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In this paper, gradient/Hessian-enhanced surrogate models have been developed based 
on Kriging approaches. The gradient/Hessian-enhanced Kriging methods have been 
developed based on direct and indirect formulations. The efficiencies of these methods are 
compared by analytical function fitting, aerodynamic data modeling and 2D airfoil drag 
minimization problems. For the aerodynamic problems, efficient CFD gradient/Hessian 
calculation methods are utilized that make use of adjoint and automatic differentiation 
techniques. The gradient/Hessian-enhanced surrogate models are shown to be useful in the 
development of efficient design optimization, aerodynamic database construction, and 
uncertainty analysis. 

I. Introduction 
umerical design optimization in the field of aerospace engineering is becoming more commonplace largely due 
to the maturity of Computational Fluid Dynamics (CFD) tools and the increase in computer hardware 

performance. Although gradient-based local optimization approaches are computationally efficient, more global 
optimization techniques are often required as the design space becomes more complex. The major bottleneck of 
aerodynamic design optimization with global search methods, such as genetic algorithms (GA), is the large number 
of required CFD function evaluations which can easily exceed several thousand, making these methods impractical 
for use with high-fidelity CFD tools. 

Recently, global optimization approaches based on surrogate models have been gaining popularity as 
alternatives for reducing the cost of global methods. The idea of a surrogate model is to replace expensive 
functional evaluations (i.e. high-fidelity CFD simulations) with an analytical model which is constructed through 
selective sampling of the high-fidelity model. When a surrogate model is constructed with given training data, the 
most promising locations in the model are explored at very low computational cost. The accuracy of surrogate 
models can be increased efficiently by adding the exact function information in the most promising locations. This 
approach can save a lot of computational cost and enables the exploration of wider design space more efficiently. In 
Ref.[1], the performances of major surrogate models, such as least square polynomial, multi-layer perceptron, radial 
basis function (RBF) and Kriging, have been compared for a two dimensional turbomachinery problem. The Kriging 
and RBF models showed the best performance during this investigation. The Kriging model, which was originally 
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developed in the field of geological statistics, has often been found to perform well in other engineering fields and 
has thus gained popularity in aerospace engineering1-12. This surrogate model predicts the function value by using 
stochastic processes, and has the flexibility to represent multimodal/nonlinear functions. 

Because efficient gradient evaluation methods based on adjoint formulations have been developed and applied 
successfully in the field of aerodynamics13-19, the introduction of gradient information within surrogate models as 
additional training data has also attracted attention. Two gradient-enhanced Kriging (called cokriging or GEK) 
approaches have been developed and beneficial results have been shown in the literature6,9,10,12. Additionally, 
efficient CFD Hessian evaluation methods have been developed recently20, details of which are described in 
Subsection V.A. In this approach, the Hessian matrix of a CFD functional output with respect to design variables 
can be calculated efficiently by using the adjoint method and automatic differentiation (AD) tools such as 
TAPENADE21. Thus it is promising to utilize the Hessian information within surrogate models to enhance the 
accuracy of the surrogate model. 

In addition to design optimization problems, surrogate models can be used to reduce the computational 
expense of creating aerodynamic database, and for uncertainty quantification22,23. For aerodynamic database 
construction, a surrogate model may be used to reduce the overall number of simulations required to fill out the 
entire flight envelope. With respect to uncertainty quantification, although most high-fidelity CFD computations 
typically assume perfect knowledge of all parameters, there is much uncertainty in reality due to manufacturing 
tolerances, in-service wear-and-tear, approximate modeling parameters and so on. The most straightforward and 
accurate method for uncertainty analysis is a full nonlinear Monte-Carlo (MC) simulation. Although this method is 
easy to implement, it is still prohibitively expensive for high-fidelity CFD computations. Moment methods based 
on Taylor series expansions represent an alternative strategy to assess uncertainty, by estimating the mean and 
standard deviation of the output function. The use of a surrogate model is another approach for dramatically 
reducing the computational cost of uncertainty analysis, because the surrogate model is an analytic representation 
of the design space. Thus, the surrogate model can be utilized for an Inexpensive Monte-Carlo (IMC) simulation to 
obtain not only mean and standard deviation, but also an approximate probability density function (PDF) of the 
output function. The accurate response surfaces enhanced by gradient and Hessian information can increase the 
accuracy of uncertainty analysis based on an IMC simulation. 

In this paper, gradient/Hessian-enhanced surrogate models are proposed based on Kriging approaches for 
efficient design optimization, aerodynamic database construction and uncertainty analysis. The efficiencies are 
investigated using analytical function fitting, aerodynamic data modeling and 2D airfoil drag minimization 
problems. 

