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The advent of General Purpose Graphics Processing Units (GPGPUs) has spawned a lot
of interest in computing high resolution flows in a shorter span of time. In combination with
existing parallel programming techniques such as MPI or openMP, one is able to obtain
at least one order increase in speed-up for CFD applications on stationary grids. Due to
a high throughput/cost ratio, GPUs are increasingly becoming popular among the CFD
community. Flow fields on helicopter systems rank among one of the most challenging, and
hence are computationally demanding to simulate. Further, presence of multiple bodies
moving relative to each other require use of overset grid systems, which in turn, require
efficient overset grid assembly methods to support the flow solution. In this context,
a computational framework for flow simulation across multiple CPU cores and multiple
GPUs has been developed and tested. It is shown that the overall wall-clock time for the
simulation can be considerably reduced by using multiple GPU cards. The parallel GPU
framework is initially tested using both explicit and implicit schemes for the flow past a
sphere. Further, a two-blade hovering rotor test case adopted from literature is used to
demonstrate the capability of the code towards simulating rotorcraft flows in a short span
of time.

I. Introduction

Accurate representation of the flow-field around a helicopter is essential in assessing the overall per-
formance, especially for new designs and rotor-body interactions. Computational methods require higher
degrees of freedom to achieve a reasonable level of accuracy for engineering decisions to be made in the
design phase. This in turn requires huge computational resources(parallel computers) which then translate
into optimizing the cost to accuracy ratio. Currently the capability to simulate rotorcraft flows across par-
allel processors (CPU cores) do exist,1–3 and are being widely used for predicting rotor loads. Computer
hardware has been evolving rapidly during the last couple of years. With the advent of General Purpose
Graphics Processing Units (GPGPUs), the Computational Fluid Dynamics (CFD) community has absorbed
this technology, and several codes have been developed either from scratch4–6 or by using an automatic
CPU to GPU porting strategy.7,8 The rotorcraft community also began to use GPUs for computational
purposes.9–11 However, most of the existing computational codes that are used to simulate rotorcraft flows
(especially using overset/overlapping grids) do not have the capability to run across multiple CPU cores and
multiple GPUs simultaneously. Studies on using this hybrid CPU-GPU framework for CFD applications
are limited, and hence this paper is geared towards developing such a framework and understanding how
effectively one can use all possible computing resources to solve a given problem.

The present framework has evolved from the authors’ previous work CU++12which is a framework for
solving partial differential equations on structured grids on GPUs. CU++ provides the user, a higher level
programming framework especially for finite-difference calculations where standard discretized expressions
can directly be used in place of standard GPU kernels(discussed in the next section) similar to C++.
However, for unstructured grid based codes, only the data structures of CU++ are used in conjunction with
GPU kernels, as stencil operations are not straightforward. Also developed using CU++ was GPUINS,13 a
GPU based three-dimensional incompressible Navier-Stokes solver on moving overset grids. The code runs
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on a single GPU and was verified using standard incompressible flow test cases such as flow past a sphere and
oscillating wing under low Reynolds number flow conditions. The GPU code was able to achieve a speed-up
of 5 to 15 compared to a serial CPU code depending on the level of serial CPU code optimization. In
this work, a hybrid CPU-GPU framework has been developed for solving the Compressible Euler equations
on overset grids. The hybrid feature enables the code to run simultaneously on a GPU and several CPU
cores. Although the viscous terms in the current implementation can be turned on, only inviscid test cases
using the compressible solver are demonstrated at the moment to verify the capabilities of the GPU based
implementation. This paper is organized as follows: In the following section, a short description of the
flow algorithm on a per CPU core/GPU basis is described followed by GPU/CPU hardware implementation
specifics. Parallel partitioning using METIS and GPU-CPU load balancing is described next followed by
results and discussions on parallel performance.

