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In this paper, a derivative-enhanced, variable fidelity surrogate model approach is 
developed based on a direct Kriging formulation. In this approach, the absolute values of a 
high-fidelity function as well as the trends obtained by low-fidelity function values are 
utilized to develop an accurate surrogate model. Derivative information of arbitrary fidelity 
levels can be also utilized to develop a more accurate surrogate model. The efficiencies of the 
developed approaches are investigated by analytical function fitting, aerodynamic data 
modeling and 2D airfoil drag minimization problems. The derivative-enhanced variable 
fidelity surrogate model approach is shown to be useful for efficient aerodynamic database 
construction and in the development of both efficient design optimization and uncertainty 
analysis. 

Nomenclature 
EI   = expected improvement value 
F   = regression matrix 

∞M   = freestream Mach number 
m   = dimensionality of design space (number of design variables) 

ln   = number of sample points at l -th fidelity level 
r   = correlation vector 
R   = correlation matrix 

21llR   = correlation function between fidelity levels 1l  and 2l  
( )xs   = standard error of Kriging model at x  

scf   = spatial correlation function 
w   = Kriging weight coefficients 
x   = location vector in design variable space 
y   = exact function value 
( )xŷ   = estimated function value at x  
( )xZ   = random process model 

α     = angle of attack [deg] 
β   = constant (regression) model 

x∆   = step size vector for indirect Kriging approach 
µ   = Lagrange multiplier 

2σ   = model variance 
Dσ   = standard deviation of all parameters 

θ   = hyper parameter for spatial correlation function 
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I.  Introduction 
urrogate model approaches have attracted increased attention recently in aerospace engineering since they offer 
substantial benefits for design optimization, aerodynamic database construction, and uncertainty analysis. The 

idea of a surrogate model approach is to replace expensive functional evaluations (i.e. high-fidelity computational 
fluid dynamics (CFD) simulations) with an analytical model which is constructed through selective sampling of the 
high-fidelity model. When a surrogate model is constructed with given exact function data, a designer can efficiently 
explore the approximated design space at very low computational cost. Uncertainty analysis can be also executed 
efficiently on the surrogate model, which is referred to as inexpensive Monte-Carlo (IMC) simulation approach. In 
Ref.[1], the performances of major surrogate models, such as least square polynomial, multi-layer perceptron, radial 
basis function (RBF) and Kriging, have been compared for a two dimensional turbomachinery problem. The Kriging 
and RBF models showed the best performance during this investigation. The Kriging model, which was originally 
developed in the field of geological statistics, has often been found to perform well in other engineering fields and 
has thus gained popularity in aerospace engineering and design [1-14]. This surrogate model predicts the function 
value by using stochastic processes, and has the flexibility to represent multimodal/nonlinear functions. 

For accurate aerodynamic data modeling and uncertainty analysis, more accurate surrogate model should be 
essential. One of the major approaches to increase the accuracy of surrogate model is to utilize derivative 
information of aerodynamic functions. Because efficient gradient evaluation methods based on adjoint formulations 
have been developed and applied successfully in the field of aerodynamics [15-21], the introduction of gradient 
information within surrogate models as additional input data has also attracted attention. Two gradient-enhanced 
Kriging (called cokriging or GEK) approaches have been developed and beneficial results have been shown in the 
literature [6,9,10]. Additionally, efficient calculation methods of CFD Hessian and Hessian vector product have 
been developed recently [22-24]. In this approach, the Hessian components of a CFD functional output with respect 
to design variables can be efficiently calculated by using the adjoint method and automatic differentiation (AD) 
tools such as TAPENADE [25]. Thus it is promising to utilize derivative information within surrogate model to 
enhance the accuracy of the surrogate model. 

Utilizing low fidelity function values as secondary information is an alternative approach to further improve the 
accuracy of surrogate models [11,12]. A same kind of concept was originally investigated in optimization 
communities, which is often referred to as variable fidelity (VF) model approach or model management 
optimization (MMO) [26]. In the VF surrogate model approach, the trends of low-fidelity function values as well as 
a small number of high-fidelity function absolute values are simultaneously utilized to construct a surrogate model. 
This approach is promising in the field of aerospace engineering since one can define many sets of different fidelity 
models as shown in Table.1. 

