
A Coupled Unstructured-Adaptive Cartesian CFD Approach
for Hover Prediction

Andrew Wissink, Mark Potsdam, Venkateswaran Sankaran

U.S. Army Aeroflightdynamics Directorate (AMRDEC)
Research, Development, and Engineering Command

Ames Research Center, Moffett Field, CA

Jayanarayanan Sitaraman, Zhi Yang, and Dimitri Mavriplis

Department of Mechanical Engineering
University of Wyoming, Laramie, WY

An innovative computational fluid dynamics (CFD) approach is employed to predict the aerodynamic
performance of hovering rotors. Two different CFD solvers are applied in different parts of the com-
putational domain: a body-fitted unstructured solver near the blade surface to capture complex geom-
etry and viscous effects, and a high-order block-structured Cartesian solver away from the blade to
capture the wake. The Cartesian solver applies Adaptive Mesh Refinement (AMR) to resolve tip vor-
tices. Results are demonstrated on the TRAM isolated rotor. The results show the approach is able to
achieve aerodynamic figure of merit performance predictions to within 2% of experiment on a 64-core
distributed parallel Linux cluster. Solution driven AMR is effective for resolving the vortex wake at
significantly reduced computational cost over fixed-grid calculations with similar resolution.

NOTATION

x streamwise coordinate
y spanwise coordinate
z normal coordinate
u local flow velocity (in x, y, z)
r blade radial coordinate
R blade radius
Ψ blade azimuth angle
Mtip tip Mach number
Ctip tip chord length
Retip tip Reynolds number
θ blade collective pitch angle
Ψ blade azimuth angle
CP blade pressure coefficient
M2cn blade section normal force coefficient times

Mach number squared
CT rotor thrust coefficient
CQ rotor torque coefficient
FM rotor figure of merit = C3/2
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∇u = Ω+S, Ω = vorticity, S = strain
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INTRODUCTION

The ability to accurately predict the hover performance of a
rotor plays an important role in rotary-wing vehicle design.
A 1% change in figure of merit of a rotor (a commonly used
measure of rotor efficiency) can translate to 200-300 lbs.
change in useful payload. Computational tools available to-
day are able to predict to this level of accuracy only with
empirically based methods that are tuned through windtun-
nel and flight tests, making them unreliable for new and
novel rotor designs (Ref. 1). Inadequate modeling of the
complex flow physics near the blade, poor resolution of the
wake, or a combination thereof, are the main reasons for the
inaccuracies in these approaches.

Over the past decade high-fidelity simulations based on
solutions of the Reynolds-Averaged Navier Stokes (RANS)
equations have been shown to accurately compute aero-
dynamic loads to within a few percent of experimentally
measured values (Refs. 2–7). Many of these approaches
use body-fitted codes within an overset mesh framework.
Specifically, the OVERFLOW (Ref. 8) code utilizes a dual-
mesh approach with structured body-fitted meshes applied
near the blade with Cartesian meshes in the wake. More-
over, the benefits of high-order schemes have been shown to
be important for accurate performance predictions by Har-
iharan (Ref. 9), Sankar (Ref. 10), Yeshala (Ref. 11), and
Duque et. al. (Ref. 12). Despite these advances, routine use



of these tools by design engineers remains limited. Prob-
lem setup requirements (such as manual grid generation),
the relatively high computational costs, and the consider-
able CFD knowledge that is required all present significant
hurdles to more widespread adoption.

In recent years, unstructured grid generation has be-
come widely adopted in industry because it is consid-
ered faster and more automatic than structured grid gen-
eration. A number of commercially available unstructured
gridding packages are now available that link to standard
CAD design software, enabling a more seamless analysis
process from CAD to simulation. The flexibility inher-
ent in unstructured meshing more easily allows for use of
parametrized surfaces that may be modified during the cal-
culation, facilitating design optimization (Ref. 13). Un-
structured solvers can be implemented within an overset
framework and used for rotorcraft, as demonstrated recently
by Lee-Rausch et al. (Ref. 7). However, unstructured meth-
ods in general tend to be less computationally efficient than
their structured counterparts, both in terms of memory and
CPU time. Also, spatial accuracy is generally limited to
second order. This is particularly problematic for rotorcraft
wake resolution which, as noted earlier, is important for ac-
curate load predictions. Moreover, high-order algorithms
implemented on structured meshes, particularly Cartesian
meshes, are currently much more efficient than high-order
Discontinuous Galerkin (DG) schemes applied to tetrahe-
dral elements of unstructured meshes.

In this work we introduce an innovative hybrid CFD ap-
proach that attempts to combine the benefits of both struc-
tured and unstructured approaches, while avoiding their
limitations. It maintains the benefits of unstructured meth-
ods for modeling complex geometry, while it also utilizes
the efficiency and accuracy of high-order schemes available
in structured solvers for the wake. In this hybrid-CFD ap-
proach, a RANS unstructured flow solver is applied near
the blade surface, or the ”near-body” region, to resolve ge-
ometry and wall-bounded viscous effects while away from
the body surface, in the so-called ”off-body” region, a high-
order Structured Adaptive Mesh Refinement (SAMR) Eu-
ler solver is applied. Benefits of the unstructured solver is
that it makes it possible to utilize commercially-available
meshing tools for the CAD-to-CFD mesh process. Bene-
fits of the block structured solver is that it is very efficient
and enables high-order accurate algorithms to be applied at
minimal cost.

A key element of this coupled unstructured-Cartesian
approach is that the off-body solver also facilitates adap-
tive mesh refinement (AMR), a process in which local mesh
resolution is dynamically adjusted by the solver to resolve
important flow features and coarsen the mesh in benign flow
regions. It is important to note that the AMR is done auto-
matically as part of the solution process and is controlled
by the flow solver. This enables more automation in what
is typically a tedious manual process of mesh generation

and also enables more targeted refinement of important flow
features. The technology is particularly promising for ro-
torcraft wake flowfields where fine scale tip vortices exist
within a relatively large computational domain.

