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This paper presents a framework for the reduction of the spatial, temporal and algebraic
error by use of the discrete adjoint solution in a time integrated functional (i.e. Lift, Drag,
etc.) for problems of aerodynamic interest. The three types of error are separated into
distinct contributions that are used to selectively adapt the discretization to reduce the
error in the functional in the most e�cient manner. A simple unsteady problem of a
vortex convecting through a time integrated box is used to demonstrate that the frequency
of re�nement has a large impact on the overall computational e�ciency of the solution.
Analysis of the simpli�ed problem shows that adaption of one parameter in isolation results
in a limited improvement in accuracy and a combination of adapting on the three types of
error is necessary to get any signi�cant improvement. A method is developed to address
this restriction and tested. The improved e�ciency of the new method is demonstrated
on the simpli�ed test problem and an additional test case of a vortex convecting past an
airfoil.

I. Introduction

Achieving satisfactory results with computational uid dynamics has traditionally been a balancing act
between available computational resources and the desired accuracy the practitioner hopes to achieve. This
is especially true for time accurate simulations where the number of time steps, step size, grid resolution and
convergence criteria all must be chosen to accurately capture the ow physics of interest without resulting
in excessive computational cost. An experienced practitioner uses past results to chose these parameters
expecting similar results but has no way to directly evaluate the error resulting from their choices. Recently,
adjoint based adaptive methods have been gaining popularity to provide answers to this problem for both
steady and unsteady problems.

An adjoint variable based approach permits the estimation of error relevant to a functional, and the
corresponding distribution of this error in the time and spatial domains. The method relies on applying
discrete adjoint equations on a Taylor series expansion of a functional, where a linear approximation of the
functional between two di�erent resolutions (space or time) is estimated by solving the ow problem and
the adjoint problem at the coarse resolution and then projecting it to the �ner resolution. The method
only predicts the error in the ow solution that is relevant to the functional of interest between two di�erent
resolutions and not against the exact analytical value of the functional. Adjoint based approaches also permit
distinct identi�cation of the contributions to this error arising from the three primary sources, namely the
spatial/temporal resolution and the e�ect of partial convergence of the equations. This is di�erent from
common adaption or control schemes which are based on algebraic estimates of the local error within the
solution, in that the global error in the functional can be estimated and adapted on.

This method is most mature for steady problems where researchers have used the error estimates to
adaptively re�ne the grid1{3 and put error bounds on solution accuracy.4{6 Unsteady problems have received
considerably less attention and the primary focus has been on performing adaption in time,7{9 space9,10 and
convergence tolerances7,8 individually. In our previous paper,11 we combined all three types of error estimates
into the same framework and presented results showing each of the three components can be separated into
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individual contributions. Furthermore, we demonstrated the three individual error estimates could be used
to adapt the discretization and improve the e�ciency of the time accurate solution.

The present study builds on our previous work11 by eliminating the requirement that the convergence
tolerance and spatial discretization remain constant for all time steps of the time accurate simulation. Using
this added capability we explore the e�ect of the re�nement interval and amount of error to re�ne on any one
interval has on the e�ciency of the error reduction. In addition, we are able to demonstrate that adaption
of only one error component in isolation will result in a limited improvement in accuracy and a combination
of adapting on the three types of error is necessary to get a signi�cant improvement. The methodology is
demonstrated using an implicit cell-centered �nite volume solver with gradient reconstruction and a Roe
ux splitting scheme12 to solve the Euler equations on an unstructured mesh up to 2nd order accuracy in
both space and time. The following sections contain the formulations required for calculation of each of the
error estimates, implementation details and test case results showing the bene�ts of the proposed adaption
strategy using the adjoint based error estimates.

II. Governing Equations

II.A. Euler Equations

The Euler equations are the governing equations for inviscid ow where the dissipative phenomena of viscosity
and thermal conductivity are ignored. The three-dimensional equations in Cartesian coordinates for a
compressible ow minus any source terms are represented by a system of �ve non-linear partial di�erential
equations.
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By examining the equations we see there are �ve equations but six unknowns (�; u; v; w; e; P ). Therefore, in
this paper an ideal gas is assumed and the equation of state relates the pressure to total energy by:

P = ( � 1)

�
E � 1

2
�
�
u2 + v2 + w2

��
(6)

To facilitate solution by computer the equations are manipulated into vector form by re-writing the
system as:

@~U

@t
+
@ ~Fx
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+
@ ~Fy
@y

+
@ ~Fz
@z

= 0 (7)

where the vector of conserved quantities becomes:

~U =
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�
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�w

�E

1CCCCCA (8)

2 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
15

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

52
0 



and the Cartesian inviscid ux vectors reduced to:

~Fx =
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1CCCCCCA (9)

The Euler equations (Eqn. 7) are solved implicitly in time using the second order backwards di�erence
formula (BDF2) with second order accurate spatial derivatives on an unstructured grid. This is done for
each time step by introducing an implicit residual as