II. Flow Solver Algorithm

The compressible Euler equations are discretized in space on an unstructured grid using a cell-centered
finite volume method, and a second order Roe’s scheme15 for the convection terms. Time marching is
performed using (1) an explicit low storage three stage Runge-Kutta scheme14(also discussed in a GPU
framework6) and (2) an implicit backward difference scheme(BDF1/BDF2) using a Newton-Krylov approach
discussed below.

Consider the standard BDF1 scheme for the spatially discretized Euler equations given by:

Qn+1 −Qn

∆ti
+ G(Qn+1) = 0 (1)

where ∆ti is the time step normalized by the cell volume and G is given by:

G(Qn+1) =
∑
face

Fn+1 · ndS (2)

where F is the interface flux computed using Roe’s approximate Riemann solver.15 Eq. 2 is non-linear, and
several iterations are performed to march Eq. 1 from t = tn to t = tn+1. We replace the index n + 1 by k
and the linearization of F is performed about the state k. This linearization is given by:

Fk+1 = Fk + dFk(QL,QR) (3)

Fk+1 = Fk +
∂F

∂QL
∆QL +

∂F

∂QR
∆QR (4)

Hence Eq. 2 becomes

G(Qk+1) =
∑
face

(
Fk +

∂F

∂QL
∆QL +

∂F

∂QR
∆QR

)
· ndS (5)

Denote AL and AR to be the exact Roe flux Jacobians with respect to the left and right states respectively,
the linearized form of G is now given by:

G(Qk+1) = G(Qk) +
∑
face

(AL∆QL +AR∆QR) · ndS (6)

Instead of the Delta form used in standard implicit methods (where ∆Q is a variable), the field variable Q is
computed directly so that an additional kernel-call to compute Q from dQ can be avoided. Hence in Eq. 6
∆Q is expanded as Qk+1 −Qk. Using the linearized flux expression Eq. 6 in Eq. 1, we obtain a Newton
like update:

Qk+1 + ∆ti
∑
face

(
ALQk+1

L +ARQk+1
R

)
· ndS = Qn −∆ti

G(Qk)−
∑
face

(
ALQk

L +ARQk
R

)
· ndS

 (7)

On convergence, the index k + 1 ≈ n + 1. For each step k, the above system represents a linear system
of the form [B]Qk+1 = X(Qk,Qn), and is solved using a parallel Bi-Conjugate Gradient Stabilized algo-
rithm(BiCGSTAB)16 outlined below. Convergence of the linear system is attained when the relative residual
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Algorithm 1 Parallel BiCGSTAB on the GPU

Compute initial residual: r0 = X − [B]Q0

Communicate r0 across various processes

Choose a vector: r′0 = r0
Scalars: ρ0 = α = ω0 = 1
Vectors: v0 = p0 = 0
for i = 1 to nsteps do
! Each process computes the next statement using NVIDIA THRUST for GPU partitions

! and C++ STL for CPU partitions

ρi = dot(r′0, ri−1)
MPI Reduce(rhoi)
β = (rhoi/rhoi−1)(α/ωi−1)
! Each process computes the following using a simple DAXPY kernel

pi = ri−1 + β(pi−1 − ωi−1vi−1)
Communicate(pi)
vi = [B]pi
Communicate(vi)
α = ρi/dot(r

′
0, vi)

! Each process computes the following using a simple DAXPY kernel

s = ri−1 − αvi
Communicate(s)
t = [B]s
ts = dot(t, s)
tt = dot(t, t)
MPI Reduce(ts), MPI Reduce(tt)
ωi = ts/tt
! Update solution

Qi = Qi−1 + αpi + ωis
ri = s− ωit
Communicate(r)
if norm(r) ≤ tolerance then
break

end if
end for
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falls below a tolerance. We generally converge these linear iterations to machine precision so that the outer
Newton like iteration converges quadratically. The matrix-vector products such as [B]Q0, [B]pi and [B]s
are evaluated as matrix-free products with the exception of the Roe flux Jacobian, where these are computed
as a 5× 5 matrix for each face, and multiplied with the state vector Q (or pi, s) for each cell.

