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In this paper we describe our gradient and Hessian enhanced Kriging surrogate model
with dynamic sample point selection. We demonstrate the quality of the surrogate by
comparison with higher-dimensional analytic test functions. We also apply the surrogate
model to uncertainty quantification and robust optimization problems using inexpensive
Monte-Carlo simulations. All applications benefit from the additional gradient and Hessian
information as well as the dynamic sample point selection by requiring fewer function
evaluations and overall less computational time.

Nomenclature

Cd Drag coefficient
Cl Lift coefficient
D Design variables
J Objective function
dJ
dDj

Gradient of objective function
d2J

dDjdDk
Hessian of objective function

M Number of design variables
N Number of sample points
µD Mean of design variables
µJ Mean of objective function
σDj

Standard deviation of design variable j
V arJ Variance of objective function

I. Introduction and Motivation

Computational methods have been playing an increasingly important role in science and engineering
analysis and design over the last several decades, due to the rapidly advancing capabilities of computer
hardware, as well as increasingly sophisticated and capable numerical algorithms. However, in spite of the
rapid advances and acceptance of numerical simulations, serious deficiencies remain in terms of accuracy,
uncertainty, and validation for many applications. Many real-world problems involve input data that is noisy
or uncertain, due to measurement or modeling errors, approximate modeling parameters,1 manufacturing
tolerances,2 in-service wear-and-tear, or simply the unavailability of the information at the time of the
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decision.3 These imprecise or unknown inputs are important in the design process and need to be quantified
in some fashion. To this end, uncertainty quantification (UQ) has emerged as an important area in modern
computational engineering. Today, it is no longer sufficient to predict specific objectives using a particular
physical model with deterministic inputs. Rather, a probability distribution function (PDF) or interval
bound of the simulation objectives is required as a function of the uncertainties inherent in the simulation
input parameters, in order to establish confidence levels over a range of performance predictions.

Probabilistic assessment of uncertainty in computational models consists of three major phases: (i) data
assimilation in which the input parameters are characterized (in terms of PDFs) from observations and
physical evidence; (ii) uncertainty propagation in which the input variabilities are propagated through the
mathematical model; and (iii) certification in which the output of the numerical predictions are characterized
in terms of their statistical properties and confidence bounds are derived.4 Arguably, the computationally
most expensive part of UQ is the second phase. The simplest approach to obtain the output statistics in
response to input distributions is the Monte-Carlo (MC) method,5 in which a large number of independent
calculations are computed; however, in many practical cases the number of realizations required is too
large and results in prohibitively high computational cost, especially for complex high-fidelity physics-based
simulations. Thus, the use of surrogate models for UQ has become popular. The idea of a surrogate model
is to replace expensive function evaluations with an approximate but inexpensive functional representation
which can be probed exhaustively if required. For example, when a surrogate model for an optimization
problem is constructed with given training data, the most promising locations in the model can be explored
with cheap computational cost. The accuracy of surrogate models can be increased efficiently by adding the
exact function information in the most promising locations. This approach can save a lot of computational
cost and enables the exploration of wider design spaces efficiently. For instance, in Peter and Marcelet6

the performances of major surrogate models, such as least square polynomial, multi-layer perceptron, radial
basis function (RBF), and Kriging, have been compared for a two dimensional turbomachinery problem.
The Kriging and RBF models showed the best performance. Thus, the Kriging model, originally developed
in the field of geological statistics, has gained popularity.6–16 The Kriging surrogate model predicts the
function value by using stochastic processes, and has the flexibility to represent multimodal functions.

An efficient gradient evaluation method based on adjoint formulations has been adopted by the computa-
tional community for data-assimilation and design optimization problems over the last several decades.17,18

Thus, the introduction of gradient information within surrogate models as additional training data has
also attracted attention. A gradient enhanced direct as well as indirect Kriging (called direct or indirect co-
Kriging) has been developed in the surrogate model community and has shown very beneficial results.11,14,15

