparison with the reference computation
of Ghia et al.24 For this case, no explicit arti�cial dissipation is needed as the Reynolds number is low.
Figure(9) shows the triangular grid with 16384 elements, and �gure(10) shows the streamlines after 20s of
physical time. Both the primary and secondary vortices are captured very well. Figure (11) compares the
x-velocity pro�le along the geometric center of the cavity (x = 0:5) with that of Ghia’s computation. A very
good match is obtained thereby establishing con�dence in our implementation.

Figure 9. Unstructured Grid used for the Driven Cavity Flow Problem at Re=100

IV.A.4. Plunging Airfoil

Recently, a lot of e�ort is being put in to understanding the mechanics of thrust generation when an airfoil
or a wing is made to execute simple periodic oscillations. Following the same lines, we consider two cases of

15 of 25

American Institute of Aeronautics and Astronautics

X
Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 10. Streamlines for the Flow in a Driven Cavity at Re=100

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u/U
s

y
/H

Ghia et al (1982)

GPUINS

Figure 11. Comparison of the X-Velocity Pro�le along the Geometric Center of the Cavity at Re=100

a plunging NACA 0012, 0014 airfoil at Reynolds number 500 and 10000 respectively. For Re=500, current
computations are compared with ow visualization results of Jones et al.25, and for Re=10000, with the
overset grid computations of Tuncer and Kaya26. A sinusoidal prescribed motion of the form h = h0sin(!t)
is prescribed for the airfoil. Table (4) shows various parameters for the two test cases. Since this is a moving
body test case, usage of overset grids to handle complex motions is quite favorable. Since this part is under
development, we choose to move the entire grid for the moment. As there is no deformation, there is no need
to invoke the Geometric Conservation Law (GCL), and the grid motion is simpli�ed to a greater extent.
Also there is no requirement to update cell face normals as this is a pure translational motion. The grid
velocities are passed to the velocity solver in both the predictor and corrector steps, and grid accelerations
appear as boundary conditions to the Pressure Poisson equation Eq.(5),(6). The grid motion is then updated
at the end of the time step. An unstructured hybrid grid with 47600(quad + tri) elements is generated such
that the boundary between the two types of elements is conformal. A portion of the hybrid grid is shown in
�gure(12). Solutions are computed for six cycles of oscillation, and the corresponding vorticity contours are
shown in �gure(13) in comparison with the ow visualization results of Jones et al.25 A comparison of the
particle traces from the present computation along with the unsteady panel code25 is also given in �gure(14).
A satisfactory comparison is obtained in terms of the wake deection. A comparison of the aerodynamic
forces (drag) with those of Tuncer and Kaya26 shown in �gure(15) also show good agreement.

16 of 25

American Institute of Aeronautics and Astronautics

Table 4. Computational Parameters for the Plunging Airfoil Case

0012 0014

Reduced Frequency k, !c=Uinf 12.3 2.0

Plunge Amplitude h0 0.12 0.4

Reynolds Number 500 10000

Small Scale Dissipation(c1; c2) 0.1 0.1

Number of Triangles 30000 32000

Figure 12. A Portion of the Unstructured Hybrid Grid Around a NACA 0012 Airfoil

Figure 13. A Comparison of Flow Structures Behind a Plunging Airfoil between GPUINS Computation (left) and
experiments from Jones et al.25 (right)

IV.A.5. GPU Performance Results

In this section, we compare the performance of the GPU with the corresponding CPU version of the code. All
two-dimensional computations have been performed on a Tesla C2050 (Fermi) graphics card using double
precision. As the base code is written in the GPU framework, a CUDA to C++ backward compatibility tool
ugc (ugc for uni�ed GPU CPU) has been developed using C++ string manipulations. Using this tool, both
CUDA and C++ codes are identically the same. The ugc tool scans the CUDA code, and converts kernels
to serial loops and writes a C++ version of the CUDA code, which is then compiled using gcc. A medium
level of optimization �O2 is used for the serial code. A comparison of the CPU time spent per time step, for
one iteration of the linear solver (velocity and pressure) during the predictor step on a grid with 1 million
points for the driven cavity problem is given in �gure(16). Each of the routines have been timed individually,
and on an average a speed-up of 10 is obtained. We further decompose the timings for the pressure solver
and list individual kernel performances such as the reduction operation (dot product), Laplacian, and
gradient computation. Figure(17) lists these results. The number of calls to these functions during the
�rst BiCGSTAB iteration is listed at the end of the graph. It is clearly seen that the reduction operation
performs very poorly on the GPU. This is due to the fact that a very naive approach was followed where