 
II. Kriging Model 

In this section, gradient/Hessian-enhanced Kriging model approaches are proposed based on indirect/direct 
formulations. First, the basics of conventional Kriging, as well as direct and indirect GEK approaches are reviewed. 
Then, the two GEK approaches are extended to gradient/Hessian-enhanced Kriging models. 
A. Conventional Kriging, direct/indirect GEK approaches 

The Kriging method is a statistical prediction of a function from a set of exact function values obtained with 
arbitrary design variables or input parameters. Kriging prediction depends on the spatial correlations between given 
sample points. The correlation is given by a correlation function which is only dependent on the distance between 
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two points. These correlations are considered in a matrix (called correlation matrix) which appears in the Kriging 
formulation. The size of the matrix is nn× , where n  is the number of sample points. The formulation details 
are given in Subsection II.C for the case of a gradient/Hessian-enhanced direct Kriging model. 

For a GEK model, the gradient information at several sample points is also used for the construction of the 
Kriging model. In the case of direct GEK, the gradient information is directly used in the modified Kriging 
formulation by including the correlations between function/gradient and gradient/gradient. These correlations can 
be modeled by differentiating the correlation function. If all sample points have function and gradient information, 
the size of the correlation matrix is ( )mn +1 , where m  is the dimensionality of the design space (i.e. number of 
design variables), and n  is the number of sample points, as previously. 

The formulation of the indirect GEK is exactly the same as that of the original Kriging model although 
additional sample points are introduced using the gradient information. In this case, the additional sample points 
are created around a real sample point (i.e. a point where function and gradient information is evaluated) based on 
a first-order Taylor approximation as follows: 
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where ix  and ( )i
y x  are the location and exact function value of a real sample point, respectively. add

ix  and 

( )add
i

y
x

 are the location and approximated function value of an additional sample point. x∆  is a user-specified 
step size vector for the relative location of the additional sample point. Usually, one additional point is created in 
each direction of the design variable space as illustrated in Fig.1a (in total m  additional points per real sample 
point). After augmentation of the sample points, the indirect GEK model is created by using both real and 
additional sample point information. If all sample points have function and gradient information, the total number 
of sample points is ( )mn +1 , which is the same as the size of the direct GEK correlation matrix. The advantage 
of the indirect GEK over the direct approach is the ease of implementation of the indirect GEK. On the other hand, 
the major disadvantage of indirect GEK is the issue associated with the step size used for creating additional 
sample points x∆ . Very small step sizes can lead to an ill-conditioned correlation matrix in the Kriging 
formulation due to the closely spaced sample points. The step size is usually determined by considering both the 
accuracy of the first-order Taylor approximation and the matrix conditioning. According to Ref.[9], direct and 
indirect GEK models are identical in the limit of small step size and same set of hyper parameters. However, 
ill-conditioning associated with small step sizes can be avoided by the direct GEK approach. 
 
B. Gradient/Hessian-enhanced Indirect Kriging Approach 

The extension of the indirect GEK approach to a gradient/Hessian-enhanced model can be achieved 
straightforwardly. This can be realized by modifying Eq.(2.1) to the second-order Taylor approximation as 
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There are many different ways to create additional sample points around a real sample point. Two approaches are 
typically used in this study. In the first approach, two additional points are created in each direction of the design 
variable space as illustrated in Fig.1b. In this approach, the diagonal components of the Hessian matrix are only 
used to create the additional sample points. If all real sample points have gradient/Hessian information, the 
augmented number of sample points becomes ( )mn 21+ . The second approach is more general, creating an 
arbitrary number of additional sample points, addm  by using a sampling method with a fixed distance from a real 
sample point as shown in Fig.1c. 

As understood from the above explanation, two major user-specified parameters appear in the 
gradient/Hessian-enhanced indirect Kriging formulation, which are the step size x∆  and the number of 
additional sample points per real sample point addm . To specify these parameters reasonably is more difficult than 
in the case of the indirect GEK. The matrix conditioning becomes worse when addm  is large. When addm  is 
small, conversely, it is difficult to make use of the Hessian information. In these cases, the step size should be 
larger than that used for the indirect GEK to make use of the Hessian information in the second-order Taylor 
approximation. However, identifying a reasonable step size is essentially problem/location dependent. 
Specification of smaller or larger step sizes yields worse matrix conditioning or inaccurate Taylor approximations. 
That is to say, there are severe tradeoffs for these user-specified parameters and these are difficult to determine. 
These issues led us to develop a gradient/Hessian-enhanced direct Kriging approach, which is described in the next 
subsection. 

