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For flows with strong periodic content, time-spectral methods can be used to obtain
time-accurate solutions at substantially reduced cost compared to traditional time-implicit
methods which operate directly in the time domain. The time-spectral approach requires
the simultaneous coupled solution of multiple time instances, which can be performed ef-
fectively in parallel on modern multicore parallel computer architectures. Although time-
spectral methods are only applicable to purely periodic flows, in previous work we have
demonstrated the ability of a hybrid BDF/time-spectral approach for simulating quasi-
periodic flows with good overall efficiency. A quasi periodic flow is defined as one which in-
volves a slow transient in addition to a higher frequency periodic component. In this paper,
we apply the BDF/time-spectral approach to compute the important practical problem of
time dependent helicopter maneuver loads, which combine the periodic rotor motion with
a slower vehicle maneuvering transient. The simulation includes a rotating and deforming
mesh with prescribed aeroelastic blade deflections. The formulated BDF/time-spectral
approach is compliant with the geometric conservation law, and produces equivalent tem-
poral accuracy using less computation effort compared to a traditional BDF time-implicit
approach.

I. Introduction

Unstructured mesh approaches have become well established for steady-state flow simulations due to the
flexibility they afford for dealing with complex geometries. For unsteady flows with moving boundaries, such
as aeroelastic problems, implicit time-integration strategies are required for the efficient solution of the flow
equations. However, for problems with strong periodic content, such as turbomachinery flows or rotorcraft
aerodynamics, time-spectral methods can be used to substantially reduce the cost of computing the full
time-dependent solution for a given level of accuracy.

The time spectral method is based on the use of discrete Fourier analysis. McMullen22,23 used the
harmonic balance technique to transform the unsteady equations in the physical domain to a set of steady
equations in the frequency domain. Subsequently, Gopinath10,30 proposed to solve the unsteady equations
in the time domain by applying the time discretization operator. The time spectral method was shown
to be faster than the dual-time stepping implicit methods using backwards difference time formulae for
time periodic computations, such as turbomachinery flows,22,30 oscillatory pitching airfoil/wing cases,10,16

flapping wing,24 helicopter rotor7,8 and vortex shedding problems.23

In practice, the time spectral method can only be applied to periodic flows. However, there are many
quasi-periodic flows which combine strong periodic content with a slow mean flow transient, such as an
oscillating pitching and climbing airfoil or wing, and a maneuvering helicopter rotor. In such cases, practical
time-stepping simulations can become very costly since the time step is limited by the accuracy considerations
imposed by the fast periodic flow features (i.e. time steps typically smaller than 1 degree of rotation for
rotorcraft configurations) while long time histories must be simulated to capture the slower transient effects.

∗Research Scientist, AIAA member; email: zyang@uwyo.edu
†Professor, AIAA Associate Fellow; email: mavriplis@uwyo.edu
‡Assistant Professor, AIAA member; email: jsitaram@uwyo.edu

1 of 21

American Institute of Aeronautics and Astronautics



In previous work, we have introduced a hybrid BDF/time-spectral approach which aims to simulate
quasi-periodic flows with slow transients combined with relatively fast periodic content using global BDF
time step sizes of the order of the period length, while making use of the properties of the time-spectral
approach to capture accurate details of the periodic flow components.20 The idea is rooted in the concept of
polynomial subtraction for spectral methods, discussed by Gottlieb and Orzag11 and originally credited to
Lanczos.15 In this approach, the non-periodic (transient) portion of a quasi-periodic function is subtracted
from the function and represented with a polynomial basis set. The remaining function is periodic and
thus can be approximated efficiently with spectral basis functions. In order to be practical, the BDF/time-
spectral approach must be applicable to problems with moving and deforming meshes. These methods must
also preserve important properties such as discrete conservation in the presence of dynamically deforming
meshes, and techniques for efficiently solving the large implicit systems arising at each time step must be
employed.

When explicit algorithms are used to integrate the time-spectral or BDF/time-spectral approaches in
pseudo time, small (pseudo) time steps must be used due to stability considerations. Furthermore, as
the number of time instances or harmonics increases, the time-step restriction becomes more severe and
the convergence rate decreases as well.12 In this work, we make use of an efficient block-Jacobi implicit
method originally presented by Sicot25 to alleviate this dependence of the convergence rate on the number
of harmonics.

