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Results from the Fifth AIAA CFD Drag Prediction Workshop (DPW-V) are presented.  

As with past workshops, numerical calculations are performed using industry-relevant 

geometry, methodology, and test cases.  This workshop focused on force/moment predictions 

for the NASA Common Research Model wing-body configuration, including a grid 

refinement study and an optional buffet study.  The grid refinement study used a common 

grid sequence derived from a multiblock topology structured grid.  Six levels of refinement 

were created resulting in grids ranging from 0.64x10
6
 to 138x10

6
 hexahedra – a much larger 

range than is typically seen.  The grids were then transformed into structured overset and 

hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same 

basic cloud of points.  This unique collection of grids was designed to isolate the effects of 

grid type and solution algorithm by using identical point distributions.  This study showed 

reduced scatter and standard deviation from previous workshops.  The second test case 

studied buffet onset at M=0.85 using the Medium grid (5.1x10
6
 nodes) from the above 

described sequence.  The prescribed alpha sweep used finely spaced intervals through the 

zone where wing separation was expected to begin.  Some solutions exhibited a large side of 

body separation bubble that was not observed in the wind tunnel results.  An optional third 

case used three sets of geometry, grids, and conditions from the Turbulence Model Resource 

website prepared by the Turbulence Model Benchmarking Working Group.  These simple 

cases were intended to help identify potential differences in turbulence model 

implementation.  Although a few outliers and issues affecting consistency were identified, the 

majority of participants produced consistent results. 
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I.  Nomenclature 

AR Wing Aspect Ratio 

b Wing Span 

BL Butt Line Coordinate (y) 

CD Drag Coefficient (CD_TOT) 

CDP Idealized Profile Drag = CD −CL
2
/AR 

CDpr Pressure Drag Coefficient (CD_PR) 

CDsf Skin-Friction Drag Coefficient (CD_SF) 

CL Lift Coefficient 

CM Pitching Moment Coefficient (CM_TOT) 

CP Pressure Coefficient = (P−P∞)/q∞ 

cref Wing Reference Chord ~ MAC 

Cf Local Coefficient of Skin Friction 

FS Fuselage Station Coordinate (x) 

LE Wing Leading Edge 

MAC Mean Aerodynamic Chord 

N Number of unknowns (GRIDSIZE) 

RANS Reynolds-Averaged Navier-Stokes 

RE Reynolds Number 

Sref Reference Area 

SOB Side-of-Body 

TE Wing Trailing Edge 

WL Water Line Coordinate (z) 

y
+
 Normalized Wall Distance 

 Angle of Attack (ALPHA) 

  Fraction of Wing Semi-Span 

 

II.  Introduction 

The AIAA CFD Drag Prediction Workshop (DPW) Series was initiated by a working group of members from 

the Applied Aerodynamics Technical Committee of the American Institute of Aeronautics and Astronautics.  The 

primary goal of the workshop series is to assess the state-of-the-art of modern computational fluid dynamics 

methods using geometries and conditions relevant to commercial aircraft.  From the onset, the DPW organizing 

committee has adhered to a primary set of guidelines and objectives for the DPW series: 

 

 Assess state-of-the-art Computational Fluid Dynamics (CFD) methods as practical aerodynamic tools for 

the prediction of forces and moments on industry-relevant geometries, with a focus on absolute drag. 

 Provide an impartial international forum for evaluating the effectiveness of CFD Navier-Stokes solvers. 

 Promote balanced participation across academia, government labs, and industry. 

 Use common public-domain subject geometries, simple enough to permit high-fidelity computations. 

 Provide baseline grids to encourage participation and help reduce variability of CFD results. 

 Openly discuss and identify areas needing additional research and development. 

 Conduct rigorous statistical analyses of CFD results to establish confidence levels in predictions. 

 Schedule open-forum sessions to further engage interaction among all interested parties. 

 Maintain a public-domain accessible database of geometries, grids, and results. 

 Document workshop findings; disseminate this information through publications and presentations. 

 

Four previous workshops have been held prior to the present study, all held in conjunction with the AIAA 

Applied Aerodynamics Conference for that year: 

 

Year Location Configuration Case Descriptions 

2001 Anaheim, CA DLR-F4 Wing-Body Single Point Grid Refinement Study 

Drag Polar 

Drag Rise Curves at Constant CL* 

2003 Orlando, FL DLR-F6 Wing-Body 

Wing-Body-Nacelle 

Single Point Grid Refinement Study 

Drag Polar 

Boundary Layer Trip Study* 

Drag Rise Curves at Constant CL* 

2006 San Francisco, CA DLR-F6 Wing-Body with 

and without FX2B fairing; 

W1/W2 Wing Alone 

Single Point Grid Refinement Study 

Drag Polar 

Grid Convergence Study 

Drag Polar 

2009 San Antonio, TX Common Research Model 

Wing-Body and Wing-Body-Tail 

Grid Convergence Study 

Downwash Study 

Mach Sweep Study* 

Reynolds Number Study* 

*Optional Cases 
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While there have been some variations, the workshops have typically used subjects based on commercial 

transport wing-body configurations - a consensus of the organizing committee based on a reasonable compromise 

between simplicity and industry relevance.  The vast majority of the participants submit results generated with 

Reynolds Averaged Navier-Stokes (RANS) codes, although the organizing committee does not restrict the 

methodology. 

The first Drag Prediction Workshop
1
 used the DLR-F4 geometry for the above reasons and due to the 

availability of publically released geometry and wind tunnel results
2
.  The focus of the workshop was to compare 

absolute drag predictions, including the variation due to grid type and turbulence model type.  The results were also 

compared directly to the available wind tunnel data.  The workshop committee provided a standard set of multiblock 

structured, overset, and unstructured grids for the DLR-F4 geometry to encourage participation in the workshop and 

reduce variability in the CFD results.  However, participants were also encouraged to construct their own grids using 

their best practices so that learned knowledge concerning grid generation and drag prediction might be shared 

among workshop attendees.  The test cases were chosen to reflect the interests of industry and included a fixed-CL 

single point solution, drag polar, and constant-CL drag rise data sets.  To help encourage wide participation, a formal 

paper documenting results was not required at the workshop.  Eighteen participants submitted results, using 14 

different CFD codes; many submitted multiple sets of data exercising different options in their codes, e.g., 

turbulence models and/or different grids.  A summary of these results was documented by the DPW-I organizing 

committee
3
.  Because of strong participation, DPW-I successfully amassed a CFD data set suitable for statistical 

analysis
4
.  However, the results of that analysis were rather disappointing, showing a 270-drag-count spread in the 

fixed-CL data, with a 100:1 confidence interval of more than ±50 drag counts. 

Despite the somewhat disappointing results, the consensus of the participants and organizers was that DPW-I 

was a definitive success.  First and foremost it was initiated as a “grass roots” effort by CFD developers, researchers, 

and practitioners to focus on a common problem of interest to the aerospace industry.  There was open and honest 

exchange of common practices and issues which identified areas for further research and scrutiny.  The workshop 

framework was tested successfully on high fidelity 3D RANS methods using a common geometry, grids, and test 

cases.  Finally, it reminded the CFD community that CFD is not a fully mature discipline. 

The interest generated from the workshop was continued and resulted in several individual efforts documenting 

results more formally
5-8

, presented at a special session of the 2002 AIAA Aerospace Sciences Meeting and Exhibit 

in Reno, NV.  The interest generated by DPW-I naturally led to the planning and organization of the 2nd AIAA 

Drag Prediction Workshop, DPW-II.  The DPW-II organizing committee, recognizing the success of DPW-I, 

maintained the format and objectives for DPW-II. 

The second workshop
9
 used the DLR-F6 as the subject geometry in both wing-body (WB, similar to DLF-F4) 

and wing-body-nacelle-pylon (WBNP) form.  The DPW-II organizing committee worked with DLR and ONERA to 

make pertinent experimental data available to the public domain.  One specific objective of DPW-II was the 

prediction of the incremental drag associated with nacelle/pylon installation.  The F6 geometry contained pockets of 

flow separation more severe than the F4; occurring predominantly at the wing/body and wing/pylon juncture 

regions.  The results from the workshop were documented with a summary paper,
10

 a statistical analysis,
11

 an invited 

reflections paper
12

 on the workshop series, and numerous participant papers
13-21

 in two special sessions of the 2004 

AIAA Aerospace Sciences Meeting in Reno, NV.  A conclusion of DPW-II was that the separated flow regions 

made it difficult to draw meaningful conclusions with respect to grid convergence and drag prediction.  During the 

follow-up open-forum discussions, the CFD community voiced the desire for the organizing committee to include in 

the third workshop: a) Blind Test Cases, and b) Simpler Geometries.  The request for blind test cases is motivated by 

an earnest attempt to better establish a measure of the CFD community’s capability to predict absolute drag, rather 

than match it after-the-fact.  The request for simpler geometries allows more extensive research in studies of 

asymptotic grid convergence. 

