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Unstructured Dynamic Meshes with Higher-order
Time Integration Schemes for the Unsteady

Navier-Stokes Equations

Zhi Yang ∗

Dimitri J. Mavriplis †

Department of Mechanical Engineering,
University of Wyoming 1000 E. University Avenue Laramie, WY 82071

Efficient techniques for computing time-dependent flows with dynamically deforming unstruc-
tured meshes are investigated. These include the formulation of robust mesh motion techniques,
as well as the formulation of a third-order backwards difference time-integration scheme for the
flow equations, which obeys a discrete geometric conservation law. Efficient multigrid solution
techniques are devised for solving both the mesh motion equations, and the governing flow equa-
tions, using the same agglomerated coarse levels for both problems. Sample problems are used
to demonstrate the accuracy and efficiency of these techniques in two and three dimensions.

Introduction

Unstructured mesh approaches have become well es-
tablished for steady-state flow simulations due to the
flexibility they afford for dealing with complex geome-
tries. For unsteady flows with moving boundaries, such
as fluid-structure problems (wing/tail buffet, flutter), im-
plicit time-integration strategies are required for the ef-
ficient solution of the flow equations, while at the same
time robust mesh deformation techniques are necessary
for maintaining a suitable discretization of the evolving
computational domain. In order to develop an efficient un-
steady flow simulation capability, both mesh deformation
and flow solution aspects must be considered, as well as the
interaction between these two areas. In previous work,8

we investigated the use of fast multigrid solvers for high-
order implicit time-integration of unsteady flows on static
meshes. In this work, we extend our investigation to the
simultaneous development of robust and efficient unstruc-
tured mesh deformation techniques, as well as efficient
higher-order time-integration strategies, and investigate
the requirements for maintaining high time-accuracy in
the presence of deforming meshes.

Several mesh-deformation strategies, such as the tension
spring analogy,3,25 the torsion spring analogy5,20 and the
linear elasticity analogy,21 have been successfully demon-
strated in the literature. However, there exist wide dispar-
ities in robustness and efficiency of these various methods.
Our goal is to evaluate these various approaches and to
develop efficient solution algorithms for the most robust
mesh deformation strategies, suitable for long-time inte-
gration of large deformation, high-mesh resolution simula-
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tions on parallel computers.

For unsteady flow simulations, computational time re-
mains an important issue. When small temporal errors are
desired, higher-order time-integration (higher than second-
order) has been shown to be more efficient than low-order
time integration. Bijl, Carpenter and Vatsa4 investigated
and compared higher-order implicit Runge-Kutta schemes
and Backward Differencing schemes on structured grids,
while Jothiprasad, Mavriplis and Caughey8 showed how
a fourth order Runge-Kutta scheme (RK64) outperforms
second-order Backward Differencing scheme (BDF2) on
unstructured grids using a multigrid algorithm for solv-
ing the implicit system arising at each time step.

When dynamic meshes are used, the mesh velocities and
other parameters related to geometry need to be consid-
ered carefully so that the errors introduced by the defor-
mation of the mesh do not degrade the formal accuracy of
the flow simulation. The discrete geometric conservation
law (DGCL) provides a guideline on how to evaluate these
quantities. First-order and second-order time-accurate
and geometrically conservative schemes were presented
and discussed in,10,11 respectively. Guillard and Farhat
have proved that to obtain at least first-order time accu-
racy, a DGCL condition must be satisfied.6 For higher-
order time integration schemes, a DGCL strategy which
preserves the design order of the scheme must be explic-
itly constructed.

In addition to preserving time-accuracy, efficient solu-
tion strategies must be employed to avoid excessive com-
putational times for long-time integration problems. Non-
linear and linear multigrid methods have been investigated
previously for steady and unsteady flow simulations using
unstructured meshes.12,14,17 In this work we investigate
the use of unstructured agglomeration multigrid for the
time-integration of the unsteady flow equations, as well
as for the solution of the equations governing the mesh
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deformation.
In the following sections, we first outline the governing

equations and the base flow solver. We then discuss our
choice and implementation of a high-order time integration
scheme (BDF3), followed by a presentation of the geo-
metric conservation law (GCL), which must be respected
for this scheme. The various mesh deformation strategies
which have been investigated are then described, followed
by the multigrid and implicit line solution techniques used
for the flow and mesh motion equations. Finally, a set
of sample test cases is presented in order to illustrate the
performance of these methods.

Governing Equations in
Arbitrary-Lagrangian-Eulerian (ALE)

Form and Base Flow Solver
The Navier-Stokes equations in conservative form can

be written as:

∂U
∂t

+∇.(F(U) + G(U)) = 0 (1)

where U represents the vector of conserved quantities
(mass, momentum, and energy), F(U) represents the con-
vective fluxes and G(U) represents the viscous fluxes.
Integrating over a (moving) control volume Ω(t), we ob-
tain:
∫

Ω(t)

∂U
∂t

dV +
∫

∂Ω(t)

(F(U)·~n)dS+
∫

∂Ω(t)

(G(U)·~n)dS = 0

(2)
Using the differential identity

∂

∂t

∫

Ω(t)

UdV =
∫

Ω(t)

∂U
∂t

dV +
∫

∂Ω(t)

(ẋ · ~n)dS (3)

where ẋ and ~n are the velocity and normal of the interface
∂Ω(t), respectively,
equation (2) becomes:

∂

∂t

∫

Ω(t)

UdV +
∫

∂Ω(t)

(F(U)− ẋU) · ~ndS

+
∫

∂Ω(t)

G(U) · ~ndS = 0 (4)

Considering U as cell averaged quantities, these equations
are discretized in space as:

∂

∂t
(V U) + R(U, ẋ(t), ~n(t)) + S(U, ~n(t)) = 0 (5)

where R(U, ẋ, ~n) =
∫

∂Ω(t)
(F(U) − ẋU) · ~ndS represents

the discrete convective fluxes in ALE form, S(U, ~n) repre-
sents the discrete viscous fluxes, and V denotes the control
volume. In the discrete form, ẋ(t) and ~n(t) now represent
the time varying velocities and surface normals of the con-
trol volume boundary faces.