One of the first efforts at using AMR for rotary-wing
wakes was by Strawn and Barth (Ref. 14) in 1992 using an
unstructured Euler solver. Later, Kang and Kwon (Ref. 15)
applied a similar strategy within an unstructured Navier-
Stokes solver. Potsdam (Ref. 16) recently used AMR in
an unstructured RANS solver for wake resolution of wind
turbine predictions. Cartesian-based AMR has been ap-
plied within an overset approach by Meakin (Ref. 17) using
non-refined near-body structured curvilinear meshes. This
approach was further extended recently by Holst and Pul-
liam (Refs. 18, 19) who successfully applied it to rotorcraft
hover simulations. Vasilescu et al. (Ref. 20) presented an
alternative approach for structured adaptive gridding for ro-
tor wakes. Dietz et al. (Ref. 21) also introduced an approach
which is overset-based but moves around tubular curvilin-
ear grids to align with the tip vortices, instead of using
Cartesian meshes.

Most of the aforementioned efforts target steady-state
problems which achieve a reasonable solution with a small
number of mesh adaptation cycles. Extending the approach
to time-dependent problems, such as hover, forward flight,
or rotor-fuselage calculations with meshes that move rel-
ative to one another requires an AMR approach in which
mesh refinement and coarsening are performed continu-
ously during the course of the calculation. The mesh may be
adapted tens to hundreds of times over the course of the sim-
ulation so a tight integration is required between the mesh
refinement scheme and the flow solver in order to make this
process efficient. Careful consideration of parallel comput-
ing issues like load balancing and re-establishing data com-
munication after adaptation become critical to ensure effi-
cient computational performance. Because of the relative
difficulties associated with the application of solution adap-
tive schemes to rotorcraft problems with moving meshes
only a few researchers have successfully demonstrated it.
In 2004 Park and Kwon (Ref. 22) used an unstructured code
with sliding surfaces to demonstrate unsteady AMR on a
trimmed rotor in forward flight. Nam et al. (Ref. 23) later
used a similar approach to apply AMR to calculations of a
rotor-fuselage configuration.

The goal of the current paper is to present the details
of the coupled unstructured-adaptive Cartesian approach
and to investigate its performance for steady (non-inertial
frame) and unsteady (inertial-frame) rotor hover applica-
tions. Specifically, we demonstrate both the predictive per-
formance as well as the computational performance of the
proposed approach. The following section discusses de-
tails of the computational approach. The Results section
presents various comparisons for calculations of the Tilt
Rotor Aeroacoustics Model (TRAM) rotor in hover con-
ditions. First, we provide a comparison to standard fully



Fig. 1. Near-body/off-body overset grid system.

unstructured calculations for a fixed-collective case. Fol-
lowing this, we present a more detailed study on the effects
of grid resolution, steady non-inertial vs. unsteady inertial
hover calculations, and considerations in the use of AMR.
Finally, we present detailed experimental-computational
comparisons for a collective sweep. Conclusions are sum-
marized at the end.

COMPUTATIONAL APPROACH

The spatial discretization scheme employs a dual-mesh
overset paradigm with body-aligned unstructured grids used
near the surface, the “near-body” region, and adaptive
Cartesian grids in the farfield, the “off-body” region. The
near-body grid is a mixed-element unstructured mesh that
is “subsetted” a certain distance from the surface. Its role is
to transition from the very high aspect ratio viscous bound-
ary layer cells near the surface to isotropic Cartesian cells
in the field. This near/off-body overset meshing approach
allows the boundary layer to be accurately resolved near
the surface while accurately resolving effects away from the
body with adaptive Cartesian grids and high-order numeri-
cal schemes.

The solver applied to the near-body mesh is the NSU3D
code (Ref. 24). The block structured adaptive Cartesian
code SAMARC, composed of SAMRAI (Ref. 25) and
ARC3DC (Ref. 26), is used for the off-body calculations.
The PUNDIT software (Ref. 27) manages the Chimera grid
hole cutting and interpolation. These software packages
are developed as standalone codes and integrated through a
Python-based infrastructure (Refs. 28, 29). Other packages
relating to CFD/CSD coupling and trim are also linked in to
this infrastructure but are not relevant to the calculations in
this paper and are, therefore, not discussed. Use of a high-

level Python-based software integration framework enables
the ability to plug-in different solvers as needed. The code
infrastructure that includes the integration framework and
all requisite solvers is called “Helios”.

Further details of each of these packages are given in the
following sub-sections.

Unstructured Near-Body Solver

The near-body solver, NSU3D, is an unstructured grid un-
steady Reynolds-averaged Navier-Stokes solver developed
for high-Reynolds number external aerodynamic applica-
tions. The NSU3D discretization employs a second-order
accurate node-based approach, where the unknown fluid
and turbulence variables are stored at the vertices of the
mesh, and fluxes are computed on faces delimiting dual
control volumes, with each dual face being associated with
a mesh edge. This discretization operates on hybrid mixed-
element meshes, generally employing prismatic elements in
highly stretched boundary layer regions, and tetrahedral el-
ements in isotropic regions of the mesh. A single edge-
based data structure is used to compute flux balances across
all types of elements. The single-equation Spalart-Allmaras
turbulence model, as well as a standard k−ω two-equation
turbulence model are available within the NSU3D solver.

The NSU3D solution scheme was originally developed
for optimizing convergence of steady-state problems. The
basic approach relies on an explicit multistage scheme
which is preconditioned by a local block-Jacobi precondi-
tioner in regions of isotropic grid cells. In boundary layer
regions, where the grid is highly stretched, a line precon-
ditioner is employed to relieve the stiffness associated with
the mesh anisotropy (Ref. 30). An agglomeration multigrid



algorithm is used to further enhance convergence to steady-
state (Refs. 24,31). The Jacobi and line preconditioners are
used to drive the various levels of the multigrid sequence,
resulting in a rapidly converging solution technique.

For time-dependent problems, first and second-order im-
plicit backwards difference time discretizations are imple-
mented, and the line-implicit multigrid scheme is used to
solve the non-linear problem arising at each implicit time
step. NSU3D has been extensively validated in stand-alone
mode, both for steady-state fixed-wing cases, as a regu-
lar participant in the AIAA Drag Prediction workshop se-
ries (Ref. 32), as well as for unsteady aerodynamic and
aeroelastic problems (Ref. 33), and has been benchmarked
on large parallel computer systems (Ref. 34).