The third workshop
22

 retained the DLR-F6 WB from DPW-II as a baseline configuration to provide a bridge to 

the previous workshop.  However, to test the hypothesis that the grid-convergence issues of DPW-II were the direct 

result of the large pockets of flow separation, a new wing-body fairing was designed to eliminate the side-of-body 

separation.  Details of the FX2B fairing design are documented by Vassberg
23

.  In addition, to help reduce the wing 

upper-surface trailing-edge flow separation, a higher Reynolds number was introduced for the WB test cases.  These 

changes in both geometry and flow condition also provided the DPW-III participants a blind test since no test data 

would be available prior to the workshop.  Furthermore, two wing-alone geometries were created to provide 

workshop participants with simpler configurations on which more extensive grid-convergence studies could be 

conducted; these wings were designed to exhibit no appreciable separation at their design conditions.  The DPW-III 

was heavily documented with summary papers
24,25

, a statistical analysis paper
26

, participant papers
27-30

, and a special 

section of the AIAA Journal of Aircraft, edited by Vassberg
31–36

.  After three workshops, the organizing committee 
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recognized that a recurring theme of the workshop series was related to grid quality and resolution – see Mavriplis et 

al.
37

. 

For the fourth workshop
38

 a completely new geometry was developed, called the Common Research Model 

(CRM).  The CRM was developed by NASA’s Subsonic Fixed Wing (SFW) Aerodynamics Technical Working 

Group (TWG), in collaboration with the DPW Organizing Committee.  This wing-body-horizontal (with and 

without nacelle-pylons) configuration is representative of a contemporary high-performance transonic transport.  A 

detailed description of its development is given by Vassberg et al.
39

. 

One aspect of DPW-IV different from the first three workshops was in the timing of the availability of wind-

tunnel test data on the subject geometries.  In DPW-IV, the workshop was held before any experimental data were 

collected and is a set of blind tests.  Another advantageous outcome of this collaborative endeavor is that the CRM 

has now been tested in two facilities thus far, and the data from these tests is publicly available.  The National 

Transonic Facility (NTF) at NASA Langley tested the CRM during Jan-Feb 2010, and then it was evaluated at the 

Ames 11-ft wind-tunnel during Mar-Apr 2010.  Data from the NTF and Ames tests have been released to the public 

domain by Rivers and Dittberner
40-42

. 

Due to past observations of grid dependence on the solutions, a greater emphasis was placed on establishing a 

comprehensive set of meshing guidelines for the generation of baseline grid families.  With these guidelines in 

place, grids were requested from several organizations for structured multiblock, overset, and unstructured types.  

Each grid family was required to include a Coarse (C), Medium (M), and Fine (F) grid; adding an optional Extra-

Fine (X) grid was also encouraged.  Target sizes for these grids were 3.5, 10, 35, and 100 million unknowns, 

respectively.  The Medium mesh was intended to be representative of current engineering applications of CFD being 

used to estimate absolute drag levels on similar configurations.  A total of 74 meshes of 18 families were provided 

and made available to participants for use. 

The fourth workshop requested grid convergence and Mach sweep computations as in the previous workshops, 

plus downwash and Reynolds Number studies.  Data were submitted from 19 organizations totaling 29 individual 

datasets.  For the grid refinement study, a Richardson Extrapolation methodology was employed to estimate a 

continuum value for the total drag coefficient.  The range for the total drag coefficient spanned 152 counts, which is 

a definite improvement over DPW-I.  (Excluding a single outlier, the scatter band for DPW-IV reduces dramatically 

to 41 counts.)  While this improvement is quite significant, the confidence level is not down to a low enough level to 

compete with experimental methods.  Documentation for these results can be found in summary papers
43-44

 and in 

individual contributing papers
45-58

 from two special sessions held at the 28
th

 Applied Aerodynamics Conference in 

June 2010. 

Despite the emphasis placed on grid generation with the intent of reducing the associated errors, the variation in 

the DPW-IV results was still disappointing.  For the fifth workshop
59

, a new approach was taken with the goal of 

reducing grid-related errors even further.  As with the fourth workshop, the NASA Common Research Model wing 

body configuration was used for the geometry (without tail).  For the grids, a unified baseline
60

 family of Multiblock 

Structured meshes were developed with six different levels ranging in size from 136x10
6
 (Superfine) to 0.64x10

6
 

(Tiny).  Each successive coarse level was derived directly from the finest mesh.  Only five blocks were used. Once 

the cloud of points was defined for this series of grids, then Overset and Unstructured grids were derived.  The 

unstructured grids were defined in Hexahedral, and Prismatic elements, plus a hybrid grid with Prismatic boundary 

layer and Tetrahedral field elements was defined. 

The test cases included a grid refinement study using the common grids or user-supplied custom grids if desired.  

The second case focused on buffet prediction, with a finely spaced alpha sweep spanning the range where flow 

separation on the wing was observed in the wind tunnel data and the results in DPW-IV.  This is a change from 

previous workshops, where angle-of-attack sweeps from 0 to 4° were calculated for the purpose of determining 

trimmed drag polars. For a commercial transport like the CRM, high-speed lines development is undoubtedly very 

important as it would contribute to whether speed and range goals are met.  However, it usually comprises less than 

25% of the total Aerodynamics related airplane development effort.  Significant effort must also be paid to loads, 

handling qualities, and other constraints which are required to meet structural and certification requirements.  Many 

of these high-speed flight concerns occur at the edges of the flight envelope, which are characterized by large 

regions of separated flows.  For the Fifth Drag Prediction Workshop the buffet study has been included to assess 

CFD prediction in this regime. The optional third test case used geometries, grids, and conditions from the 

Turbulence Model Resource website
61

 prepared by the Turbulence Model Benchmarking Working Group.  Three 

cases were selected:  1) 2D Zero Pressure Gradient Flat Plate, 2) 2D Bump-in-channel, and 3) 2D NACA 0012 

Airfoil. These test cases were designed to discriminate between turbulence model implementations through rigorous 

grid convergence studies. 
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This paper presents an overview of the geometry and grid definitions used for the fifth Drag Prediction 

Workshop.  The participant data for the Case 1 grid refinement study are analyzed, including Force/Moment 

predictions, wing pressure distributions, and flow separation at the wing/body trailing edge juncture.  A Richardson 

Extrapolation is performed to estimate the continuum force levels.  Although not necessarily applicable in this case, 

comparisons to force, moment, and pressure data from the NTF and Ames wind tunnel tests have been included for 

reference.  Analysis of the Case 2 buffet study is presented, including force/moment and pressure predictions with 

comparisons to wind tunnel data.  Flow separation predictions at the wing/body trailing edge juncture and wing 

trailing edge are shown.  Detailed grid convergence studies for drag and skin friction coefficient for the Case 3 

Turbulence Modeling results are also discussed. 

II. Geometry Description 

The subject geometry for DPW-V Cases 1 and 2 is the Common Research Model
39

 (CRM) developed jointly by 

NASA’s Subsonic Fixed Wing (SFW) Aerodynamics Technical Working Group (TWG) and the DPW Organizing 

Committee.  The CRM represents a modern transonic commercial transport airplane, and was designed in the full 

configuration with a low wing, body, horizontal tail, and engine nacelles mounted below the wing.  For this 

workshop, only the wing-body configuration was used.  A rendering of the geometry is shown in Figure 1, along 

with a photo of the wind tunnel model installed in the NASA Ames 11ft Transonic Wind Tunnel (with horizontal 

tail).  The CRM was also the subject geometry for DPW-IV. 