The Navier-Stokes equations are discretized by a central
difference finite-volume scheme with additional matrix-
based artificial dissipation on hybrid meshes which may
include triangular and quadrilateral elements in two di-
mensions, or tetrahedra, pyramids, prisms and hexahedra
in three dimensions. Second-order accuracy is achieved
using a two-pass construction of the artificial dissipation
operator, which corresponds to an undivided biharmonic
operator. A single unifying edge-based data-structure is
used in the flow solver for all types of elements. The
thin-layer form of the Navier-Stokes equations is employed
and the viscous terms are discretized to second-order accu-
racy by finite-difference approximation for non-simplicial
elements. For multigrid calculations, a first-order dis-
cretization is employed for the convective terms on the
coarse grid level.15,18

Higher-order Time Integration and the
Discrete Geometric Conservation Law

(GCL)
For unsteady flow simulations, a fully implicit time-

integration strategy is most often adopted, using either
multistep Backward Difference Formulas (BDF) or mul-
tistage Implicit Runge-Kutta (IRK) schemes. Although
first-order (BDF1) and second-order (BDF2) backwards
difference schemes are A-stable, higher-order multistep
BDF schemes (beyond second-order) are not A-stable.
However, the unstable region of the BDF3 scheme is very
small and this scheme has most often been used suc-
cessfully for unsteady flow simulations. Multistage IRK
schemes of high-order which are A-stable and L-stable
can easily be constructed. However, multiple nonlinear
problems need to be solved at each time step using IRK
schemes, which makes these more expensive alternatives
to the BDF schemes.4 In this paper, our discussion will
be limited to higher-order BDF schemes (i.e. BDF2 and
BDF3). The application of higher-order IRK schemes for
dynamic unstructured mesh problems is currently under
investigation.19

Equation (5) can be rewritten using the general formula
for a k-step backward difference scheme as4,8

α1(V U)n+1 +
1−k∑

i=0

αi(V U)n+i = ∆tR((V U)n+1, tn+1)

(6)
For the BDF3 scheme, the coefficients are given as: α1 =
11
6 , α0 = −3, α−1 = 3

2 , α−2 = − 1
3 . By defining a nonlinear

residual8

<n+1(U) ≡ <(Un+1) ≡ α1(V U)n+1 −
k−1∑

i=0

αi(V U)n−i

− ∆tR((V U)n+1, tn+1) (7)

the solution of equation (6) can be obtained by solving the
non-linear problem <n+1(U) = 0 at each time step. Two
different methods are used to solve the above equation: a
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nonlinear multigrid full approximation storage (FAS) ag-
glomeration method, and a linear agglomeration multigrid
(LMG) method used as a solver at each stage within an
approximate non-linear Newton iteration strategy. The
details of these two methods can be found in reference.8,17

To apply the multistep BDF scheme in the presence of
dynamic unstructured meshes, the so called geometric con-
servation law (GCL) should be satisfied to avoid degrading
the formal accuracy of the scheme. The original state-
ment of the geometric conservation law was introduced by
Thomas and Lombard24 for structured meshes. The dis-
crete geometric conservation law requires that the state
U = constant be an exact solution of equation (5). In this
case, we have S(U, ~n) = 0, since the viscous fluxes are
based on gradients of U. Additionally, we have:
∫

∂Ω(t)

(F(U)− ẋU) ·~ndS = R(U, ẋ, ~n) = −UR̄(ẋ, ~n) (8)

since the integral of the convective fluxes F(U) around a
closed control volume must be zero for constant U, for
any spatially conservative scheme, with R̄ referring to the
discretization of the second term in the above boundary
integral. Thus, the GCL can be stated, in semi-discrete
form as:

∂V

∂t
− R̄(ẋ(t), ~n(t)) = 0 (9)

The Geometric Conservation Law must be satisfied in
the discrete form, or so called Discrete Geometric Con-
servation Law. Lesoinne and Farhat11 presented a first-
order time-accurate backwards difference scheme (BDF1)
which obeys the discrete geometric conservative law, while
Koobus and Farhat9 derived a second-order accurate
backwards-difference scheme (BDF2) which obeys the dis-
crete conservation law. Because higher-order time in-
tegration has been found to outperform low-order time
integration for unsteady flow simulations,4,8 a third-order
time-accurate backwards-difference scheme (BDF3) which
obeys the discrete geometric conservation law is derived
according to the methods presented in9,11 and presented
below. The end result consists of a formula for computing
the appropriate values of the grid point velocities and con-
trol volume face normals at each time step, which preserve
both the formal accuracy of the BDF3 scheme, while re-
specting the GCL (i.e. admitting uniform flow as an exact
solution). The final scheme is given as:

−2∑

i=1

αi(V U)n+i = ∆tR((V U)n+1, tn+1, ẋ(t), ~n(t)) (10)

where
~n(t) = 1

2α1(~n1 + ~n2) + 1
2 (α1 + α0)(~n3 + ~n4)

− 1
2α−2(~n5 + ~n6)

ẋ(t) = 1
2∆t [α1(~xn+1 − ~xn) · (~n1 + ~n2)

+ (α1 + α0)(~xn − ~xn−1) · (~n3 + ~n4)
− α−2(~xn−1 − ~xn−2) · (~n5 + ~n6)]

The ~nk represents the normal vector of a control volume
boundary face evaluated at the different quadrature points

located between the locations n − 2 and n + 1 in time,
as detailed in the Appendix, while the xn−2, xn−1, xn

and xn+1 values refer to the grid point positions at the
respective physical time steps. A full derivation of the
GCL for BDF3 is given in the Appendix.