For operation within an overset environment, “iblank-
ing” capability has been added. The “iblanks” specify
which nodes the solution variables are to be updated in the
near-body solver (iblank = 1) and which nodes are not up-
dated, i.e., fringes and holes (iblank = 0). The fringes cor-
respond to the overset regions of the near-body grid, which
are updated by the off-body code, while holes correspond
to locations where the grid intersects solid objects.

Cartesian Off-Body Solver

Block-structured Cartesian grids are used to resolve the far-
field wake. There are several advantages Cartesian grids
present over typical tetrahedral off-body elements used by
most unstructured codes. The Cartesian solver can ex-
ploit structured data, maximizing cache or vector proces-
sor performance. Numerical operations can be optimized
because the uniformity of the Cartesian grid eliminates the
need to apply grid metrics in the differencing, enabling re-
duced floating point operations and simplified algorithms.
Advanced numerical algorithms, such as implicit solvers,
multi-grid, and high-order algorithms are all straightfor-
ward on Cartesian grids.

The block-structured Cartesian solver is also efficient in
its memory usage. Each Cartesian grid block may be com-
pletely defined by the indices of the block diagonal (6 inte-
gers), the lower and upper indices, and the level of refine-
ment. In total, only 7 integers are needed to define an entire
3D block. The number of blocks used in a typical calcula-
tion is generally in the 100’s or 1,000’s. A tetrahedral mesh
requires storage of the node and/or edge locations and re-
quires millions of float or double precision data elements to
store its mesh.

The main reason that structured Cartesian meshes have
not seen more widespread use in CFD is their inability to
accurately represent geometrically complex viscous bound-
aries. In our approach the near-body solver manages that
task. Thus, the Cartesian grids are not used at viscous
boundaries. AMR is used to refine the Cartesian grids to
the outer boundaries of the near-body unstructured mesh,
as well as to desirable features in the wake.

Fig. 2. Off-body block structured AMR mesh com-
posed of a hierarchy of nested levels of refinement. Each
level contains uniformly-spaced logically-rectangular
regions, defined over a global index space.

The structured adaptive mesh refinement (SAMR) strat-
egy used for the Cartesian off-body solver is based on the
ideas of Berger, Colella, and Oliger (Refs. 35, 36). Grid
levels composed of a union of 3D Cartesian blocks of like
refinement are stored as a composite grid hierarchy. See
Fig. 2. Grid levels are constructed from coarsest to finest.
The coarsest level defines the physical extent of the com-
putational domain. Each finer level is formed by selecting
cells on the coarser level and then clustering the marked
cells together to form block regions that will constitute the
new finer level. All grid cells on a particular level have
the same spacing, and the ratio of spacing between levels is
generally a factor of two or four, although it is possible to
use other refinement ratios as well.

Computations on the SAMR grid hierarchy are carried
out in parallel by distributing the different computational
blocks over processors. Each time the grid is adapted it
must be repartitioned for load balancing and data commu-
nication patterns re-established between processors. It is
this process that typically hinders the scalability of unstruc-
tured AMR codes. Since the grid is partitioned over proces-
sors, significant communication must take place to prop-
erly re-partition the mesh and data. This is why most un-
structured grid adaptation schemes apply this process as a
post-processing step rather than tightly integrating it with
the solver. The SAMR paradigm uses such a low-memory
mesh description that the block boundaries for the entire 3D
composite mesh hierarchy can be known to all processors,
minimizing the amount of information that needs to be ex-
changed during the repartition and making reconstruction
of the communication patterns very fast and efficient.

An additional advantage of the SAMR paradigm is that
it facilitates a clean separation between grid- and solution-
based operations. Grid-based operations – e.g. adaptive grid
generation, parallel decomposition, data exchange between
blocks, etc. – can be managed by one package while the se-
rial numerical operations on each block are performed by a
separate single-block solver. In this work the grid-based op-



Fig. 3. Near-body unstructured mesh generation options; (a) subsetted full-domain unstructured volume mesh, (b)
assembled individual component meshes.

Fig. 4. Cartesian off-body grid generation. (a) determination of near-body inter-grid boundary point (IGBP) spac-
ing, (b) refinement of the Cartesian blocks to match spacing, (c) implicit hole cutting, and (d) determination of
off-body IGBPs.



erations are managed by the SAMRAI (Refs. 25,37,38) in-
frastructure from Lawrence Livermore National Lab. SAM-
RAI manages the construction and adaptation of the AMR
grid hierarchy, parallel load balancing, and MPI-based data
exchanges between grid blocks. Then, the single block
solver applied to each Cartesian block is ARC3DC by Pul-
liam (Ref. 26). ARC3DC is a version of NASA Ames’
ARC3D solver with high-order operations optimized for
isotropic Cartesian grids. The high-order finite difference
schemes used in ARC3DC are based on central differences
with a dissipation term. For instance, a 6th-order central
difference scheme uses 5th-order dissipation, making it for-
mally 5th-order accurate spatially.

A 3rd-order accurate 3-stage explicit Runge-Kutta
scheme is used for time integration in ARC3DC. All Carte-
sian grid levels execute the explicit RK scheme with a uni-
form timestep so the overall timestep is governed by the
spacing on the finest level. We currently do not refine in
time, although it is possible to do so. At the beginning of
each RK sub-step, data on fine patch boundaries are up-
dated either through copying data from a neighboring patch
on the same level, if one exists, or through interpolation of
data from a coarser level. The number of boundary points
required in this exchange depends on the order of the spa-
tial discretization. For example, a 6th-Order central scheme
uses a 7-point stencil, requiring three boundary points be
exchanged between patches. The numerical operations to
advance a single RK sub-step are performed simultaneously
across processors on each patch of each level. Data are then
injected from fine levels into coarse levels wherever over-
lap exists. Communication between blocks on the same
level, and between blocks on different levels, is managed
by SAMRAI.