While adjoint methods provide an effective approach for computing first-order sensitivity derivatives, the
ability to compute second-order sensitivity derivatives is also highly desirable for many science and engi-
neering simulation problems.19–23 On the one hand, the availability of Hessian information allows the use of
much stronger Newton optimization strategies, which holds the potential for greatly reducing the expense
of solving difficult optimization problems. On the other hand, second-order sensitivity information can be
used effectively to devise efficient uncertainty propagation methods and inexpensive Monte-Carlo (IMC)
techniques22 for characterizing PDFs of computed simulation results. Since an efficient Hessian evaluation
method has been developed by us,24,25 it is very promising to utilize the Hessian information within surrogate
models in addition to the gradient information.26,27 The reason for this optimism is the observation that,
for computational high-fidelity applications targeting a single output objective, the effort for computing the
full gradient is, thanks to the adjoint, comparable to the effort of computing the objective function itself.
Therefore, as the number of inputs, M , increases, using the output function and its derivative information
is appealing, because it provides M + 1 pieces of information for roughly the cost of two function evalua-
tions. Similarly, the Hessian provides M · (M + 1)/2 pieces of information for roughly the cost of M function
evaluations since, in general, the most efficient full Hessian constructions require the solution of M forward
linear problems (one corresponding to each input parameter).19,22 Thus, one can reasonably expect to have
to compute the output function overall far fewer times to obtain a good surrogate model when using gradient
and Hessian information and this should also scale more reasonably to higher dimensions.

The outline of this paper is as follows. In Section II we describe our gradient and Hessian enhanced
surrogate model with dynamic sample point selection and demonstrate the quality of these surrogate models
by means of analytic test functions in Section III. Section IV then applies the surrogate model to UQ as
well as robustness analysis problems. Section V concludes this paper.
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II. Construction of Dynamically Sampled Kriging Model

Recently we have developed a gradient enhanced direct as well as indirect Kriging model.16,26,27 In
the direct co-Kriging approach, the covariances between function values, function values and gradients, as
well as gradients have to be considered within the correlation matrix as opposed to the original Kriging
formulation where only the covariances between function values have to be considered. Thus, the correlation
matrix Rdcok becomes asymmetric and its size increases to N · (M + 1) (from N), where N is the number
of sample points, and M represents the number of input parameters. On the other hand, the formulation of
the indirect co-Kriging model is exactly the same as that of the original Kriging model. In this approach,
additional sample points are constructed around a real sample point by using a Taylor series extrapolation.
Usually, one additional point for each gradient direction is produced for any real sample point. If all real
sample points have gradient information, the augmented number of sample points becomes N ·(M+1) which
is the same as the size of Rdcok. The principal advantage of the indirect co-Kriging approach is its ease of
implementation. The major disadvantage of indirect co-Kriging is the fact that additional sample points will
be close to a real sample point (to reduce the error from the Taylor series extrapolation), which tends to
produce ill-conditioned correlation matrices. Direct and indirect co-Kriging models produce identical results
in the limit of small real to extrapolated point step sizes, although the direct approach is preferable due to its
robustness and lack of tunable parameters. Utilizing Hessian information in addition to gradient information
within the Kriging surrogate model is not a trivial task, since for the indirect approach the correlation matrix
becomes even more ill-conditioned and for the direct approach up to fourth-order derivatives of the covariance
are required (we use automatic differentiation for this in our implementation).

In order to obtain a globally accurate surrogate model, we refine the building of the model by a dynamic
sample point selection with a stopping criteria rather than just specifying the sample size in the beginning
and picking the sample points randomly. This is similar to the concept of expected improvement9,28 (EI)
when optimizing with a Kriging model where a potential for improvement is used which considers both
estimated function values and uncertainties in the surrogate model, thereby keeping the balance between
global and local search performance.

We construct a local response surface using a hybrid of extrapolation and interpolation involving a few,
already existing, sample points Di, i = 1 . . . , I in order to guide the sampling process. The function values
and available derivatives at each sample point are used to construct extrapolated function values of order
ne for a test candidate location, D. The extrapolations from the sample points are then weighted with a
low-order interpolant of order ni to find a unique function value J (D). This approach has been coined
Dutch Intrapolation29 (DI) and it has been shown that the order of accuracy of the intrapolant, n, is equal
to ni + ne, that is, using function, gradient, and Hessian information for the extrapolations and second-
order interpolation leads to a fourth-order accurate intrapolant. This situation is shown in Figure 1 where
the two-dimensional Rosenbrock function (a fourth-order polynomial) is represented exactly using function,
gradient, and Hessian information in six sample points chosen randomly using latin hypercube sampling.30

x -3
-2

-1
0

1
2

3 y

-2

0

2

f ,D
I

0

5000

10000

15000
X

Z

Y

Figure 1. Comparison between two-dimensional Rosenbrock function and Dutch Intrapolation. The six spheres are the
sample point locations with function, gradient and Hessian information.
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The Dutch extrapolation functions are normal multivariate Taylor expansions of order ne with a correction
term given in multi-index notation by29