It should be noted that backward difference schemes
beyond second-order temporal accuracy are not A-stable.
However, for the third-order backward difference scheme,
the unstable region is very small and we have not encoun-
tered stability issues in our test cases. Implicit Runge-
Kutta schemes remain a viable alternative for achieving
higher-order with complete A-stability.4,8, 19

Mesh Moving Strategies
Tension spring analogy

The tension spring analogy is perhaps the oldest and
simplest strategy for unstructured mesh deformation (see
for example3). In this approach, each edge of the mesh
is represented by a spring whose stiffness is related to the
length of the edge. The governing equations are closely
related to a simple Laplace equation, as the displacements
in each coordinate direction become decoupled and are
governed by the equations:

(∆xi)m =
∑

j
kij((xj)m−(xi)m)∑

j
kij

, m = 1, 2, 3 (11)

where lij =
∑3

m=1((xi)m − (xj)m)2)
1
2 and kij = 1

lp
ij

. The

parameter p usually is set to 2.25 Although these equa-
tions are relatively simple to solve, this approach tends to
produce deformed meshes with collapsed or negative cell
volumes especially for the high aspect-ratio meshes used in
viscous flow problems. Since the Laplace equation obeys
a maximum principle, it is easily seen that this approach
is incapable of reproducing solid body rotation even in
the presence of high spring constants, since for example,
in the case of a pitching airfoil, this would require larger
displacements away from the airfoil surface.

Torsion spring analogy

Murayama20 improved the tension spring model by at-
taching torsion springs to each vertex. The stiffness of
these torsion springs is related to the angle:

kτ
ij =

1
sin2θk

(12)

As the angle θk → 0 or π, the stiffness kτ
ij →∞, thus the

additional torsion springs can prevent vertices from cross-
ing over edges or faces and avoid zero or negative cell areas
or volumes. Compared to the tension spring method, the
combination of tension spring and torsion springs is more
robust and easily applied to three dimensional meshes.20

Farhat has also presented a torsion spring method in ref-
erence.5
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Truss analogy

In the truss analogy method,5 each edge is represented
by a bar or spring. Compared to the spring method
presented above, the displacements of vertices in each di-
rection are coupled in the truss method. Based on the bar
equation,

d

dx

(
EA

du

dx

)
= 0 (13)

a global stiffness matrix can be assembled based on local
elemental matrices:22

[Ktruss] = EA
L

[
1 −1

−1 1

]
,

[Kglobal] =
[
RT

]
[Ktruss] [R]

(14)

where R is the transformation matrix and EA in the stiff-
ness matrix Ktruss is set to the reciprocal of the edge
length.

Linear elasticity analogy

Various researchers have used the linear elasticity equa-
tions to simulate mesh deformation, due to the robustness
of this approach.2,7, 21 The computational mesh is as-
sumed to obey the linear elasticity equation, which can
be written as:

∂σij

∂xi
= −fj , σ = Dε, ε = AU (15)

where, in three dimensions, the stresses σij , strains εij ,
and displacements Ui are given as:

σ = {σ11, σ22, σ33, σ12, σ23, σ31}T
,

ε = {ε11, ε22, ε33, ε12, ε23, ε31}T

U =
{

u v w
}T

and the remaining matrices are given as:

D = α




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2 − ν 0 0
0 0 0 0 1

2 − ν 0
0 0 0 0 0 1

2 − ν




A =




∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x




T

where

α =
E

(1 + ν)(1− 2ν)
(16)

and where E represents the modulus of elasticity, and ν is
the Poisson ratio for a solid material.
By introducing the shape functions N and U = NUe,
taken as linear shape functions in our case, and applying
a standard Galerkin method, we obtain

∫

Ω

(AN)T D(AN)UedS = −
∫

Ω

NT fdS (17)

which can be rewritten as

KU = F (18)

where
K =

∫
Ω
(B)T D(B)dS, F = − ∫

Ω
NT fdS, B = AN

In the mesh deformation case, the boundary displacements
are given, so that the external forces fj , of the force vec-
tor F are not required. Rather, the homogeneous problem
KU = 0 is solved, subject to Dirchlet conditions on the U
displacement vector. One advantage of the linear elas-
ticity approach, is that regions of large E (modulus of
elasticity) will be displaced as a solid body. Thus, an
appropriate prescription of the distribution of E can be
used to avoid severe mesh deformation in critical regions
of the mesh. We employ a distribution of E which is in-
versely proportional to the cell volume7 or to the distance
from the deforming boundaries, thus relegating much of
the mesh deformation to regions where the mesh is coarser
and can sustain larger relative deformations. This turns
out to be critical for avoiding invalid mesh cells in regions
of high mesh stretching. Note that the approach adopted
in reference21 is based on the Navier equations, which gov-
ern the displacements in a continuous medium of constant
modulus of elasticity, and therefore is not capable of sim-
ulating materials with variable E. On the other hand, in
reference,7 the inverse scaling of E with respect to the
cell volume is achieved implicitly by omitting the Jaco-
bian term in the integral equations. In our approach, we
explicitly prescribe a distribution of E throughout the do-
main for increased control in difficult cases.

Because the discrete linear elasticity equations are
assembled on an element basis, the edge-based data-
structure of the flow solver is insufficient for assembling the
linear elasticity equations in the presence of non-simplicial
elements, and an element data-structure must be main-
tained as well.

Acceleration Strategies
As mentioned previously, agglomeration multigrid

methods are used to accelerate the solution of the non-
linear problem arising at each time step of the unsteady
flow equations. Agglomeration multigrid was originally de-
veloped as a steady-state solver for the Euler and Navier-
Stokes equations on unstructured grids.12,14,15,17 The
idea of multigrid is to accelerate the solution on a fine
grid by iteratively computing corrections to the fine grid
problem on coarser grid levels where the cost of the it-
erations are lower, and the global error components are
more easily reduced. Figures 1a-d show an example of the
agglomeration multigrid procedure. Figure 1a shows the
fine grid, while Figure 1b-d shows the 2nd, 3rd and 4th
level coarse grid where each coarse cell is the combination
of several fine cells. The agglomeration multigrid methods
are also used to accelerate the solution of the mesh mo-
tion problems and share the same the coarse level meshes
as the flow solver.
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Fig. 1 Illustration of agglomeration multigrid and
implicit line construction.