The wing is designed for a nominal conditions of Mach=0.85, CL=0.50, and Reynolds Number 40x10
6
 based on 

cref.  Pertinent geometric parameters are listed in Table 1.  The wing is a supercritical design, and the Boeing 

Company took the lead on the aerodynamic design.  Certain features are designed in to the wing profile for the 

purposes of research and development.  For example, the upper-surface pressure recovery over the outboard wing is 

intentionally made aggressively adverse over the last 10-15% local chord.  This promotes separation of the upper-

surface boundary layer in close proximity to the wing trailing edge (TE) at lift conditions slightly above the design 

point.  The strong adverse pressure gradient will likely amplify the differences in various turbulence models that 

may be employed by DPW participants.  Another feature is that the span loading is designed to be very nearly 

elliptical as compared to a more practical design which would use a compromise distribution (more triangular) to 

reduce structural loads and decrease airframe weight.  This feature is included to provide a challenge for possible 

future workshops on aerodynamic shape optimization which might explore structure and fuel weight trade-offs. 

III. Gridding Guidelines and Description of Common Grids 

As mentioned above, a common theme and discussion topic in the DPW series has been the effect of the 

computational grid on the results.  A substantial effort was made in DPW-IV to address this, yet there was still 

significant variation in the results among the different grid types.  The Organizing Committee recognized that a 

relatively simple Multiblock Structured (MB) grid could be created for the CRM wing-body geometry that 

conformed to the desired gridding guidelines.  These gridding guidelines have been developed over the course of the 

DPW series and are listed in Table 2.  The grid topology for the MB grid is shown in Figure 2. 

The finest grid (L6) was generated first and sized to extend well into the asymptotic range of grid convergence, 

while the coarsest grid (L1) would still be “multigrid friendly” for up to 3 levels.  The next coarser level (L5) was 

obtained by replacing every three cells in each of the I, J, & K directions with two cells.  The L4 grid was created 

from L6 by removing every other point in each of the I, J, & K directions, and L3 by doing the same starting from 

the L5 grid.  The process was repeated with the L4 and L3 grids to complete the sequence at L2 and L1. By 

interleaving the even and odd levels a complete family of six grids was constructed.  See Vassberg
60

 for detailed 

information. 

Once the MB series was developed, then a set of unified grids for other types were derived.  The Overset series 

was created by extending each block using data from neighboring blocks to define four patch grids to bridge each 

block.  The patch grids overlap each block by three cells as shown in Figure 3, and are point matched to minimize 

interpolation errors.  One issue was found on the K=1 plane for the mid-body block, where the J line has mixed 

symmetry plane and block boundary conditions.  This issue caused difficulty for some participants using overset 

grids. 

Three types of unstructured grids were created from the MB grids:  Hexahedral, Prismatic, and Hybrid 

Tetrahedral (Prismatic in the boundary layer and Tetrahedral in the field).  The hexahedral format preserves the 

structure of each individual cell of the MB grids, but converts the file into finite element form with no IJK structure.  

Subdivision of hexahedral elements into prismatic and tetrahedral elements follows the sequence shown in Figure 

4a.  Each hex cell subdivides into 2 prism cells, and then each prism is split into 3 tetrahedra.  A usable fully 
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tetrahedral grid could not be created due to issues at the trailing edge of the wing.  Groups of cells inside the 

boundary layer grid were distorted such that a negative volume would result when subdivided into tetrahedra (Figure 

4b).  The prisms did not have this issue, so only the hybrid grids were created.  Negative volumes were also 

encountered for the prism subdivision on the Super Fine (L6) grid, so only Hex meshes are available at that level. 

A summary comparison of the grid sizes for all levels and types is listed in Table 3.  Note that suitable grid 

refinement sequences are available for unstructured cell- or node-based schemes. 

IV. Test Case Descriptions 

It is recognized that many of the DPW participants are derived from industry and may have limited time and 

resources to devote to this type of study.  The test case specifications, as with the grid definitions, are set to 

encourage participation by restricting the number of cases to a manageable number while also providing a challenge 

to test the state of the art in CFD prediction capabilities.  The DPW-V test cases contain a set of required and 

optional conditions: 

 

Case 1 – NASA Common Research Model (CRM) Wing-Body Common Grid Study: 

1. Required Grid Convergence study at Mach = 0.85, CL = 0.500 (±0.001) 

- Grid refinement series from the Common Grid Sequence consisting of at least four grid levels  

=> Target grids should range from 3 to 50 million unknowns 

- Chord Reynolds Number RE = 5x10
6
 based on cref = 275.80 in 

- Reference Temperature = 100 F 

- Moment reference center is xref = 1325.90 in, zref = 177.95 in 

2. Optional Grid Convergence study using participant developed grids: 

- All participants are encouraged to build their own grids using ‘best practice’ techniques 

 

Case 2 – (Required) NASA Common Research Model (CRM) Wing-Body Buffet Study: 

- Mach = 0.85 

- Drag Polar for alpha = 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00 

- Medium Grid used in Case 1 from the Common Grid Sequence or participant developed grids 

- Chord Reynolds Number RE = 5x10
6
 based on cref = 275.80 in 

- Reference Temperature = 100 F 

 

Case 3 – (Optional) – Turbulence Model Verification: 

1. 2D Zero Pressure Gradient Flat Plate: M = 0.20; REL = 5x10
6
; Tref = 540 R 

2. 2D Bump-in-channel:  M = 0.20; REL = 3x10
6
; Tref = 540 R 

3. 2D NACA 0012 Airfoil:  M = 0.15; REC = 6x10
6
; Tref = 540 R 

 

All CRM simulations are to be “free air” with no wind tunnel walls or support system.  The boundary layer is to 

be modeled as “fully turbulent” for all cases.  No free or fixed laminar to turbulent transition is to be specified. 

To collect a consistent set of data from each participant, template datasets are supplied.  These templates request 

lift, drag (broken down into skin friction and pressure components), pitching moment, pressure distributions at 

specified span stations, trailing-edge separation locations, dimensions of the side-of-body separation bubble, grid 

family and sizes, turbulence model, computing platform and code performance, number of processors used, number 

of iterations required, etc.  These workshops capture an extensive amount of information that serve as a snapshot of 

the industry capabilities of the time.  For example, in the four workshops held thus far, one obvious trend is that the 

grid size has grown dramatically.  The average size of the medium WB meshes in DPW-I through DPW-IV have 

been 3.2, 5.4, 7.8 and 10.9 million, respectively.  This represents a growth rate of ~17% per year during the eight 

years between DPW-I and DPW-IV.  For DPW-V this trend was not continued in that the “Medium” mesh is 

approximately 5.1M nodes, although this size was a result of the definition of the grid sequence and did not have the 

same relevance to industry norms as in the previous workshops.  The finest level grids have increased steadily, from 

just over 3 million unknowns in DPW-I to 138 million in DPW-V. 

V. Results 

The level of participation in DPW-V was excellent by many counts.  Users submitted data from a wide variety of 

sources, code types, grid types, and turbulence models.  Many performed studies which specifically addressed the 
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effects of gridding and/or turbulence modeling with the same code.  As mentioned above, the geometry, test cases, 

and data format were all uniformly controlled to facilitate the analysis. 

A.  Participant Descriptions 

The Drag Prediction Workshop is open to any individual, group or organization that wishes to perform the 

calculations according to the specifications set out by the organizing committee.  The response for DPW-V has 

increased somewhat from the previous workshop, following a trend of gradually increasing participation. 

A total of 57 datasets were submitted from 22 different teams or organizations.  Of these teams, they are broken 

down by location and type as follows: 

 

 10 North America, 5 Europe, 6 Asia, 1 South America 

 9 Government, 5 Industry, 6 Academia, 2 Commercial 

 

Note that one team submitted data for the turbulence modeling Case 3 only.  For Case 1 and 2, the grid type and 

turbulence model breakdown includes: 

 

 Grid Types: 5 Common Overset (4 Teams) 

7 Common Structured Multiblock (5 Teams) 

25 Common Unstructured (13 Teams: 14 Hex, 7 Hybrid, 4 Prism) 

20 Custom User Generated (7 Teams: 6 Overset, 2 MB, 2 Hex, 8 Hybrid, 2 Tet) 

 

 Turbulence Models: 38  SA (all types) 

13 SST (all types) 

4 Goldberg RT 

1 EARSM 

1 Lag-RST 

 

All participants were asked to submit force/moment, pressure, and separation data in the standard format.  The 

large number of datasets poses a challenge in the presentation of the data.  Each dataset is assigned an Alphanumeric 

(including Greek) symbol type while colors and line types are used to denote grid or turbulence model type 

depending on context.  All of the force/moment and pressure plots below follow the scheme listed in Table 4. 