II.A. GPU Implementation

Implementing the entire algorithm on the GPU has been very straightforward as the framework and relevant
data structures were already developed for the Incompressible flow code13 and two-dimensional Euler code.6

Programming the GPU using NVIDIA’s Compute Unified Device Architecture (CUDA)17 requires the use
of kernels which are similar to functions in standard programming languages such as Fortran or C++.
Each kernel call will spawn a number of threads depending on the type of loop involved (loop over faces or
cells), and each of this thread will perform its own computation independently thereby maximizing parallel
performance. The relevant kernels used in the present computation are as follows:

• Gradients using Green-Gauss and Fluxes: One kernel computes the face centered values (loop over
faces) and another kernel sums up the face centered values and assigns it to a cell center (loop over
cells).

• Runge-Kutta update: One kernel to update the field variables based on different Runge-Kutta stage
constants(loop over cells).

• Newton-Krylov update: Usage of NVIDIA Thrust library18 for computing reductions in the BiCGSTAB16

procedure and simple DAXPY kernels to update the solution vector (loop over cells)

• Overset connectivity: kernels for donor search and classification(loop over cells).

III. Hybrid GPU-CPU Parallel Implementation

As mentioned previously, this hybrid computational framework utilizes available GPUs and CPU cores
for solving a given problem. Another advantage of this hybrid framework is that the exact same code can
run in parallel without GPUs without any modification to the code thereby making it more portable for non
GPU based platforms. For proper load balancing, the computational grid must be partitioned in such a way
that processes that run on the GPU have a higher load compared to the processes that run on CPU cores.
The entire partitioning procedure is shown in Figure 1 and consists of the following steps:

Preprocessing 

Overset  

Grid 0  Grid 1  Grid k-1  

Iblank data  Interp data Cell datatype 

Partition Utility 

Partition  
Weights 

Load 
Balancing 

Metis 

Part 0  Part 1  Part N0 -1  Part N0  Part N0 +1  Part N0+N1-1  

Grid 0 Grid 1 

……………. 

… … 

< GPU Parts ….. CPU Parts> < GPU Parts ….. CPU Parts> 

Figure 1. Grid partitioning procedure

4 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ju

ne
 2

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

55
 

 Copyright © 2013 by Dominic Chandar. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



1. For the implementation in the current paper, the overset connectivity is performed offline and the
respective data written into different files. For each component grid (not partitioned grid), we write
three pieces of information. (a) field/fringe/hole cell classification flag into the iblank file, (b) fringe
and the corresponding donor cell into the interp file, and (c) overset donors and overset fringe cells
into the cell datatype file.

2. As there are multiple grids, the domain partitioning must be performed for each of these grids sepa-
rately. This indicates that no partition will contain more than one grid. The graph partitioning code
METIS19 is used to classify the cells into various partitions. As GPU partitions require more load, a
weight file is passed as an input to METIS to create weighted partitions. The partition utility calls
METIS for each of the grids and adds ghost cells across each partition. Figure 2 shows a portion
of the partitioned grid for the hovering rotor test case. At the end of this step, the partition utility
arranges the cells in a specific order for each partition as follows:

• Cells that do not need any communication

• Cells on a regular partition boundary that act as donors to ghost cells on neighboring partitions.

• Overset donor cells

• Overset fringe cells (recipient cells)

• Ghost cells that receive data from neighboring partitions.

Grouping the cells in this fashion enables efficient data transfer between the CPU and GPU for MPI
based communication.

3. The partition utility then writes out various partition grid files which also have all the necessary
information relating to communication between various processes. It also generates a process mapping
file which enables mapping the partitioned grids to different processes. For each grid, the partitions are
arranged such that the first few partitions are GPU partitions and the remaining are CPU partitions.

When the main flow solver runs on np processes, each process will read its respective partitioned grid based
on the mapping between process ID and partition ID. Each process would know whether it is a GPU based
process or a CPU based process based on the input partition file. For all GPU based processes, the relevant
GPU kernels are called to perform various computations and for CPU based processes, the corresponding
C++ functions are called. When communication is required between various processes, only the GPU based
processes would transfer data between the GPU and CPU memory.