For high Reynolds number viscous flow, when highly
stretched meshes are required to capture the thin bound-
ary layer regions near the wall, the effectiveness of the
multigrid approach degrades due to the anisotropic stiff-
ness induced by the grid stretching. To relax this stiffness,
an implicit line solution technique was introduced in.13,16

The lines are constructed along the strong coupling direc-
tion in the mesh, as shown by the example depicted in
Figure 1e-f for an unstructured mesh about a NACA0012
airfoil. In these regions, a block tridiagonal algorithm is
used to solve all quantities along each line implicitly, thus
replacing the simple explicit approach on all grid levels.
A non-linear as well as a linear agglomeration multigrid
algorithm based on line solvers has been used to solve the
implicit time-integration problem for the flow equations.
The various forms of the governing equations for mesh
deformation presented above have also been solved using
the line-based agglomeration multigrid algorithm, using
the same line structures and coarse levels as for the flow
solver.

For multigrid computations, the Gauss-Seidel iterative

method provides excellent smoothing characteristics and is
easily applied for two-dimensional problems on serial com-
puters. However, for three dimensional problems, which
must usually be executed on parallel computing hardware,
the Gauss-Seidel method suffers from reduced parallel ef-
ficiency. The Chebyshev iterative method is an alterna-
tive smoother which delivers better smoothing rates than
Jacobi methods, approaching the smoothing characteris-
tics of Gauss-Seidel, without reduced parallel efficiency.
Adams1 investigated the performance of the Chebyshev
method versus the Gauss-Seidel method for parallel multi-
grid smoothers, and demonstrated better overall efficiency
using the Chebyshev smoother versus the Gauss-Seidel
smoother for parallel computations. The Chebyshev itera-
tive method belongs to the class of polynomial smoothers
and can be written as

xn+1 = xn +
∑

0≤k≤m

αkAk(b−Axn) (19)

for the linear system Ax = b. When m = 0, the Cheby-
shev method reduces to the Jacobi iterative method. The
coefficients of the Chebyshev method are computed by
the Chebyshev polynomial and two other eigenvalues λa

and λb. The Chebyshev iteration is designed to minimize
the errors for frequencies in the range between λa and
λb. When coupled with multigrid, λa usually is set to the
maximum eigenvalue and λa is set to the value between
the maximum and minimum eigenvalue in order to damp
high frequency errors. One drawback of the Chebyshev
method is that the maximum eigenvalue of the stiffness
matrix needs to be calculated. However, in our case, the
Chebyshev method is used in mesh motion calculations
and the maximum eigenvalue can be computed and saved
in the beginning of the simulation and used at each time
step. The details of theory and implementation for the
Chebyshev smoother can be found in references1,23

Results and Discussion
Mesh motion strategies

Several large deflection/deformation problems are pre-
sented to compare the quality of the meshes generated by
the different mesh motion strategies. A NACA0012 airfoil
is forced to oscillate around the quarter chord point with
the angle of attack given as α = αmaxsin(ft), where αmax

is set to 60◦. Two meshes are considered for this config-
uration. The first mesh is an isotropic grid, suitable for
inviscid flow simulations, which consists of 2139 nodes and
is shown in Figure 2. The second one is a highly stretched
mesh suitable for viscous flow calculations, which consists
of 42960 nodes and is shown in Figure 3. The viscous mesh
is highly stretched near the airfoil and the height of the
first cell near the solid wall is 10−6 airfoil chords.

Figures 2a-c show the inviscid mesh configurations
which result at the 60◦ pitching location for the spring
analogy, truss analogy, and linear elasticity analogy mesh
motion equations. The minimum cell area is plotted as
a function of pitching angle in Figure 2d for the various
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Fig. 2 Comparison of different mesh motion strategies
for two-dimensional inviscid mesh case.

mesh motion strategies. Because the spring analogy is in-
capable of reproducing solid body rotation displacements
in regions near the airfoil, extreme mesh skewing results,
leading to negative cell volumes prior to the airfoil reaching
the 60◦ pitching angle. The other mesh motion methods
are successful in avoiding negative cell areas up to the max-
imum pitching angle.

Figure 3a-d show the equivalent results for the
anisotropic viscous mesh at a pitching angle of 60◦ for the
spring analogy, truss analogy and linear elasticity anal-
ogy mesh motion equations. Two linear elasticity mesh
motion cases are considered: one where the modulus of
elasticity E is prescribed as a constant value throughout
the domain, and another where E is prescribed as inversely
proportional to the cell area. Negative area mesh cells (in-
terior to the airfoil surface) are observed for the truss and
constant E linear elasticity methods in Figures 3 b and
c. The variable modulus of elasticity (E) linear elastic-
ity approach is is shown to be the most robust method,
since only this approach is capable of producing a valid
mesh at the maximum pitching angle. Figure 3e-f shows
a closeup of the mesh in the the mid-chord region near
the airfoil wall, illustrating the relative mesh deformation
which occurs near the airfoil surface for the spring analogy
approach, as compared to the mesh produced by the linear
elasticity approach, which is relatively undeformed in this
region, since it tends to be displaced as a solid body trans-
lation and rotation under the variable E linear elasticity
approach.