T ne(D,Di) =
|k|≤ne∑
|k|≥0

ane

k

k!
(D −Di)k∂kJ (Di) for i = 1, . . . , I with ane

k = 1− k/(ne + 1), (1)

where J (Di) is the function value of sample point Di. It is important to note that although the Dutch
Taylor expansions are discussed here for general order ne, practical applications are usually restricted to low
values of ne. The range of practical applicability is similar to that of “normal” Taylor expansions. High-order
Taylor expansions are often used in theoretical formulations, however, in practical applications their use is
limited because the convergence with increasing order is typically very slow, and the region of convergence
very small. Thus, the Dutch Taylor expansions are to be used in small regions where the function to be
approximated is well represented by a low-order polynomial, that is, where the Taylor expansion coefficients
decrease quickly for increasing order. In addition, it becomes impractical to calculate higher-order derivatives
of the objective function for high-fidelity physics-based simulations.

For the interpolation a true linear or quadratic interpolating polynomial for arbitrary nodes in any
dimension is used which requires a total of I =

(
M+ni

M

)
= (M+ni)!

M !ni!
nodes. For example, for M = 2 and ni = 2

the intrapolated function value for each test candidate D = (Dx, Dy) is given by the values of six Dutch
extrapolations T ne(D,Di) around the nodes Di = (Di,x, Di,y), i = 1, . . . , 6:

JDI(D) = (1 Dx Dy D2
x DxDy D2

y) · b with Vb = f

where

V =



1 D1,x D1,y D2
1,x D1,xD1,y D2

1,y

1 D2,x D2,y D2
2,x D2,xD2,y D2

2,y

1 D3,x D3,y D2
3,x D3,xD3,y D2

3,y

1 D4,x D4,y D2
4,x D4,xD4,y D2

4,y

1 D5,x D5,y D2
5,x D5,xD5,y D2

5,y

1 D6,x D6,y D2
6,x D6,xD6,y D2

6,y


b =



b1

b2

b3

b4

b5

b6


f =



T ne(D,D1)
T ne(D,D2)
T ne(D,D3)
T ne(D,D4)
T ne(D,D5)
T ne(D,D6)


.

The matrix V is a generalization of a one-dimensional Vandermonde matrix.31

The proposed dynamic sampling method works as follows: Start by evaluating the function (gradient
and Hessian) value at the center of the domain. Then pick an additional amount of sample points via latin
hypercube sampling30 and evaluate their function (gradient and Hessian) such that the initial number of
sample points is equal to

(
M+ni

M

)
. Then repeat the following steps until convergence or until a maximum

amount of function (gradient and Hessian) evaluations has been reached

1. Specify a set of test candidates via latin hypercube sampling.

2. Construct a local function value for each test candidate using Dutch Intrapolation as described above
involving an appropriate number of closest neighbors with function (gradient and Hessian) information.

3. Compare the global Kriging surrogate model function value predictions for the test candidates with
the local Dutch Intrapolations.

4. Add a user-specified number of test candidates (we add M) with the worst discrepancy between the
two values to the set of sample points, only then evaluating the real function (gradient and Hessian).

We define convergence as having the worst discrepancy below a certain threshold. We also augment the
selection process by geometric criteria, for example, we make sure that the distance of a test candidate to
the nearest existing sample point is above the average distance of all test candidates to their respective
closest sample point. One could also use the discrepancy in step three as a mean to decide whether one
wants to evaluate the real gradient or Hessian which may not be necessary if this particular area of the
design space is relatively flat.

Another option for the first step in the procedure is to generate a mesh using a high-dimensional Delaunay
triangulation in the sample space (see Figure 2 for a two-dimensional example) and to specify a set of test
candidates geometrically (we pick the centers of the hyper-triangles and the midpoints of the edges) rather
than using latin hypercube sampling. This, however, requires that we start with all the corners of the domain
as initial sample points which scales with 2M rather than

(
M+ni

M

)
. In addition, the Delaunay triangulation

becomes the bottleneck of this procedure for more than half a dozen or so inputs.
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Figure 2. An example of a two-dimensional Delaunay triangulation in the sample space. Points numbered 1 to 5 are
the initial points and 12 points have been added at this time.