~Rn(~Un; ~Un�1; ~Un�2; ~x) = 0 (10)

where ~Un is the solution at the current time step, ~Un�1 and ~Un�2 are the solutions at the two previous time
steps and ~x is the vector of grid coordinates. This system is linearized with respect to the unknown solution
~Un and solved using Newton’s method.h

@ ~R(~Uk;~x)

@~Uk

i
�~Uk = �~R(~Uk; ~x)

~Uk+1 = ~Uk + �~Uk

~Un = ~Uk+1; � ~Uk ! 0

(11)

II.B. Error due to Spatial Resolution

Consider an objective function L that is a quantity dependent on the ow solution U for all time steps of
the simulation. For this case, the spatial error will be derived by using a Taylor series expansion of the true
objective calculated on a �ne grid Ls(~Us).

Ls(~Us) = Ls( ~Us) +
@Ls( ~Us)

@ ~Us

�
~Us � ~Us

�
+ � � � (12)

where Ls( ~Us) is the �ne grid objective computed using an approximate solution ~Us. In general, Ls may be

a time integrated objective and will depend on the entire time history of the solution ~Us. Therefore no time
level superscripts exist with the understanding that unsuperscripted variables refer to the entire time history
of the ow �eld.

To avoid the need for computing the true solution ~Us on the �ne mesh in the proceeding equation we
will use a Taylor series expansion about the �ne level residual equation

Rs(~Us) = 0 = Rs( ~Us) +
@Rs( ~Us)

@ ~Us

�
~Us � ~Us

�
+ � � � (13)

where the unsuperscripted residual denotes the residuals over all time steps and all mesh cells of the simu-

lation. Using this expression to substitute for the term
�
~Us � ~Us

�
we can rewrite the objective as:

Ls(~Us) �= Ls( ~Us)�

"
@Ls( ~Us)

@ ~Us

#"
@Rs( ~Us)

@ ~Us

#�1
Rs( ~Us) (14)

Denoting the matrix product as the adjoint variable �s
T

�s
T = �

"
@Ls( ~Us)

@ ~Us

#"
@Rs( ~Us)

@ ~Us

#�1
(15)
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leads to the following expression for the linear approximation to the �ne grid objective.

Ls(~Us) �= Ls( ~Us) + �s
TRs( ~Us) (16)

The inner product given by the last term is taken over all mesh cells and all time steps of the simulation.
The values in this expansion are obtained by constructing the approximate solution ~Us by interpolating a
coarse grid solution onto the �ne grid at each time step and evaluating Ls( ~Us) and Rs( ~Us). The di�culty
lies in obtaining the adjoint value �Ts . A direct calculation of this quantity costs as much as obtaining the

true solution ~Us, in which case, we might as well evaluate Ls(~Us) directly. To alleviate this expense we
approximate the �ne grid adjoint value by calculating the coarse grid adjoint denoted as � and interpolating
onto the �ne grid using a projection matrix (IsS) to arrive at the �nal linear approximation to the �ne grid
objective function.

~�Ts = IsS�T

Ls(~Us) �= Ls( ~Us) + ~�Ts Rs( ~Us)
(17)

Ls(~Us)� Ls( ~Us)| {z }
"s

�= IsS�TRs( ~Us) (18)

From this derivation we see that the term ~�Ts Rs( ~Us) is a direct estimation of the linear error in our
calculation from the lack of spatial resolution. Therefore, the elements with the largest value can be agged
for future re�nement.

One term of this derivation, that cannot be directly evaluated and has yet to be solved for, is the adjoint
variable on the coarse grid �T . It is most easily solved by rearranging the matrix product expression in
equation (15) to be: "

@R(~U)

@~U

#T
~� = �

"
@L(~U)

@~U

#T
(19)

Notice the approximate solutions ~U have been replaced with converged solutions ~U since this equation is
solved using the coarse grid solution. The matrices in equation (19) represent each equation of every element
on every time step therefore we can expand the equations into an expression where each row represents the
solution to a single time step (shown here for BDF2).26666666666664
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By carrying out the transpose operator the system of equations that must be solved to acquire the adjoint
solution becomes evident.2666666666666664
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From this transposed system of equation it is evident that the unsteady adjoint variables can be solved by
sweeping backwards through all time steps of the solution solving for each adjoint solution using the ow
and adjoint solutions from one step in the future of the time series.