Domain Connectivity Formulation

The PUNDIT code (Ref. 27) manages all Chimera grid hole
cutting and interpolation. Data is transferred between the
unstructured near-body mesh and the background Carte-
sian mesh using standard second order interpolations used
commonly for both structured (Refs. 39, 40) and unstruc-
tured (Refs. 7, 41, 42) overset applications. PUNDIT uses
an implicit hole cutting strategy; it searches all overlapping
mesh points and identifies the cell with the best resolution
(i.e. smallest volume). It then manages the interpolation of
data between the unstructured and Cartesian mesh systems.
PUNDIT operates on the partitioned grid data and uses MPI
for parallel data exchange.

Grid Generation/Adaptation Procedure

The starting point for the grid generation process is an un-
structured near-body mesh. A commercial grid generation
package is used to interface with the CAD model and con-
struct a triangulated surface mesh and the AFLR software

from Marcum (Ref. 43) is used to construct a mixed prism-
tet volume mesh. For bodies that contain multiple compo-
nents the volume mesh can be constructed in either of two
ways, as illustrated in Fig. 3. In the first case, Fig. 3(a),
the volume mesh encompasses multiple surface compo-
nents and extends over the full solution domain. A sub-
setting operation is then applied to trim off the unstructured
elements a certain distance from the bounded surface. In
the second case, Fig. 3(b), individual unstructured volume
meshes are generated around each component – e.g. blade
and centerbody in the figure shown. In this case the volume
mesh outer boundary extends only a short distance from the
bounded surface. The individual component meshes can
be duplicated, translated, and rotated to assemble the near-
body mesh system. While option (b) is the most flexible
in terms of allowing assembly of complex bodies through
simple mesh movement, translation, and rotation, option (b)
permits use of unstructured meshes that may have already
been generated for use in existing unstructured solvers.

The off-body block-structured Cartesian grid system is
automatically generated, targeting refinement to mesh spac-
ing requirements from the near-body mesh and to selected
solution quantities. Levels are constructed from coarsest to
finest. The coarsest level defines the physical extent of the
computational domain. Each finer level is formed by select-
ing cells on the coarser level and then clustering the marked
cells together to form the regions that will constitute the
new finer level.

Figure 4 illustrates the mesh refinement process that sat-
isfies near-body resolution requirements and establishes an
initial off-body mesh to begin the simulation. Points at the
outer boundary of the subsetted near-body mesh receive in-
terpolated data from the off-body Cartesian mesh. Mesh
points that receive interpolated data are referred to as inter-
grid boundary points (IGBPs). They do not compute a so-
lution, they simply receive data interpolated directly from
the overlapping background grids. At these points it is de-
sirable that the Cartesian resolution match or be finer than
the unstructured mesh resolution to ensure smooth solutions
across the overset boundary. The locations (x,y,z coordi-
nates) and resolution ∆s, generally the minimum distance
to neighboring grid points, of the near-body IGBPs are first
computed (Fig. 4(a)). Next, cells on the off-body Cartesian
grid system that contain IGBPs are checked to see whether
their grid spacing ∆x is greater than the spacing ∆s at the
near-body IGBP. If the resolution is not sufficient (∆x > ∆s)
the cell is marked for refinement (Fig. 4(b)). All marked
cells are clustered to construct a new finer level in the Carte-
sian hierarchy, and the process is repeated until no Cartesian
cells are marked i.e., the resolution of all near-body IGBPs
has been satisfied by the off-body Cartesian grid system. At
that point implicit hole cutting (Fig. 4(c)) is performed by
PUNDIT to establish the set of off-body IGBPs (Fig. 4(c)),
the Cartesian mesh points that will receive interpolated data
from the near-body unstructured solver. PUNDIT manages



Blade Radius R 57 in
Tip Chord Ctip 5.5 in

Tip Mach Number Mtip 0.625
Re Number at tip Retip 2.1×106

Table 1. Nominal operating conditions for isolated
TRAM rotor studies

the hole cutting and data interpolation between the near-
body and off-body solvers.

RESULTS

Results are demonstrated for calculations of the isolated
Tilt Rotor Aeroacoustics Model (TRAM) rotor, which is a
quarter-scale model of the Bell/Boeing V-22 Osprey tiltro-
tor aircraft three-bladed rotor. Nominal operating condi-
tions used for the computational model are shown in Ta-
ble 1. Experimental results were taken from tests conducted
in the Duits-Nederlandse Windtunnel Large Low-speed Fa-
cility (DNW-LLF). Aerodynamic surface pressures, thrust
and power, were measured along with structural loads and
aeroacoustics data.

The first sub-section compares results from a fully un-
structured calculation and the new dual-mesh approach with
a fixed (i.e., without AMR) Cartesian off-body mesh. For
these initial studies, we use the 14◦ collective condition in
steady non-inertial hover. The second sub-section inves-
tigates the use of solution adaptivity in the Cartesian off-
body for the same problem. In addition to comparing solu-
tion accuracy and aerodynamic performance, we also com-
pare the relative computational efficiency of the dual-mesh
approach with and without AMR. We next investigate the
performance of the code for time-dependent inertial hover
calculations, comparing with the steady fixed-mesh results.
The final sub-section presents results of a collective sweep
study and compares the results with experimental data.

Fixed Mesh Results

We start with steady state results obtained using a non-
inertial (or rotational) frame of reference for a fixed 14◦

collective. In the rotational frame, the coordinate frame is
attached to the rotor hub and rotates along with the blades
so that the resultant flowfield appears steady. Notably, there
is no relative motion between the near-body and off-body
meshes and the domain connectivity formulation between
these mesh systems needs to be performed only once at the
commencement of the computations. A variety of differ-
ent near-body and off-body meshes are tested. In general,
we start with a given near-body mesh and then generate ap-
propriate off-body meshes depending upon the resolution
of the near-body mesh and whether the off-body mesh is
fixed or adapted. In this sub-section, we consider a series
of near-body meshes ranging from coarse to intermediate

Solver Near-Body Off-Body
Fully Unstr. Med 5.0M —

Dual-Mesh Coarse 1.79M 2.7M
Dual-Mesh Med 2.80M 15.6M
Dual-Mesh Fine 8.34M 15.6M

Table 2. Unstructured and Cartesian mesh sizes used in
isolated TRAM θ = 14◦ fixed mesh studies.

to fine and utilize fixed Cartesian off-body meshes. In addi-
tion to the coupled unstructured-Cartesian meshes, we also
utilize a fully unstructured mesh for comparison purposes.
In the following sub-section, we further extend these to in-
clude adaptive meshes.