 

Fig.1 Arrangements of Additional Sample Points for 2D Design Space, 

a) Gradient-enhanced, b) Gradient/Diagonal Hessian-enhanced, c) Gradient/Hessian-enhanced 

 
C. Gradient/Hessian-enhanced Direct Kriging Approach 

In this subsection, the gradient/Hessian-enhanced direct Kriging formulation is derived. The formulation is 
based on the conventional “ordinary Kriging” model for simplicity of the description. The mathematical form of a 
Kriging model has two terms as follows: 

( ) ( )xx Zy += βˆ         (2.3) 

where ( )xŷ  is the prediction of an unknown function at an arbitrary location of x . The first term β  is a 
constant model (or low-order polynomial regression model in the formulation of a “universal Kriging” model7) and 
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the second term ( )xZ  represents a random process model with zero mean, variance 2σ  and the covariance of 
two locations ix  and jx  is given as follows: 

( ) ( )[ ] ( )jiRZZCov
ji

xxxx ,, 2σ=       (2.4) 

where R  is the spatial correlation function which is only dependent on the distance between the two locations. 
For the gradient/Hessian-enhanced direct Kriging approach, the following additional covariance is also required: 
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Suppose that there are ( )nnn ′′′,,  known function, gradient and Hessian components, and consider a linear 
combination of the exact information at given sample points as follows: 

( ) ∑∑∑
′′

=

′

==

′′+′+=
n

k
kk

n

j
jj

n

i
ii yyywy

111

ˆ φλx       (2.6) 

where ( )yyy ′′′,,  are the observed function, gradient and Hessian, and ( )φλ,,w  are their weight coefficients. 
In this derivation, the numbers of function values, gradients and Hessian components can be arbitrary. Therefore, 
the sample points which have gradient and/or Hessian information are also arbitrary. Furthermore, users can limit 
arbitrarily the gradient/Hessian components which are enforced in the formulation (e.g., only the diagonal Hessian 
components can be enforced). The Kriging approach finds the best linear unbiased predictor which minimizes the 
mean square error (MSE) : 
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subject to the unbiasedness constraint as follows: 
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The weight coefficients can be found by solving this constrained minimization problem with the Lagrange 
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multiplier approach. They can be found by the following system of equations: 
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where µ  is the Lagrange multiplier. Substituting Eqs.(2.4) and (2.5) in Eq.(2.9) finally yields the following 
matrix form: 
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where ( ) nnnT
nnnww ′′+′+
′′′ ℜ∈= φφλλ ,,,,,,,, 111 LLLw , ( ) nnnT ′′+′+ℜ∈= 0,,0,1,1 LLF  ( n  units and 

nn ′′+′  zeros), and ( )22~ σµµ = . ( ) ( )nnnnnn ′′+′+×′′+′+ℜ∈R  is the correlation matrix which expresses the 
correlation between the observed data. nnn ′′+′+ℜ∈r  is the correlation vector which expresses the correlation 
between the observed data and x . The expressions of R  and r  are too complicated to present in this paper. 
R  and r  respectively include the correlation terms up to the fourth- and second-order derivatives (see Ref.[12] 
for the expressions of gradient-enhanced case, the expressions of our gradient/Hessian case are their 
straightforward extensions). The unknown weight coefficients are determined by inverting the matrix of Eq.(2.10). 
The final form of the gradient/Hessian-enhanced direct Kriging approach is: 

( ) ( ) ( )FYRr xx ββ −+= −1ˆ Ty        (2.11) 

where ( ) YRFFRF 111 −−−= TTβ  and ( )nnn yyyyyy ′′′ ′′′′′′= ,,,,,,,, 111 LLLY . The MSE of Eq.(2.7) can be 
expressed as: 

( )[ ] ( ) ( ) ( )( )2111122 11ˆ −+−== −−−− FRrFRFrRrxx
TTTsyMSE σ    (2.12) 

There is no sensitive parameter in the formulation of the gradient/Hessian-enhanced direct approach, although the 
expression is more complicated than the indirect approach. Since additional sample points are not created around 
real sample points, the matrix conditioning is much better than that of the indirect approach. 

 
D. Correlation Function 

The correlation matrix and vector are specified by a spatial correlation function and its derivatives. General 
correlation functions depend only on the distance between two locations as follows: 
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where kθ  is the hyper parameter for each direction of design variables. Gaussian or cubic spline functions are the 
most common forms for the spatial correlation function. The Gaussian function is defined as follows: 

( ) ( ) ( )0exp, 2 >−= kkkkk hhscf θθθ     (2.14) 

One of the cubic spline functions is defined as follows: 
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The hyper parameter expresses the distance weight for both spatial correlation functions. Generally, cubic spline 
functions yield a better conditioned correlation matrix than Gaussian functions. However, the cubic spline 
functions cannot be used in our practical cases since the fourth-derivatives of the correlation function are required 
as shown in Eq.(2.5). Therefore, the following RBF is used for the spatial correlation function in this research: 
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This function also yields a better conditioned correlation matrix than the Gaussian function. The derivatives up to 
fourth-order are calculated by employing the TAPENADE automatic differentiation tool21. 