B.  Case 1:  CRM at Cruise Mach 

The first test case is focused on the grid refinement study for the CRM Wing-Body at M=0.85 and CL=0.500.  

The trends with grid size for total drag are shown in Figure 5, broken out by grid type and turbulence model.  

Overall, the scatterband reduces considerably as the grid is refined, and the bulk of the results converge to a band 

about 10-15 counts wide.  The relatively poor agreement for the Tiny and Coarse grid levels is to be expected, as 

they are below typical industry standards for grid resolution.  There is no clear advantage of any one grid type in 

terms of a reduced scatter.  With one exception, similar trends can be observed for the turbulence models.  The 

Goldberg RT model (Datasets M, O, Q, and S) clearly predicts the drag to be higher, although some of the SST 

results (T and P) with the same code are high as well.  The two other sets from this team (N and P) which use the 

SST model compare well with the other SST results.  Most of the SST results have a shallower trend with grid size 

and agree with each other very well even though they represent the results of six different codes and multiple grid 

types.  Similar trends are seen in the Skin Friction and Pressure drag components, Figure 6 and Figure 7.  The skin 

friction does not vary significantly with grid resolution, confirming that grid refinement beyond a certain level is not 

needed to resolve the boundary layer for most of the grids and turbulence models.  This conclusion likely does not 

apply to larger regions of separation or to wakes.  Alpha and pitching moment for CL=0.500 are shown in Figure 8.  

Other than a few outliers, the trends are very flat with grid size.  Alpha falls generally in the range from 2.1-2.3, 

and the spread in pitching moment is ~0.02.  For typical tail configurations, the latter represents a stabilizer 

incidence range of about 0.5. 

A standard technique in grid convergence studies is to use the Richardson Extrapolation.  As implemented here, 

a standard least squares quadratic curve fit is used with grid factor, N
-2/3

, where N is the number of unknowns.  For 

second order codes the fit should reduce to linear with decreasing error as long as the refinement is in the asymptotic 

region.  The y-intercept then estimates the theoretical infinite resolution (continuum) result.  The extrapolations are 

shown in Figure 9.  It is clear that some nonlinearity is still present in the curves, mostly for the coarser grid levels.  
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This would indicate that the asymptotic region has not yet been reached for these levels and that there are still 

changes in some flow features with grid refinement.  At finer levels the behavior is more linear, but it is unclear 

whether the asymptotic region has been reached. 

Also shown here for the first time are wind tunnel results from the NASA NTF and Ames tests, which warrants 

some discussion.  Differences in the “test” set-up between Wind Tunnel and CFD are well known, and a few are 

listed below: 

Wind Tunnel  CFD  

Walls  Free Air  

Support System (Sting)  Free Air  

Laminar/Turbulent (Tripped)  “Fully” Turbulent (usually)  

Aeroelastic Deformation  Rigid 1g Shape  

Measurement Uncertainty  Numerical Uncertainty and Error  

Corrections for known effects  No Corrections  

Clearly there are potentially significant differences between what Wind Tunnel and CFD are measuring/computing.  

It is important to assess differences in magnitude between wind tunnel and CFD, but until the above variables are 

better addressed we should consider that the wind tunnel data are included here for reference only. 

As described above, the common grid study is a key feature of DPW-V.  Figure 9a shows total drag coefficient 

results for all submissions, while Figure 9b shows only the Common Grids which use the exact same node 

distributions.  A quite significant variation in the solutions remains, which may be due to the cell subdivisions into 

prisms and tetrahedra.  So the data are further reduced to only hex-based grids – Structured, Unstructured, and 

Overset – in Figure 9c.  Any remaining variation must be due to specifics of the CFD method coding, including 

turbulence model. 

Figure 10a shows the angle of attack for CL=0.500, while Figure 10b shows the pitching moment.  All the 

methods predict alpha to be too low compared to the wind tunnel – a result that has been present in all previous 

workshops.  Part of the reason for this is wing aeroelastic bending, but it is likely not the entire reason.  Pitching 

moment is also too negative, also at least partly from wing bending. 

The continuum drag estimates are shown in Figure 11.  The spread in the drag coefficient is 27.9 counts, while 

the standard deviation is 5.3 counts.  These represent a small but definite improvement from DPW-IV, which were 

40.9 and 8.1 counts, respectively.  Average and median CD are 0.02516 and 0.02496, the difference reflecting the 

skewed nature of the distribution shown in the inset figure.  The median solution is about 4 counts higher than the 

averaged wind tunnel data.  The difference between the NTF and Ames data is about 8 counts, similar to the 

standard deviation of the CFD data.  As mentioned above, we should expect differences between wind tunnel and 

CFD results due to the differences in “test” set-up. Although the exact magnitude of these differences is not known, 

it is still a good sign that the data agree reasonably well. 

Pressure coefficients at six stations along the wing span are shown in Figure 12 for the Level 3 grid submissions.  

The level of scatter and agreement with wind tunnel data are generally very good although both tend to deteriorate 

as the span station progresses to the wing tip.  The tunnel data for the outboard stations tend to have lower leading 

edge suction peaks than the CFD results.  This trend may be the result of aeroelastic deformation of the wing on the 

wind tunnel model, which would lower the tip incidence on a swept wing.  Effects of grid refinement are shown in 

Figure 13 for Station 10 ( =.5024).  Note that fewer pressure datasets were provided for Levels 1, 5, and 6, and that 

should be taken into account as it magnifies the decrease in scatterband at higher grid resolutions.  There is no 

fundamental change in shock location with the finer grids. There are no observable trends with grid type or 

turbulence model in the pressure distributions. 

C.  Case 2:  CRM Buffet Study 

The second mandatory case is based on a buffet study to investigate the CFD predictions in an angle-of-attack 

range where significant flow separation is expected.  This flight regime is of particular importance to determining 

aerodynamic loads and stability and control characteristics.  Seven angles-of-attack were specified between 2.5° and 

4.0° at 0.25° increments.  Computed results of lift, drag, pitching moment, wing section pressure and skin friction 

coefficients at specified spanwise locations, and locations of flow separation on the wing and side of body were 

requested at each angle-of-attack.   Over 50 data sets were provided by the Workshop participants for Case 2. 

In assessing the quality of computed results it is desirable to have corresponding experimental data available for 

comparison.  Unfortunately, the initial comparisons with experimental results from both the National Transonic 

Facility and the NASA Ames 11 Foot Wind Tunnel were disappointing.  Studies reported in Refs. 62 and 63 have 
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identified the primary causes for the disagreement between the computed and measured results.  These included the 

effects of the swept-strut mounting system and most importantly the geometry of the wing used in the computational 

analysis.  The CRM wing geometry used for both the Fourth and Fifth Drag Prediction Workshops was defined prior 

to the building and testing of the CRM wind tunnel model.  Ideally the computational geometry should include the 

aeroelastic deformation of the experimental subject under the actual test conditions.  This is not generally done at 

each test condition, but should be if the best possible correlation is desired.  Typically the wind tunnel model is 

designed to deflect to the desired design shape at a single cruise point in terms of lift, Mach number, and dynamic 

pressure.  Most, if not all CFD is done on that shape.  The current CRM wind tunnel model was built to the design 

shape, and during actual test conditions the model will deform under load.  The CRM geometry and grids represent 

the design shape, which in this case is the wind-off shape. 

To provide some measure for comparison, a set of “pseudo” wind tunnel data was created to represent results 

corresponding to the shape used in the CFD analysis.  These pseudo data are based on NTF data for the wing-body 

configuration and computational results from Ref. 63 for a wing-body-tail configuration.  The Ref. 63 results were 

for solutions using the Workshop geometry and solutions using a wing shape derived from the model deformation 

data from the NTF at the “cruise” conditions. NTF test data, pseudo test data, and computational results for the 

original geometry and the geometry with the measured twist are shown in Figure 14.  The difference between the 

two computational solutions was applied to the NTF experimental results to generate the pseudo test data.  For lift, 

the computational results with the measured twist are in reasonable agreement with the NTF data while the 

computational results using the Workshop geometry agrees well with the pseudo test data.  The pitching moment 

data is significantly different in that the available computational results were for a wing-body-tail configuration 

while the test data is for a wing-body configuration.  Nevertheless, to first order, the pitching moment increment due 

to twist should be applicable.  Based results from Reference 63, it is anticipated that corrections  for the effect of the 

wind tunnel model mounting system (if they have been available for the wing-body configuration) would have 

further increased the lift slightly and made the pitching moment more negative in the pseudo data.  These pseudo 

data should provide some reference to what would have been measured if the wind tunnel model had assumed the 

“design” shape at the “cruise” condition.  For purposes of the buffet study the drag differences were too small to 

warrant creating pseudo drag data. 