17 of 25

American Institute of Aeronautics and Astronautics

(a)

(b)

Figure 14. A Comparison of Particle Traces Behind a Plunging Airfoil (a) GPUINS Computation (b) Unsteady Panel
code from Jones et al.25

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

D
ra

g
 C

o
e

ff
ic

ie
n

t
(

C
d
)

Tuncer and kaya (2003)

GPUINS

Figure 15. Time history of Drag Coe�cient for a Plunging NACA0014 Airfoil at Re 10000

the �rst thread of each block would sum the respective data local to that block, followed by serial addition
over the entire set of blocks. However, it will be seen in the next section that using the Thrust23 library
for three-dimensional computations, reductions are much faster due to a binary type reduction algorithm.
Computing the Laplacian takes less time than the gradient as there are half the number of atomic operations
for the Laplacian than that of the gradient. Further on, in �gure(18), we compare the GPU performance for
di�erent grid sizes on two di�erent types of grid numbering/arrangement. The number of edges for di�erent
grids are also mentioned in the �gure (ranging from 0.03 to 1.3 million edges). Figure (19) shows the two
types of grids. Although both are made up of triangular elements, grid (a) is constructed using Delaunay
triangulation, and grid (b) by dividing a Cartesian grid into triangles. We call grid (b) to have natural

18 of 25

American Institute of Aeronautics and Astronautics

ordering of the nodes, and grid (a) to have quasi-random ordering. The results in �gure(18) clearly indicate
that random memory access patterns are highly detrimental to GPU performance.

0 1000 2000 3000 4000 5000 6000 7000

 U (RHS + BC)

 U (Linear Solve)

P (RHS + BC)

P(Linear Solve)

Time (ms) / Timestep / Linear Solve Iteration

GPU

CPU

12x

11x

10x

8.5x

Figure 16. A Comparison of CPU time for Di�erent Functions

0 200 400 600 800 1000 1200 1400

 grad(q)

 Lap(q)

q.q

Time (ms) / Time step / Linear Solve iteration

GPU

CPU

6

4

4

14x

8.5x

1.75x

Figure 17. A Comparison of CPU time for Di�erent Kernels

IV.B. Three-Dimensional Computations

IV.B.1. Single Grid

Results are presented for the ow past a sphere at Reynolds numbers 50, 75, and 100 on a Tesla C2070 card.
The governing equations are discretized on an unstructured grid made up of prisms (256,000) using 5120
surface elements. At these Reynolds numbers, the wake behind the sphere is stationary, which makes the
problem a suitable candidate for preliminary validation. For these Reynolds numbers, we compare the drag
coe�cient (Cd), polar separation angle (�s), wake width (Xs=d) and the center of the wake (Xc; Yc)=d with
experimental and numerical computations found in Sheard et al.27 and Johnson and Patel28 in table(5).

19 of 25

American Institute of Aeronautics and Astronautics

10
4

10
5

10
6

4

6

8

10

12

14

16

Number of Nodes

C
P

U
 T

im
e

 (
 S

e
ri
a

l
)

/
G

P
U

 T
im

e

Quasi−Random Ordering

Natural Ordering0.03M

0.08M

0.3M

1.3M

Figure 18. A Comparison of CPU time on Di�erent Grids for Two Types of Grid Arrangements

(a) (b)