 
E. Model Fitting by Maximum Likelihood Estimation 

The Kriging model still includes the undetermined parameters θ  and 2σ . These parameters can be 
estimated by maximizing the likelihood (joint probability) function of the given samples. This empirical approach 
finds the parameters which are most consistent with the sample data. Optimal mean and variance are analytically 
determined as: 

( ) YRFFRF 111 −−−= TTβ        (2.17) 

( ) ( )FYRFY ββσ −−
′′+′+

= −12 1 T

nnn
     (2.18) 

One can notice that the mean of Eq.(2.17) is equal to that of Eq.(2.11). Since there is no analytical form solution for 
θ , these are estimated by a numerical optimization which corresponds to the maximization of a likelihood 
function. For given θ , β  and 2σ , the following log-likelihood function is calculated: 

( )( ) ( ) ( ) ( )Rln
2
1ln

2
1ln 2 −′′+′+−= σθ nnnL      (2.19) 

The most consistent θ  is determined through the maximization of the log-likelihood function. One of the issues 
associated with the maximum likelihood estimation is the multimodality of the log-likelihood function. Therefore, 
some global optimization method, such as GA, is preferable to find the global optimal parameters. However, the 
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computational cost for this optimization problem can become relatively expensive above a certain number of 
sample points. This is because the evaluation of a likelihood function requires the inversion of R  and the 
calculation of the determinant, and a large number of function evaluations with different sets of θ  is required for 
a global optimization. In our approach, a master-slave type MPI-parallelized GA24,25 is used for the optimization. 
The correlation matrix inversion and the determinant evaluation are solved with a Cholesky decomposition 
method. 

 
F. Addition of New Sample Points by Expected Improvement 

Once the Kriging model is constructed with given function/gradient/Hessian information, design optimization 
or uncertainty analysis can be realized on the surrogate model at low computational cost. For design optimization, 
it is a straightforward approach to find the approximate optimal (best ( )xŷ ) location on the surrogate model by 
using any type of optimizer. The surrogate model can be iteratively updated by adding new sample point information 
where exact function evaluation is required during the optimization process. However, this approach usually 
converges to a local optimal point depending on the locations of the initial sample points, because it does not take 
into account the uncertainty of the surrogate model. 

Expected Improvement (EI)4 expresses a potential for improvement which considers both estimated function 
values and uncertainties in the surrogate model. At a point x , the EI for minimization problems is given as follows: 
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where Φ  and φ  are the normal cumulative distribution function and probability density function, respectively. 

( )xs  is the standard deviation expressed by Eq.(2.12). miny  is the minimum (optimal) function value among n  
given sample points. The new sample point is added in the location where the EI is maximal. This EI-based iterative 
approach can increase the accuracy of Kriging models by maintaining a balance between global and local search 
criteria. In our approach, a master-slave type MPI-parallelized GA is used for the maximization of EI. 

 
III. Validation in Analytical Function Problems 

In this section, the developed gradient/Hessian-enhanced surrogate models are used to fit analytical functions 
with various sets of sample points. The sets of sample points are generated by a Latin Hypercube Sampling (LHS) 
method3. 
A. 2D Rastrigin Function Fitting 

Firstly, one of the most impressive results which make use of gradient/Hessian information within the 
surrogate model is shown. Surrogate models are used to fit the 2D Rastrigin function using 80 sample points 
generated by LHS. The gradient and Hessian components are analytically evaluated on these sample points. The 
Rastrigin function is defined as: 

( ) ( )[ ] ( )12.512.52cos1010
1

2 ≤≤−−+= ∑
=

i

m

i
ii xxxmRastrigin πx  (3.1) 

where m  denotes the dimension (i.e. 2=m  in this case). The shape of the 2D Rastrigin function is illustrated 
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in Fig.2, which is a highly multimodal function. In Fig.3, three different surrogate models constructed by function, 
function/gradient and function/gradient/Hessian information are compared. The gradient and gradient/Hessian- 
enhanced Kriging models are constructed by the direct Kriging approach. Although the function values show 
agreement at the 80 sample locations, the function-based conventional Kriging model cannot capture the global 
trend of the Rastrigin function at all. Although the local trends of the Rastrigin function around the given sample 
points can be captured by including the gradient information, the gradient-enhanced Kriging model still does not 
capture the global trend. By including the Hessian information, on the other hand, the gradient/Hessian-enhanced 
Kriging model reproduces the global trend very accurately. Thus, the gradient/Hessian-enhanced model is 
promising for constructing an accurate surrogate model of complex multimodal functions. 

 
Fig.2 Visualization of 2D Rastrigin Function 

 

Fig.3 Kriging Models Used to Fit Rastrigin Function with 80 Sample Points 
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B. 5D Rosenbrock Function Fitting 

For investigating the performance of the developed approaches, the developed surrogate models are used to fit 
the 5D Rosenbrock function by using various sets of sample points (from 10 to 600) generated by LHS. The 
Rosenbrock function is defined as: 

( ) ( ) ( )[ ] ( )321001
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22
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+ i
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i
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where m  denotes the dimension of the function (i.e. 5=m  in this case). Once the surrogate model is 
constructed, the accuracy of the model is evaluated by using the root mean squared error (RMSE) between the exact 
function and approximate function values given by the surrogate model. The RMSE is given as follows: 
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where the coordinates ( )Mjj ,,1L=x  define an equally spaced Cartesian mesh which covers the entire 
design space. 