The various time instances or harmonic solutions in the time spectral approach are coupled and must be
solved simultaneously. However, the coupling only comes in through a source term and each individual time
instance may be solved in parallel with the other time instances. This introduces an additional dimension
for achieving parallelism compared to time-domain computations, where progress in the time dimension
is necessarily sequential. In our implementation, two levels of parallelism are introduced, the first in the
spatial dimension, and the second in the time dimension where the various time instances are solved by
spawning multiple instances of the spatial solver on a parallel computer. The implementation is performed
with minimal modifications to an existing steady-state unstructured multigrid solver, and using multiple
MPI communicators to manage communication for the coupling between the harmonic solution instances,
and within each time instance solution in the spatial dimension.

In the following sections, we first outline the governing equations and the base flow solver. We then discuss
the time spectral method and subsequently the hybrid BDF/time-spectral approach. This is followed by a
formulation of the geometric conservation law (GCL), which must be verified in order to guarantee discrete
conservation in the presence of dynamically deforming meshes. The BDF/time-spectral method is first
demonstrated on a simple two-dimensional problem, and subsequently applied to the important practical
problem of predicting helicopter maneuver loads by simulating a prescribed pull-up maneuver for the UH-60
flexible rotor, for which both previous BDF time-domain computational results1–3,26,28 and flight-test data4

are available for comparison.

II. Governing Equations

A. Base Solver

The Navier-Stokes equations in conservative form can be written as:

∂U
∂t

+∇ · (F(U) + G(U)) = 0 (1)

where U represents the vector of conserved quantities (mass, momentum, and energy), F(U) represents the
convective fluxes and G(U) represents the viscous fluxes. Integrating over a (moving) control volume Ω(t),
we obtain: ∫

Ω(t)

∂U
∂t

dV +
∫
∂Ω(t)

(F(U) · ñ)dS +
∫
∂Ω(t)

(G(U) · ñ)dS = 0 (2)

Using the differential identity

∂

∂t

∫
Ω(t)

UdV =
∫

Ω(t)

∂U
∂t

dV +
∫
∂Ω(t)

U(ẋ · ñ)dS (3)
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where ẋ and ñ are the velocity and normal of the interface ∂Ω(t), respectively, equation (2) becomes:

∂

∂t

∫
Ω(t)

UdV +
∫
∂Ω(t)

(F(U)−Uẋ) · ñdS +
∫
∂Ω(t)

G(U) · ñdS = 0 (4)

Considering U as cell averaged quantities, these equations are discretized in space as:

∂

∂t
(VU) + R(U, ẋ(t), ñ(t)) + S(U, ñ(t)) = 0 (5)

where R(U, ẋ, ñ) =
∫
∂Ω(t)

(F(U)− ẋU) · ñdS represents the discrete convective fluxes in ALE form, S(U, ñ)
represents the discrete viscous fluxes, and V denotes the control volume. In the discrete form, ẋ(t) and ñ(t)
now represent the time varying velocities and surface normals of the control-volume boundary faces.

The Navier-Stokes equations are discretized by a central difference finite-volume scheme with additional
matrix-based artificial dissipation on hybrid meshes which may include tetrahedra, pyramids, prisms and
hexahedra in three dimensions. Second-order accuracy is achieved using a two-pass construction of the
artificial dissipation operator, which corresponds to an undivided biharmonic operator. A single unifying
edge-based data-structure is used in the flow solver for all types of elements. For the base solver, the time
derivative in equation (5) is discretized using a second order backwards difference (BDF2) scheme, resulting
in a non-linear system to be solved at each time step. The implicit solution is achieved using a line-implicit
agglomeration multigrid algorithm where a first-order accurate discretization is employed for the convective
terms on coarse grid levels.17,18

B. Time Spectral Method

If the flow is periodic in time, the variables U can be represented by a discrete Fourier series. The discrete
Fourier transform of U in a period of T is given by10

Ûk =
1
N

N−1∑
n=0

Une−ik
2π
T n∆t (6)

where N is the number of time intervals and ∆t = T/N . The Fourier inverse transform is then given as

Un =

N
2 −1∑

k=−N2

Ûke
ik 2π

T n∆t (7)

Note that this corresponds to a collocation approximation, i.e. the function U(t) is projected into the space
spanned by the truncated set of complex exponential (spectral) functions, and the expansion coefficients (in
this case the Ûk) are determined by requiring U(t) to be equal to its projection at N discrete locations in
time, as given by equations (6) and (7).
Differentiating equation (7) in time, we obtain:

∂

∂t
(Un) =

2π
T

N
2 −1∑

k=−N2

ikÛke
ik 2π

T n∆t (8)

Substituting equation (6) into equation (8), we get6,13

∂

∂t
(Un) =

N−1∑
j=0

djnUj (9)

where

djn =

{
2π
T

1
2 (−1)n−jcot(π(n−j)