Figure 4a illustrates a three-dimensional unstructured
mesh about a wing-body configuration in which a large
spanwise deflection has been prescribed at the wing sur-
face, thus inducing a deformation in the mesh, which was
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Fig. 3 Comparison of different mesh motion strategies
for two-dimensional viscous mesh case.

generated with the wing in the original horizontal position.
This mesh is highly stretched near the aircraft surface,
with a normal spacing of approximately 10−6 chords on the
wing surface, and contains a total of 473,025 vertices. The
linear elasticity method (with E prescribed as inversely
proportional to the cell volume) was the only method ca-
pable of producing a valid mesh for this case. Figure 4b
shows the minimum cell volume in the mesh vs. the time
t. The time t=2.5 corresponds the wing position shown in
Figure 4a.

Convergence of the mesh motion equations

The convergence of the mesh motion equations for the
inviscid two-dimensional pitching airfoil problem is de-
picted in Figures 5a-b, for the spring analogy equations,
and the linear elasticity equations (with variable E), re-
spectively. A block Gauss-Seidel smoothing approach is
used either on the fine grid as a solver, or as a smoother on
each grid level of the multigrid sequence. The residuals are
reduced by 10 orders of magnitude in these examples in or-
der to examine the effectiveness of the solution strategies,
although such stringent convergence criteria would nor-
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Fig. 4 Illustration of three-dimensional viscous mesh
deformation problem and minimum cell size as a func-
tion of spanwise deflection.
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Fig. 5 Convergence history for mesh motion strategies
for two-dimensional inviscid grid problem.

mally not be required in the context of a dynamic mesh
flow simulation. A three-level multigrid scheme using 6
Gauss-Seidel smoothing passes on each level achieves over
10 orders of residual reduction for the spring analogy equa-
tions for this case. This rapid multigrid convergence is
expected, since the spring analogy equations correspond to
scaled Poisson equations, which are easily solved by stan-
dard multigrid methods. The multigrid scheme achieves
close to an order of magnitude speedup over the single grid
scheme in this case. The convergence of the linear elas-
ticity equations without multigrid is substantially slower
than that of the spring analogy equations, even for this rel-
atively simple test case. However, the multigrid algorithm
applied to these equations achieves 10 orders of residual
reduction in 65 multigrid cycles, which is only a factor of
2 slower than that achieved for the spring analogy equa-
tions.

The convergence rates for the spring analogy and linear
elasticity (with variable E) analogy equations for the vis-
cous airfoil grid are depicted in Figures 6a-b. In this case,
a four level multigrid scheme is employed, with 6 point or
line Gauss-Seidel smoothing passes on each grid level. For
both mesh motion analogies, the single grid point-Gauss-
Seidel and even the multigrid point-Gauss-Seidel solvers
converge relatively slowly, due to the stiffness associated
with the highly stretched cells in the boundary layer and
wake regions for this viscous mesh. In fact, the single grid
line-Gauss-Seidel approach converges more effectively than
the point-Gauss-Seidel approach with multigrid. However,
the line-Gauss-Seidel multigrid scheme provides the fastest
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Fig. 6 Convergence history for mesh motion strategies
for two-dimensional viscous grid problem.

convergence, reducing the residuals by over 9 orders of
magnitude in both cases in 50 cycles. The convergence
rates achieved by this approach for the viscous anisotropic
mesh are close to those achieved on the inviscid isotropic
mesh of the previous example.

The effectiveness of the line solver for the mesh motion
equations is demonstrated in Figures 7a-c, where the airfoil
trailing edge undergoes a vertical displacement from y = 0
to y = −0.01. After ten point-Gauss-Seidel multigrid it-
erations, the highly stretched wake cells near the trailing
edge are severely distorted, as their computed displace-
ments remain far from convergence. However, after ten
single grid line-Gauss-Seidel passes, the mesh structure in
this region is much better behaved, although still not fully
converged. The effect of the line solver is to rapidly prop-
agate surface displacements through these boundary layer
and wake cells. In fact, boundary layer cells in regions of
low surface curvature are often displaced approximately as
a solid body, due to the instantaneous propagation of the
surface displacements along the lines by the line solver,
often producing a valid mesh in these regions in a single
line solver pass. In the current example, after ten multi-
grid cycles using the line-Gauss-Seidel smoother, the grid
point displacements are nearly fully converged, as shown
in Figure 7c.

Figure 8 depicts the convergence achieved for the linear
elasticity equations for the same case, using point and line-
Jacobi smoothers in the place of Gauss-Seidel smoothers.
The convergence of the Jacobi smoothers is substantially
slower than that achieved with the Gauss-Seidel smoothers
for these equations, more so than the typical factor of 2
observed for Poisson type equations. This is due to the
fact that the discrete linear elasticity equations are not
necessarily diagonally dominant, and Gauss-Seidel pro-
vides much better smoothing characteristics than Jacobi
or under-relaxed Jacobi methods. The convergence of the
Chebyshev smoother, optimized for high-frequency damp-
ing, is shown to provide convergence of the multigrid algo-
rithm which is only slightly slower than the Gauss-Seidel
approach. While the line-Gauss-Seidel driven multigrid
scheme achieves a residual reduction of 14 orders of magni-
tude in 60 iterations, the line-Chebyshev driven multigrid
scheme achieves the same residual reduction in just 80 iter-
ations. The advantage of the Chebyshev smoother is that
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Fig. 7 Comparison of a deforming mesh configuration
after 10 multigrid cycles using point-smoother, after
10 single grid cycles using line smoother, and after 10
multigrid cycles using line smoother.
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Fig. 8 Convergence history for Jacobi, Gauss-
Seidel and Chebyshev smoothers for linear elasticity
mesh motion analogy for two-dimensional and three-
dimensional test case.

it is more fully parallelizable than a Gauss-Seidel strategy.
For there reasons, only the Jacobi and Chebyshev

smoothers are implemented in the three-dimensional
case. Figure 8b compares the convergence of the three-
dimensional deforming viscous mesh case, using line-
Jacobi, line-Jacobi driven multigrid, and line-Chebyshev
driven multigrid, using a three-level multigrid scheme.
The convergence rate of the line-Jacobi multigrid scheme is
approximately twice as fast as the single grid line-Jacobi
approach, while the line-Chebyshev multigrid scheme is
four times faster than the line-Jacobi multigrid scheme,
illustrating the superior high-frequency damping proper-
ties of the Chebyshev smoother. At this rate, the solution
of the mesh motion equations for linear elasticity repre-
sents a small fraction of the overall solution time within
an unsteady flow solution problem.