Lift and pitching moment results from all the Workshop submittals, along with the pseudo, NTF, and Ames test 

data are shown in Figure 15.  Most of the solutions are clustered within a “fan” that gets progressively wider with 

increasing angle-of-attack.  The exceptions are a group of solutions based on the Goldberg RT turbulence model, and 

other outliers which also suffered an early massive flow separation. 

All the solutions were examined to determine outliers, and if there was some defining characteristic that 

determined the quality of the solution. The outliers were defined as solutions that exhibited a break in lift prior to 

α=4° (relative to the linear lift vs. α slope), or exhibited lift and/or drag considerably outside the norm of the other 

solutions.  Outliers were seen in solutions from all grid families, and from SA, SST, and Goldberg RT turbulence 

models.  Lift break, which is indicative of a large increase in flow separation, occurred as early as 3° angle-of-attack 

in five solutions.  Seven solutions exhibited a lift break between 3.25 and 3.5°, and a further nine solutions at 3.75° 

angle-of-attack. 

The source of the early break can be found by examining the separation data requested by the DPW organizing 

committee and provided by most participants.  There is a tendency for some codes to predict a large separation 

bubble at the wing root trailing edge by the side of body (SOB), shown in Figure 16, while others preserved smooth 

flow virtually all of the way to the trailing edge.  The predicted SOB separation bubble in these cases extends 

forward and outboard by up to 100” (25% root chord) and is large enough to be seen in the force and moment 

results.  However the wind tunnel data do not exhibit any evidence of flow separation at the first row of pressures 

located at BL=151, nor does it show an early lift break.  All of the solutions identified with a separation bubble size 

greater than BL=151 also exhibited a lift break below 4 angle of attack and have been identified as outliers.  This 

type of 3D corner flow separation continues to need more attention in turbulence model development. 

Eliminating all the outliers as defined above, we have 26 solutions with lift and pitching moment characteristics 

shown in Figure 17.  Even with all the outliers removed there is still an increasing spread of the lift and pitching 

moment with increasing angle-of-attack.  At 4° angle-of-attack the value of lift coefficient varies by 0.055 and the 

spread in pitching moment coefficient is 0.042!  Note that for lift the solutions based on the SST turbulence model 

tend to be clustered at the lower half of the group and are closest to the pseudo test data.  These solutions are also 

characterized by a slightly more forward shock position compared to the SA solutions.  The SA solutions, which 

encompass several different flavors of the SA turbulence model, span the range of lift coefficients at a given angle 

of attack although most tend to be in the higher portion of the group.  The solutions based on the EARSM and 

LagRST turbulence model are somewhere in the middle.  Each one of these solutions on its own is a valid solution, 
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yet as angle-of-attack increases and the resulting degree of flow separation increases, the variation between solutions 

increases.  Which, if any, is most correct?  Further inspection could identify and remove more outliers, but the 

spread is likely to remain.  This raises the question as to how do we define correct or to assess the accuracy of our 

CFD solutions. 

The drag characteristics of the remaining solutions are shown in Figure 18.  Also shown are test results from 

three repeat runs at both the NTF and Ames wind tunnels.  Details of these tests and a description of the corrections 

applied to the experimental data can be found in Ref. 47.  Pseudo drag is not shown in that the twist corrections are 

of the same order as the spread between repeat runs and would add nothing to the comparison.  The drag 

characteristics are plotted in terms of the idealized profile drag defined as: 

 

CDP = CD – CL
2
/ ( AR) 

 

Plotting CDP instead of CD can be very useful as its variation with CL is significantly diminished, and therefore, 

the scale of the plot can be greatly increased.   The spread of the drag values is largely driven by the increasing 

spread of lift with increasing angle-of-attack.  Note that the spread of the drag values at low lift coefficients is of the 

same order as the spread of the test data between the two tunnels. 

The significant variations in lift and pitching moment seen in the various solutions at each angle-of-attack are 

driven largely by shock location and by the amount of trailing edge separation.  The pressure distributions shown in 

Figure 19 give some insight into these characteristics.  At 2.75° angle-of-attack, except for solutions based on the 

Goldberg RT turbulence model, very little trailing edge separation exists - less than 2% chord.  The lift and pitching 

moment variation here is driven mainly by differences in shock location.  By 3.0° angle-of-attack, as seen in Figure 

20, there is a significant amount of trailing edge separation for most solutions except for the one based on the 

EARSM turbulence model - somewhat more separation for the SST solutions, more variation among the various 

versions of the SA turbulence model.  By 4.0° angle-of-attack, as seen in Figure 20, there is a massive amount of 

trailing edge separation with significantly different patterns between solutions. There does not appear to be any 

single clear pattern. 

The chaotic situation at these high angles-of-attack may be physical as well as computational.  One must ask if 

steady Reynolds Averaged Navier-Stokes is adequate for modeling this flow regime.  Will URANS (Unsteady 

Reynolds Averaged Navier-Stokes) be adequate, or must one go to an eddy-resolving method such as DES 

(Detached Eddy Simulation) to accurately simulate this flow regime?  In addition to further CFD research in this 

area, detailed experimental measurements that adequately capture the flow separation and unsteadiness on these type 

configurations must also be acquired. 

C.  Case 3:  Turbulence Model Verification Study 

A unique feature of this drag prediction workshop was the addition of an optional set of simple test cases from 

the online Turbulence Model Resource website
61

.  These test cases were designed to discriminate between 

turbulence models and their coding implementations through rigorous grid convergence studies.  In other words, 

different CFD codes that have implemented a given turbulence model as intended should produce nearly the same 

result as the grid is refined for these cases.  This same type of rigorous verification testing is currently not possible 

for complex configurations such as the CRM. 

In this study, designated as Case 3, three 2-D cases were selected:  flat plate, bump, and NACA 0012 airfoil.  

Ten participants - representing 8 of the 21 teams who participated in cases 1 and 2 – submitted results, which were 

compared with reference solutions from the online resource (using CFL3D).  Table 5 summarizes the entries.  For 

convenience, a unique ID was assigned for these “turbulence modeling” cases.  The table shows the linkage between 

this ID and the corresponding ID(s) used in the CRM part of the workshop.  One dataset (indicated by a *) was 

corrected after the workshop, and two datasets (indicated by a **) were added after the workshop.  Unfortunately, 

several of the participants submitted the requested information on only a single grid level, so it is not clear where 

their solutions were heading as the grids were refined.  All participants used a version of either the SA or SST 

turbulence models.  Note that SST uses strain-based production terms, and SST-V uses vorticity-based approximate 

production terms
61

.  In the table, the model(s) used are indicated, along with the grid levels employed (f=finest, 

m=medium, c=coarse).  All grids (except those used by T7) were the same structured / hexahedral grids, which were 

successively coarsened by removing every other point in each coordinate direction. 

Case 3.1 Flat Plate:  The zero-pressure-gradient flat plate case was computed using M=0.2, ReL=5 million, 

where L=1 nondimensional unit and the total plate length was 2L.  Figure 21 shows wall skin friction coefficient 

using SA at location x=0.97, as a function of       , a measure of average grid spacing.  (The online website 
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notes that quantities of interest rarely converge consistently at second order in practice, even for a nominally second-

order code on these simple problems, so h is chosen here for convenience.) Although T1 and T3 only used a single 

grid size, their results were clearly inconsistent with the majority of the results.  T4 also only used a single grid size, 

but its results agreed well with the collective.  Although not shown here, Cf results at other locations followed a 

similar trend. 

Using SST, four different participants agreed well with each other as the grid was refined, Figure 22.  (Note that 

when computing the flat plate, SST and SST-V are indistinguishable because strain and vorticity are nearly the 

same.) T1 was again noticeably different than the collective.  T3 was not run using an SST model. 