Figure 19. (a) Grid with Quasi-random Ordering (b) Grid with Natural Ordering

Reference is made to �gure(20) for a description of wake characteristics. Figures(21)-(23) show the pressure
contours interspersed with streamlines for di�erent Reynolds numbers. A good correspondence is obtained for
most of the wake characteristics giving us con�dence in the numerical procedure. Following this comparison,
the performance of the GPU is investigated for three di�erent grid sizes having (1) 256,000 (2) 1,024,000
and (3) 2,048,000 cells respectively. The CPU time consumed per linear solver iteration for both the velocity
and pressure is computed similar to the two-dimensional computations. A serial version of the GPU code is
generated with the highest level of optimization �O3 for estimating GPU performance. Figure (24) shows
the data corresponding to di�erent grid sizes and di�erent functions. Consistent with two-dimensional
computations, the velocity solve results in a higher speed-up compared to the pressure solve due to the
Neumann boundary condition for pressure. In general, for a Neumann boundary condition problem, access
to the gradients at the boundary result in additional global memory reads which reduce the performance
of the GPU. The speed-up �gures in the three-dimensional case are marginally lower compared to the two-
dimensional case due to a higher serial code optimization. We also compare the performance of individual
kernels associated with the solution of the Poisson equation in �gure (25). As the Thrust library is used
for the reduction operations, the dot product operation on the GPU performs substantially faster than the
previous implementation for the two-dimensional case. It is however not known exactly at this point why
the performance of the Laplacian computation is poor compared to the two-dimensional case.

20 of 25

American Institute of Aeronautics and Astronautics

Figure 20. A Description of the Wake Characteristics for the Flow past a Sphere

Table 5. Comparison of Wake Characteristics for di�erent Reynolds numbers with data adapted from References,2728

Re Cd Xc=d Yc=d Xs=d �s

Computation Ref Computation Ref Computation Ref Computation Ref Computation Ref

50 1.65 1.62 0.647 0.64 0.215 0.2 0.451 0.4 140.1 139

75 1.31 1.3 0.732 0.7 0.266 0.26 0.78 0.65 132.3 134

100 1.12 1.1 0.811 0.76 0.295 0.3 1.15 1.2 128 129

Figure 21. Pressure Contours and Streamlines for the Flow Past a Sphere at Re=50

IV.B.2. Overset Grids

In the overset grid implementation, the grid system consists of a near body unstructured grid overlapping
a Cartesian grid over a �nite region. Solution of the Poisson equation on overlapping grids is similar to the
Schwarz alternating method29 described below:

21 of 25

American Institute of Aeronautics and Astronautics

Figure 22. Pressure Contours and Streamlines for the Flow Past a Sphere at Re=75

Figure 23. Pressure Contours and Streamlines for the Flow Past a Sphere at Re=100

Listing 2. Solution to the Poisson Equation on Overlapping Domains

do < Global Iterate >

{

ncon = 0

for i = 1 to Ng , Ng is the number of grids

{

fixFringePointsFromPotentialDonors ();

fixRHSAtFringePoints ();

ncon += solvePoisson ();

}

} while (ncon > Ng)

Here ncon is the number of iterations for convergence during each Poisson solution for each grid. For each
global iterate, we solve the Poisson equation once on each component grids and exchange information at
fringe points. If the global solution has converged, then the Poisson equation must converge during the
�rst BiCGSTAB iterate thereby ncon takes a value of Ng. Results are presented for the ow past a sphere

22 of 25

American Institute of Aeronautics and Astronautics

10
0

10
1

10
2

10
3

10
4

U (RHS + BC)

U (Linear Solve)

P (RHS + BC)

P (Linear Solve)

Time (ms) / Time step / Linear solve iteration

10.4x

9.8x

9.8x

8x

7.8x

8x

6.7x

6.5x

6.3x

6.8x

6.7x

6.9x

GPU CPU

Figure 24. GPU Performance Compared to CPU Execution for Di�erent Functions in Three-Dimensions

0 20 40 60 80 100 120 140 160 180 200

grad(q)

Lap(q)

q.q

Time (ms)

Grid 1

Grid 2

Grid 3

GPU

CPU

10.4x

9.7x

9.7x

3.8x

4.2x

3.7x

3x

8.7x

11.2x

Figure 25. GPU Performance Compared to CPU Execution for Di�erent Kernels in Three-Dimensions

at Re=75 for a grid size of 400,000 cells (256,000 on the sphere). Figure (26) shows the comparison of
the x-velocity contours between an overset grid solution and single grid solution. A reasonable comparison
is obtained for the grid con�guration used. There are minor irregularities in the contours downstream of
the sphere in the overlapping region due to a coarse Cartesian grid, which will disappear if the cell sizes
commensurate between the Cartesian and the sphere grid in the overlap region. In �gure(27), we compare
the convergence rates of the drag coe�cient between a single grid and an overset grid. It is seen that the
overset methodology does not hamper the convergence rates to a large extent, and that both display similar
behavior.