Time-Accuracy Validation for Dynamic Unstructured
Mesh Problem

The temporal accuracy of the GCL compliant 2nd-
order (BDF2) and third-order (BDF3) backwards-
difference time-integration schemes is examined for a two-
dimensional dynamic mesh viscous flow problem. The
test case consists of an oscillating cylinder of unit diam-
eter, which undergoes a vertical displacement given by
y = Asin(ft), where A = 0.1 and f = 0.1π. The two-
dimensional unstructured mesh consists of 19012 nodes
and 37632 triangles. The mesh on the cylinder surface
is displaced according to the prescribed cylinder motion,
while the outer boundary of the domain is held fixed. The
mesh deformation is modeled using the spring analogy ap-
proach and the Gauss-Seidel multigrid method is used to
solve the mesh motion equations at each time step. The
freestream Mach number of the flow is M = 0.2, and the
Reynolds number is Re = 185. Figure 9a shows the en-
tropy contours for this case at the time step corresponding
to t = 65. Figure 9b shows the comparison in the lift coef-
ficients as a function of physical time, for the third-order
BDF3 scheme using different time steps, showing good
agreement for the cases computed using the two finest time
steps. In Figure 9c, the temporal error as a function of the
physical time step is plotted in log-log format. The tem-
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Fig. 9 Flow solution and measured temporal error
as a function of time step size for BDF2 and BDF3
schemes for two-dimensional oscillating cylinder.

poral error is defined as the difference in the lift coefficient
at t = 65 between the considered solution and a reference
solution computed with a smaller time step of 0.078 using
the BDF3 scheme. The slope of the BDF2 scheme in the
figure is 2.0, indicating that design accuracy is achieved,
while the slope of the BDF3 error curve is 2.85, which is
close to the design accuracy of 3. To achieve an error of
5× 10−3, the time steps required for BDF2 and BDF3 are
0.258 and 0.512, respectively. Considering that the CPU
time for BDF2 and BDF3 are nearly identical, the BDF3
scheme is seen to be approximately twice as efficient for
this case, with larger benefits occurring for lower temporal
error tolerances.

Three-Dimensional Inviscid Unsteady Flow
Simulation

A three-dimensional unsteady flow simulation with a
dynamically deforming mesh is computed for an ONERA
M6 wing undergoing a forced twisting motion. The three-
dimensional unstructured mesh for the M6 wing consists
of 53961 vertices and 287962 tetrahedrons, and is depicted
in Figure 10a. A four level agglomeration multigrid al-
gorithm is used, where the same agglomerated levels are
shared for the flow and dynamic mesh motion equation
solvers. The freestream Mach number is M = 0.84, and
the initial incidence is α = 3.06o. The computation is di-
vided to two parts. First, the steady-state flow over the
stationary wing is computed. This flow-field, which is illus-
trated in Figure 10b, is then used to initialize the twisting
wing calculation, during which the wing is forced to twist
around the quarter chord line, with the angle of attack
given as α = αmsin(ft), where αm is set to 2.51◦ at the
wing tip, and αm varies linearly from this value to zero at
the wing root, and the reduced frequency is 0.1628.

The computed unsteady lift and drag coefficients for
the twisting wing are shown in Figure 10c. These cal-
culations are performed using the second-order backwards
difference scheme (BDF2), with a time step of ∆t = 2.0.
At each physical time-step, the non-linear residuals for the
flow equations are converged using either the linear multi-
grid scheme or the non-linear multigrid scheme, and the
spring analogy mesh-motion equations are converged using
a Jacobi-driven multigrid scheme with 3 Jacobi smoothing
passes on each level. Figures 11a-b and 12a-b examine
the convergence efficiency of the linear multigrid scheme
as a function of the number of smoothing passes and the
number of linear multigrid cycles per non-linear update.
In Figure 11a-b, using two linear multigrid cycles per
non-linear update, the optimal convergence of the non-
linear flow solution in terms of cpu-time is obtained with
3 smoothing passes on each grid level (even though larger
numbers of smoothing passes produce faster convergence
rates on a multigrid cycle basis). Note that the system
diverges for insufficient numbers of smoothing passes. In
Figure 12a-b the non-linear convergence per multigrid cy-
cle is seen to asymptote to a lower bound as the number of
linear multigrid cycles is increased, due to the fact that the
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Fig. 11 Effect of the number of smoothing iterations
on overall convergence of linear multigrid scheme for
twisting ONERA M6 wing case.
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Fig. 12 Effect of number of linear multigrid cycles (per
non-linear update) on overall convergence for twisting
ONERA M6 wing case.
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Fig. 13 Comparison of non-linear multigrid and linear
multigrid convergence in terms of non-linear iterations
and cpu time for twisting ONERA M6 wing case.