Table 2 gives a summary of the near- and off-body mesh
sizes used for the fixed-mesh studies. The fully unstruc-
tured mesh contains approximately 5M nodes comprised
of prismatic and tetrahedral elements (see Fig. 3(a)). The
medium resolution Helios near-body mesh is constructed
by trimming this 5M point fully unstructured mesh to a dis-
tance of approximately two chord lengths from the blade
surface (also shown in Fig. 3(a)), resulting in a subsetted
mesh size of 2.80M points. This is referred to herein as
the “medium” resolution near-body mesh. Two other near-
body meshes are also utilized, both constructed by com-
bining individual component meshes for each of the blades
and the centerbody (shown in Fig. 3(b)). The first mesh
is coarser, comprised of 1.79M points (517K points per
blade, 80K points center-body), and the second mesh is
finer, comprised of 8.34M points (2.75M points per blade).
These two meshes are referred to as the “coarse” and “fine”
near-body meshes in Table 2. The coarse mesh case uses
an off-body grid with six levels of refinement, correspond-
ing to a fine mesh Cartesian spacing of 20% Ctip. Both the
medium and fine dual-mesh cases apply an off-body mesh
with seven levels of refinement with fine mesh spacing of
10% Ctip. The medium and fine near-body meshes have
similar spacing at their subset boundaries where they inter-
face the Cartesian grid. In other words, main difference be-
tween the medium and fine mesh systems is the resolution
near the blade.

Representative mesh and flowfield solutions for the
fully-unstructured and medium dual-mesh cases are shown
in Fig. 5. Iso-surfaces of the Q-criterion at Q=0.00001 are
shown, colored by vorticity magnitude. Fig. 5(a) shows
that the wake is dissipated quickly in the unstructured mesh
while the wake in the dual-mesh solution Fig. 5(b) is well
preserved. This improvement is as expected because the
Cartesian off-body mesh utilizes considerably larger num-
ber of grid points than the unstructured mesh system. More-
over, the off-body solution is spatially fifth-order accurate
while the unstructured solver is second-order throughout.
As will be discussed shortly, the dual-mesh formulation en-
ables these improvements at a computational cost that is
comparable to the fully unstructured calculation.



Fig. 5. Wake solution and mesh, θ = 14◦ isolated TRAM calculation. Solution shows iso-surfaces of Qcrit . (a) Fully
unstructured solution with NSU3D, (b) Helios medium resolution subsetted unstructured near-body mesh with fixed
Cartesian off-body mesh.



CT CQ FM
Experiment 0.0149 0.00165 0.779

Fully Unstr. Med 0.0146 0.00179 0.694
Dual-Mesh Coarse 0.0148 0.00180 0.709
Dual-Mesh Med 0.0150 0.00178 0.734
Dual-Mesh Fine 0.0151 0.00171 0.764

Table 3. Performance of isolated TRAM rotor at θ = 14◦

using fixed meshes. Fully unstructured solution com-
pared to fixed dual-mesh with coarse, medium, and fine
resolution.

Table 3 shows the computed thrust (CT ) and power co-
efficients (CQ) and the resulting Figure of Merit (FM) for
the three mesh systems. All the dual-mesh cases utilize
the fifth-order accurate spatial discretization scheme in the
fixed-off-body mesh. Two trends are apparent from these
results. First, the dual-mesh results show a progressive
improvement in the predictions going from the coarse to
medium to fine meshes. This may be primarily attributed
to improved near-body mesh resolution which is progress-
ing from 1.8M to 2.8M to 8.3M nodes for the three cases.
On the fine-mesh, the results are within 2-3% of the tar-
get experimental values and in close agreement with re-
sults obtained with other state-of-the-art codes (Ref. 19).
The second trend that is evident from these results is that,
for comparable near-body mesh resolution, the dual-mesh
method significantly outperforms the fully unstructured cal-
culations. Specifically, the 5M-node unstructured predic-
tion of FM is about 0.694, which is more than 10% be-
low the experimental value. In contrast, the intermediate
dual-mesh case which utilizes precisely the same near-body
mesh system (trimmed to a wall-distance of two chord-
lengths) computes a FM of 0.734, which is about 5% below
the experimental value.

Table 4 compares the computational cost for the fixed
mesh calculations. The cases were run on the Army Re-
search Lab MJM computer system, a distributed parallel
Linux cluster with nodes that each contain two 3.0 GHz In-
tel Woodcrest processors with two cores each (i.e. 4 cores
per node), and 8GB of memory. The number of compu-
tational cores applied, the number of points points in the
near and off-body meshes, and the measured time per step
are shown. For the medium mesh case, the time with 2nd-
order and 5th-order spatial resolution in the off-body are
both reported. Although the off-body introduces signifi-
cantly more gridpoints, the calculations on the Cartesian
mesh system are significantly faster and, as a result, the ex-
tra gridpoints are still affordable. Referring to the medium
mesh case specifically, the cost per step of the dual mesh
Helios calculation is about 17% higer than the fully unstruc-
tured NSU3D calculation even though the total number of
grid points (considering both near- and off-body meshes)
is about four times that of NSU3D. Moreover, we also ob-
serve that the extra cost incurred from high-order methods

is minimal, with the fifth-order accurate scheme applied to
the off-body solver being only about 6% more expensive
than the second-order scheme.

Adaptive Mesh Refinement

We next investigate the effects of off-body AMR on solution
quality and computational performance. The dual-mesh re-
sults shown in the previous section applied off-body Carte-
sian meshes with a pre-defined fixed refinement region. In
the results shown here, the off-body mesh is adapted during
the solution to satisfy resolution requirements at the near-
body mesh interface and to regions of high vorticity in order
to resolve tip vortices.