In this paper, a derivative-enhanced variable fidelity surrogate model approach is proposed based on a Kriging 
formulation. The efficiency is investigated using analytical function fitting, aerodynamic data modeling and 2D 
airfoil drag minimization problems. 

 
Table.1 Examples of Different Fidelity Models 

High-fidelity model Low-fidelity model 
Experimental data CFD result 

Accurate physical model (e.g. RANS) Cheap physical model (e.g. Inviscid Euler) 
Finer mesh CFD result Coarser mesh CFD result 

Converged solution Loose converged solution 
 

II.  Kriging Formulations 
In this section, a derivative-enhanced VF Kriging approach is proposed based on a direct formulation. First, the 

basics of conventional Kriging, as well as direct and indirect derivative-enhanced Kriging approaches are reviewed. 
Then, a VF model formulation is introduced. 

A.  Conventional Kriging, Derivative-enhanced Kriging Approaches 
The Kriging method is a statistical prediction of a function from a set of exact function values obtained with 

arbitrary design variables. Kriging prediction depends on spatial correlations between given sample points. The 
correlation is given by a correlation function which is only dependent on the distance between two points. These 
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correlations are considered in a matrix (called correlation matrix) which appears in the Kriging formulation. The size 
of matrix is 11 nn × , where 1n  is the number of (high-fidelity) sample points. The details of formulation are given 
in Subsection II.B for the case of a VF Kriging model. 

For derivative-enhanced Kriging, derivative information at several sample points is also used for the construction 
of the Kriging model. In the case of direct approach, the derivative information is directly used in the modified 
Kriging formulation by including the correlations between function/derivative and derivative/derivative. These 
correlations can be modeled by differentiating the correlation function. If all sample points have function and 
gradient information, the size of the correlation matrix is ( )11 +mn , where m  is the dimensionality of the design 
space (i.e. number of design variables). 

The formulation of indirect approach is exactly the same as that of the original Kriging model. A difference in 
this approach is to construct additional sample points around real sample points that have derivative information. 
When a sample point has gradient information, the additional sample points are defined by a first-order Taylor 
approximation as follows: 
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where x  and ( )xy  are the location and exact function value of a real sample point, respectively. addx  and ( )addy
x

 
are the location and approximated function value of an additional sample point. x∆  is a user-specified step size 
vector for the relative location of additional sample points. Usually, one additional point is created in each direction 
of the design variable space for gradient-enhanced cases (in total m  additional points per real sample point). After 
augmentation of the sample points, the indirect Kriging model is created by using both real and additional sample 
point information. If all sample points have function and gradient information, the total number of sample points is 
( )11 +mn , which is the same as the size of the direct GEK correlation matrix. The advantage of the indirect 

approach over the direct approach is the ease of implementation. On the other hand, the major disadvantage of 
indirect approach is the issue associated with the step size x∆  used for creating additional sample points. Very 
small step sizes can lead to an ill-conditioned correlation matrix in the Kriging formulation due to the closely spaced 
sample points. The step size is usually determined by considering both the accuracy of the Taylor approximation and 
the matrix conditioning. 

According to Ref.[9], direct and indirect GEK models are identical when they are constructed by a same set of 
parameters and a reasonable step size. However, ill-conditioning can be avoided only by the direct GEK approach. 
Gradient/Hessian-enhanced Kriging approaches have been developed by present authors [13] in which direct and 
indirect formulations were compared. We concluded that the direct approach is preferable, because there is no 
sensitive parameter in the direct formulation and derivative information can be exactly enforced at real sample 
locations. Furthermore, the matrix conditioning is much better than that of the indirect approach since additional 
sample points are not created in the direct formulation. 

B.  Variable Fidelity Kriging Approach 
In this subsection, a VF Kriging formulation is derived. Our VF Kriging formulation is quite similar with that of 

Ref.[12]. In this paper, the major derivations are introduced for a case in which function values of three fidelity 
levels are used to construct a Kriging model. We also extend the VF approach to include derivative information. 