linear multigrid solver operates on an approximate (first-
order accurate) Jacobian of the non-linear flow equations
(i.e. linear multigrid is used to drive an approximate New-
ton scheme of the non-linear flow equations). In terms of
cpu-time, the optimal convergence efficiency is obtained
with 2 linear multigrid cycles at each non-linear update.
Using the optimal parameters for the linear multigrid ap-
proach, the convergence efficiency of the non-linear flow
residual at a given time step is compared for the opti-
mized linear multigrid method, and the non-linear (FAS)
multigrid method, which uses the same coarse levels, and
a three-stage multi-stage Jacobi-preconditioned smoother
on each grid level. In Figure 13a, the linear multigrid
scheme is seen to be approximately twice as fast as the
non-linear multigrid scheme, based on the number of non-
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linear residual updates, which is expected, since the linear
multigrid scheme performs twice as many multigrid cycles
as the non-linear multigrid scheme per non-linear update,
and the two schemes can be expected to converge at the
same asymptotic rates per multigrid cycle.17 However, in
terms of cpu time, the linear multigrid scheme is substan-
tially faster than the non-linear scheme, due to the lower
cost of the linear multigrid iterations. Table 1 shows the
required cpu time for a non-linear flow-solution time step
solution, using the non-linear (FAS) multigrid approach,
the optimized linear multigrid approach, and the cpu time
required to converge the mesh motion equations to the
equivalent level of accuracy as the flow equations (eight
orders of residual reduction). The table shows that the lin-
ear multigrid approach is more than four times as efficient
as the non-linear multigrid solver for the flow equations,
while the mesh motion equations require of the order of
10% or less of the time required to solve the unsteady
flow solution problem at a given time step. In practice,
less stringent convergence tolerances may be employed for
unsteady dynamic mesh flow simulations, but the relative
performances of these solvers should remain approximately
the same.

NMG LMG Mesh MG
159s 34s 3.48s

Table 1 A comparison of the cpu time required for
an 8 order of magnitude reduction in the unsteady
flow residual at a given time step, using the non-linear
multigrid (NMG) scheme, and the linear multigrid
scheme (LMG), and the cpu time required for an equiv-
alent convergence level of the mesh motion equations
using multigrid.

Conclusions
Techniques for the efficient solution of unsteady flow

dynamic mesh motion problems have been developed. A
third-order backwards difference time-integration scheme
which respects the discrete GCL has been developed and
validated on a two-dimensional viscous flow problem. Var-
ious mesh-motion strategies have been investigated, and
the linear elasticity method, using a variable prescription
of the modulus of elasticity has been found to be the most
robust method. Agglomeration multigrid methods are de-
veloped for solving the flow and mesh motion equations,
using the same coarse agglomerated levels for both sets of
equations. A line-implicit driven multigrid approach re-
sults in an effective solver for the mesh-motion equations
on highly-stretched viscous meshes, with line-Gauss-Seidel
or line-Chebyshev smoothers proving particularly effective
for the linear elasticity mesh motion equations. For the
flow equations, a linear multigrid approach operating on an
approximate Newton method for the full non-linear prob-
lem outperforms the use of a non-linear (FAS) multigrid
solver applied directly to the flow equations at each time
step. The combined solution of the mesh motion and flow
solution equations is demonstrated on a three-dimensional

inviscid flow problem, where it is shown that the mesh
motion solution requires a small fraction of the overall
cpu time at each time step. Future work is underway to
derive and implement higher-order implicit Runge-Kutta
time-integration strategies which respect the GCL. These
techniques will also be applied to large three-dimensional
viscous turbulent flow simulations, for the purposes of sim-
ulating aeroelastic effects.
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Appendix
Apply a third order backward difference scheme

−2∑

k=1

αn+kV n+kun+k = ∆tn
∑

R(un+1, n, ẋ) (20)

The above third order scheme satisfies the GCL if

−2∑

k=1

αn+kV n+ku∞ = ∆tn
∑

R(u∞, n, ẋ)

= u∞∆tn
∑

G(n, ẋ)

= u∞

∫ tn+1

tn

∫

∆

ẋ · n̂dsdt (21)

For the right hand side, let

In
∆ =

∫ tn+1

tn

∫

∆

ẋ · n̂dsdt

x(t) = η1x1(t) + η2x2(t) + (1− η1 − η2)x3(t)
ẋ(t) = η1ẋ1(t) + η2ẋ2(t) + (1− η1 − η2)ẋ3(t) (22)

where
η1 ∈ [0, 1], η2 ∈ [0, 1− η1], t ∈ [tn, tn+1]
xi(t) = ξn+1(t)xn+1

i + ξn(t)xn
i + ξn−1(t)xn−1

i

−(1− ξn−1(t)− ξn(t)− ξn+1(t))xn−2
i , i = 1, 2, 3

ξn+1(tn+1) = 1, ξn+1(tn) = 0
ξn(tn+1) = 0, ξn(tn) = 1
ξn−1(tn+1) = 0, ξn−1(tn) = 0
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Then

In
∆ =

∫ tn+1

tn

∫ 1

0

∫ 1−η1

0

(η1ẋ1 + η2ẋ2 + (1− η1 − η2)ẋ3)

·(∆x13 ×∆x23)dη2dη1dt

=
∫ tn+1

tn

1
6
(ẋ1 + ẋ2 + ẋ3) · (∆x13 ×∆x23)dt

=
1
6

∫ tn+1

tn

f · gdt (23)

where
∆x13 = x3 − x1, ∆x23 = x3 − x2

f = ẋ1 + ẋ2 + ẋ3

= ξ̇n+1(xn+1
1 + xn+1

2 + xn+1
3 )

+ ξ̇n(xn
1 + xn

2 + xn
3 )

+ ξ̇n−1(xn−1
1 + xn−1

2 + xn−1
3 )

− (ξ̇n+1 + ξ̇n + ξ̇n−1)(xn−2
1 + xn−2

2 + xn−2
3 )

g = [ξn+1∆xn+1
13 + ξn∆xn

13 + ξn−1∆xn−1
13 +

(1− ξn−1 − ξn − ξn+1)∆xn−2
13 ]×

[ξn+1∆xn+1
23 + ξn∆xn

23 + ξn−1∆xn−1
23 +

(1− ξn−1 − ξn − ξn+1)∆xn−2
23 ]