At the start of the calculation, refinement of the off-body
grid targets locations of the near-body inter-grid boundary
points as shown in Fig. 4. During these initial stages of
the solution we deliberately turn off refinement that targets
specific flow quantities since there tend to be many non-
physical startup effects. In other words, at the start of the
solution the AMR process targets refinement specifically to
satisfy mesh resolution requirements at the near-body/off-
body interface, and not on solution-based quantities. As
the solution progresses, the non-physical startup effects are
damped out by the coarse surrounding mesh system. Be-
yond this point the solution-based refinement is turned on.

Solution-based AMR in the off-body solver targets re-
gions of high vorticity. A threshold vorticity is specified and
any cell in the off-body mesh with vorticity larger than this
specified value is marked for refinement. A conservative
refinement approach is adopted in which all marked cells
are guaranteed to be refined. However, due to the block-
based nature of the scheme it also means that some cells
that are not marked may also be refined. In practice, un-
marked refined cells generally occur in close proximity to
marked cells whose vorticity exceeds the threshold value so
it is manifested as a buffer region of fine cells around the
vortices.

The Cartesian grid system is constructed as a series of
levels where the coarsest is level one and the finest is level
n. In these studies, a six-level Cartesian grid system has
finest level n mesh spacing of 20% Ctip, a seven-level grid
has spacing of 10% Ctip, and an eight-level grid has a spac-
ing of 5% Ctip. This multi-level structure is identical in both
fixed and AMR off-body grids, and the main difference is
that the fixed grid is generated by explicitly forcing refine-
ment in pre-defined regions whereas the AMR grid is gener-
ated through the solver detecting regions where refinement
is needed.

Figure 6 shows wake solutions for the adaptive cases
with (a) seven and (b) eight levels of refinement, corre-
sponding to a finest level resolution of 10% and 5% Ctip,
respectively. Iso-surfaces of the Q-criterion at Q=0.00001
are shown colored by vorticity magnitude. It is evident that



ncores Unstruct Cartesian Total
NSU3D Med 32 5.0M 5.34s – – 5.0M 5.34s
Helios Coarse 16 1.8M 3.65s 2.7M 1.17s 4.5M 5.10s
Helios Med 2ndO 32 2.8M 2.95s 15.6M 3.00s 18.4M 6.11s
Helios Med 5thO 32 2.8M 2.95s 15.6M 3.17s 18.4M 6.27s
Helios Fine 64 8.3M 4.40s 15.6M 1.65 23.9M 6.65s

Table 4. Computational statistics for isolated TRAM θ = 14◦ fixed mesh study. NSU3D run on fully unstructured
medium resolution mesh, Helios run on dual-mesh mesh with coarse, medium, and fine resolution. Linux Woodcrest
cluster, 4 cores per node.

Fig. 6. Wake solution and mesh, θ = 14◦ isolated TRAM calculation. Solution shows iso-surfaces of Qcrit . Helios
off-body adaptive solution with (a) seven levels and (b) eight levels of adaptive refinement.



CT CQ FM
Experiment 0.0149 0.00165 0.779

Coarse-Fixed-6lev 0.0148 0.00180 0.709
Coarse-AMR-7lev 0.0149 0.00181 0.711
Med-Fixed-7lev 0.0150 0.00178 0.734
Med-AMR-7lev 0.0151 0.00176 0.0747
Med-AMR-8lev 0.0152 0.00179 0.738
Fine-Fixed-7lev 0.0151 0.00171 0.764
Fine-AMR-7lev 0.0151 0.00171 0.768

Table 5. Performance of isolated TRAM rotor at θ = 14◦

using fixed and adaptive (AMR) off-body meshes.

the adaptive scheme is properly targeting the wake effects.
Tip vortex structures, as well as vortices shed from the hub,
are maintained at high resolution well downstream from the
blade plane.

A plot of the rotor wake vorticity pattern at the Ψ = 0◦

azimuth blade at the quarter-chord plane is shown in Fig. 7.
Figure 7(a) shows the result from the fully unstructured
NSU3D calculation, discussed in the previous section. Fig-
ure 7(b) shows the fixed-mesh Helios result with seven lev-
els of refinement, and Fig. 7(c) shows the adaptive result
with eight levels of refinement. The first vortex observed in
this plane below the blade is shed from the Ψ = 120◦ blade,
the second is shed from the Ψ = 240◦ azimuth blade, and
the third is from the shown blade at a Ψ = 360◦ wake age.
The fully-unstructured solution (Fig. 7(a)) shows significant
dissipation in the first vortex, and also predicts the vortex
location to be far below the blade. The second and third
vortices are also highly dissipated and incorrectly located.
Helios with fixed refinement (Fig. 7(b)) shows a significant
improvement, capturing the first blade vortex more com-
pactly and the second vortex reasonably well. However, by
the third vortex the solution is quite dissipated. Helios with
adaptive refinement (Fig. 7(c)) shows a significantly im-
proved result, with all three vortices being captured nicely.

Table 5 shows the computed performance using adaptive
meshes compared to the baseline fixed-mesh results shown
in the previous section. The adaptive results give compara-
ble performance to the fixed results of the same resolution,
which is expected. Moreover, adding additional AMR lev-
els do not appreciably improve the performance predictions.
This suggests that the dominant factor in the accuracy of the
performance calculation is the resolution of the near-body
mesh, and not the off-body mesh. Thus, for the cases tested
here the advantage in using AMR in the off-body mesh lies
in the improved wake and tip vortex resolution and not in
performance predictions. However, as shown below, AMR
does enable reduced off-body mesh sizes.

Table 6 shows a comparison of the computational re-
sources required for the adaptive cases. It should be noted
that the off-body mesh size is continually changing in the
adaptive calculation, the mesh size shown in the table is
that recorded at the end of the solution. The time per step,

Fig. 8. Number of near and off-body points for Helios
adaptive eight-level off-body calculation.

on the other hand, is taken as an average over the simula-
tion. This is why, in some circumstances, the total points
in the AMR mesh are greater than the comparable fixed
mesh but the time per step is actually less. AMR is ef-
fective at reducing the problem size. Specifically, note the
medium fixed eight-level case has 150.2M points in the off-
body, which was too large to run on 32 cores of the parallel
system. With AMR the eight-level case contains approxi-
mately 41M points, which is about a factor of four reduc-
tion, and which is now capable of fitting on the 32 core
system.