The formulation appearing in this paper is based on the “ordinary Kriging” model for the simplicity of the 
description. The high and low fidelity functions are replaced by the following random functions: 

 ( ) ( )xx lll Zy += βˆ  (2.2) 

where l  (=1,2,3) means the index of fidelity level. ( )xlŷ  is the prediction of an function at an arbitrary location of 
x . The first term lβ  is a constant model (or low-order polynomial regression model in the formulation of 
“universal Kriging” model [7]) and the second term ( )xlZ  represents a random process model with zero mean, 
variance 2

lσ  and the covariance of two locations  ix  and jx  is given as follows: 
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21llR  is the correlation function between fidelity levels 1l  and 2l . Then, a linear combination of the high and low-
fidelity information at given sample points is considered as follows: 
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where ly  and lw  are respectively the observed function and their weight coefficients. The fidelity level 1 is 
considered as high-fidelity data, and 321 ,nnn <<  is the most general situation in our practical applications. The 
Kriging approach finds the best linear unbiased predictor which minimizes the mean square error (MSE): 
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subject to the unbiasedness constraint as follows: 
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The weight coefficients can be found by solving this constrained minimization problem with the Lagrange multiplier 
approach as follows: 
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where lµ  are the Lagrange multipliers. The weight coefficients are solved from 0=∂∂=∂∂ lli JwJ µ  as: 
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These equations finally yield the following system of equations: 



 
American Institute of Aeronautics and Astronautics 

 
 

5

 ( )
( )
( ) ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
=
=
=
=
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

3133

2122

2
111

1333

1222

11

3

2

1

3

2

1

3

2

1

332313

232212

131211

2~
2~
2~

~
~
~

0
0
1

~
~
~
~
~
~

000100
000010
000001
100
010
001

σσµµ
σσµµ

σµµ
σσ
σσ

µ
µ
µ

ww
ww
ww

r
r
r

w
w
w

RRR
RRR
RRR

TTT

TTT

TTT  (2.9) 

and then it can be described as the following matrix form: 
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where ( ) ( )321321 nnnnnn ++×++ℜ∈R , ( )321 nnn ++ℜ∈r  and ( ) 3321 ×++ℜ∈ nnnF  are respectively the correlation matrix, 
correlation vector and regression matrix. R  expresses the correlations between all observed data, and r  is for the 
correlations between the observed data and location x . The unknown vector w~  is determined by inverting the 
matrix of Eq.(2.10). The final form of the VF Kriging approach is: 

 ( ) ( ) ( )ββ ~~ˆ 1 FYRrL xx −+= −TTy  (2.11) 

where 
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The matrix form of Eq.(2.11) is quite similar with that of the original Kriging formulation. The factors 21 σσ  and 
31 σσ  are additional parameters required for this VF formulation, that take the influence of low-fidelity data into 

consideration for the VF function prediction. The MSE of Eq.(2.5) can be expressed as: 

 ( )[ ] ( ) ( )[ ] ( )LrRFFRFrRrxx −=+−== −−−− 11112
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We have further extended this VF formulation to include derivative information. This can be achieved in the 
same manner as described in Ref.[13]. The derivative-enhanced Kriging formulation is based on a linear 
combination of observed functions and their derivative components of gradient, Hessian and Hessian vector product. 
The following additional covariance terms are considered in the derivative-enhanced model: 
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where 
2kv  is a known vector component which is defined to obtain a Hessian vector product. 

C.  Correlation Functions 
The correlation matrix R  and vector r  are specified by a spatial correlation function and its derivatives. 

General correlation functions depend only on the distance between two locations as follows: 
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where  kθ  is the hyper parameter for k -th design variable. Gaussian or cubic spline functions are the most common 
forms for the spatial correlation function [9,13]. The hyper parameter expresses the distance weight for both spatial 
correlation functions. Generally, cubic spline functions yield a better conditioned correlation matrix than Gaussian 
functions. However, the cubic spline functions cannot be used in our practical cases since the fourth-derivatives of 
the correlation function are required as indicated in Eq.(2.14). Therefore, the following RBF is used for the spatial 
correlation function in this research: 
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This function also yields a better conditioned correlation matrix than the Gaussian function. The derivatives up to 
fourth-order are calculated by employing the TAPENADE automatic differentiation tool. 