Using a six-point integration rule to approximate the In
∆

In
∆ ≈ Ĩn

∆ =
∆tn

6

6∑

k=1

ωkfk · gk

fk = ξ̇pk
n+1(x

n+1
1 + xn+1

2 + xn+1
3 ) +

ξ̇pk
n (xn

1 + xn
2 + xn

3 ) +

ξ̇pk
n−1(x

n−1
1 + xn−1

2 + xn−1
3 ) +

(ξ̇pk
n+1 + ξ̇pk

n + ξ̇pk
n−1)(x

n−2
1 + xn−2

2 + xn−2
2 )

gk = [ξpk
n+1∆xn+1

13 + ξpk
n ∆xn

13 + ξpk
n−1∆xn−1

13 +

(1− ξpk
n−1 − ξpk

n − ξpk
n+1)∆xn−2

13 ]×
[ξpk

n+1∆xn+1
23 + ξpk

n ∆xn
23 + ξpk

n−1∆xn−1
23 +

(1− ξpk
n−1 − ξpk

n − ξpk
n+1)∆xn−2

23 ]

ξpk
(•) = ξ(•)(tpk)

ξ̇pk
(•) = ξ̇(•)(tpk)

For the left hand side, let

Jn
∆ = αn+1V

n+1 + αnV n + αn−1V
n−1 + αn−2V

n−2

= αn+1(V n+1 − V n) + (αn+1 + αn)(V n − V n−1)−
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αn−2(V n−1 − V n−2)

= αn+1

∫ tn+1

tn

∫

∆

ẋ · x̂dsdt +

(αn+1 + αn)
∫ tn

tn−1

∫

∆

ẋ · n̂dsdt−

αn−2

∫ tn−1

tn−2

∫

∆

ẋ · n̂dsdt

According to,11
∫ tn+1

tn

∫
∆

ẋ · n̂dsdt,
∫ tn

tn−1

∫
∆

ẋ · n̂dsdt,∫ tn−1

tn−2

∫
∆

ẋ · n̂dsdt can be evaluated exactly, so
Jn

∆ = αn+1
18 (∆xn

1 + ∆xn
2 + ∆xn

3 )·
(∆xn+1

13 ×∆xn+1
23 + 1

2∆xn
13 ×∆xn+1

23 +
∆xn

13 ×∆xn
23 + 1

2∆xn+1
13 ×∆xn

23)+
αn+1+αn

18 (∆xn−1
1 + ∆xn−1

2 + ∆xn−1
3 )·

(∆xn
13 ×∆xn

23 + 1
2∆xn−1

13 ×∆xn
23+

∆xn−1
13 ×∆xn−1

23 + 1
2∆xn

13 ×∆xn−1
23 )+

αn−2
18 (∆xn−2

1 + ∆xn−2
2 + ∆xn−2

3 )·
(∆xn−1

13 ×∆xn−1
23 + 1

2∆xn−2
13 ×∆xn−1

23 +
∆xn−2

13 ×∆xn−2
23 + 1

2∆xn−1
13 ×∆xn−2

23 )
where ∆xm

i = xm+1
i −xm

i , i = 1, 2, 3 and m = n, n−1, n−2
To satisfy the GCL, set

Ĩn
∆ = Jn

∆ (24)

The relations below satisfy the DGCL above
δ1 = 1

2 (1 + 1√
3
) δ1 = 1

2 (1 + 1√
3
)

ξp1
n+1 = δ1 ξp2

n+1 = δ2 ξp3
n+1 = 0

ξp4
n+1 = 0 ξp5

n+1 = 0 ξp6
n+1 = 0

ξp1
n = δ2 ξp2

n = δ1 ξp3
n = δ1

ξp4
n = δ2 ξp5

n = 0 ξp6
n = 0

ξp1
n−1 = 0 ξp2

n−1 = 0 ξp3
n−1 = δ2

ξp4
n−1 = δ1 ξp5

n−1 = δ1 ξp6
n−1 = δ2

ξ̇p1
n+1 = 1

∆t ξ̇p2
n+1 = 1

∆t ξ̇p3
n+1 = 0

ξ̇p4
n+1 = 0 ξ̇p5

n+1 = 0 ξ̇p6
n+1 = 0

ξ̇p1
n = − 1

∆t ξ̇p2
n = − 1

∆t ξ̇p3
n = 1

∆t

ξ̇p4
n = 1

∆t ξ̇p5
n = 0 ξ̇p6

n = 0
ξ̇p1
n−1 = 0 ξ̇p2

n−1 = 0 ξ̇p3
n−1 = − 1

∆t

ξ̇p4
n−1 = − 1

∆t ξ̇p5
n−1 = 1

∆t ξ̇p6
n−1 = 1

∆t

ω1 = ω2 = 1
2αn+1

ω3 = ω4 = 1
2 (αn+1 + αn)

ω5 = ω6 = − 1
2αn−2

Then
xp1

j = δ1x
n+1
j + δ2x

n
j ẋp1

j = ẋp2
j =

xn+1
j

−xn
j

∆t

xp2
j = δ2x

n+1
j + δ1x

n
j

xp3
j = δ1x

n
j + δ2x

n−1
j ẋp3

j = ẋp4
j =

xn
j −xn−1

j

∆t

xp4
j = δ2x

n
j + δ1x

n−1
j

xp5
j = δ1x

n−1
j + δ2x

n−2
j ẋp5

j = ẋp6
j =

xn−1
j

−xn−2
j

∆t

xp6
j = δ2x

n−1
j + δ1x

n−2
j

where j = 1, 2, 3
~n = 1

2αn+1(~n1 + ~n2)− 1
2αn−2(~n5 + ~n6)

1
2 (αn+1 + αn)(~n3 + ~n4)

ẋ = 1
2∆tαn+1(xn+1 − xn) · (~n1 + ~n2)+
1

2∆t (αn+1 + αn)(xn − xn−1) · (~n3 + ~n4)+
1

2∆tαn−2(xn−1 − xn−2) · (~n5 + ~n6)

where αn+1 = 11
6 , αn = −18

6 , αn−1 = 9
6 , αn−2 = −2

6
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