III. Accuracy of Dynamically Sampled Kriging Model

We will use three different analytic test functions on the hypercube [−2, 2]M to demonstrate the quality
of our surrogate:

1. A multidimensional Cosine function: f1(x1, . . . , xM ) = cos(x1 + . . .+ xM )

2. The multidimensional Runge function: f2(x1, . . . , xM ) = 1
1+x2

1+...+x
2
M

3. The multidimensional Rosenbrock function: f3(x1, . . . , xM ) =
∑M−1
i=1

[
(1− xi)2 + 100(xi+1 − x2

i )
2
]

Plots of all three functions in two dimensions together with the direct co-Kriging surrogate constructed using
the five function and gradient values in the center and four corners of the domain are shown in Figure 3.

Y
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Z

X
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Z

X

Figure 3. Three analytic test functions in two dimensions (red) together with the surrogate constructed from five
function and gradient values (white). Left: Cosine function f1. Middle: Runge function f2. Right: Rosenbrock
function f3 (with different scaling in the z-direction than f1 and f2).

In Figure 4 we compare the root-mean square error between the two-dimensional test functions and the
Kriging surrogate models (calculated by comparing the real and predicted function values on a Cartesian
mesh with 101× 101 nodes) versus the number of sample points used to construct the surrogate. The
sample points always include the center of the domain and the others are either all selected through latin
hypercube sampling30 (dashed lines) or we start with five latin hypercube sampled points and add additional
points through dynamic sampling (thick solid lines) as described in the previous section using a second-order
interpolant. The thin solid lines show the results of the dynamic sampling with the Delaunay triangulation.
One can clearly see that the gradient (FG) as well as the gradient and Hessian enhanced Kriging models

(FGH) perform much better than the model that is only based on function evaluations (F ) for all three
functions. One can also infer that the dynamic sample point selection performs better than just selecting all
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Figure 4. The RMS error (RMSE) between the two-dimensional test functions and the surrogate models vs. number of
sample points. Sample points are either selected through latin hypercube sampling (dashed line) or added via dynamic
sampling using random test candidates (thick solid line) or Delaunay triangulation (thin solid line). Left: Cosine
function f1. Middle: Runge function f2. Right: Rosenbrock function f3.
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Figure 5. The RMS error (RMSE) between the five-dimensional test functions and the surrogate models vs. number of
sample points. Sample points are either selected through latin hypercube sampling (dashed line) or added via dynamic
sampling (solid line). Left: Cosine function f1. Middle: Runge function f2. Right: Rosenbrock function f3.

sample points through latin hypercube sampling. It also helps to reduce the effect due to randomness that
more sample points do not necessarily lead to a better surrogate model. Figure 5 shows similar results for
the five-dimensional test functions (compared on a Cartesian mesh with 18 nodes in each dimension). Here,
we omit the results of the Delaunay triangulation dynamic sampling because there is already a significant
overhead in five dimensions and the results are similar to the dynamic sampling with random test candidates.

IV. Uncertainty Quantification

It is important in UQ to differentiate between epistemic and aleatory uncertainty. Epistemic uncertainty
(or type B, or reducible uncertainty) represents a lack of knowledge about the appropriate value to use for
a quantity.32 In contrast, uncertainty characterized by inherent randomness is called aleatory uncertainty
(or type A, or irreducible uncertainty). Epistemic uncertainty may or may not be modeled probabilistically,
however, regulatory agencies and design teams are increasingly being asked to specifically characterize and
quantify epistemic uncertainty and separate its effect from that of aleatory uncertainty.33

For epistemic uncertainties MC methods may be employed, but the results can only be interpreted with
regards to the interval produced on the output functional, with no inferred statistical distribution. Other ap-
proaches for propagating epistemic uncertainties, such as Dempster-Shafer evidence theory34–36 also typically
require a large number of function evaluations in part because it is a generalization of classical probability
theory which is non-intrusive. An even simpler approach for determining epistemic uncertainty output in-
tervals is to pose the problem as a constrained optimization problem of finding the minimum and maximum
value of the output functional. One could use traditional Newton or Quasi-Newton optimization techniques,
which often scale only weakly with the dimensionality of the problem but may produce only local optima,
or global optimization methods which again require a large number of function evaluations. For all these
methods, the construction of surrogate models is one of the most effective options since one can then capital-

6 of 12

American Institute of Aeronautics and Astronautics



ize on the cheap function evaluations of the surrogate. Thus, the development of efficient surrogate models
potentially enhanced by gradient and Hessian information constitutes an important avenue for reducing the
cost of UQ for both aleatory and epistemic uncertainties. To address the “curse of dimensionality” whereby
the cost of quantifying uncertainty increases rapidly with the number of inputs, we combine two different
strategies: firstly, select only the input parameters that are truly relevant to the simulation outcome through
a sensitivity analysis and thus reduce the dimension of the problem at the outset; secondly, exploit the
information gain at reduced additional cost with sensitivities as described in the introduction.