V. Conclusions

A GPU based incompressible Navier-Stokes solver has been developed and preliminary results are en-
couraging and compare well with available data in literature. For two-dimensional cases, only single grid

23 of 25

American Institute of Aeronautics and Astronautics

(a) (b)

Figure 26. Comparison of Velocity contours between the (a) Overset Grid Solution and the (b) Single Grid Solution

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Physical Time (s)

|
C
dn
+
1
−
C
dn
|

Single Grid

Overset Grid

Figure 27. Comparison of Convergence Rates Between Overset Grids and Single Grid for the Flow Past a Sphere at
Re = 75

computations were performed whereas for three-dimensional cases, both single and overset grid formulations
were incorporated. For the overset grid cases, the donor-recipient relationships (domain connectivity) were
computed o�ine before the main ow solver was executed hence this formulation was limited to non-moving
cases. The single grid cases on the GPU showed an average speedup of 8x-10x corresponding to the serial
code on one processor. It was also demonstrated that one may not be able to reap the full potential of GPUs
if the memory access patterns are random, as in the case of unstructured grids. A signi�cant improvement
in the speed-up for the reduction operation was obtained using NVIDIA’s Thrust library. Extension of
the capabilities of the current solver to handle multiple moving bodies using overset grids will be sought in
the near future. This would also include generating the domain connectivity information during run time
within the ow solver. Improvements to the accuracy of the discretization procedure, and implementing a
multi-GPU programming model using MPI will also be considered.

Acknowledgments

We gratefully acknowledge support from the O�ce of Naval Research under ONR Grant N00014-09-1-
1060 and NVIDIA for providing their hardware.

24 of 25

American Institute of Aeronautics and Astronautics

References

1Van der Vorst, H. A., Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG For the Solution of Nonsymmetric
Linear Systems. SIAM Journal on Scienti�c and Statistical Computing, Vol. 13, pp.631-644, 1992.

2Chandar, D.D.J., Sitaraman, J., and Mavriplis, D., CU++ET: An Object Oriented Tool for Accelerating Computational
Fluid Dynamics Codes Using Graphical Processing Units, 20th AIAA Computational Fluid Dynamics Conference, Honolulu,
HI, 2011.

3NVIDIA CUDA C programming Guide 3.1, http : ==developer:nvidia:com=object=cuda 3 1 downloads:html
4Hagen, T.R., Lie, K-.,A and Natvig, J.R., Solving the Euler Equations on Graphics Processing Units, Lecture Notes in

Computer Science, 3994, pp. 220-227, 2006.
5Elsen, E., LeGresley, P., and Darve, E., Large Calculation of the Flow over a Hypersonic Vehicle using a GPU, Journal

of Computational Physics, Vol. 227, No. 24, pp. 10148-10161, 2008.
6Brandvik, T., and Pullan, G., Acceleration of a 3D Euler Solver using Commodity Graphics Hardware, 46th AIAA

Aerospace Sciences Meeting and Exhibit, AIAA-2008-0607, Reno, NV, 2008.
7Cohen, J.M., and Molemaker, M.J., A Fast Double Precision Code using CUDA , Proceedings of Parallel CFD, Mo�ett

Field, CA, 2009.
8Phillips, E.H., Zhang, Y., Davis, R.L., and Owens, J.D., Rapid Aerodynamic Performance Prediction on a Cluster of

Graphics Processing Units, 47th Aerospace Sciences Meeting and Exhibit, AIAA-2009-0565, Orlando, FL, 2009.
9Corringan, A., Camelli, F., Lohner, R., and Mut, F., Semi-Automatic Porting of a Large-Scale Fortran CFD Code to

GPUs, International Journal for Numerical Methods in Fluids, Vol. 66, No.6, 2011.
10Sitaraman, J., Floros, M., Wissink, A., and Potsdam, M., Parallel Domain Connectivity Algorithm for Unsteady Flow