III.A. Load Balancing GPU and CPU partitions

Since a GPU runs considerably faster than a CPU core, it is important that GPU based partitions have more
data to process than CPU based partitions. The ratio of the data between GPU and CPU based partitions
depends on how fast a GPU performs with respect to a single CPU core. Let us assume that T is the total
problem size ( e.g. number of cells), s the speed-up of a GPU relative to one CPU core, ng the number of
GPUs, nc the number of additional CPU cores (apart from those controlling a GPU), N1 the partitioned
problem size on the GPU and N2 the partitioned problem size on the CPU. Based on these variables, the
total problem size can be expressed as:

T = ngN1 + ncN2 (8)

For the load to be balanced between a CPU core and GPUs, one must have:

N1 = sN2 (9)

The above is only an assumption, as GPU speed-ups may not always vary linearly with grid size as the GPU
performance depends on a wide range of parameters such as number of blocks, number of threads per block,
number of registers per kernel and the GPU hardware itself. Using Eq.(9) in Eq.(8), we obtain

N1 =
sT

ngs+ nc
(10)

N2 =
T

ngs+ nc
(11)
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Figure 2. A section (along span and chord) of the partitioned grid for the rotor test case.

Eqs.(10) and (11) represent the load-balanced problem size on respective(GPU/CPU) partitions. To compute
that however, one needs to know the quantity s, which represents the speed-up of one GPU relative to one
CPU core. Hence, the problem is solved initially without any partitioning to compute the speed-up of the
GPU code. More details are presented in Sec. V. One can also estimate the theoretical speed-up gained by
using additional CPUs as follows:

If only GPUs are used, then the time spent by each GPU is roughly tGPU1 ≈
T

ng
. By using additional

CPU cores with load balanced, the time spent by a GPU is tGPU2 ≈ N1. Thus the speed-up gained by using
additional CPU cores is given by:

tGPU1/tGPU2 = 1 +

(
nc
ng

)
1

s
(12)

Note that the above expression does not involve any communication time. All of the computations reported
in this paper were carried out on the NCAR-WY super-computing cluster. A subset of this cluster has 32
NVIDIA M2090 GPUs spanned across 16 compute nodes.

IV. Results and Discussions

IV.A. Inviscid subsonic flow past a sphere at Mach 0.3

To verify the proper implementation of the code, the flow past a sphere at nearly compressible speeds is
computed, and the results are compared with inviscid incompressible flow theory with a compressibility
correction factor. Figure(3) shows the contours of the pressure coefficient Cp along with a sectional plot at
z = 0 for a single GPU computation using the explicit RK3 method in comparison with the corresponding
theoretical estimates Cp = (1− 9

4sin
2θ)(1−M2

∞)−1/2. Also shown in Figure (4) is a multi-GPU (24 GPUs
mapped by 24 CPUs) computational result using the implicit BDF1 method. Two distinct facts can be
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stated by looking at these plots. (1) The contours across the overset/partitioned boundary(indicated by
the stepped edges) are continuous and (2) a good correlation between computed and theoretical estimates
are obtained thereby establishing confidence in the current implementation. Convergence of the residual
for the explicit and implicit methods is shown in figure 5. The implicit BDF1 formulation is about 2.4×
faster than the explicit RK3 when the total wall-clock time is compared. It is hoped that, the inclusion of a
preconditioner to the linear solution procedure would improve the overall convergence.