N ) n 6= j

0 n = j

for an even number of time instances and
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djn =

{
2π
T

1
2 (−1)n−jcosec(π(n−j)

N ) n 6= j

0 n = j

for an odd number of time instances. The collocation approach for solving equation (5) consists of substituting
the collocation approximation for the continuous function U(t) given by equation (7) into equation (5), and
requiring equation (5) to hold exactly at the same N discrete locations in time (i.e. multiplying (5) by the
dirac delta test function δ(t− tn) and integrating over all time), yielding:

N−1∑
j=0

djnV
jUj + R(Un, ẋn, ñn) + S(Un, ñn) = 0 n = 0, 1, 2, ..., N − 1 (10)

This results in a system of N equations for the N time instances Un which are all coupled through the
summation over the time instances in the time derivative term. The spatial discretization operators remain
unchanged in the time-spectral approach, with only the requirement that they be evaluated at the appropriate
location in time. Thus, the time-spectral method may be implemented without any modifications to an
existing spatial discretization, requiring only the addition of the temporal discretization coupling term,
although the multiple time instances must be solved simultaneously due to this coupling.

C. Hybrid BDF/Time Spectral Method

The idea of polynomial subtraction for quasi-periodic functions is to subtract out the non-periodic transient,
which can be modeled using a polynomial basis set, and to approximate the remaining purely periodic
component with a spectral basis set.11 From the point of view of a collocation method, this corresponds
to using a mixed spectral/polynomial basis set for the projection of the continuous solution (in the time
dimension).

We proceed by splitting the quasi-periodic temporal variation of the solution into a periodic and slowly
varying mean flow as:

U(t) =

N
2 −1∑

k=−N2

Ûke
ik 2π

T n∆t + Ū(t) (11)

where the slowly varying mean flow is approximated by a collocation method using a polynomial basis set
as:

Ū(t) = φ12(t)Um+1 + φ11(t)Um (12)

for a linear variation and
Ū(t) = φ23(t)Um+1 + φ22(t)Um + φ21(t)Um−1 (13)

for a quadratic variation in time. Here Um and Um+1 represent discrete solution instances in time usually
taken as the beginning and ending points of the considered period in the quasi-periodic motion (and Um−1

corresponds to the beginning point of the previous period). In the first case, φ12(t) and φ11(t) correspond
to the linear interpolation functions given by:

φ11(t) =
tm+1 − t

T
(14)

φ12(t) =
t− tm

T
(15)

with the period given as T = tm+1 − tm. Similarly, the φ23(t), φ22(t), φ21(t) are given by the correspond-
ing quadratic interpolation functions. Note that in this case, the collocation approximation leads to the
determination of the Fourier coefficients as:

Ûk =
1
N

N−1∑
n=0

Ũne−ik
2π
T n∆t (16)

with Ũn = Un − Ūn defined as the remaining periodic component of the function after polynomial sub-
traction. Differentiating equation (11) and making use of equations (9) and (16) we obtain the following
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expression for the time derivative:

∂

∂t
(Un) =

N−1∑
j=0

djnŨj + φ′12(tn)Um+1 + φ′11(tn)Um (17)

for the case of a linear polynomial functions in time. The φ′12(tn) and φ′11(tn) represent the time derivatives
of the polynomial basis functions (resulting in the constant values −1

T and 1
T in this case), and the various

time instances are given by:

tj = tm +
j

N
(tm+1 − tm), j = 0, . . . , N − 1

We also note that Ū(tm) = Um = U(tm) and thus we have Ũ0 = 0. In other words, the constant mode in
the spectral representation must be taken as zero, since it is contained in the polynomial component of the
function representation. Therefore, the j = 0 component in the summation can be dropped, and rewriting
equation (17) in terms of the original time instances Un we obtain:

∂

∂t
(Un) =

N−1∑
j=1

djnUj − (
N−1∑
j=1

djnφ12(tj)− φ′12(tn))Um+1 − (
N−1∑
j=1

djnφ11(tj)− φ′11(tn))Um (18)

Finally, the above expression for the time derivative is substituted into equation (5) which is then required to
hold exactly at time instances j = 1, 2, ..., N − 1 and j = N (which corresponds to the m+ 1 time instance):

N−1∑
j=1

djnV
jUj − (

N−1∑
j=1

djnφ12(tj)− φ′12(tn))V m+1Um+1 − (
N−1∑
j=1

djnφ11(tj)− φ′11(tn))V mUm (19)