Computations Using Overlapping and Adaptive Grids, Journal of Computational Physics, Vol. 229, No. 12, pp. 4703-4723, 2010.
11Tuncer, I.H., and Kaya, M., Thrust Generation Caused by Flapping Airfoils in a Biplane Con�guration, Journal of

Aircraft, Vol. 40, pp.509-515, 2003.
12Chandar, D.D.J., and Damodaran, M., Computation of Unsteady Low Reynolds Number Free-Flight Aerodynamics of

Flapping Wings, Journal of Aircraft, Vol. 47, pp.141-150, 2010.
13Soni, K., Chandar, D.D.J., and Sitaraman, J., Development of an Overset Grid Computational Fluid Dynamics Solver

on Graphical Processing Units, 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2011-1268, Orlando, FL.
14Gresho, P.M., Some Current CFD Issues Relevant to the Incompressible Navier-Stokes Equations, Computer Methods

in Applied Mechanics and Engineering, Vol. 87, pp.201-252, 1991.
15Brown, D.L., Cortez, R., and Minion, M.L., Accurate Projection Methods for the Incompressible Navier-Stokes Equations,

Journal of Computational Physics, Vol. 168, pp.464-499, 2001.
16Minion, M.L., and Brown, D.L., Performance of Under-Resolved Two-Dimensional Incompressible Flow Simulations, II,

Journal of Computational Physics, Vol. 138, pp.734-765, 1997.
17Henshaw, W.D., A Fourth Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids,

Journal of Computational Physics, Vol. 113, pp.13-25, 1994.
18Abdallah, S., Numerical Solutions for the Pressure Poisson Equation with Neumann Boundary Conditions Using a

Non-Staggered Grid, I, Journal of Computational Physics, Vol. 70, pp.182-192, 1987.
19Crumpton, P.I., Moinier, P., and Giles, M.B., An Unstructured Algorithm for High Reynolds Number Flows on Highly

Stretched Grids, Numerical Methods in Laminar and Turbulent Flow, pp.561-572, Pineridge Press, 1997.
20Abdallah, S., Numerical Solutions for the Incompressible Navier-Stokes Equations in Primitive Variables Using a Non-

Staggered Grid, II, Journal of Computational Physics, Vol. 70, pp. 193-202, 1987.
21Henshaw, W.D., Kreiss, H.O., and Reyna, L.G., On the Smallest Scale for the Incompressible Navier-Stokes Equations,

ICASE Report 88-8, 1988.
22Henshaw, W.D., Cgins Reference Manual: An Overture Solver for the Incompressible Navier-Stokes Equations on Com-

posite Overlapping Grids, Lawrence Livermore National Laboratory Report LLNL-SM-455871, 2011.
23http://research.nvidia.com/news/thrust-cuda-library
24Ghia, U., Ghia, N., and Shin, C.T., High-Re Solutions for Imcompressible Flow Using the Navier-Stokes Equations and

a Multigrid Method, Journal of Computational Physics, Vol. 28, pp.387-411, 1982.
25Jones, K.D., Dohring, C.M., and Platzer, M.F., Experimental and Computational Investigation of the Knoller-Betz E�ect,

AIAA Journal, Vol. 36, No. 7, pp.1240-1246, 1998.
26Tuncer, I.H., and Kaya, M., Thrust Generation Caused by Flapping Airfoils in a Biplane Con�guration, Journal of

Aircraft, Vol. 40, pp.509-515, 2003.
27Sheard, G.J., Hourigan, K., and Thompson, M.C., Computation of the Drag Coe�cients for Low-Reynolds-Number Flow

Past Rings, Journal of Fluid Mechanics, Vol. 526, pp.257-275, 2005.
28Johnson, T.A., and Patel, V.C., Flow Past a Sphere up to a Reynolds Number of 300, Journal of Fluid Mechanics, Vol.

378, pp.19-70, 1999.
29Schwartz, H.A. ber einen Grenzbergang durch alternierendes Verfahren", Vierteljahrsschrift der Naturforschenden

Gesellschaft in Zrich, Vol.15, pp. 272286, 1870.

25 of 25

American Institute of Aeronautics and Astronautics