II.C. Error due to Temporal Resolution

The use of the adjoint variable to identify errors in temporal resolution follows a similar path to that of
spatial error (Section II.B). We start by using a Taylor series expansion of the true time integrated objective

calculated using a small time step Lt(~Ut)

Lt(~Ut) = Lt( ~Ut) +
@Lt( ~Ut)

@ ~Ut

�
~Ut � ~Ut

�
+ � � � (22)

where Lt( ~Ut) is the small time step objective calculated with an approximate solution. The need to calculate

the true small time-step solution ~Ut is eliminated by using a Taylor series expansion of the small time step
residual equation:

Rt(~Ut) = 0 = Rt( ~Ut) +
@Rt( ~Ut)

@ ~Ut

�
~Ut � ~Ut

�
+ � � � (23)

Following the steps previously presented we can arrive at the expression for the small time step objective
using an approximate small time step solution ~Ut obtained by projecting a coarse time step solution to the
�ner time step space:

Lt(~Ut) �= Lt( ~Ut) + �t
TRt( ~Ut) (24)

The requirement for the small time step adjoint solution (�t) is relaxed by approximating it using the adjoint
solution from a coarse time step solution. This results in an equation that is a linear approximation to the
small time step objective using only solutions from the coarse time step simulation.

Lt(~Ut) �= Lt( ~Ut) + ~�Tt Rt( ~Ut) (25)

Again we can re-arrange the terms to arrive at a direct estimation of the linear error in our calculation, this
time from a lack of resolution in the time domain.

Lt(~Ut)� Lt( ~Ut)| {z }
"t

�= ~�Tt Rt( ~Ut) (26)

II.D. Error due to Partial Convergence

In the former sections we assumed the solution on the coarse space and time domain was obtained by full
convergence of the ow equations at each implicit time step resulting in a coarse level residual equation that
evaluates to zero. If the ow equations were only partially converged at each time step, the fully converged
objective can be linearly approximated using the the Taylor series expansion:

L(~U) = L( ~Uc) +
@L( ~Uc)

@ ~Uc

�
~U � ~Uc

�
+ � � � (27)

where the objective L( ~Uc) is obtained through partially converging the ow equations to an approximate
solution ~Uc. Again, we use the expansion of the residual equation to eliminate the need for the fully converged
solution ~U and introduce an approximate adjoint variable into the equation.

L(~U) �= L( ~Uc) + ~�Tc R( ~Uc) (28)

The approximate adjoint ~�c is obtained by partially converging the adjoint equations using the same mesh
and time step distribution as for the analysis problem. The contribution to the integrated linear error ("c)
for the partially converged solution can be obtained by re-arranging the equation.

L(~U)� L( ~Uc)| {z }
"c

�= ~�Tc R( ~Uc) (29)

It is of interest to note the residual R( ~Uc) is non-zero only because the ow equations are not fully converged.
If the system is fully converged, the residual is zero and the approximate objective is no longer approximate
and becomes the true objective.
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II.E. Combined Error

Our goal is to estimate the total error in a time dependent simulation objective and to determine the
respective contributions to the total error from spatial discretization, temporal discretization, and incomplete
convergence in order that adaptive re�nement methods may be used to e�ciently reduce the error. Using
a Taylor series expansion, we can estimate the exact objective Lst computed on a �ne time step and �ne
mesh with full convergence using an approximate solution ~Ucst computed on a coarser mesh with a larger
time step with partial convergence as:

Lst(~Ucst) = Lst( ~Ucst) +
@Lst( ~Ucst)

@ ~Ucst

�
~Ucst � ~Ucst

�
+ ::: (30)

In the above expression, ~Ucst is obtained from the partially converged approximate solution ~Uc computed
on a coarser grid with a larger time step, projected onto the �ner mesh and time step space. Although the
above equation could be used to obtain an expression for the total error, it does not provide a mechanism for
separating out the various error components. However, since the adjoint error estimation procedure relies
on a linearization, we can assume these di�erent error components are additive. Therefore, the error in the
solution may be written as:

~Ucst � ~Ucst = ~Us � ~Us + ~Ut � ~Ut + ~U � ~Uc (31)

Here ~Us � ~Us corresponds to the di�erence between the solution computed on the �ne grid and the approx-
imate coarse level solution ~Uc projected onto the �ne grid with a �xed time step value. Similarly, ~Ut � ~Ut
corresponds to the change in the solution when the time step is re�ned, with all other simulation parameters
(mesh size, convergence tolerance) remaining �xed, and ~U� ~Uc corresponds to the change in the coarse mesh
and time step solution that would be observed if full convergence was enforced at each time step. Clearly,
interactions between these various sources of error will exist in actual simulations, but these will be higher
order non-linear error interactions that cannot be accounted for in an adjoint formulation. Furthermore, as
the errors are reduced, the additive assumption will become asymptotically more exact. Inserting the above
expression into equation (33), and making use of an adjoint solution computed on the coarse space and time
discretization level at the partially converged state leads to the following expression for the objective error:

Lst(~Ucst) �= Lst( ~Ucst) + ~�Ts Rs( ~Us) + ~�t
T
Rt( ~Ut) + ~�Tc R( ~Uc) (32)

where the adjoint variables ~�s, and ~�t correspond to the approximate coarse level adjoint ~�c projected
onto the �ne mesh and �ne time step domain, respectively. The various residual operators R, Rs and Rt
correspond to the space-time residuals evaluated on the coarse mesh and time step domain, the �ne mesh
domain (with coarse time step), and the �ne time step domain (with coarse mesh), respectively. The one
remaining term that is not readily available is the �ne time and space approximate objective value Lst( ~Ucst).
Instead of separately constructing this term it is formed using a linear combination of the terms already
used for each individual error correction. To do this we let the variables (�s; �t) represent the di�erence
between the individual �ne domain objective values calculated using approximate solutions and the coarse
approximate objective value L(Uc) already calculated.