If one is only interested in the mean and standard deviation of an objective function, moment methods
can be a good choice.19,37 Moment methods are based on Taylor series expansions of the original non-linear
objective function J (D) about the mean of the input, µD, given standard deviations, σDj

. The resulting
mean µJ and variance VarJ of the objective function are given to first order (MM1) by

µ
(1)
J = J (µD) Var(1)J =

M∑
j=1

(
dJ
dDj

∣∣∣∣
µD

σDj

)2

, (2)

and to second order (MM2) by

µ
(2)
J = µ

(1)
J +

1
2

M∑
j=1

 d2J
dD2

j

∣∣∣∣∣
µD

σ2
Dj

 Var(2)J = Var(1)J +
1
2

M∑
j=1

M∑
k=1

(
d2J

dDjdDk

∣∣∣∣
µD

σDj
σDk

)2

. (3)

Note that in the latter case, the non-linear shift between the mean of the output and the output of the mean
is accounted for by the Hessian diagonal elements. On the other hand, the method of moments provides no
information on the distribution function of the output and when a complete PDF of the objective function
is desired, a full non-linear MC simulation represents the most straight-forward approach for propagating
uncertainties through the simulation process. Because this approach relies on a large number of repeated
simulations, it is most often not practical for use with high-fidelity simulations. However, since we have
an accurate surrogate model as demonstrated in the previous section, we can instead probe the surrogate
exhaustively for an inexpensive MC (IMC) at relatively low cost. We prescribe the mean value of the MC
samples as the center of the Kriging domain and the boundary is three standard deviations away in all
dimensions. This means that for a normally distributed input variable more than 99 percent of all samples
fall within the domain and the less accurate extrapolation capabilities of the Kriging surrogate model have
only to be used for a small fraction.

An even cheaper method for an IMC simulation is to simply use extrapolation22 around the function
value of the mean of the inputs, J (µD). A linear extrapolation (Lin) for the function value of the sample
point, D, is given by

JLin(D) = J
(
µD

)
+
dJ
dD

∣∣∣∣
µD

· (D − µD), (4)

and a quadratic extrapolation (Quad) by

JQuad(D) = JLin(D) +
1
2

(D − µD)T · d
2J
dD2

∣∣∣∣
µD

· (D − µD). (5)

We apply all of these methods to the analytic test functions of the previous section and to a transonic airfoil
problem in the next two Subsections.

IV.A. Analytic Test Functions

As a first test we generate 50, 000 normally distributed MC sample points in two dimensions through latin
hypercube sampling with a mean of µD = (0, 0) and a standard deviation of σD1 = σD2 = 0.6 for the three
analytic test functions presented in Section III. Results for the mean and variance predictions using the real
function values, MM1 and MM2, as well as linear and quadratic extrapolation around the mean value are
shown in Table 1. As can be seen MM1 and Lin yield very similar results as expected from the leading error.
Also, MM2 and Quad give similar results for the same reason. In Figure 6 we show the error in the mean and
variance predictions by using the Kriging surrogate models for an IMC versus the number of sample points
used to construct the surrogate. One can see that the gradient (FG) as well as the gradient and Hessian
enhanced Kriging models (FGH) perform better than the model that is only based on function evaluations
(F ) for all three functions. One can also infer that the dynamic sample point selection usually performs
better than just selecting all the sample points through latin hypercube sampling. Another important
observation is that the mean and variance predictions are already quite good just using twenty or so sample
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points with function, gradient (and Hessian) information. Table 2 and Figure 7 show similar results for the
five-dimensional test functions using µD = 0 and σDj = 0.6.

Table 1. Comparison of Mean and Variance predictions in two dimensions.

Cosine fct Runge fct Rosenbrock fct
Mean Variance Mean Variance Mean Variance

Real 0.697 0.133 0.658 4.11× 10−2 76.19 2.51× 104

MM1 1.0 0.0 1.0 0.0 1.0 1.44

Lin 1.0 0.0 1.0 0.0 1.0 1.44

MM2 0.640 0.259 0.280 5.18× 10−1 37.36 2.59× 103

Quad 0.639 0.259 0.280 5.19× 10−1 37.36 2.59× 103
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Figure 6. The error in the mean and variance between the two-dimensional test functions and the surrogate models vs.
number of sample points. Sample points are either selected through latin hypercube sampling (dashed line) or added
via dynamic sampling (solid line). Left: Cosine function f1. Middle: Runge function f2. Right: Rosenbrock function
f3.