+R(Un, ẋn, ñn) + S(Un, ñn) = 0 n = 1, 2, ..., N

As previously, we have N coupled equations with N unknown time instances, although in this case the j = 0
time instance which corresponds to the Um values are known from the solution of the previous period, while
the j = N or Um+1 values are not known, since these are not equal to the j = 0 values as they would be in a
purely periodic flow. In the case of vanishing periodic content, summation terms involving the djn coefficients
vanish by virtue of equation (17) with Ũj = 0 and it is easily verified that the above formulation reduces
to a first-order backwards difference scheme with a time step equal to the period T . On the other hand,
for purely periodic motion, we have Um+1 = Um which results in cancellation of the polynomial derivative
terms φ′12(tn) and φ′11(tn). Furthermore, using the identities φ12(tj) + φ11(tj) = 1, and

∑N−1
j=0 djn = 0, it

can be seen that the remaining polynomial terms reduce to the missing j = 0 instance in the summation.
Given the equality Um+1 = Um, the last equation at j = N becomes identical to the j = 0 equation and
the time-spectral method given by equation (10) is recovered.

In this description we have used linear polynomials corresponding to a BDF1 time-stepping scheme for
clarity. In practice, BDF2 time-stepping schemes are required for accuracy purposes, and the equivalent
scheme based on quadratic polynomials is given as:

N−1∑
j=1

djnV
jUj − (

N−1∑
j=1

djnφ23(tj)− φ′23(tn))V m+1Um+1 (20)

−(
N−1∑
j=1

djnφ22(tj)− φ′22(tn))V mUm − (
N−1∑
j=1

djnφ21(tj)− φ′21(tn))V m−1Um−1

+R(Un, ẋn, ñn) + S(Un, ñn) = 0 n = 1, 2, ..., N

where the values Um−1 and Um, which correspond to the time instances at the beginning and end of the
previous period are known from the solution of earlier periods, and Um+1 = UN as previously.

D. Geometric Conservation Law

The geometric conservation law states that in order to maintain discrete conservation, equations (10) and/or
(20) must preserve uniform flow as an exact (discrete) solution.9,19 Substituting Un = constant into
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equation (20) the R operator reduces to the ALE term (i.e. second term in second integral in equation (4)),
and the S operator vanishes due to its dependence on gradients of U, yielding the following constraint for
the face-integrated grid speeds in the case of the BDF/time-spectral method:

∑
CV Faces

ẋn · ñn =
N−1∑
j=1

djnV
j − (

N−1∑
j=1

djnφ23(tj)− φ′23(tn))V m+1 (21)

−(
N−1∑
j=1

djnφ22(tj)− φ′22(tn))V m − (
N−1∑
j=1

djnφ21(tj)− φ′21(tn))V m−1

where the sum on the left hand side is over the faces which delimit the cell or control volume V j . The
right hand side of this equation represents a known quantity, since the cell volumes at each time instance
are computable given the known grid point locations. However, equation (21) does not in itself enable the
prescription of the face integrated grid speeds, since there are more grid faces than volumes. However, the
change in volume of a cell from one instance in time to another can be re-written as a sum of the volumes
swept by each constituent face:

Vj = V0 +
∑
e

F je j = 0, 1, 2, 3 (22)

where F je is the volume swept by face e from time level 0 to j. Following references,19,31 we substitute
the above form for the volumes into the right hand side of equation (21) and require that the equality
hold for each face individually, leading to the GCL formula for computing the face integrated grid speeds
vg = ẋn · ñn:

vg =
N−1∑
j=1

djnF
j−(

N−1∑
j=1

djnφ23(tj)−φ′23(tn))Fm+1−(
N−1∑
j=1

djnφ22(tj)−φ′22(tn))Fm−(
N−1∑
j=1

djnφ21(tj)−φ′21(tn))Fm−1

(23)
The face swept volumes F j and Fm are computed by discretizing the trajectories of the faces between the
two time levels into a large number of discrete steps (usually of the order of 60 per period) and computing
the volume swept between each step using a two-point integration rule in time, as discussed in references.9,19

For purely periodic flows, applying the same approach to the time-spectral scheme (i.e. equation 10)
results in the GCL statement:

vg = ẋn · ñn =
N−1∑
j=0

djnF
j (24)