�s = L(Uc)� Ls( ~Us)

�t = L(Uc)� Lt( ~Ut)
(33)

Using these two values we can linearly predict what the approximation would be for the combined approxi-
mation Lst( ~Ucst):

Lst( ~Ucst) = L(Uc)� �s� �t (34)

Inserting this approximation into the combined linear approximation from earlier (Eqn. 32) we get the �nal
form of the combined approximation.

Lst(~Ucst) �= Ls( ~Us) + Lt( ~Ut)� L(Uc) + ~�Ts Rs( ~Us) + ~�Tt Rt( ~Ut) + ~�Tc R( ~Uc) (35)

By re-arranging we can isolate the terms to again produce an estimate of integrated linear error

Lst(~Ucst)� Ls( ~Us)� Lt( ~Ut) + L(Uc)| {z }
"cst

�= +~�Ts Rs( ~Us) + ~�Tt Rt( ~Ut) + ~�Tc R( ~Uc) (36)
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III. Implementation Details

III.A. Mesh Re�nement

In the current work the conformal nature of a mixed element grid is maintained by using element subdivision
for re�nement and un-re�nement.13 This is accomplished using a set of allowable subdivision types for each
element as shown in Figure 1. An element that is agged for re�nement is isotropically split into 4 elements.
The non-agged neighboring element is partially subdivided using an allowable pattern to keep the grid
conformal. On subsequent steps, if one of the elements resulting from a partial subdivision is agged for
re�nement, the partial element is collapsed back into the parent element which is then isotropically split
into 4 smaller elements. This method of re�nement limits the formation of sliver elements within the grid
and lends itself to a simple tree data structure which can be unrolled to un-re�ne elements within the grid.
Furthermore, no smoothing of the adaptive grid is performed so that un-re�nement of elements will result
in the starting grid.

Figure 1. Allowable subdivision patterns for triangle and quadrilateral cells

III.B. Spatial Projection

To project the solutions to grids of di�erent spatial re�nement levels a general interpolation scheme is used
based on compact radial basis functions.14 Speci�cally, the compact functions of Wendland15 are used with
an additional polynomial constraint to ensure 2nd order accuracy for all cases. The approximations have
the general form

s(~x) =

NX
j=1

�j� (~x� ~xj) + p(~x) (37)

where �j is the weight of the known value at element j, � (~x� ~xj) is the radial function evaluated between
the two centers and p(~x) is a polynomial of the required order of accuracy. The required number of nearest
neighbors is found using an alternating digital tree16 followed by a linear search over the remaining candidates.

III.C. Temporal Projection

For the temporal re�nement a 2-to-1 re�nement pattern is enforced where a single time interval is split into
2 equal intervals. In addition, any adjacent time intervals that vary more than 2 times the size of the current
time interval will be agged for splitting to ensure no large jumps in the time step size exist.
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To perform the temporal projections from coarse to �ne time steps linear interpolation is used to arrive
at the intermediate solution.

~�
n� 1

2
t = 1

2

�
�nT + �n�1T

�
~~U
n� 1

2

t = 1
2

�
~UnT + ~Un�1T

� (38)

III.D. Solver Details

The adaptive solver consists of three parts namely the forward ow solver, backward adjoint solver and a
time/grid adaption module. The projection operations are done within the adaption module while the error
computations are built into the adjoint solver. The simulation starts by using the adaption module to write
out all grids for all time steps to �le for the current (�rst) sweep. The ow solver then performs the forward
integration in time by reading in the grid for the new time step and projecting the previous solution to it for
the initial condition and time history information. Once the ow solution has been solved on all time steps,
the adjoint solver reads in the ow solution and associated grid and performs the backwards sweep in time to
compute the adjoint variables at each time step and saves them to �le. Next the adaption module will create
an isotropically re�ned grid for each of the �ne domain time steps and perform the necessary interpolation
onto each. These are saved to disk so that the ow solver followed by the adjoint solver can read them in
and calculate the �ne grid approximate objective solution, evaluate the residual and form the contribution
to the error for each grid element of each time step and save them to �le. In addition, smoothing of the
approximate ow or adjoint solution can be done by their respective solver during this part of the process.
For this research only the spatially projected approximate adjoint was smoothed by one order of magnitude
in the L2 norm for each time step. Finally, the individual error contributions are read from disk one time
step at a time and the error is used to ag time intervals and grid elements for re�nement based on the
desired re�nement criteria selected. If another more re�ned simulation is desired the adaption module will
again generate and save out a newly re�ned grid for each adapted time step and the process will repeat
again.