Table 2. Comparison of Mean and Variance predictions in five dimensions.

Cosine fct Runge fct Rosenbrock fct
Mean Variance Mean Variance Mean Variance

Real 0.407 0.349 0.413 2.42× 10−2 304.6 1.32× 105

MM1 1.0 0.0 1.0 0.0 4.0 5.76

Lin 1.0 0.0 1.0 0.0 4.0 5.77

MM2 0.1 1.62 −0.8 1.30 149.4 1.05× 104

Quad 0.101 1.60 −0.80 1.29 149.4 1.05× 104
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Figure 7. The error in the mean and variance between the five-dimensional test functions and the surrogate models vs.
number of sample points. Sample points are either selected through latin hypercube sampling (dashed line) or added
via dynamic sampling (solid line). Left: Cosine function f1. Middle: Runge function f2. Right: Rosenbrock function
f3.
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IV.B. Robustness Analysis of a Transonic Airfoil

We consider the steady inviscid case of a transonic NACA 0012 airfoil as flow example which is described
in more detail in Mani and Mavriplis.38,39 The computational mesh has about 20, 000 triangular elements
and the free-stream Mach number is 0.755 with an angle of attack of 1.25 degrees. The non-dimensionalized
pressure contours for this flow are shown in Figure 8 leading to a lift and drag coefficient of Cl = 0.268 and
Cd = 0.00521, respectively.

Figure 8. Non-dimensionalized pressure contours for M∞ = 0.755 and α = 1.25.

We want to perform a robustness analysis of the lift coefficient Cl with respect to shape variations
of the airfoil. Therefore, we allow three shape design variables on the upper surface and three on the
lower surface to vary which control the magnitude of Hicks-Henne sine bump functions.40 The required
deformation of the mesh is calculated via a linear tension spring analogy.38,41 We assume that all six design
variables have aleatory uncertainties which we model with the same normal distributions. The mean is set
to zero (corresponding to the NACA 0012 airfoil) and different standard deviations between 0.0 and 0.01 are
considered. Figure 9 shows the original NACA 0012 airfoil and the airfoils resulting from perturbations of
±0.005. The required MC samples are generated using latin hypercube sampling with a sample size of 3, 000.

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 9. The NACA 0012 airfoil (in black) and airfoils resulting from perturbations of ±0.005 (in gray).

One flow solve takes about 10 seconds on twelve Intel Xeon processors with 3.33 GHz each and the adjoint
solve for the gradient as well as the forward solves for each design variable for the Hessian calculation take
about the same time. However, the Hessian was only used for the second-order moment method because
it did not improve the Kriging models due to a noisy design space and convergence problems for large
perturbations of the design variables.

We show the mean and variance of the lift coefficient versus the standard deviation of the six shape design
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Figure 10. Two-dimensional transonic NACA 0012 shape robustness analysis.

variables in Figure 10. The blue line shows the results of the first-order moment method (MM1) given by
equation (2) and the blue line that of the second-order moment method (MM2) given by equation (3). For
comparison purposes a full non-linear MC (NLMC) simulation for a few selected standard deviations is also
shown in the same figure as black circles. The red and purple squares show the results of the original Kriging
(Kriging F) and the gradient enhanced Kriging (Kriging FG) using 52 sample points each and built with
our dynamic sampling approach. Lastly, the red diamonds represent the results probing the original Kriging
model built using 100 sample points and dynamic sampling which is close in computational cost to the
gradient enhanced Kriging model with 52 sample points.

The moment methods give reasonable answers for smaller standard deviations but once these are above
0.005 the moment methods start to deviate. MM2 even gives the wrong tendency and predicts a higher
mean lift than that of the original airfoil which is clearly not supported by the NLMC results. On the other
hand, the Kriging models yield reasonable answers for a fraction of the cost of a full NLMC simulation.

V. Conclusions

We described our gradient and Hessian enhanced Kriging surrogate model with dynamic sample point
selection. We demonstrated the quality of the surrogate by comparison with higher-dimensional analytic
test functions. We also applied the surrogate model to uncertainty quantification and robustness analysis
problems using inexpensive Monte-Carlo simulations. All applications benefited from the additional gradient
and Hessian information by requiring fewer function evaluations and overall less computational time.
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