It has been verified that computing the grid speed terms in this manner for a periodic problem indeed satisfies
the GCL (i.e. preserves uniform flow discretely). However, the resulting grid speeds are not consistent, in the
sense that they do not converge to the exact grid speeds in cases where these are defined analytically. This
is illustrated in Figure 1(a), where the analytic grid speed at the tip of the UH-60 rotor in forward flight is
compared with the values obtained using N=11 and N=31 time instances using equation (24). The problem
arises from the fact that, although we have V 0 = V N , the F j=0 swept volumes are identically zero whereas
the F j=N volumes are non-zero, violating the periodic nature of the formulation. Recalling that in the
BDF/time-spectral formulation the j = 0 instance is not used directly, we return to the BDF/time-spectral
GCL formulation. Using the simpler BDF1 formulation obtained by inserting a uniform flow into equation
(19), we obtain:

vg =
N−1∑
j=1

djnF
j − (

N−1∑
j=1

djnφ12(tj)− φ′12(tn))Fm+1 − (
N−1∑
j=1

djnφ11(tj)− φ′11(tn))Fm (25)

Using the identities Fm = 0 and Fm+1 = F j=N , and the properties of the dJn coefficients and linear (in time)
φ basis functions, we obtain:

vg = d̄0
nF

N +
N−1∑
j=1

djnF
j (26)
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where the coefficients d̄0
n are given by:

d̄0
n =

1
T
−
N−1∑
j=1

jdjn
N

(27)

Applying this formula for computing the grid speeds for the periodic UH-60 forward flight geometry results
in accurate and converging grid speeds compared with analytic values, as shown in Figure 1(b).
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(a) Inconsistent (equation (24))
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(b) Consistent (equation (26))

Figure 1. Comparison of analytic and GCL compliant grid speeds for the periodic UH60 forward flight flexible
rotor case. Note different scales for both plots.

E. Fully Implicit Method

Similar to the dual time-stepping method used to solve implicit time-domain problems (for example using
backwards difference time discretizations), a pseudo-time τ can be added to equations (10) and (20) in order
to formulate an iterative solution procedure, for example, equation (10) becomes:

∂

∂τ
(V nUn) +

N−1∑
j=0

djnV
jUj + R(Un, ẋn, ñn) + S(Un, ñn) = 0 (28)

According to reference,30 the maximum stable pseudo-time step can be computed as

∆τ = CFL
V

‖ λ ‖ +N
2 V

(29)

where λ is the spectral radius of the flux Jacobian. By using the implicit backward Euler method in pseudo
time, equation (28) can be written as:

A∆U = −
N−1∑
j=0

djnV
jUj −R(Un, ẋn, ñn)− S(Un, ñn) (30)

where, for the fully coupled implicit method, the matrix A takes the form:25

A =


V 0

∆τ0
I + J0 V 1d1

0I . . . V N−1dN−1
0 I

V 0d0
1I

V 1

∆τ1
I + J1 . . . V N−1dN−1

1 I
...

... . . .
...

V 0d0
N−1I V 1d1

N−1I . . . V N−1

∆τN−1
I + JN−1

 (31)
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where J corresponds to the flux Jacobians. Keeping only the diagonal terms in this matrix and discarding
all other terms corresponds to a local implicit method. On the other hand, if all terms are retained, and
a block Jacobi strategy is used to solve equation (30), a fully implicit solution strategy which takes into
account the coupling between all time instances is obtained. Note that these off-diagonal blocks in the A
matrix are rather simple, as they involve a scalar multiplication of the identity matrix. However, the size
of each block corresponds to a complete spatial field for one time instance. The fully implicit method can
be implemented with little additional memory and requires only a small amount of additional floating point
operations. However, for parallel implementations, each time instance solution must broadcast its entire
solution field to all other solution instances. In order to reduce overall communication, this coupling is
performed at the end of every multigrid cycle, rather than after each iterative smoothing cycle.

III. Results and Discussion

A. UH-60A Maneuver Description

The objective of this work is to investigate the effectiveness of the BDF/time-spectral approach originally
proposed in reference20 for important practical rotorcraft problems that are not fully periodic. Simulation
of the Utility Tactical Transport Aerial System (UTTAS) pull-up maneuver of the UH-60A helicopter con-
stitutes an ideal test case for this purpose. Detailed measurements of blade aerodynamics and structural
dynamics load measurements have been conducted on this configuration as part of the NASA-Army UH-60A
Airloads Program which investigated a wide range of flight conditions. An extensive documentation of the
flight test program can be found in Bousman and Kufeld .5,14 The operating envelope of the helicopter
plotted as variation of vehicle weight coefficient with advance ratio is shown in Figure 2. The limiting factors
for these flight conditions are the maximum thrust limit because of retreating blade stall and maximum
sectional airfoil lift that can be generated. McHugh et al.21 determined the maximum thrust boundary
using wind-tunnel tests which is represented in the figure. Note that all the steady flight conditions lie below
the McHugh boundary. Figure 2 also shows the variation of weight coefficient with advance ratio for the
UTTAS pull-up maneuver. The maneuver begins quite close to the maximum level flight speed of the aircraft
and achieves a peak load factor of 2.1g, which exceeds the steady state McHugh boundary. Therefore the
UTTAS pull-up maneuver is a challenging flight condition in terms of predictive capability.