Theoretically, different sets of hyper parameters 21llθ  can be used for the VF Kriging model. In this research, 
however, a common set of θ  is used for all correlation functions for simplicity as: 

 332322131211 θθθθθθθ ======  (2.17) 

The correlation function can then be defined as follows: 

 RRRRRRRR ρ====== 231312332211  (2.18) 

where ρ  is a relaxation factor (set to 0.9999) to avoid an ill-conditioned correlation matrix when high and low-
fidelity sample locations are very close together. 

D.  Model Fitting by Maximum Likelihood Estimation 
The VF Kriging model still includes the undetermined parameters θ , 2

1σ , 21 σσ  and 31 σσ . These 
parameters can be estimated by maximizing the likelihood (joint probability) function of the given samples [12]. 
This empirical approach finds the parameters which are most consistent with the sample data. Optimal mean and 
variance are analytically determined as: 
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One can notice that the constant model of Eq.(2.19) is equal to that of Eq.(2.12). The model standard deviation 
factors are also analytically determined as:  
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Since there is no analytical form solutions for θ , these are estimated by a numerical optimization which 
corresponds to the maximization of a likelihood function. For given parameters θ , β~ , 2

1σ , 21 σσ  and 31 σσ , 
the following log-likelihood function is calculated: 
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The most consistent θ  is determined through the maximization of the log-likelihood function. One of the issues 
associated with the maximum likelihood estimation is the multimodality of the log-likelihood function. Therefore, 
some global optimization method, such as genetic algorithms (GA), is preferable to find the global optimal 
parameters. However, the computational cost for this optimization problem can be relatively expensive above a 
certain number of sample points. This is because the evaluation of a likelihood function requires the inversion of R  
and the calculation of its determinant, and a large number of function evaluations (matrix inversions) with different 
sets of θ  is required for a global optimization. In our approach, a master-slave type MPI-parallelized GA [27,28] is 
used for the optimization. The correlation matrix inversion and the determinant evaluation are solved with a 
Cholesky decomposition method. 

E.  Addition of New Sample Points by Expected Improvement 
Once a Kriging model is constructed with given information, design optimization or uncertainty analysis can be 

realized on the surrogate model at low computational cost. In its design optimization process, new sample point 
information is added and then the surrogate model is iteratively updated. It is a straightforward approach to find the 
new sample points locations by minimizing the estimated objective function on the surrogate model. However, this 
approach usually converges to a local optimal point depending on the locations of initial sample points, because it 
does not take into account the uncertainty of the surrogate model. 

Expected Improvement (EI) [4] expresses a potential for improvement which considers both estimated function 
value and uncertainty in the surrogate model. At a point x , the EI for minimization problems is given as follows: 
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where Φ  and φ  are the normal cumulative distribution function and probability density function, respectively. ( )xs  
is the standard error of surrogate model expressed by Eq.(2.13). miny  is the minimum (optimal) function value 
among all given sample points. The new sample point is added in the location where the EI is maximal. This EI-
based iterative approach can increase the accuracy of Kriging model efficiently by maintaining a balance between 
global and local search criteria. In our approach, a master-slave type MPI-parallelized GA is used for the 
maximization of EI. 

III.  Validation in Analytical Function Problems 
In this section, the developed derivative-enhanced and/or VF surrogate model is used to fit analytical functions 

with various sets of sample points. The sets of sample points are generated by a Latin Hypercube Sampling (LHS) 
method [3]. 

A.  1D Analytical Function 
In this subsection, a 1D function is approximated by a high-fidelity (exact) function as well as two low-fidelity 

functions. The exact function is shown in Fig.1a. Two high-fidelity sample points are created and then single fidelity 
(SF) Kriging model (conventional Kriging model) is created in Fig.1b. The SF Kriging model is quite inaccurate 
because of the shortage of function information. Two low-fidelity functions are defined by adding/subtracting a 
constant to/from the exact function. Five low-fidelity sample points are created for both low-fidelity functions in 
limited design spaces as Fig.1c. In Fig.1c, two VF models results are also shown by using one of the sets of the low-
fidelity samples. It can be understood that the accuracy of estimated function is increased at a region where there are 
low-fidelity samples. In Fig.1d, a VF model is constructed by using the high-fidelity samples as well as both sets of 
low-fidelity samples. It shows good agreement with the exact function in all design space. Thus, the VF Kriging 
model can be constructed by the absolute values of a high-fidelity function as well as the trends obtained by low-
fidelity functions. 