Case 3.2 Bump:  The bump case was useful because it tested more features than the simple flat plate, including 

the use of non-Cartesian geometry and grid topology, as well as non-zero pressure gradient.  The bump itself (with 

maximum nondimensional height of 0.05) extended from 0.3 < x < 1.2.  The solid wall extended from 0 < x < 1.5.  

Flow conditions were M=0.2 and Re=3 million per unit length. 

Again, wall skin friction coefficient at particular locations were a useful metric for evaluating the expected 

solution for a given turbulence model.  Figure 23 shows Cf as a function of h for the SA model at x=0.6322.  Results 

at other locations yielded similar conclusions.  Once again, T1 and T3 were outliers compared to the majority of 

results.  In addition, for this case T5, T6, and the original T2 submissions produced a noticeably different trend from 

the collective.  Subsequently, the reason for the discrepancy was discovered to be the method used to compute 

minimum distance function (distance to the nearest wall).  The T5, T6, and early T2 results used an approximate 

method.  For example, T2 summed the distance by following along grid lines.  When grid lines are not exactly 

normal to the surface, this procedure introduces errors.  Subsequently using a more accurate computation of 

minimum distance function, T2’s corrected result aligned well with the collective. 

Figure 24 shows a close-up of skin friction coefficient over the bump (near its peak) for SA.  All results except 

T3 used the fine (f) grid.  Although relatively small, the level of disagreement between participant results is clearly 

visible.  The Cf curves predicted by participants T2, T4, T10, and T11 are nearly indistinguishable. 

For the bump case, the particular version of SST made a difference in results, as shown in Figure 25.  Although 

not significantly different, SST-V yielded slightly lower values of Cf at this location than SST.  All participants 

except for T1 were consistent with each other. 

Case 3.3 Airfoil:  The NACA 0012 case was computed at M=0.15, Re=6 million per unit chord, and three 

different angles of attack: 0, 10, and 15.  Although this case represented a more aerodynamically realistic 

configuration than the other two cases, it turned out to be more difficult to draw firm conclusions.  It may be 

necessary to include even finer grids than 1793x513 in future studies.  Selected results are only shown here for 

α=15.  General conclusions from other angles of attack were similar. 

As shown in Figure 26, for the NACA 0012, all participant results – including T1 and T3 – appeared to be 

consistent using the SA model, in spite of uncertainties in the particular results that did not include grid studies.  

(Note that T7 used a custom grid with anisotropic h-adaptation and a discontinuous Galerkin algorithm.  Thus, its 

results are not straightforward to plot along with other results; it is not of the same family and its point count was not 

provided.  Currently, it is arbitrarily plotted using h of approximately 0.002.)  For the SST and SST-V models in 

Figure 27, the drag coefficient was consistent among the participants, but the lift coefficient exhibited larger 

variation.  However, the lift coefficient was also changing significantly with grid refinement, even on the finest grid, 

so it is difficult to draw firm conclusions without a grid study that includes even finer grids.  At this level of detail, it 

was also impossible to detect different trends between SST and SST-V. 

Although not shown, submitted results for NACA 0012 surface pressure coefficient and surface skin friction 

coefficient were generally consistent among participants for a given turbulence model, with the exception of 

participants T3 and T7.  It is possible that these particular results were post-processed incorrectly for the workshop. 

In summary, the turbulence model verification study was a very useful exercise.  Using simple well-defined test 

cases (flat plate and bump) along with grid convergence studies, potential differences in turbulence modeling 

implementations were quickly uncovered.  Use of a NACA 0012 airfoil test case was less enlightening, and may 

require the use of finer grids in future studies.  For the flat plate and bump cases, T1 and T3 were consistently 

different from the collective.  However, these participants did not perform grid studies, so it is not clear whether the 

inconsistencies were due to modeling differences, discretization errors, or a combination of both.  The study also 

helped to isolate differences due to a particular cause: the use of an approximate minimum distance function.  This 

was shown to introduce errors that could be an important factor when using complex grids on realistic 

configurations.  The study further demonstrated that small but quantifiable differences can be expected between two 

commonly used forms of the SST model.  Using simple problems to isolate and identify these levels of disparities 

may eventually help to explain why different codes yield different results when using ostensibly the same turbulence 

model on complex problems like the CRM. 
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VI.  Conclusions 

The fifth AIAA CFD Drag Prediction Workshop was held in conjunction with the 30
th
 AIAA Applied 

Aerodynamics conference in June, 2012.  The event was well attended by a diverse group of expert CFD 

practitioners from four continents representing government, industry, academia, and commercial code development 

institutions.  This workshop focused on a common grid study for the NASA Common Research Model wing-body 

configuration, including single point grid convergence and high-alpha buffet conditions.  An optional turbulence 

model verification study was also included. 

A total of 57 Reynolds Average Navier Stokes datasets were provided on structured, overset, and unstructured 

grids.  Of these, 37 used common grids all derived from the identical field of points regardless of grid type.  For the 

Case 1 grid convergence study, a Richardson Extrapolation was performed to estimate continuum results.  Total 

scatter and standard deviation were reduced from DPW-IV.  Comparison of the results to wind tunnel data is 

reasonable, within about 4 counts to the median solution.  However, since the wind tunnel test and CFD problem 

setups are inherently different, there is some question as to how well they should agree.  There are no clear 

breakouts with grid type or turbulence model, with the exception of the Goldberg RT model which predicted higher 

drag than the bulk of the other solutions – especially for the coarser grids. 

For the Case 2 buffet study, a set of outliers were observed that had uncharacteristically large wing trailing edge 

separation at the side of body which contributed to an early lift break.  This break is definitely not present in the 

wind tunnel data.  For most solutions (not including outliers) the grouping of forces was relatively tight at α=2.5.  

In general, CM was predicted to be too negative, partly due to known geometry differences including steady 

aeroelastic effects.  The latter effect is observed in the wing pressure distributions which agree well over the inboard 

wing but deteriorate outboard.  Variations in the forces spread significantly at α=4.0 due to differences in shock 

induced separation predicted on the wing.  It is not known whether the flow is steady for those conditions and 

whether steady RANS methods are adequate.  Studies with unsteady RANS or DES may be needed to confirm these 

effects, as well as experiments designed to measure unsteady flows.  The SOB separation bubble characteristic of 

the outlier solutions needs further study and development of turbulence models for corner flow geometries. 

The Case 3 turbulence model verification study showed generally consistent results for a given turbulence 

model, although potential differences in the implementation of some models were uncovered.  An approximate 

minimum distance function was shown to cause differences that could be significant when computing on realistic 

configurations.  Using this type of simple problem can help to explain conflicting results when using the same 

turbulence model in different codes. 
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Table 1.  Reference quantities for the CRM. 

Sref 594,720.0 in
2
 = 4,130 ft

2 
[458.89 m

2
] xref 1,325.9 in [33.68 m] 

Strap 576,000.0 in
2
 = 4,000 ft

2
 [444.44 m

2
] yref 468.75 in [11.91 m] 

b 2,313.5 in = 192.8 ft [58.765 m] zref 177.95 in [4.520 m] 

cref 275.800 in = 16.07 ft [4.8978 m] c/4 35.0 

AR 9.0    0.275 

 

Table 2.  Gridding guidelines (from DPW-IV). 

1) Initial spacing normal to all viscous walls (RE Based on cref= 275.80”):  

a) coarse: y+ ~ 1.0 y1= 0.001478 (RE= 5M)  

b) medium: y+ ~ 2/3 y1= 0.000985 (RE= 5M), y1= 0.000273 (RE= 20M) 

c) fine: y+ ~ 4/9 y1= 0.000657 (RE= 5M) 

d) extra-fine: y+ ~ 8/27 y1= 0.000438 (RE= 5M) 

2) Recommended: generate grids with 2 cell layers of constant spacing normal to viscous walls  

3) Total grid size to grow ~3X between each grid level for grid convergence cases  

4) For structured meshes, this growth is ~1.5X in each coordinate direction  

5) Grid convergence cases must maintain the same grid family between grid levels, i.e. maintain the same 

stretching factors, same topology, etc.  

6) Growth rate of cell sizes in the viscous layer should be < 1.25.  

7) Far field located at ~100cref for all grid levels.  