In Fig.4 the RMSE values are compared between the direct/indirect Kriging approaches. For the 
gradient/Hessian-enhanced indirect Kriging approach, three runs are executed with different sets of x∆  and 

addm . For the gradient/Hessian-enhanced direct Kriging approach, two runs are executed for gradient/diagonal 
Hessian-enhanced and gradient/full Hessian-enhanced cases. Although the gradient/Hessian-enhanced indirect 
Kriging approaches mostly show better performance than the gradient-enhanced indirect Kriging approach, the 
performance is sensitive to the user-specified parameters. The direct approaches do not have any parameters to be 
specified, and the performance is much better than the indirect approaches. This superiority is due to the exact 
enforcement of derivative information and the better conditioning of the correlation matrix. 

In Fig.5, the x-axis is modified to represent the number of pieces of information and the approximated 
computational time factor for a detailed comparison. The number of pieces of information is the sum of the number 
of function values, gradient as well as Hessian net components among all sample points, which is generally equal 
to the size of the correlation matrix. The approximated computational time factor is defined as follows, considering 
the gradient/Hessian computational times in our practical CFD case: 
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   (3.4) 

This definition assumes that the computational times of gradient/Hessian evaluations are respectively comparable 
to one function evaluation. Although this is the case when using an adjoint approach for obtaining the gradient 
information, the Hessian construction scales with the number of design variables or input parameters. On the other 
hand, our implementation parallelizes this aspect of the Hessian (see Subsection V.A) resulting in an overall wall 
clock timing close to that assigned above. The original function-based Kriging shows the best performance when 
compared by the number of pieces of information. This result implies that the scattering of only function 
information for the whole design space is better than the concentration of function/gradient/Hessian information at 
a limited number of sample points to obtain a more accurate fitting of the whole design space. When compared by 
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the approximated computational time factor, the gradient/Hessian-enhanced direct Kriging approaches show better 
performance than the original Kriging approach. This result indicates that the developed approaches can provide 
better performance by using our efficient gradient/Hessian evaluation methods. Since the computational times for 
CFD gradient evaluations are independent of the number of design variables, the gradient (and to a lesser degree 
Hessian) enhanced surrogate model approaches can be expected to be more effective as the dimensionality of the 
problem increases. 

 
Fig.4 Comparison of RMSEs between Kriging Approaches, 

(F: Function-based Original Kriging, FG: Gradient-enhanced, 

FGH: Gradient/Hessian-enhanced, FGHd: Gradient/Diagonal Hessian-enhanced) 

 
Fig.5 Comparison of RMSEs between Kriging Approaches, 

Left: By Number of Pieces of Information, Right: By Approximated Computational Time Factor 
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C. Minimization of 20D Rosenbrock Function 

In this subsection, the 20-dimensional Rosenbrock function is minimized by using a surrogate model-based 
optimization framework as shown in Fig.6. The most promising location is searched by maximizing the EI value. 
The optimization starts from 30 initial sample points that are generated by LHS. To reduce the computational cost 
to create a surrogate model, the number of sample points that have gradient/Hessian information is limited to the 
current optimal region. The optimization histories are shown in Fig.7. The gradient/Hessian-enhanced direct 
Kriging approach shows much faster convergence towards the global optimal than the other Kriging approaches. 
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Fig.6 Surrogate Model-based Optimization Framework     Fig.7 Optimization History 

 
D. Uncertainty Analysis on 2D Rosenbrock Function 

In this subsection, uncertainty analysis is conducted on an exact/approximated 2D Rosenbrock function. The 
center location for the uncertainty analysis is (1.0, 1.0), where the exact function has minimal value. The center 
location and the exact function distribution are shown in Fig.8. Five sample points which are generated by LHS are 
used to create direct Kriging models, and then inexpensive Monte-Carlo (IMC) simulations are executed on the 
surrogate models (Note that there is no sample point on the center location in this case). The performance of the 
IMC simulations is compared with a full-MC simulation and the second-order moment method. In the full-MC 
simulation, a large number of exact function calls is required around the center location. The moment method is 
based on a Taylor series expansion and makes use of derivative information at the center location. The mean and 
variance of a function are given by the moment method as follows22: 
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where cx  is the center location and 
iDσ  is the standard deviation of design variable iD . 