IV. Adaption Strategy and Threshold Selection

IV.A. Model Test Problem

The test case used to develop the algorithms in this paper involves the time integrated density inside a region
of the ow �eld as a 2-D inviscid isentropic vortex17,18 convects through uniform ow. In this case the mean
ow density (�1), velocity (u1,v1), pressure (P1), and temperature (T1) are taken to be free stream
values. We set these ow parameters to be (�1,u1,u1,P1,T1) = (1.0,0.5,0.0,1.0,1.0) with characteristic
boundary conditions19 on all free stream boundaries. At the initial time the ow is perturbed by an isentropic
vortex (�u; �v; �T ) centered at (xo; yo) = (�15:0; 0:0) with the form:

�u = �Vm

Rc
(y � yo) e

�
1
2�( r

2Rc
)
2
�

�v = Vm

Rc
(x� xo) e

�
1
2�( r

2Rc
)
2
�

�T = �V
2
m(�1)
2R2

c
e

�
1�( r

Rc
)
2
� (39)

where Vm is the maximum perturbed velocity, Rc is the distance r that this maximum velocity occurs at
from the vortex center and  = 1:4 is the ratio of speci�c heats of the uid. From the relationship for an
ideal gas and assuming isentropic ow the density is found for every point in the domain as:

� = T 1=(�1) = (T1 + �T )
1=(�1)

(40)

In this case the strength of the vortex and size were speci�ed by assigning the values of 0.2 to the maximum
velocity (Vm = 0:2) at a core radius of 0.5 (Rc = 0:5) grid units.
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To properly validate the results a single quantity is needed as the objective function and for this we de�ne
the objective (Eqn. 41) to be the time and space integrated density inside a square box centered about the
origin (x; y) = (0; 0) with equal length sides of 2 grid units. The vortex is convected for 60 non-dimensional
time units allowing it to travel from the starting position of (xo; yo) = (�15:0; 0:0) to the �nal position of
(x; y) = (15:0; 0:0) and being centered in the integrated region exactly half way through the computation. A
portion of the coarsest grid with the prescribed initial condition and highlighted integration region is shown
in Figure 2. The exact analytic solution to this problem was found using a common computer math program
to be 239:52558800471 which we will compare against as the true analytic solution in subsequent analysis.

L(U) =

Z 60

0

Z 1

�1

Z 1

�1
� dxdydt (41)

Figure 2. Initial density distribution with highlighted integrated region for grid of 1176 elements

IV.B. Global Adaption Strategy

In our earlier work11 we examined the prediction and convergence properties of using the adjoint to approx-
imate the spatial, temporal and convergence errors. In doing this we had to carefully select the resolution of
the discretization not being re�ned upon to avoid inuencing the properties being measured. For example,
measuring the convergence properties of mesh re�nement while using a time step size or convergence toler-
ance that produced an error greater than the spatial error results in a smaller than theoretical convergence
rate for the spatial re�nement. This can be seen in Figure 3 where the error is plotted as the mesh is
isotropically re�ned 4 times while holding the time steps constant at 16, 32, 64, 128 and 256 steps to march
through the 60 seconds of the full simulation. For the larger time step size (smaller number of steps) it is
evident that re�ning the mesh past a certain point does not adequately reduce the total error with respect
to the true solution because the temporal error is the dominant error. A similar test was carried out with
�xed grid resolution and isotropically re�ned time steps and plotted in Figure 4. Again, the limitations of
re�ning in only one dimension (time) are evident. When a grid of only 1176 elements is used for each time
step there is almost no improvement in solution accuracy by using more than 64 time steps to complete the
time accurate simulation unless the mesh resolution is increased to 4704 elements.

In the previous two examples we converged the solution to a su�ciently small residual to eliminate the
error resulting from partial convergence from the results. If instead, we vary the convergence tolerance while
holding the number of grid elements at each step constant for all equal spaced time steps we can again see

9 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

im
itr

i M
av

ri
pl

is
 o

n 
Ja

nu
ar

y 
15

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

52
0 

http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-520&iName=master.img-001.jpg&w=396&h=248


how the largest error term will dominate the solution. In Figure 5 we have plotted the relative error with
respect to the true solution for simulations isotropically re�ned in both space and time (i.e 16 steps of 1176,
32 steps of 4704, etc.) for varying level of convergence tolerance from 10�1 to 10�14. From this we can see
that at each space and time resolution we eventually reach a point where converging the solution further
does not get us closer to the true solution (i.e. we are converging to the wrong solution). The only way to
get closer to the solution is to increase the spatial and temporal resolution such as going from 150624 total
degrees of freedom to 1204224 and even more.