It is interesting to note the problem size variance for the
adaptive mesh calculation. Figure 8 shows a plot of the
number of gridpoints vs. step for the 8-level medium adap-
tive calculation. An off-body mesh with 5% Ctip resolu-
tion is initially generated, targeting the near-body inter-grid
boundary points and resulting in an initial adapted mesh
of 17.7M points. The solution is run on this mesh with-
out any solution-based adaptation for a number of steps to
dissipate any non-physical startup effects. Then solution-
based adaptivity is applied every 250 steps, approximately
40 adapt cycles total, to refine the mesh to regions of high
vorticity, which correspond to tip vortices and vorticity shed
from the hub (Fig. 6(c)). In practice we find similar trends
for other problems. As the adaptive scheme detects regions
of high vorticity and refines the grid around them, new re-
gions are subsequently detected and refined. Typically, this
process may be terminated by specifying a maximum num-
ber of off-body mesh points based on memory availability
on the system. It should be noted, however, that there are
likely applications, such as detecting ground effects, where
it may be desirable to let the process continue to avoid pre-
mature termination (after insuring the availability of system
resources).



Fig. 7. Wake vorticity overlaid on mesh (a) NSU3D, (b) Helios with fixed seven-level off-body mesh, (c) Helios with
adaptive eight-level off-body mesh.

ncores Unstruct Cartesian Total
Coarse-Fixed-6lev 16 1.8M 3.65s 2.7M 1.17s 4.5M 5.10s
Coarse-AMR-7lev 16 1.8M 3.65s 19.3M 8.40s 21.1M 12.31s
Med-Fixed-7lev 32 2.8M 2.95s 15.6M 3.17s 18.4M 6.27s
Med-AMR-7lev 32 2.8M 2.95s 9.4M 2.13s 12.2M 5.21s
†Med-Fixed-8lev 32 2.8M – 150.2M – 153.0M –
Med-AMR-8lev 32 2.8M 2.95s 22.7M 4.62s 25.5M 7.89s
Fine-Fixed-7lev 64 8.3M 4.40s 15.6M 1.65s 23.9M 6.65s
Fine-AMR-7lev 64 2.8M 4.40s 22.8M 1.63s 25.6M 6.13s

Table 6. Computational statistics for isolated TRAM θ = 14◦ adaptive (AMR) mesh study. Helios dual-mesh with
coarse, medium, and fine near-body meshes. Fixed mesh off-body times shown for reference. Coarse, medium, and
fine near-body meshes applied with different levels of Cartesian refinement. (6 levels corresponds to 20%Ctip finest
Cartesian resolution, 7 levels to 10%Ctip, and 8 levels to 5%Ctip resolution). Linux Woodcrest cluster, 4 cores per
node.



CT CQ FM
experiment 0.0149 0.00165 0.779
steady-fixed-6lev 0.01484 0.001802 0.709
iner-fixed-6lev 0.01485 0.001805 0.709
steady-AMR-7lev 0.01491 0.001811 0.711
iner-AMR-7lev 0.01489 0.001808 0.711

Table 7. Comparison of steady non-inertial (“steady”)
and unsteady inertial (“iner”) computed loads for θ =
14◦ collective. Fixed and adaptive off-body grids.

Inertial Hover

The steady hover assumption, which uses a fixed grid with
rotational source terms applied to the equations solved on
the grid, is accepted as a good approximation for isolated
hover predictions. However, problems involving rotor-
fuselage interactions, multiple rotors, or helicopters in for-
ward flight which are ultimately of interest to helicopter en-
gineers require an inertial formulation with moving grids
capable of simulating bodies in relative motion. A useful
validation is an investigation into whether the two formu-
lations – steady hover vs. inertial hover – give the same
answers. Further, it is of interest to investigate the behavior
and performance of the AMR scheme for time-dependent
moving grid problems.

The coarse near-body grid 1.8M nodes, discussed in pre-
vious sections, is used for this investigation. Two off-body
Cartesian mesh systems are tested. The first is a six-level
mesh with fixed refinement (20% Ctip at finest level) and
the second is adaptive with seven levels (10% Ctip at finest
level). Steady non-inertial calculations were typically run
until forces oscillated by less than one-tenth of a percent.
Inertial hover cases used a step size of 0.25 degrees az-
imuth and were run out to 6 revolutions. Computed loads
are shown in Table 7. Steady and inertial results are shown
on the two off-body grid systems.

A few interesting observations can be drawn from the
results in Table 7. First, there is no noticeable difference
between calculations using steady vs. inertial hover. This
confirms that the steady approximation is appropriate for
this problem and that the implementation of both the steady
hover terms and the inertial formulation in Helios code is
correct. Second, enhancing resolution in the off-body grid
through mesh refinement does not significantly improve the
load predictions in this case. The likely reason is that the
primary source of the error is the coarse near-body grid.
Similar behavior was observed in the earlier adaptive mesh
results which used a finer near-body mesh (2.8M nodes).
Third, the adaptive scheme works successfully for both
steady and inertial cases, which is encouraging for its ap-
plication to rotor-fuselage and forward flight applications.

(a) Residual convergence

(b) FM convergence

Fig. 9. Solution convergence characteristics for steady
non-inertial fine dual-mesh calculation of θ = 10◦ iso-
lated TRAM rotor. (a) Residual convergence in near-
body (NSU3D) and off-body (SAMARC) solvers, (b) FM
force convergence history.

Collective Sweep

This section investigates the performance of the dual-mesh
approach for a range of collective pitch θ settings. Earlier
studies conducted on the fixed θ = 14◦ condition found that
calculations on the fine mesh, 8.34M nodes near-body with
7-level 15.6M node off-body, computed the most accurate
performance numbers. Moreover, the results from the pre-
vious section indicated the steady non-inertial formulation
gives essentially the same load predictions as the unsteady
inertial formulation but at much lower cost. As a result, the
collective sweep is run using the fine mesh with the steady
hover formulation. The the Mtip = 0.625 condition is used
with collective pitch θ settings of 6◦, 8◦, 10◦, 12◦, 14◦, and
16◦ are tested.