In Fig.9, the variations of mean and variance with respect to the variation of Dσ  are shown (a same value 
was used for the all design variables). The full and inexpensive MC simulations use a total of 100,000 function 
calls. The second-order moment method (MM2) shows good agreement with the full-MC simulation for smaller 
values of Dσ  since the method of MM2 uses the derivative information at the center location. For larger Dσ  
values, however, the discrepancy increases because the trend of the exact function deviates from the quadratic 
approximation. On the other hand, the result of IMC with the gradient/Hessian-enhanced Kriging model shows 
good agreement at both smaller and larger Dσ  values. The PDF (and then cumulative density function, CDF) 
also can be obtained by the IMC approach. In Fig.10, the CDFs of the full-MC and IMC simulations are compared 
for the case of 15.0=Dσ . The CDF of IMC with the gradient/Hessian-enhanced model shows good agreement 
with that of the full-MC simulation. 

 
 
 
 

 
Fig.8 Visualizations of 2D Rosenbrock Function and the Center Location for Uncertainty Analysis 
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Fig.9 Variations of Mean/Variance of Function by Uncertainty Analysis 
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Fig.10 Comparison of CDFs obtained by Full-MC and IMC Simulations 

 
IV. Fitting on Aerodynamic Data of 2D Airfoil 

In this section the developed Kriging approaches are used to fit an airfoil two-dimensional aerodynamic 
database. We consider the steady inviscid flow around a NACA0012 airfoil as a flow example which is described 
in more detail in Mani and Mavriplis26,27. The governing Euler equations of the flow problem are discretized by a 
finite-volume approach and are solved with second-order spatial accuracy. The details of our adjoint derivative 
calculation method are described in Subsection V.A. The computational mesh contains approximately 20,000 
triangular elements and is shown in Fig.11. In this study, two parameters are considered; Mach number and angle 
of attack. Their ranges are specified as [ ]5.1,5.0∈∞M  and [ ] [ ]5,0deg ∈α . The exact surface or validation data 
is obtained through a series of 21x21=441 flow computations covering the entire parameter space at equally spaced 
increments. 

The exact hypersurfaces of lift and drag coefficients are shown in Figs.12-13. It can be observed that their 
behaviors are complicated at the transonic Mach numbers. Since the CFD functional outputs on this design space 
are relatively noisy, the CFD Hessian information is not used to construct Kriging models. The Kriging models are 
constructed by utilizing the function and adjoint gradient values on ten sample points, and their hypersurfaces are 
also illustrated in Figs.12-13. It can be understood that the adjoint derivative information is helpful to construct 
accurate surrogate models for these practical non-linear aerodynamic functional outputs. The discrepancies 
between the exact and approximate hypersufaces are sufficiently reduced by utilizing the gradient information to 
construct the surrogate models. 

 

Fig. 11 Unstructured Mesh Visualization around NACA0012 Airfoil 
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Fig.12 Hypersurfaces of Lift Coefficient, 

From Left to Right: Exact, Function-based, Gradient-enhanced Kriging 

 

 

Fig.13 Hypersurfaces of Drag Coefficient, 

From Left to Right: Exact, Function-based, Gradient-enhanced Kriging 

 
V. Application to Drag Minimization Problem of 2D Airfoil 

In this section, the developed gradient/Hessian-enhanced direct Kriging approach is used for a 2D airfoil shape 
optimization. 
A. Problem Definition and CFD Methods 

We consider again the steady inviscid flow around a NACA0012 airfoil. The governing Euler equations are 
discretized and solved in the same manner as described previously and the same computational mesh of Fig.11 is 
used in this study. The required deformation and movement of the mesh are performed via a linear tension spring 
analogy26-28. The free-stream Mach number is ∞M =0.755 with an angle of attack of 1.25 degrees. This flow 
condition gives a lift coefficient of lC = 0.268 and a drag coefficient of dC = 0.00521 for the NACA0012 airfoil. 

The optimization example consists of an inverse design given by the following objective function: 

( ) ( )2*2*

2
100

2
1

ddll CCCCF −+−=       (5.1) 

where a star denotes a target lift or drag coefficient and the factor of one hundred is introduced since the drag 
coefficient is about an order of magnitude smaller than the lift coefficient in this particular flow example. We use 
16 design variables, half of which are placed at upper and the other half at lower surface points which control the 
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magnitude of Hicks-Henne sine bump functions29. This steady inverse design problem is initialized with the 
NACA0012 airfoil profile and the target lift and drag coefficients are set to 0.675 and 0.0, respectively, that is, we 
attempt a lift constrained drag minimization problem. We must use bound constraints on the design variables to 
prevent the generation of invalid geometries from the mesh movement algorithm. In addition, a quadratic penalty 
term is added to the objective function if the sectional area of the new design is less than 90% of the initial one. 