Figure 3. E�ect of spatial re�nement on accuracy when temporal resolution is held constant at 16, 32, 64, 128 and 256
equal spaced time steps.

Taking into consideration the above discussion we have developed a process which uses the linear estimate
of the error in time, space and convergence tolerance to adapt the discretization in the most e�cient manner.
The ow chart for this process is shown in Figure 6 where the simulation starts at the top owing down to
the bottom and can be repeated until the desired level of accuracy has been achieved.

The process allows each component of the error to be reduced if it is above some de�ned tolerance. To
choose the individual temporal, spatial, and algebraic error tolerance (TolT , TolS and TolC respectively)
in the re�nement decision steps of the ow chart (Fig. 6) we equidistribute the user de�ned global error
tolerance TolGlobal over the three types of error re�nement possibilities as shown in Equation 42. This
ensures no single error type can dominate the others and all three errors will be roughly equal in magnitude
when the global error tolerance has been achieved.

TolT = TolGlobal

3 TolS = TolGlobal

3 TolC = TolGlobal

3
(42)

IV.C. Local Re�nement Criteria

The above discussion concerned how to choose which dimension of the problem (time,space or convergence
tolerance) to re�ne but still to be discussed is what within each discretization to re�ne, how much to re�ne
and how frequently to do it. To examine these aspects we will discuss the spatial, temporal and convergence
error contributions separate.

IV.C.1. Space Re�nement

To examine the e�ects of frequency of spatial re�nement and how many elements to re�ne at each re�nement
we conducted a sweep of runs to examine the bene�ts and consequences of each. Shown in Figure 7 we have
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Figure 4. E�ect of temporal re�nement on accuracy when spatial resolution is held constant at 1176, 4704, 18816,
75264 and 301056 mesh elements per time step.

Figure 5. E�ect of convergence tolerance on accuracy for 5 iso-tropically re�ned time and space domains starting with
16 equal time steps of 1176 mesh elements producing 18816 total elements.
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Figure 6. Global solution and re�nement process
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plotted a series of three full re�nement sweeps while we held the frequency of re�ning and the amount of
total error we re�ned at each re�nement constant. Cases were run where the frequency of re�nement was
varied from every time step of the full time accurate simulation to every 2, 4, 8, 16, 32, 64, 128 and 256 (i.e.
once per simulation) time steps. The percentage of the error re�ned within any one re�nement interval was
varied from 10%, 25%, 50%, 85%, 95%, 99% and 100% of the error.

From these plots it is evident that re�ning more frequently is more advantageous in that it both lowers
the error for any given re�nement sweep but also reduces the total degrees of freedom making the sweep less
computationally expensive to perform. A somewhat interesting result is the error appears lowest when the
re�nement interval is set to re�ne every 2 or 4 time steps. It is believed this is because at those re�nement
intervals the re�nement pattern reproduces the e�ect of re�ning a layer or two of neighboring cells (i.e. bu�er
cells) around the cells agged for re�nement. This is a common practice when tracking moving ow features
and appears to reduce the error in this case as well.

To develop the rationale for how much spatial error to re�ne at every time step we can look at previous
work20 for the steady state problem where the goal was to equidistribute the spatial error among all the
cells. For the unsteady problem we will extend this to treat the time accurate problem as one single system
of equations much like we did to develop the adjoint equations (Eqn. 21). To determine which elements to
re�ne we de�ne a maximum allowable error level for each cell s on every time step n by equidistributing the
spatial error tolerance TolS developed in Section IV.B over all the cells of the N time step simulation.

s =
TolS

NX
n=1

Elementsn

(43)

Again, extending the steady state case, a spatial re�nement parameter ris for each element i is de�ned as
the ratio of the cell-wise error "is to the maximum allowed error s as given by:

ris =
"is
s

(44)

Using this de�nition we can ag an element at any time step for re�nement when its re�nement parameter
exceeds a threshold �s that is pre-de�ned. This has the desirable e�ect of allowing spatial re�nement every
time step, if elements within the time step exceed the error threshold, but it does not force re�nement to
occur every time step if no elements are above the threshold.

To choose how many elements to re�ne at any re�nement step the simplest choice would be all elements
that exceed a threshold of one (�s = 1) where the allowable element spatial error s is determined by the
global error as shown before in Equation 43. Doing this at every re�nement interval would insure that
eventually the error would become equidistributed and result in an acceptable global spatial error. If we
follow this scenario and use our results shown in Figure 7 we can see that re�ning a large percentage of
the error at any step will result in the total degrees of freedom in the simulation quickly getting large. A
smarter choice and one that has already been explored for steady state problems by Nemec, Aftosmis and
Wintzer20 is to use a decreasing threshold value. In this scenario the threshold is initially set high where only
a small fraction of the highest error cells are re�ned then on subsequent steps the threshold is lowered until
eventually a threshold of 1 is reached. This has the e�ect of equidistributing the error while not increasing
the computational cost signi�cantly, and then in the last couple re�nement sweeps heavily re�ning to meet
the desired error goals.