All cases are converged until the equation residuals have
dropped several orders of magnitude and the forces vary
by a small degree. For example, Fig. 9 shows a sample
convergence history for the θ = 10◦ case. Solver residual
convergence is shown in Fig. 9(a) while figure of merit FM



Collective CT CQ FM
6◦ 0.00668 0.000591 0.654
9◦ 0.0086 0.000787 0.718

10◦ 0.0107 0.00104 0.750
12◦ 0.0129 0.00136 0.762
14◦ 0.0151 0.00171 0.764
16◦ 0.0173 0.00212 0.757

Table 8. Computed values of CT , CQ and FM as a func-
tion of collective pitch.

Fig. 10. Isolated TRAM collective sweep, thrust CT
vs. collective.

convergence is shown in Fig. 9(b). Although the residuals
show some oscillatory behavior at the end of the solution,
likely due to unsteadiness in the vortex flowfield, the forces
converge to within a tenth of a percent of the final computed
value.

Table 8 summarizes the loads and power predictions for
all collective angles. Figure 10 shows the computed thrust
coefficient CT vs. collective angle. Figure 11 shows the
variation of power CQ with C3/2

T . Experimental results from
the Mtip = 0.625 and Mtip = 0.58 conditions are included
in both plots for reference. The computed thrust closely
matches experimental results while the computed torque
slightly over-predicts experiment.

The variation in Figure of Merit FM with respect to
thrust is plotted in Fig. 12. As a result of the over prediction
in computed torque the figure of merit is under-predicted by
1% - 3%. The adaptive θ = 14◦ result obtained earlier with
the same near-body mesh is included in the plot for refer-
ence. The differences between the fixed and adaptive solu-
tion are negligible. The figure also shows data predictions
for a θ = 14◦ result obtained by Holst and Pulliam (Ref. 19)
using the Overflow code. The data point labeled “med” cor-
responds to the two-level adapted mesh in that study, and
the “fine” corresponds to the three-level mesh. Overall, the
results are showing good agreement with both experiment
as well as results obtained by other state-of-the-art CFD
codes.

Fig. 11. Isolated TRAM collective sweep, power CQ

vs. C3/2
T for different collective angles.

Fig. 13. Plot of blade section normal force at spanwise
locations, with CP on upper and lower surfaces of blade.
θ = 14◦, Mtip = 0.625 condition, isolated TRAM rotor.

Figure 13 shows the integrated normal force at differ-
ent spanwise locations for the Mtip = 0.625, θ = 14◦ con-
dition. Results from Overflow taken from Potsdam and
Strawn (Ref. 4) are included for comparison. The computed
Helios results over-predict experimentally measured values
but closely match the fine-mesh results obtained with Over-
flow. The flattening of the normal forces at the∼ r/R = 0.7
spanwise location is caused by the tip vortex passage un-
der the blade. The fact that the computations do not show
the significant bend in the curve in this region indicates that
the tip vortex passing under the blade is excessively dif-
fused. This agrees with findings in other works (Refs. 4,44).
Further studies are needed to elucidate the underlying rea-
sons for this discrepancy, in particular whether near-body
mesh refinement, or off-body mesh refinement, or both, are
needed to improve the predictions.

Despite the discrepancies, the Helios results are encour-



Fig. 12. Isolated TRAM collective sweep, figure of merit FM vs. thrust CT . Arrow showing 3% variation from
experimental results shown for reference.

aging on two fronts. First, they show it is possible to consis-
tently predict FM to within 2-3% accuracy on a relatively
modest 64 core computer system. Second, there is good evi-
dence that the prediction accuracy is a function of the mesh
resolution (see Table 3) and that further refinements will
likely yield closer agreement. Holst and Pulliam (Ref. 19)
report similar improvements in prediction accuracy as mesh
resolution is enhanced.

CONCLUSIONS

An innovative dual-mesh CFD paradigm is developed and
validated for hovering rotor computations. An unstructured
RANS solver is applied to a near-body mesh in order to
capture complex geometry and wall-bounded viscous ef-
fects, while a structured adaptive Cartesian Euler solver is
applied to the off-body to resolve the rotor wake. The mo-
tivation for approach is to create a CFD solution method-
ology which exercises the best features of both solvers —
i.e., body-conforming unstructured grids to capture the ge-
ometry and boundary layer effects, and efficient adaptive
Cartesian grids with a high-order flow solver to resolve the
wake. The code that employs this strategy is called ”He-
lios”.

In comparison to calculations with a fully unstructured
mesh, the dual-mesh approach in Helios is able to achieve

significantly better aerodynamic performance predictions
for about the same cost. The cost savings arise because
of the inherent efficiency of the Cartesian off-body solver,
which means that significantly larger grids can be solved
with only nominal increases in CPU time. Moreover, high-
order solutions in the Cartesian off-body solver incurs neg-
ligible cost; e.g. the 5th-order algorithm is only about 6%
more expensive than the standard 2nd-order scheme. Fur-
ther savings arise because of the use of adaptive mesh re-
finement in the off-body, which is able to resolve the wake
with one-fifth the number of grid points as a fixed-refined
case with the same resolution.

Calculations with the steady hover assumption – fixed
grid with rotational source terms applied to the equations
solved on the grid – gives nearly identical results to a
moving-grid (inertial) hover calculations, in which the near-
body grid rotates while the background Cartesian grid re-
mains fixed. Further, we have shown that the adaptive
scheme was found to be robust for the moving-grid calcula-
tions and also gives comparable results. Using a fine 8.3M
point near-body mesh, the dual-mesh scheme provides fig-
ure of merit predictions to within 1%–3% of experimental
data for a range of collective angles. It is noteworthy that
these results were obtained on a relatively modest cluster
employing 64 cores.

Future work will investigate the dual-mesh approach for



fuselage-rotor and forward flight calculations. The AMR
scheme currently targets refinement to regions of high vor-
ticity. While this has been shown to work, it requires con-
siderable experimentation to determine the correct thresh-
old value of vorticity to trigger refinement. More automated
schemes to target the location of tip vortices are currently
being investigated.
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