8) For the Medium Baseline Grids:  

a) Chordwise spacing for wing and tail leading edge (LE) and trailing edge (TE) ~0.1% local chord.  

b) Wing and tail Spanwise spacing at root ~0.1% local semispan.  

c) Wing and tail Spanwise spacing at tip ~0.1% local semispan.  

d) Cell size near fuselage nose and after-body ~2.0% cref.  

9) For the Coarse and Fine Baseline Grids, the above values should be scaled accordingly.  

10) Wing and Tail Trailing Edge Base: 

a) Minimum of 8 cells across TE base for the coarse mesh  

b) Minimum of 12 cells across TE base for the medium mesh  

c) Minimum of 16 cells across TE base for the fine mesh  

d) Minimum of 24 cells across TE base for the extra-fine mesh  

11) Be multi-grid friendly  

12) For unstructured grids designed for vertex based solvers, the spacings refer to inter-nodal spacings and the 

resulting grid sizes are expected to be similar to the structured grid sizes above. For unstructured grids for cell- 

centered solvers, the spacings refer to spacings between cell centers (or surface face centers), which 

corresponds approximately to a factor of 2 reduction in the overall number of surface points compared to the 

nodal solver case, for a triangular surface grid (this is based on triangle centroid separation distance of 2/3h). 

For tetrahedral cell-centered-solver meshes, the total number of grid points will be approximately 1/3 of the 

numbers listed above. 

 

Table 3.  Metric parameters for the common grids (counts in millions). 

Level Name Label 1 y
+
 

Multiblock 

Structured Overset Unstr. Hex Unstr. Prism Unstr. Hybrid 

Cells Nodes Points Cells Nodes Cells Nodes Tets Prism Nodes 

1 Tiny T 2.00 0.64 0.66 0.8 0.64 0.66 1.3 0.66 2.6 0.43 0.66 

2 Coarse C 1.33 2.2 2.2 2.5 2.2 2.2 4.3 2.2 8.6 1.4 2.2 

3 Medium M 1.00 5.1 5.2 5.7 5.1 5.2 10.2 5.2 20.8 3.3 5.2 

4 Fine F 0.67 17.3 17.4 18.6 17.3 17.4 34.5 17.4 69.7 11.3 17.4 

5 Extra Fine X 0.50 40.9 41.2 43.3 40.9 41.2 81.8 41.2 166.1 26.4 41.2 

6 Super Fine S 0.33 138.0 138.8 143.5 138.0 138.8 --- --- --- --- --- 
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Table 4.  DPW-V case 1 and 2 submissions and participant data key. 

 
* Data Resubmitted After Workshop  ** Cases Added After Workshop 

Team ID Name Organization Code Misc Solver Grid Type Turbulence Model

A Sclafani Boeing (Huntington) OVERFLOW v2.2c Central Overset SA-Ia

B Sclafani Boeing (Huntington) OVERFLOW v2.2c Central Overset SA-Ia w/ RC

C Sclafani Boeing (Huntington) OVERFLOW v2.2c Central Custom (Overset) SA-Ia

D Sclafani Boeing (Huntington) OVERFLOW v2.2c Central / QCR Custom (Overset) SA-Ia

E Sclafani Boeing (Huntington) OVERFLOW v2.2c Central Custom (Overset) SA-Ia w/ RC

F Sclafani Boeing (Huntington) OVERFLOW v2.2c Central / QCR Custom (Overset) SA-Ia w/ RC

G Sclafani Boeing (Huntington) OVERFLOW v2.2c Central Custom (Overset) SA-Ia w/ RC

H Sclafani Boeing (Huntington) OVERFLOW v2.2c Central / QCR Custom (Overset) SA-Ia w/ RC

I Chen CADRC MFlow Upwind Hex SA

J Chen CARDC MFlow Upwind Hybrid SA

K GariÈpy EcolePolytechMontreal Fluent V13 Upwind Prism SA

L GariÈpy EcolePolytechMontreal Fluent V13 Upwind Custom (Hex) SA

M Scalabrin Embraer CFD++ Upwind Hex RT

N Scalabrin Embraer CFD++ Upwind Hex SST

O Scalabrin Embraer CFD++ Upwind Hybrid RT

P Scalabrin Embraer CFD++ Upwind Hybrid SST

Q Scalabrin Embraer CFD++ Upwind Prism RT

R Scalabrin Embraer CFD++ Upwind Prism SST

S Scalabrin Embraer CFD++ Upwind Custom (Hybrid) RT

T Scalabrin Embraer CFD++ Upwind Custom (Hybrid) SST

U Eliasson FOI EDGE Central Hex EARSM

V Eliasson FOI EDGE Central Hex SA

W Eliasson FOI EDGE Central Hex SST

6 X Powell Gulfstream * FUN3D Upwind Roe Hybrid SA

7 Y Balakrishnan Indian Inst. Science HiFUN Upwind Hex SA

Z Hashimoto JAXA * FaSTAR Upwind Hex SA-noft2-R

2 Hashimoto JAXA FaSTAR Upwind Custom (Hex) SA-noft2-R

3 Yamamoto JAXA * UPACS Upwind Multi-block SA-noft2-R (Crot=1)

4 Yamamoto JAXA * UPACS Upwind Multi-block SST-V

10 5 Olson NASA Ames * overflow2.2e_LRS Central/matrix Overset Lag RST

6 Park NASA Langley FUN3D v12.2 Upwind Roe Hybrid SA

7 Park NASA Langley CFL3D v6.6 Upwind Roe Multi-block SA

12 8 Cai NPU China * ExStream Upwind Overset SST

13 9 Hue ONERA elsA Central Multi-block SA

14 a Coder Penn St. U OVERFLOW 2.2c Upwind Overset SA-fv3

b Osusky U. Toronto * Diablo Scalar Multi-block SA

d Osusky U. Toronto * Diablo Matrix Multi-block SA

e Levy Cessna Aircraft Co. * NSU3D Central/matrix Hybrid SA

f Levy Cessna Aircraft Co. FUN3D Upwind Roe Hybrid SA

g Crippa DLR TAU Matrix Hex SA

h Crippa DLR TAU Matrix Hex SST

18 k Moitra CRL_INDIA CFD++ Upwind Prism SA-RC

m Winkler Boeing (St. Louis) BCFD Upwind HLLE Hex SA

n Winkler Boeing (St. Louis) BCFD Upwind HLLE Hex SST-V

q Winkler Boeing (St. Louis) BCFD Upwind HLLE Hex SA

r Winkler Boeing (St. Louis) BCFD Upwind HLLE Hex SST-V

20 t Temmerman NUMECA FINE/Open Cell Centered Multi-block SA

 Brodersen DLR TAU Diss 1 Custom (Hybrid) SA

b Brodersen DLR TAU Diss 3 Custom (Hybrid) SA

d Brodersen DLR TAU Diss 1 Custom (Hyb w/Hex-Wake) SA

g Brodersen DLR TAU Diss 3 Custom (Hyb w/Hex-Wake) SA

 Brodersen DLR TAU Diss 1 Custom (Hyb w/Hex-Wake) Menter SST

 Brodersen DLR TAU Diss 3 Custom (Hyb w/Hex-Wake) Menter SST

x Powell Gulfstream ** FUN3D Upwind Roe Custom (Tet) SA

y Powell Gulfstream ** USM3D Upwind Roe Custom (Tet) SA

s Yamamoto JAXA ** UPACS Upwind Roe Custom (MB) SA-noft2-R (Crot=1)

v Yamamoto JAXA ** UPACS Upwind Roe Custom (MB) SST-V

17

19

21

6

9

16

1

2

3

4

5

8

9

11

15
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Table 5.  Turbulence model verification (case 3) participants. 

ID Link to 

CRM ID 

CFD Code Flat Plate Bump NACA 0012 

T1 I or J MFlow SA(f) 

SST(f) 

SA(f) 

SST(f) 

SA(f) 

SST(f) 

T2 g or h TAU SA(c-m-f) 

SST(c-m-f) 

SA(c-m-f)* 

SST(c-m-f) 

 

T3 K or L Fluent v13 SA(m) SA(m) SA(m) 

T4 3 or 4 UPACS SA(f) 

SST-V(f) 

SA(f) 

SST-V(f) 

SA(f) 

SST-V(f) 

T5 b Diablo SA(c-m-f) SA(c-m-f) SA(c-m-f) 

T6 d Diablo SA(c-m-f) SA(c-m-f) SA(c-m-f) 

T7 n/a XFlow   SA(custom grid) 

T8 m or n BCFD** SA(c-m-f) 

SST-V(c-m-f) 

  

T9 f FUN3D**   SA(m) 

SST-V(m) 

T10 6 or 7 FUN3D SA(c-m-f) 

SST-V(c-m-f) 

SA(c-m-f) 

SST-V(c-m-f) 

SST(c-m-f) 

SA(c-m-f) 

 

SST(c-m-f) 

T11 n/a CFL3D  SA(c-m-f) 

SST-V(c-m-f) 

SST(c-m-f) 

SA(c-m-f) 

SST-V(c-m-f) 

SST(c-m-f) 
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Figure 1.  NASA Common Research Model (CRM) geometry for DPW-V cases 1 and 2. 
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Figure 2.  Block topology for the CRM wing-body multiblock grid family. 