 
 
 
 
 

 
Fig.1 Comparison in 1D Analytical Function 
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B.  2D Cosine Function 
Next, the developed surrogate model approaches are used to fit a 2D Cosine function by using various sets of 

sample points (from 0 to 50 for both high/low-fidelity samples) generated by LHS. The Cosine function is defined 
as: 
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1

≤≤−⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=
k

m

k
k xxCosine x  (3.1) 

Once a surrogate model is constructed, the accuracy of the model is evaluated by using the root mean squared error 
(RMSE) between the exact function and approximate function values given by the surrogate model. The RMSE is 
given as follows: 
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where the coordinates ix  define an equally spaced Cartesian mesh which covers the entire design space. For the 
low-fidelity evaluation, the following various function models are defined: 
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In Fig.2 the RMSE values are compared between the SF and VF Kriging approaches. For the VF cases, 
additional 50 low-fidelity sample points of low

Multif  function are also used to construct a Kriging model. The gradient 
and gradient/Hessian information are also used in the cases of _FG and _FGH, respectively. These derivatives are 
analytically calculated in this study. It is obvious that the model accuracy is increased by including the low-fidelity 
information as well as derivative information. As readers can guess, the most accurate result was given by the case 
in which function/gradient/Hessian information was used for both high/low-fidelity sample points. In Fig.3, the 
approximate functions are visualized for the SF cases of five high-fidelity sample points. Poor function prediction 
accuracy is achieved with the case of only five high-fidelity function information, while the accuracy is improved 
remarkably by including derivative information. In Fig.4, the approximate functions are visualized for the VF cases. 
In this case, function information is only used in both cases, and then the number of low-fidelity sample points is 
increased from 15 to 50. By including additional low-fidelity samples, the prediction accuracy is improved 
remarkably although the absolute values of the low-fidelity function are quite inaccurate. 

In Fig.5, the RMSEs are compared between the various low-fidelity models. All sample points have function 
information only, and the number of low-fidelity sample points is fixed to 50. It is seen that all VF approaches are 
helpful for smaller numbers of high-fidelity samples (note that 21 nn <<  represents the most general situation in 
practical applications). The VF cases with low

Xshiftf  and low
Rndmf  perform more poorly than the SF model with larger 

numbers of high-fidelity samples while the VF cases with low
Multif  or low

Shiftf  show better performance. On the other 
hand, the absolute function values of low

Xshiftf  and low
Rndmf  are much closer to the high-fidelity function than low

Multif  or 
low

Shiftf . In the developed VF formulation, therefore, the important aspect of the low-fidelity function is not the 
absolute values, but the trends of the function. Since low

Multif  or low
Shiftf  are defined by multiplying or adding a constant 

value, the trends of high-fidelity function are well preserved in the low-fidelity models. 
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Fig.2 Comparison of RMSEs between SF and VF Kriging Approaches 

 
Fig.3 2D Cosine Function fitted by SF Kriging Model (only 5 high-fidelity samples), 

Black points: high-fidelity samples 
 

 
Fig.4 2D Cosine Function fitted by VF Kriging Model (only function information), 

Black points: high-fidelity samples, White points: low-fidelity samples 
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Fig.5 Comparison of RMSEs between Various Low-Fidelity Models 

 

IV.  Application to Aerodynamic Data Modeling 

A.  2D NACA0012 Airfoil 
In this section the developed VF Kriging approaches are used to model an airfoil two-dimensional aerodynamic 

database. We consider the steady inviscid flow around a NACA0012 airfoil as a flow example which is described in 
more detail in Mani and Mavriplis [29,30]. The governing Euler equations of the flow problem are discretized by a 
finite-volume approach and are solved with second-order spatial accuracy. In this study, two parameters are 
considered; Mach number and angle of attack. Their ranges are specified as 5.15.0 ≤≤ ∞M  and oo 50 ≤≤α . 
The exact surface or validation data is obtained through a series of 21x21=441 flow computations covering the 
entire parameter space at equally spaced increments. Two fidelity levels are defined by the difference of 
computational mesh resolution. The computational mesh for the high-fidelity function contains approximately 
20,000 triangular elements while that for the low-fidelity function contains only 1,700 elements. Their mesh 
distributions are shown in Fig.6. Taking the computational cost of a high-fidelity function evaluation as one unit, 
that of a low-fidelity function evaluation is about one over thirtieth. 