The details of our CFD gradient/Hessian evaluation methods are described in Ref.[20]. There are two options 
to evaluate the Hessian referred to as exact Hessian and approximate Hessian evaluation methods. For steady flow 
cases, the procedures to evaluate the exact Hessian are as follows: 

i.  The grid deformation residual equations ( )( ) 0, =DxDs  are solved 

ii. The flow residual equations ( ) ( )( ) 0,, =DwDxDR  are solved 

iii. The flow adjoint problem ( ) ( ) 0=∂∂+Ψ∂∂ wFwR T  is solved 

iv. The grid adjoint problem ( ) ( ) 0=∂∂Ψ+∂∂+∂∂
TTT xRxFxs λ  is solved 

v. m  linear problems are solved each for idDdx  

vi. m  linear problems are solved each for idDdw  

vii. Each Hessian element can be evaluated as ( ) ( ) ( ) ( ) ( )sRFdDdDFd ij
T

ij
T

ijji ∂+ℑΨ+ℑ= λ2  

where D , x  and w  are the design variables, grid coordinates and flow variables, respectively. Ψ  and λ  
are respectively the flow and grid adjoint variables. ijℑ  and ij∂  indicate all possible second-order derivatives 
for F , R  and s , and they are evaluated by employing the TAPENADE automatic differentiation tool. For a 
CFD gradient evaluation, only the first four steps are required. Since the computational costs of the grid 
deformation related steps (i, iv, v) and of the final combination (vii) are much cheaper than the others, the major 
computational costs are given by one flow solution, one flow adjoint solution and m  linear solutions for 

idDdw . Taking the computational cost of a flow solution as one unit, the total computational cost for a CFD 
exact Hessian is roughly 2+m  units. Since there is no dependency between the third to sixth steps, they can be 
parallelized with 1+m  processors as shown in Fig.14 a). Then the computational time for a CFD exact Hessian 
can be reduced to two units. 

The approximate Hessian can be evaluated at reduced computational cost for inverse design objective 
functions of the type shown in Eq.(5.1). This type of function can be written in the form: 

( ) ( ) ( )( )( )∑
=

−=
K

k
kkk FDwDxDFWDF

1

2*,,
2
1

     (5.2) 

where kF , *
kF  and kW  are respectively k-th flow function value, its target value and weighting factor. The 

first derivatives of F  with respect to D  are given by 
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and can be calculated inexpensively using the adjoint approach. Differentiating Eq.(5.3) again yields 
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The last approximation is true if one is close to the optimum where *
kk FF ≈  for Kk ,,1L= . Eq.(5.4) implies 

that the Hessian can be approximated by determining only the first derivatives ik dDdF  for Kk ,,1L=  
where one can use the adjoint to determine each derivative. The total computational cost for an approximate CFD 
Hessian is 1+K  units, which is independent of the number of design variables. Again, all adjoint calculations 
can be parallelized with K  processors as shown in Fig.14 b). The accuracies of the exact Hessian at any location 
and the approximate Hessian close to the optimum location have been confirmed by comparing the results of a 
finite differenced Hessian20. 
 

 

Fig.14 Flowcharts of Hessian Evaluation Approaches, 

a) Exact CFD Hessian, b) Approximate CFD Hessian 

 
B. Optimization Results 

The direct Kriging approaches are used for this optimization. The optimization histories are shown in Fig.15. 
For these optimizations, a set of 16 initial sample points has been chosen by the LHS method. The gradient and 
Hessian have not been evaluated for the initial samples. Therefore, the same surrogate model is firstly constructed 
for all available cases. When constructing the surrogate model, new sample points are added which are chosen by 
maximizing the EI value. For the cases utilizing gradient and/or Hessian-enhanced surrogate models, the 
gradient/Hessian evaluations are invoked only when a new design has better performance than all previous designs. 
In addition, the number of sample points that have gradient/Hessian information is limited to the current optimal 
region to reduce the computational cost to construct a surrogate model. 

It was confirmed that the gradient and/or Hessian-enhanced model approaches delivered better optimization 
histories than the conventional function-based Kriging approach. However, it was difficult to observe the 
superiority of gradient/Hessian-enhanced approaches over the gradient-enhanced approach. This was because the 
deformable range of the Hicks-Henne bump functions, that is the design space, was fairly limited to prevent 
negative thickness airfoils, and to ensure convergence and accuracy of the Hessian evaluation. Actually, several 
particular design variables of optimal designs were located on the bound values. Another reason is the presumably 



 
American Institute of Aeronautics and Astronautics 

18

simple objective functional shape due to the inviscid flow model, resulting in similar performance for both 
gradient- and gradient/Hessian-enhanced approaches. However, the absolute best design was obtained still by the 
gradient/exact Hessian-enhanced model approach. In Fig.16, the flowfields of the initial and optimal design given 
by the gradient/exact Hessian-enhanced approach are compared. It can be confirmed that the optimal design results 
in a supercritical airfoil shape which increases lift while reducing the strength of the shock wave on the upper 
surface of the airfoil. 

Faster convergence towards the global optimal direction, i.e. the improvement of the search efficiency, is 
considered to be one of the major benefits of derivative-enhanced surrogate model approaches. These approaches 
should yield more beneficial results in higher-dimensions and/or for more complex physical models. 