 

 

Figure 3.  Overset patch grids derived from the multiblock structured grid. 

 

 

a) Hex to prisms and tetrahedra   b)  Issues with distorted high aspect ratio cells 

Figure 4.  Unstructured grids derived from the multiblock structured grid. 

Overset Grid System: 

3 Body Grids 

2 Wing Grids (no wake) 

4 Patch Grids 
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Figure 5.  Case 1 total drag by grid type and turbulence model. 

 

 

 

Figure 6.  Case 1 skin friction drag by grid type and turbulence model. 
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Figure 7.  Case 1 pressure drag by grid type and turbulence model. 

 

 

 

Figure 8.  Case 1 alpha and pitching moment by grid type. 

A

A

A
A

B

B

B
BBB

E
E

EE

I

I
III

J

J
J

J

K

K
KK

L
L

LL

M

M

M

N
NN

O

O

O P

P

P

Q

Q

Q

R
RR

S

S

S

T

T

T

U

UUUUU

V

V
VVVV

W
WWWWW

X

X
X

XX

Y

Y

Y
YY

Z

Z
Z

ZZZ

2
22

2

3

3
3333

4

44444

5

5

5
55

6

6
6

66

7

7
777

8
8

88 9

99999

a

a
aaaa

b

b
b

bbb

d

d
dddd

e

e

e
e

f

f
f

ff ggggg
hhhhh

k

k
k

k

m
m

mm

n

n
nnn

q

q
q

qq

r

r
rrr

t

t
t

tt
s

sss

v

vvvvv

0.66M1M5M10M50M
100M

GRDFAC = 1/GRIDSIZE
(2/3)

C
D

_
P

R

0 5E-05 0.0001 0.00015
0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024
OVERSET
MULTI-BLOCK
HYBRID
HEX
PRISM
CUSTOM

A

A

A
A

B

B

B
BBB

E
E

EE

I

I
III

J

J
J

J

K

K
KK

L
L

LL

M

M

M

N
NN

O

O

O P

P

P

Q

Q

Q

R
RR

S

S

S

T

T

T

U

UUUUU

V

V
VVVV

W
WWWWW

X

X
X

XX

Y

Y

Y
YY

Z

Z
Z

ZZZ

2
22

2

3

3
3333

4

44444

5

5

5
55

6

6
6

66

7

7
777

8
8

88 9

99999

a

a
aaaa

b

b
b

bbb

d

d
dddd

e

e

e
e

f

f
f

ff ggggg
hhhhh

k

k
k

k

m
m

mm

n

n
nnn

q

q
q

qq

r

r
rrr

t

t
t

tt
s

sss

v

vvvvv

0.66M1M5M10M50M
100M

GRDFAC = 1/GRIDSIZE
(2/3)

C
D

_
P

R
0 5E-05 0.0001 0.00015

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024
R

T

SST
SA
SA-RC
SA (other)
EARSM, RST

A
A

A
A

B
B

B
BBB

E
E

E
E

I

I
III

J

J
JJ

KK
KK

LLLL

M

M

M

NNN

O

O

O

P
PP

Q

Q

Q

RRR

S

S
S

T

T

T

U
UUUUU

V

V
V

VVV

W
WWWWW

X

X
X

XX Y

YYYY

Z

ZZZZZ

2
22

2

333333 4

4
4

444 5

5
555

6

6666

7

7
7

77

8888
9

99999

a
aa

aaa

b

b
b

bbb

d

d
d

ddd
e

e
e

e

f

f
f

ff gg
ggg

hhhhh

k

k
k

k m
m

mm

n
nnnn

q

q
qqq

r

rrrr
ttttt

ssss v

v
v

vvv

0.66M1M5M10M50M

100M

GRDFAC = 1/GRIDSIZE
(2/3)

A
L

P
H

A

0 5E-05 0.0001 0.00015
1.8

2.0

2.2

2.4

2.6

2.8

3.0
OVERSET
MULTI-BLOCK
HYBRID
HEX
PRISM
CUSTOM

AAAA
B

BBBBB

E
E

E
E

I

I
III

J

J
JJ

K
KKK

LL
LL

M

M

M

NNN

O

O
O

PPP

Q

Q

Q

RRR

S

S
S

T

T

T

U
UUUUU

V

V
V

VVV

WWWWWW

X

X
X

XX
Y

YYYY

Z
ZZZZZ

2
22

2

333333 4

4
4

444

5

5555

6
6666

7

7
7

77

8
8

88

9
9

9999

a
aa

aaa

bb
b

bbb

d
d

d
ddd

e

ee
e

f

f
f

ff
g

g
ggg

hh
hhh

m
m

mm

n
nnnn

q

q
q

qq

r
rrrr

t
tttt

ssss
v

v
v

vvv

0.66M1M5M10M50M

100M

GRDFAC = 1/GRIDSIZE
(2/3)

C
M

_
T

O
T

0 5E-05 0.0001 0.00015
-0.140

-0.130

-0.120

-0.110

-0.100

-0.090

-0.080

-0.070

-0.060

-0.050
OVERSET
MULTI-BLOCK
HYBRID
HEX
PRISM
CUSTOM

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
15

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

46
 



21 

American Institute of Aeronautics and Astronautics 
 

 

 

 

 a)  CD_TOT:  All Grids b)  CD_TOT:  Common Grids Only c)  CD_TOT:  Hex Grids Only 

Figure 9.  Case 1 total drag Richardson extrapolation with wind tunnel data. 

  

 a)  ALPHA:  All Grids b)  CM_TOT:  All Grids 

Figure 10.  Case 1 alpha and pitching moment Richardson extrapolation with wind tunnel data. 

  

Figure 11.  Case 1 total drag continuum extrapolation. 
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Figure 12.  Case 1 medium grid spanwise variation in wing pressure coefficient. 
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Figure 13.  Case 1 grid refinement trends for wing pressure coefficient at station 10 ( = 0. 5024). 
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Figure 14.  “Pseudo” test data. 

 

 

 

Figure 15.  Lift and pitching moment for all solutions. 
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Figure 16.  Wing root trailing edge separation bubble. 

 

 

Figure 17.  Lift and pitching moment for solutions without outliers. 
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Figure 18.  Idealized drag for solutions without outliers. 
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Figure 19.  Case 2 buffet study trends for wing pressure coefficient at station 10 ( = 0. 5024). 
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Figure 20.  Trailing edge separation at 3.0 and 4.0 alpha. 
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Figure 21.  Grid study of flat plate skin friction coefficient using SA. 

 

Figure 22.  Grid study of flat plate skin friction coefficient using SST. 
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http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-46&iName=master.img-049.jpg&w=323&h=289
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-46&iName=master.img-050.jpg&w=323&h=289
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Figure 23.  Grid study of bump skin friction coefficient using SA. 

 

Figure 24.  Skin friction coefficient over bump (detail) using SA. 
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http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-46&iName=master.img-051.jpg&w=323&h=289
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-46&iName=master.img-052.jpg&w=323&h=288
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Figure 25.  Grid study of bump skin friction coefficient using SST and SST-V. 

 

Figure 26.  Grid study of NACA 0012 drag and lift coefficient at alpha=15 using SA. (T7 used a custom-adapted grid and is 

plotted with arbitrarily chosen h.) 
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http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-46&iName=master.img-053.jpg&w=323&h=288
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-46&iName=master.img-054.jpg&w=323&h=288


31 

American Institute of Aeronautics and Astronautics 
 

 

 

Figure 27.  Grid study of NACA 0012 drag and lift coefficient at alpha=15 using SST and SST-V. 
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