The exact hypersurfaces of lift and drag coefficients are shown in Fig.7. It can be observed that their behaviors 
are complicated at the transonic Mach numbers. In Fig.8, estimated hypersurfaces by Kriging models are shown. In 
this figure, the number of low-fidelity samples is increased from 0 to 50 while that of high-fidelity samples is fixed 
to 5. These sample points are chosen by LHS. It can be understood that the low-fidelity information is helpful to 
construct accurate surrogate models for these practical non-linear aerodynamic functional outputs. The accuracy of 
the surrogate models is evaluated by using the mean error (ME) between the exact and estimated function values. 
The ME is given as follows: 

 ( ) ( )∑
=

−=
M

i

exact
ii

yy
M

ME
1

ˆ1
xx  (4.1) 

In Fig.9 the ME values are compared between the SF and VF Kriging approaches. Again, the accuracy improvement 
at smaller numbers of high-fidelity sample points is observed in the VF results. 

Uncertainty analysis is also executed at the center location of 8.0=∞M  and o5.2=α . The results are 
compared between full Non-Linear Monte-Carlo (NLMC) and IMC simulations. In this analysis, uncertainties are 
given to the two parameters of ∞M  and α  depending on a normal distribution. The mean of the normal 
distribution is fixed to the center location while the standard deviation of all parameters ( Dσ ) is specified by 
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designers. The number of function calls for a Monte-Carlo simulation is fixed to 1000 in this study, and then the 
mean/variance of aerodynamic functions are calculated. The function calls are directly solved by non-linear CFD 
calculations in the NLMC simulation. It is executed for seven different values of Dσ , that means 7000 CFD 
function calls are required for this analysis. In the IMC simulation, on the other hand, the function calls are solved 
by a surrogate model, which can dramatically reduce the computational cost for the uncertainty analysis. In Fig.10, 
the 1000 points’ locations are visualized on exact hypersurfaces for Dσ  of 0.1. In Figs.11 and 12, the variations in 
the mean of lift/drag coefficients with respect to the variation of Dσ  are compared for SF and VF Kriging model 
cases. Accurate uncertainty analyses are realized by the increase in number of high-fidelity sample points as well as 
number of low-fidelity sample points. Thus, the VF Kriging model is promising for accurate uncertainty analysis 
with low computational cost. Since the CFD functional outputs on this design space are relatively noisy, the CFD 
derivative information is not used to construct surrogate models. 

 
 

 
 

 
Fig.6 Computational Meshes for High-fidelity (Left) and Low-fidelity (Right) Evaluations 

 
 
 
 
 

 
Fig.7 Exact Hypersurfaces of Lift (Left) and Drag (Right) Coefficients 
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Fig.8 Estimated Hypersurfaces of Lift (Left) and Drag (Right) Coefficients 

Black points: high-fidelity samples, White points: low-fidelity samples 
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Fig.9 Comparison of Mean Error of Lift and Drag Coefficients 
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Fig.10 Locations of 1000 Points for a Monte-Carlo Simulation ( 1.0=Dσ ), 

Left: on Lift, Right: on Drag Hypersurfaces 
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Fig.11 Uncertainty Analysis by SF Kriging Models ( 1005 1 ≤≤ n , 02 =n ), 

Left: Mean of Lift, Right: that of Drag 
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Fig.12 Uncertainty Analysis by VF Kriging Models ( 51 =n , 1000 2 ≤≤ n ), 