IV.C.2. Time Re�nement

The time re�nement will follow a similar path to the spatial re�nement although it will be modi�ed by
the requirement that all elements within a time step are equally stepped through time. In previous work
we have investigated techniques for enabling spatially varying time steps using adjoint error estimators.21

However, such approaches are best suited for use with space-time formulations, which is beyond the scope
of the current investigation. To begin, we will again seek to equidistribute the temporal error evenly among
all elements of all time steps by developing an allowable error t for each element i by taking the allowable
time error tolerance TolT , developed in Section IV.B and dividing it by the total number of elements in the
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Figure 7. Total degrees of freedom and spatial error for 3 re�nement passes when the frequency and percentage of
error re�ned vary.
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N time step simulation.

t =
TolT

NX
n=1

Elementsn

(45)

The temporal re�nement parameter rnt is then implemented to sum all the cell-wise error contributions "it
within a single time step and dividing it by the allowable error for a step with the same number of elements.

rnt =

ElemnX
i=1

"it

t� Elementsn
(46)

By summing over all the elements within the time step we have reduced the spatially varying cell-wise
temporal error down to a single value for each time step to indicate which time steps contain the most
temporal error. To control the number of time steps that are re�ned at the completion of any one complete
simulation sweep we will use a threshold for the time �t which can be varied in a similar descending manner
as was decided upon for the spatial re�nement (Sec.IV.C.1).

IV.C.3. Convergence Re�nement

To perform the re�nement of the convergence tolerance we could follow the spatial re�nement procedure if
our ow solver allowed us to selectively remove equations or elements from the newton iterations as their
individual convergence tolerances are met. Since our solver does not have this capability we will follow the
temporal re�nement steps and will only summarize the steps below.

Each element i has an allowable error c calculated using the pre-determined convergence tolerance TolC
based on how many total elements within the time accurate simulation as shown.

c =
TolC

NX
n=1

Elementsn

(47)

The re�nement parameter rnc will again be formed by summing all the cell-wise error contributions "ic within
a single time step and dividing it by the allowable error for a step with the same number of elements.

rnc =

ElemnX
i=1

"ic

c� Elementsn
(48)

Another threshold variable �c will be used to control the amount of time steps the convergence tolerance is
reduced at the completion of any one sweep of the simulation.

V. Results

V.A. Convecting Vortex

For the �rst test of the new algorithm we use the model test problem of section IV.A with a starting
discretization of 1176 grid elements over 16 equal spaced time steps converged 1 order in magnitude with the
�nal relative error in the objective set to TolGlobal <= 10�6. The simulation is allowed to progress through
the re�nement algorithm presented in Figure 6 for 7 cycles of the loop with the threshold value decreasing
in each successive loop from 32, 16, 8, 4, 2 and then �xed at 1 until the error tolerance is achieved. The
plots of the adapted convergence tolerance, time step size and number of mesh elements at each time step
are displayed in Figures 8, 9 and 10 for each cycle of the algorithm.

The plot of the convergence tolerance shows the requested reduction of 10�1 is su�cient for the �rst
3 re�nement cycles but after using the same convergence tolerance on the 4th cycle the decreasing error
threshold of 4 is exceeded. Once the tolerance has been exceeded, the algorithm branches and identi�es the
time steps at the start of the simulation as those exceeding the error threshold for the number of elements at
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Figure 8. Convergence tolerance for each sweep of the time accurate simulation.

Figure 9. Time step size for each sweep of the time accurate simulation.
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Figure 10. Number of elements for each sweep of the time accurate simulation.

each time step. These time steps are agged for an increased convergence criteria (i.e. lower �nal residual)
and leaves the other steps as they were before. A similar pattern is followed on the 5th and 6th cycles of the
algorithm where again the initial time steps are found to need a tighter convergence tolerance to meet the
error threshold.

The time step plot (Fig. 9) shows a di�erent pattern, where the �rst ow simulation using only 16
time steps to model the full time accurate simulation was found to exceed the temporal error threshold.
Once inside the re�nement branch the algorithm determined every time step was exceeding the allowable
threshold. For the next 2 cycles of the algorithm the temporal error resulting from the now 32 equally spaced
time steps is below the decreasing threshold values but on the 4th, 5th and 6th cycles again the temporal
error threshold is exceeded and the time steps at the start of the simulation are agged for re�nement.