Θ 

Figure 3. Contours of the pressure coefficient and sectional pressure coefficient variation (using explicit RK3 time
stepping and a single GPU) in comparison with theoretical estimates for the inviscid flow past a sphere at Mach 0.3

IV.B. Inviscid transonic flow past a rotor in hover

This test case is based on the experimental work of Caradonna and Tung20 and aids in the validation of the
code for rotorcraft applications involving moving grids. The rotor consists of two untwisted, untapered wings
of NACA0012 profile with an aspect ratio of 6 as shown in Figure (6). For initial computation purposes,
there is no hub hence its interaction with the rotors is not accounted for. Several test cases corresponding
to various rotational speeds(or tip Mach numbers) and collective pitch settings have been computed. The
only difference in the implementation between the sphere test case and the rotor test case lies in the flux
expressions where grid speed terms and source terms are added to account for the rotational reference frame.
The governing equations are solved in the rotating reference frame but expressed as quantities in the inertial
frame; cf.21 All computations in this section were computed using an explicit RK3 time stepping scheme as
the grid speed terms have not yet been accounted for in the Roe flux Jacobian. For a collective pitch of 50

we prescribe an angular velocity of ωy = −0.1359 about the y − axis corresponding to a tip Mach number
of 0.815. The entire grid consists of 1.1M cells with a combination of hexahedra and prisms. Using a single
GPU, the computed and measured pressures coefficients (Cp = p−p∞

0.5ρ∞u2
t
)(ut=sectional linear velocity ) at two

different sections, Z = 3 and Z = 5.34 are compared in fig.(7). A reasonable comparison can be obtained
with some visible differences due to the absence of viscous effects in the computation. Also plotted in the
same figure are (1) surface pressure contours indicating the formation of a shock towards the tip of the rotor
and (2) Y−velocity contours showing the downwash from the wing tips. All the preceding comparisons with
experimental data are encouraging and leaves us with a lot of room for further development.

For parallel computations, the total number of cells was increased to 3M so that the partitioned grids
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Figure 4. Contours of the pressure coefficient for the inviscid flow past a sphere at Mach 0.3 using 24 GPUs and
implicit BDF1 time stepping

Figure 5. Convergence of the residual for the explicit-RK3 in comparison with implicit BDF-1 time stepping

that run on the GPU have sufficiently larger load. Figures (8) and (9) show the pressure contours on
a section along the wing tip and the inviscid rotor wake respectively. The partition boundaries are also
shown to demonstrate that the contours are continuous across these boundaries and that the communication
between various partitions has taken place without any issues. As the background grid is relatively coarse in
comparison with the rotor grid (Figure 2), the contours across the overset boundary have some discontinuities.
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Figure 6. Experimental setup for the hovering rotor test case, adapted from Caradonna and Tung20

Z=3 

Z=5.34 

Pressure distributions 

Y-Velocity contours 

Figure 7. Computed pressure distributions and Y-velocity contours for the hovering rotor test case on a single GPU

V. Parallel GPU Performance

To assess the performance of the parallel code, computations are performed across a range of CPU
cores(8,12,16, and 20) and GPUs(1,4,8,12,16, and 20). For example, if 12 GPUs are used in conjunction with
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Figure 8. Computed pressure contours along Z = −5.8 for the hovering rotor test case on 24 GPUs and 96 CPU cores

Figure 9. Computed vorticity(magnitude) contours along Y = 0 for the hovering rotor test case on 24 GPUs and 96
CPU cores