Left: Mean of Lift, Right: that of Drag 
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B.  DPW-IV Case 
In this section, the VF Kriging approach is used to model aerodynamic coefficients of the common research 

model (CRM) aircraft configuration, which was one of the major subjects of the fourth AIAA drag prediction 
workshop (DPW) held in 2009 [31]. The CRM configuration is composed by wing, body and horizontal tail as 
shown in Fig.13. In this study, RANS computational results are used as high-fidelity information while inviscid 
Euler results are used as low-fidelity information. The number of computational mesh points for RANS 
computations is about 3.7 millions (tetrahedral/prism/pyramid elements) [32] and the standard Spalart-Allmaras 
model [33] is utilized. On the other hand, the number of mesh points for Euler computations is about 1.9 millions 
(tetrahedral elements). These flow computations are performed via the NSU3D unstructured mesh multigrid solver 
[34]. The computational cost of a RANS computation is roughly 50 times larger than that of an inviscid computation. 

Again, Mach number and angle of attack are considered as two input parameters. Their ranges are specified as 
87.07.0 ≤≤ ∞M  and oo 40 ≤≤α . The high/low-fidelity hypersurfaces are obtained through a series of 7x7=49 

flow computations covering the entire parameter space. These hypersurfaces are shown in Fig.14. In this study, the 
number of high-fidelity samples is fixed to five points and these are set on the center and four corner locations. Then, 
all low-fidelity sample points are utilized for the VF case. The estimated hypersurfaces by SF/VF Kriging models 
are shown in Fig.15. Since the shapes of exact hypersurfaces are simple, the differences between SF and VF models 
are relatively small. In Fig.16, estimated drag polar curves at 85.0=∞M  are shown. The VF model gives better 
agreement with the RANS results although there is no high-fidelity sample point at this Mach number. 

 

 
Fig.13 Common Research Model Aircraft Configuration 

 

 
Fig.14 Hypersurfaces by RANS (Colored) and Inviscid (Monochrome) Computations, 

Left: Lift, Right: Drag Coefficient 
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Fig.15 Estimated Hypersurfaces by SF (Upper) and VF (Lower) Kriging Models, 

Left: Lift, Right: Drag Coefficient 
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Fig.16 Drag Polar of CRM Configuration @ M=0.85 
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V.  Application to Drag Minimization Problem of 2D Airfoil 
In this section, the developed derivative-enhanced VF Kriging approaches are used for a 2D airfoil shape 

optimization. 

A.  Problem Definition 
We consider again the steady inviscid flow around a NACA0012 airfoil. The PARSEC parameterization method 

[35] is used to represent airfoil shapes. As shown in Fig.17, the geometry is described in this method by 11 
characteristic parameters of airfoil, such as leading edge radius, positions/curvatures of upper/lower crest and so on. 
Since the vertical location and thickness of trailing edge are fixed to zero in this study, the number of design 
variables is nine. The free-stream Mach number is  ∞M =0.755 with α =1.25 degrees. Two fidelity levels are again 
defined by the difference of computational mesh resolution, as explained in the previous section (Fig.6). The 
required deformation and movement of the computational meshes are performed via a linear tension spring analogy 
[36]. This flow condition gives lC =0.268 and dC =0.00521 for the NACA0012 airfoil by the high-fidelity 
evaluation while lC =0.262 and dC =0.00522 by the low-fidelity evaluation. Taking the computational cost of a 
high-fidelity function evaluation as one unit, that of a low-fidelity function evaluation is about one over tenth in this 
flow condition. 

The objective function of this study is defined as follows: 

 ( ) ( )2*2*

2
100

2
1

ddll CCCCF −+−=  (5.1) 

where a star denotes a target lift or drag coefficient and the factor of one hundred is introduced since the drag 
coefficient is about an order of magnitude smaller than the lift coefficient in this case. The target lift and drag 
coefficients are respectively set to 0.675 and 0.0, that is, we attempt a lift constrained drag minimization problem. In 
addition, a quadratic penalty term is added to the objective function if the sectional area of the new design is less 
than 90% of the NACA0012 airfoil. The derivatives of this objective function can be evaluated efficiently by using a 
discrete adjoint approach [29,30]. The computational cost for the adjoint gradient evaluation is almost comparable 
with that of a CFD calculation. 