 

 

Fig.15 Optimization History 

 

 
Fig.16 Pressure Distributions around 2D Airfoil Shapes, Left: Initial, Right: Optimal 
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C. Uncertainty Analysis at the Optimal Location 

Subsequent to the optimization procedure, an uncertainty analysis is executed at the optimal location obtained 
by the gradient/exact Hessian-enhanced approach. The results are compared between a Non-Linear Full 
Monte-Carlo simulation (NLMC), a second-order moment method (MM2), and IMC simulations (IMC1, IMC2). 
For NLMC, a total of 3000 non-linear flow evaluations per specified standard deviation of all design variables 
( Dσ ) is executed around the center (optimal) location. The gradient and exact Hessian information at the center 
location is used for the MM2 approach. For the IMC1 method, the final gradient/exact Hessian-enhanced Kriging 
model given in the optimization loop is used for the IMC simulation. For the IMC2 method, 
function/gradient/Hessian information is evaluated on 10 different sample points which are created by using a 
sampling method for 01.0=Dσ . The gradient/Hessian-enhanced surrogate model for IMC2 is then created by 
using the information at 11 points (center and the 10 sample points). The number of (approximate) function calls 
for IMC is also 3000, and the computational cost of IMC is much cheaper than that of NLMC. The computational 
time of a NLMC simulation is over 6days using one node (four cores) of our cluster (of course the computational 
time can be reduced by parallelizing the 3000 non-linear flow evaluations). On the other hand, the computational 
time for IMC simulation is less than one minute. 

In Fig.17, the variations in the mean of the objective function with respect to the variation of Dσ  are 
compared. For an intuitive understanding, the mean airfoil (optimal airfoil) and the airfoils resulting from 
perturbations of 1.0±  for all design variables are shown in Fig.18. The IMC results show good agreements with 
the NLMC results for smaller values of Dσ  while the discrepancies increase for larger Dσ  values. The IMC2 
method showed the worst performance for larger Dσ  values since the 10 different sample points were generated 
for 01.0=Dσ . For IMC1, there are two major reasons for the discrepancy at larger Dσ  values. Firstly, the 
sample point locations were decided by the EI maximization criteria, that did not take into account the total model 
accuracy. Therefore, the distribution of sample points was biased towards the optimization purpose. Secondly, 
several optimized design variables were located on the bound values. Therefore, various of the function calls for 
the IMC simulation were at the edge of design space. Although the Kriging model can predict function values even 
outside of the design space, this essentially corresponds to extrapolation and less accurate than interpolation. 

In Fig.19, the CDFs of the objective function at 01.0=Dσ  are compared. The CDF of a quadratic model 
constructed by using the gradient/Hessian information at the center location was also included in Fig.19. Although 
the CDFs of IMC approaches showed slightly better agreement with the NLMC results than the quadratic model, 
the accuracy difference is not justified by the additional complexity and cost. In this case, additional sample 
criteria will be essential to achieve an efficient design optimization and accurate uncertainty analysis 
simultaneously. 
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Fig.17 Variations of Mean of Objective Function by Uncertainty Analysis 

 

Fig.18 Perturbed Airfoils (thin) from the Mean Airfoil (thick) 

 

Fig.19 Comparison of CDFs at 01.0=Dσ  
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VI. Conclusion 
In this paper, gradient/Hessian-enhanced surrogate models have been developed based on direct/indirect 

Kriging approaches. The direct approaches showed better performance than the indirect approaches, thanks to the 
exact enforcement of derivative information and better matrix conditioning. Firstly, analytical function fitting 
problems were investigated. The accuracy of surrogate models was sufficiently increased by adding 
gradient/Hessian information in the Kriging formulation. It was demonstrated that the gradient/Hessian-enhanced 
surrogate models were the most accurate and computationally least expensive even when taking into account the 
computational costs of gradient/Hessian evaluations. Design optimization and uncertainty analysis on analytical 
functions also showed the superiority of the developed gradient/Hessian-enhanced direct Kriging approach as well 
as IMC simulation utilizing the surrogate model. 

Then, the developed Kriging model approaches were used to fit aerodynamic functions of a 2D airfoil in 
which Mach number and angle of attack were utilized as the parameters. It was confirmed that adjoint derivative 
information was helpful to construct accurate surrogate models for the practical non-linear aerodynamic functions. 

Finally, a drag minimization problem was solved by combining the developed surrogate models with the 
efficient CFD gradient/Hessian evaluation methods. One could observe a faster reduction of the objective function 
value for gradient/Hessian-enhanced model approaches which will be more beneficial in higher dimensions and/or 
for more complex physical models. The uncertainty analysis at the obtained optimal location was also conducted 
and showed reasonable results compared to full non-linear Monte-Carlo simulations at much lower cost. 

Thus, the developed gradient/Hessian-enhanced direct Kriging approach is promising for efficient design 
optimization, aerodynamic database construction and uncertainty analysis problems. The developed methods will 
be further applied and validated in more practical and higher dimensional problems. 
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