In this work, we first investigate the periodic condition of high-speed forward flight corresponding to the
initial condition for the pull-up maneuver using the pure time-spectral approach, and then proceed to the
simulation of the transient pull-up maneuver using the BDF/time-spectral method. This latter case consists
of a transition from the initial periodic high speed forward flight condition to a steady climb condition in
about 40 revolutions of the rotor (approximately 10 seconds).

In both cases, the UH-60A aircraft is modeled as an isolated flexible rotor. In order to further simplify
the problem, we make use of prescribed flight path and prescribed aeroelastic rotor deflections obtained from
a fully coupled CFD-CSD simulation performed previously in reference.28 Figure 3(a) shows the prescribed
speed and pitch angle of the hub. Figure 3(b) shows the prescribed displacement and the Wiener-Milenkovic
parameters(c1, c2 and c3) used to define the aeroelastic motion of the blade tip.

The prescribed motion is applied in four different operations to the computational mesh. Firstly, the
rotational motion if applied by directly rotating the mesh by the required angle about the hub axis. Next,
the mesh is pitched as a solid body and translated according to the prescribed hub motion and attitude.
Finally, the aeroelastic deflections are applied to the surface grid for each blade, and the interior mesh is
then deformed in response to the surface deflections using a spring analogy mesh deformation approach.
These operations are performed at each time step in the time-domain (BDF2) simulation, and for each time
instance in the time spectral or BDF/time-spectral approach.

Figure 4 illustrates the mesh used for the UH60A rotor in all simulations. The mesh consists of ap-
proximately 1.5 million grid points in a single block unstructured mesh about the entire 4-bladed rotor
configuration. A hybrid mesh is used, consisting of prismatic elements in the boundary layer regions near
the rotor surface and tetrahedral elements elsewhere. All cases consist of a Reynolds-averaged Navier-Stokes
simulation using the Spalart-Allmaras turbulence model,29 with a wall normal spacing of the order of Y + = 1.
Although the mesh is relatively coarse for these simulations, the principal focus of at this preliminary stage
is to investigate the agreement between the time-spectral approaches and the time-domain (BDF2) method.
For these purposes, the BDF2 simulations were performed using a time step of 1 degree rotation and repeated
using a time step of 0.5 degrees. Since minimal differences were observed between these two simulations,
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(a) Four blades (b) Mesh near blade tip

Figure 4. Unstructured mesh used for UH60A rotor configuration.

the BDF2 simulations were assumed to be relatively well converged in terms of temporal error, for this
mesh size. Similarly, time-spectral and BDF-time-spectral simulations using N=7,9, and 11 time instances
were performed and compared with the BDF2 simulations. Where available, comparisons with experimental
flight-test data are also given. Although a temporal convergence study has been performed, a spatial mesh
convergence study has not been undertaken, and is planned for future work.

B. High Speed Forward Flight Periodic Test Case

Figures 5 and 6 illustrate the results obtained for the high speed forward flight case. Time histories of
non-dimensional sectional normal forces (denoted by CnM

2) and sectional pitching moments (denoted by
CmM

2) from analysis and flight test data are compared in the figures. This flight condition marks the
highest speed (158 kts) that can be achieved by the UH-60 blackhawk (denoted by flight 8534 in Figure 2).
The non-dimensional parameters for this operating condition are advance ratio µ=0.368, tip Mach number
Mtip=0.6415 and thrust coefficient CT=0.00666. The elastic blade motions for this case is obtained from
our previous CFD/CSD coupling work.27

For this case, the flow and blade motions are fully periodic and the time-spectral approach is used to
compute the periodic solution directly. For the time-domain solution, the BDF2 temporal discretization
was used with a time step corresponding to 0.5 degrees rotation. In order to obtain the periodic solution,
the simulation of three revolutions was performed to flush out the transient behavior. The best agreement
between the two schemes was obtained using N=11 time instances in the time-spectral method and is shown
in the figures. The general trends in both the blade normal force coefficients and sectional pitching moments
are in good agreement between the two methods, although the amplitude of the forces and moments are
slightly lower using the time-spectral method. Both simulations agree qualitatively with the experimental
flight test data in terms of the location and shape of the major variations in the forces and moments.
Discrepancies in terms of the magnitudes of force/moment variations and in terms of some of the finer
details of the time histories are noted, and these are attributed at least in part to the spatial grid resolution
used in the current study.