16 CPU cores, there are 12 CPU cores controlling 12 GPUs and 4 CPU cores running independent tasks.
Hence ng and nc in Eq. 8 are 12 and 4 respectively. The compressible flow past a sphere using the explicit
RK3 scheme described earlier is considered for computing the wall-clock times under different conditions. As
both GPUs and CPUs are used, the load has to be balanced according to the method described in Sec. III.A.
According to Eq. 9, this requires an estimate of the speed-up between a single GPU and single CPU core.
Hence this quantity is computed initially for a wide range of grid sizes as shown in figure 10. Also plotted
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in the same figure, is a variation of speed-up with threads per block. Based on the results from this plot,
the speed-up s is taken to be 11 as an estimate for partitioning the grid. Overall performance of the hybrid
setup is assessed with respect to the parallel performance of the same code on 8 CPU cores. Figure (11)
shows contours of speed-up relative to the performance on 8 CPU cores. One can also compare this observed
performance with corresponding theoretical estimates using the math outlined in Sec. III.A. If only 8 CPU
cores are used, then the wall clock-time ∝ T/8. If ng GPUS and nc CPU cores are used, the wall-clock
time utilized by a CPU core ∝ T/(ngs + nc) (The GPU partition will also consume the same time as the
load is balanced, but will have a different proportionality constant). The proportionality constant for both
these cases is the same, as CPU cores are compared for both these cases. The ratio of these two quantities
(= (ngs+nc)/8) is essentially the theoretical speed-up of the hybrid GPU-CPU setup with respect to 8 CPU
cores. Note that this speed-up does not involve any communication time. The corresponding theoretical
plot is shown in Figure (12). Both these plots compare quite well and is very interesting in the sense that
it gives us an idea on how many CPU cores can replace a GPU. For example, take a base case with 8 CPU
cores and 0 GPUs. If we need a 2x improvement over 8 CPU cores, we would move along the x-axis and
locate a point with the same contour value. From figures 11 and 12, this indicates that we need roughly 17
CPU cores. However one may also traverse vertically along the Y-axis and attain the same contour value
with 2 GPUs and 8 CPU cores. The same can be said for other combinations of CPU cores and GPUs.

V.A. Best CPU Performance Vs. Best GPU Performance

For a given grid size, it would be beneficial to know how much potential one could extract from an array of
GPUs in comparison with a standard parallel implementation that uses only CPU cores for a realistic test
case such as the hovering rotor described earlier. To estimate this, we first run the code without any GPUs
and estimate the wall-clock time for different number of processes. Following this run, we use as many GPUs
as the number of processes so that each GPU is mapped by one CPU core. Although the maximum number
of GPUs present in the NCAR-WY Supercomputing Caldera cluster is 32, only 24 could be used at a time
due to job scheduling restrictions. Figure (13) shows a summary of the wall-clock times for ten iterations in
seconds for various runs. We can see that the best CPU performance is attained using 126 CPU cores(14
cores × 9 nodes) and the best GPU performance using 24 GPUs(2 cores × 12 nodes). If cost for each run is
computed as Number of Cores × wall− clock time× (cost($) per core per unit time = k), we can see that
the best GPU performance is 13 times economical(in terms of cost) than the best CPU performance. Here
we have assumed that k is the same for both GPU and CPU based nodes as in the NCAR-WY Yellowstone
cluster. The hybrid GPU-CPU implementation is not included due to the fact that when the number of
GPUs used are high, a higher number of CPU cores must be used for proper load balancing (according to
Eq.(12). For 24 GPUs, to get at least 50% increase in the speed-up, we need an additional 120 CPU cores.
Also for a 3M grid the partitioned size of the grid would be small for the GPU to produce any significant
speed-up and that communication times may be in the same order of magnitude as that of computation
times. Hence for the hybrid GPU-CPU framework to produce meaningful results, the grid has to be very
large.

VI. Conclusions

We have presented an overset grid based flow computation strategy on multi-GPU, multi-core architec-
tures. Successful application and validation was demonstrated for the (1) sphere test case and (b) Caradonna
and Tung rotor. It is also demonstrated how the hybrid nature of the code where both GPUs and CPU cores
are active, provide additional speed-up than cases that involve only GPUs. In future, we plan to:

• Extend this framework so that the overset connectivity would be performed in parallel. This would pave
way for solving problems that involve relative mesh motion such as rotor-body/rotor-rotor interaction.

• Improve the discretization procedure for increased accuracy of the simulations

• Implement viscous effects and

• Run the codes on the Kepler GPU architecture22 to take advantage of NVIDIA GPUDirectTM - a
framework to transfer data between various GPUs that lie across different compute nodes in a cluster
without the CPU interference.
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Figure 10. Speed-up(s) of one GPU relative to One CPU core

Figure 11. Actual performance of the parallel GPU code relative to 8 CPU cores
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