 

 
Fig.17 Airfoil Shape Parameterization by PARSEC 

 

B.  Optimization Results 
For this design optimization problem, 16 and 128 initial sample points have been respectively chosen by the 

LHS method for the high- and low-fidelity function evaluations. The adjoint gradient has not been evaluated for the 
initial samples. When constructing a surrogate model, new sample points are added which are chosen by 
maximizing the EI value. For the cases utilizing derivative-enhanced surrogate models, the adjoint gradient 
evaluations are invoked only when a new design has better performance than all previous designs. The flowchart of 
optimization process is shown in Fig.18. 

In Table.2, the strategies of design optimization cases are summarized, and the optimization histories are shown 
in Fig.19. The performance of optimal airfoil given in the case of SF_Low is also analyzed by the high-fidelity 
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evaluation, and then its objective function value is also included in Fig.19 as HF Eval for Opt_SF_Low. It can be 
seen that the high-fidelity evaluation gives the worst performance among all optimal designs. It can be also seen that 
two derivative-enhanced cases find better designs than function-based Kriging cases. For more detailed analysis, 
another optimization histories are shown in Fig.20, in which x-axis is changed to a computational cost factor (CCF). 
It is defined as follows by considering the computational costs for high/low-fidelity function and high-fidelity 
adjoint gradient evaluations: 

 FFFG nnnCCF 211 1.012 ×+×+×=  (5.2) 

Faster convergence towards the global optimal direction, i.e. the improvement of search efficiency, is confirmed in 
the derivative-enhanced and/or VF surrogate model approaches by comparing CCF. The pressure distributions 
around initial and optimal airfoils obtained by SF_High and VF_Grad are shown in Fig.21. The optimal airfoil shape 
of SF_High is a kind of supercritical airfoils achieving the reduction of shock wave on its upper surface. Although 
the optimal airfoil shape of VF_Grad is not a kind of supercritical airfoils, its performance overcomes that of 
SF_High due to more isotropic compression on the upper surface. 

 
 
 

Table.2 Strategies of Design Optimization Cases 

Case Initial Samples Function Evaluation for 
Additional Samples Adjoint Gradient 

SF_High 16 high-fid. high-fidelity - 
SF_High_Grad 16 high-fid. high-fidelity invoke for new optimals 
SF_Low 128 low-fid. low-fidelity - 
VF 128 low-fid. high-fidelity - 
VF_Grad 128 low-fid. high-fidelity invoke for new optimals 

 
 

 
Fig.18 Flowchart of Optimization Process 
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Fig.19 Optimization History by Number of All Sample Points 

 
 

 
Fig.20 Optimization History by Computational Cost Factor 

 
 

 
Fig.21 Pressure Distributions around Airfoils, 

From L to R: NACA0012, Optimal in SF_High, Optimal in VF_Grad 
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VI.  Conclusion 
In this paper, derivative-enhanced variable fidelity surrogate models have been developed based on a direct 

Kriging formulation. In the developed VF approach, the trends of low-fidelity function values as well as a small 
number of high-fidelity function’s absolute values are simultaneously utilized to construct an accurate surrogate 
model. The derivative information of arbitrary fidelity function is also used to construct a more accurate Kriging 
model. Firstly, analytical function fitting problems were investigated. The accuracy of surrogate models was 
sufficiently increased by adding derivative information and/or low-fidelity information in the Kriging formulation. 

Modeling of aerodynamic data and drag minimization problems were also investigated. In these problems, 
different fidelity levels were defined by coarser/finer computational meshes or RANS/inviscid physical models. It 
was confirmed that the VF approach was promising for estimating high-fidelity aerodynamic functions accurately. 
Efficient uncertainty analysis based on the surrogate model, which is referred to as inexpensive Monte-Carlo 
simulation, was also illustrated. The drag minimization problem was solved by combining the developed surrogate 
models with an efficient adjoint CFD gradient evaluation method. Faster reduction of the objective function value in 
the derivative-enhanced VF Kriging model approach was demonstrated, and this is expected to be more beneficial in 
higher dimensions and/or for more complex problems. 

Thus, the developed derivative-enhanced VF Kriging approach is promising for efficient design optimization, 
aerodynamic database construction and uncertainty analysis problems. The developed approach can improve design 
efficiency dramatically since the adjoint derivatives and/or low-fidelity function values can be calculated with low 
computational cost. 
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