C. Transient Pull-Up Maneuver Test Case

The transient test case was simulated using the BDF/time-spectral approach with N=7,9, and 11 time
instances. A baseline BDF2 time-domain simulation with a 0.5 degree time step was also performed for
comparison purposes. Figures 7(a), 7(b) and 7(c) show the comparison of the predicted forces in x, y and z
directions on one blade between BDF and BDFTS with different time instance N. The forces are plotted as
functions of time in units of revolution. The forces predicted by BDFTS show generally good agreement with
the results obtained using BDF. Figure 7(d) shows the comparison of the predicted rotor thrust between
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BDF, BDFTS and the flight test measurements. The measured data is averaged over each revolution and
therefore appears smoother. The pattern and averaged amplitude of the lift predicted by BDF and BDFTS
are in agreement with the measured data, although the BDFTS results show larger amplitude oscillations.
Comparison of the rotor lift distribution during revolution No. 1 are shown in Figure 8. The lift differences
between the measured data and the predicted results by BDFTS are pronounced near the 0 degree azimuth
region. One of the reasons for these differences is the relatively coarse mesh used in the simulation. Another
possible reason may be the interaction between the blade and the hub/fuselage. Similar deficiencies were
observed in the coupled CFD/CSD solutions described in reference.28 The use of prescribed aeroelastic
deflections obtained from this work28 is also a limiting factor that must be taken into consideration. Future
studies should include effects of the aircraft fuselage, hub, engines and the tail rotor.

Figure 9 and Figure 10 show the comparison of the normal force and the pitching moment respectively,
at revolution No. 6 of the transient maneuver. The operating condition at this location is still relatively
close to the high speed forward flight condition although significant transient effects are evident. The
overall sectional normal force and pitching moment are reasonably predicted in this case by both BDF and
BDFTS, especially at the inboard radial stations. On the outboard stations there is significant degradation
in the agreement with test data and analysis in the advancing blade phase. However, the BDFTS solution
is consistent with the BDF solution and approaches the BDF solution with increasing number of modes.
Therefore, an improved BDF solution with significant improvements in mesh quality, will most likely result
in a similarly improved BDFTS solution.

In Figure 11 and Figure 12 we compare the evolution of dominant harmonics of sectional normal force
(mean normal force) and sectional pitching moment (1/rev frequency) with rotor revolution. As the aircraft
pitches up during the initial part of the maneuver, the total thrust increases rapidly, reflected in the almost
linear increase of sectional lift in all radial stations. All the analyses (BDF and BDFTS with varying mode
counts) capture this phenomena qualitatively, even though the beginning magnitudes are not consistent
with flight test data. Increasing rotor lift is a key phenomena in the transient maneuver and this behavior
is captured equally well by the BDF and BDFTS schemes. The evolution of the 1/rev frequency pitching
moments (depicted in Figure 12) show lesser phenomenological agreement with experimental data compared
to the normal forces. Certain radial stations (such as r/R=0.965, r/R=0.775, r/R=0.400) show consistent
behavior with the flight test data, while other do not. It is worth noting that the relative variations in
1/rev sectional pitching moment are much smaller compared to that observed in the mean sectional normal
forces. The coarse mesh system used throughout this paper has been observed to be inaccurate in prediction
of detailed aerodynamic loading even with the traditional BDF approach. Hence, it is expected that the
discrepancies will be much more pronounced in the pitching moment prediction, as the pitching moments
are more sensitive to variation of the surface pressure distribution.

D. Computational Efficiency

Precise comparison of computational efficiency between the time-domain and time-spectral methods would
require a complete quantification of the temporal accuracies of both approaches in order to be able to
compare the cost of these methods for an equivalent level of delivered accuracy. In addition, the level of
prescribed convergence tolerance at each implicit time step in the time-domain approach or for each periodic
solution in the time-spectral approach governs the cost of each method. In the absence of an exact temporal
accuracy and convergence error quantification, we present the computational cost of the methods as used in
the present study.

The BDF simulation was conducted on 160 Xeon cores using 20 sub-iterations per time step and 720 time
steps per revolution or period. The solution of each implicit time step required approximately 3.6 seconds.

The BDFTS simulations were conducted on 24 x N Xeon cores, where N = 7,9, or 11 corresponds to
the number of time instances per period. A total of 200 multigrid sub-iterations were used for the coupled
solution of all N time instances at each period or rotor revolution. The time required for the solution of
a single period or revolution was 1100, 1300 and 1500 seconds for N = 7, 9 and 11, respectively (on 168,
216 and 264 cores). Assuming perfect speedup, the BDF2 simulation run on the equivalent number of
cores requires approximately twice as much total cpu time as the BDFTS method using N=7, although the
methods are roughly equivalent in total cpu time for N=11. One of the advantages of the BDFTS approach
is the ability to use additional parallelism in the time domain. Thus, if the spatial parallelism is restricted
to 160 partitions or cores, the BDFTS simulations can be run on 800, 1120 and 1760 cores (for N=7,9,11
respectively) achieving a wall clock speed up of approximately 10 over a time-domain BDF2 calculation
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limited to 160 cores.

IV. Concluding Remarks and Future work

In previous work the BDF/time-spectral approach was introduced as a strategy for extending the ap-
plicability of time-spectral methods to problems that are not fully periodic. In the current paper, we
have presented the first application of this method to a rotorcraft maneuvering problem of practical interest.
The results indicate a consistent behavior between the traditional BDF2 time-domain results and BDF-time-
spectral results, with better agreement as the number of time instances is increased in the BDF-time-spectral
method. Although reasonable qualitative agreement was obtained between the simulation results and the
experimental results obtained from flight test data, significant discrepancies remain. These are attributed
in large part to the spatial resolution used for the simulations, and future work will focus on simulations
with finer meshes including a grid resolution study. At the same time, the use of more time instances in
the time-spectral approach will be examined, and the development of faster implicit system convergence will
be pursued. Time-spectral approaches offer the potential for much higher temporal resolution at reduced
cost, and enable parallelism to be extracted from the temporal dimension, promising much more efficient
overall solution strategies for periodic or quasi-periodic problems. The long term objective of this work is to
demonstrate these advantages on rotorcraft problems or practical interest.
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Figure 5. Comparison of blade normal force coefficients for high speed forward flight periodic case using
time-spectral approach with 11 time instances versus BDF2 methods using a time step of 0.5 degrees
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Figure 6. Comparison of blade pitching moments for high speed forward flight periodic case using time-spectral
approach with 11 time instances versus BDF2 methods using a time step of 0.5 degrees

.
15 of 21

American Institute of Aeronautics and Astronautics



time (rotor revolutions)

F
x

0 5 10

0

0.002

0.004

0.006

BDF2, 0.5degree/step
BDFTS, N = 11

(a) force in x direction on one blade

time (rotor revolutions)

F
y

0 5 10
-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

BDF2, 0.5 degree/step
BDFTS, N = 11

(b) force in y direction on one blade

time (rotor revolutions)

F
z

0 5 10

0

0.005

0.01

0.015
BDF2, 0.5 degree/step
BDFTS, N = 11

(c) force in z direction on one blade

time (rotor revolutions)

F
z

(lb
s)

0 5 10

15000

20000

25000

30000

35000
Measured airloads (rotor lift)
BDF2, 0.5 degree/step
BDFTS, N = 11

(d) total lift
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16 of 21

American Institute of Aeronautics and Astronautics



(a) test data (b) BDF
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Figure 8. Contours of rotor lift (sectional normal force) for revolution No.1.

17 of 21

American Institute of Aeronautics and Astronautics



time (rotor revolutions)

C
nM

2

6 6.2 6.4 6.6 6.8 7

-0.05

0

0.05

0.1

0.15

0.2

test data
BDF2, 0.5 degree/step
BDFTS, N = 7
BDFTS, N = 9
BDFTS, N = 11

r/R = 0.225

time (rotor revolutions)

C
nM

2

6 6.2 6.4 6.6 6.8 7

0

0.05

0.1

0.15

0.2

0.25

0.3

test data
BDF2, 0.5 degree/step
BDFTS, N = 7
BDFTS, N = 9
BDFTS, N = 11

r/R = 0.400

time (rotor revolutions)

C
nM

2

6 6.2 6.4 6.6 6.8 7

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

test data
BDF2, 0.5 degree/step
BDFTS, N = 7
BDFTS, N = 9
BDFTS, N = 11

r/R = 0.920

time (rotor revolutions)

C
nM

2

6 6.2 6.4 6.6 6.8 7

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

test data
BDF2, 0.5 degree/step
BDFTS, N = 7
BDFTS, N = 9
BDFTS, N = 11

r/R = 0.965

Figure 9. Nondimensional section normal force vs the azimuth angle at revolution 6.
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Figure 10. Nondimensional section pitching moment(mean removed) vs the azimuth angle at revolution 6.
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Figure 11. Nondimensional section normal force comparison in frequency domain for UH60A pull up maneuver
over first 10 revolutions.
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Figure 12. Nondimensional section pitching moment(mean removed) comparison in frequency domain for
UH60A pull up maneuver over first 10 revolutions.
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