The spatial re�nement plots (Fig. 10) show yet a di�erent pattern where the initial 2 cycles through
the algorithm exceed the spatial error threshold. Within these cycles, when the spatial re�nement branch
has been taken, all elements for all time steps are evaluated against the element error threshold and in each
case at least some elements in each time step are agged for re�nement. On the subsequent 2 cycles of the
algorithm the spatial error is found to be below the error threshold so no spatial re�nement occurs until the
5th and 6th cycles where again at least some elements on each time step are re�ned. Images of the re�ned
region within the computational mesh at non-dimensional times of t = 0, 30 and 60 are shown in Figure 11
for each sweep of the algorithm. The mesh re�nement patterns clearly show re�nement from the location
of the vortex to the region the time integrated functional is integrated over. This later feature is important
and seen as a major advantage over simpler feature tracking algorithms such as gradient based re�nement.

Calculating the ow and adjoint solution at each cycle of the algorithm is expensive and it is unknown
whether going through multiple solution cycles to arrive at a �nal answer is cheaper than re�ning the
discretization and running it once. To evaluate this we have de�ned our own measure of computational
expense called the \Work Unit" which is the cost to converge the residual of one element one order of
magnitude on one time step. For example, a 16 time step simulation on a �xed grid of 1176 elements with
the residual on each step being converged 3 orders in magnitude would have a cost of 16�1176�3 = 56448 work
units. Using this de�nition we have plotted the cost of each adapted ow solution in Figure 12 along with the
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Figure 11. Convecting vortex and adapted grid at time = 0, 30, and 60 for 7 di�erent re�nement sweeps.
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relative error of the objective when compared to the value of the true analytic objective. As a comparison,
we’ve plotted a second curve resulting from uniformly re�ning the temporal and spatial discretization 4 times
where the coarsest simulation was converged 1 order of magnitude and each subsequent re�ned discretization
had the convergence tightened by an additional order of magnitude (i.e. 5th solution is converged 5 orders
of magnitude).

The cost of a single solution alone doesn’t tell the true expense of arriving at the �nal adapted solution
using adjoint based re�nement, therefore we have plotted the relative error as a function of cumulative work
units in the second plot in Figure 12 along with the same uniform curve as before. The cumulative cost is
the cost to solve the ow and adjoint on all previous adaption cycles plus the cost of the current solution.
From this measure of the total cost to arrive at the �nal adapted solution we can see that the �nal solution
is the major expense and all previous adaption cycles do not add much to the overall cost to reach the �nal
result. What the previous adaption cycles do though, is more accurately target the regions for re�nement
so that each cycle produces nearly the same relative error as uniform re�nement but with far less expense.

Figure 12. Work units and cumulative work units for each sweep of the time accurate simulation.

V.B. Airfoil with Vortex

The second test problem is an identical strength vortex as to that from the model problem of section IV.A
convecting past a NACA 0012 airfoil placed with the leading edge at the origin. The vortex is initially
placed 2 chord lengths below the airfoil and 15 chord lengths in front of the airfoil leading edge. The free
stream velocity is again M1 = 0:5 and the simulation is run for 60 non-dimensional time units placing the
vortex center roughly 14 chord lengths behind the airfoil trailing edge at the �nal time step. The initial grid
contains 2401 elements and again 16 initial time steps converged 1 order of magnitude were used to march
through the initial simulation. The starting condition for the time accurate steps is the fully converged ow
around the airfoil with the vortex superimposed into the ow �eld at the starting position. This is not the
exact solution at this point in time but it is assumed the vortex is far enough away from the airfoil to have
little e�ect on the objective function of the time integrated lift coe�cient on the airfoil.

Starting from the initial condition the simulation is allowed to cycle through the algorithm presented in
Figure 6 until the global error estimate is less than 10�2 (i.e. TolGlobal < 10�2). The threshold values are
again set to decrease each cycle through the re�nement algorithm using values of 8, 4, 2 and 1. Plots of the
resulting convergence tolerance, time step size and number of mesh elements at each time step are shown in
Figures 13, 14 and 15.

The plot of the convergence tolerance shows the requested reduction of 10�1 is su�cient for the �rst
2 re�nement cycles but after using the same convergence tolerance on the 3rd cycle the decreasing error
threshold of 2 is exceeded. Once the tolerance has been exceeded the algorithm branches and identi�es the
time steps less than t = 37:5 non-dimensional time units as needing a tighter convergence tolerance. A
similar pattern is followed on the next cycle of the algorithm where the convergence tolerance is tightened
on all time steps less than t = 11:25 non-dimensional time units.
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Figure 13. Convergence tolerance for each sweep of the time accurate NACA 0012 simulation.

Figure 14. Time step size for each sweep of the time accurate NACA 0012 simulation.
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Figure 15. Number of elements for each sweep of the time accurate NACA 0012 simulation.

The time step plot (Fig. 14) shows a very similar pattern to that of the convergence re�nement where
the initial time step size is adequate for an initial temporal error threshold of 8. On the second cycle of
the algorithm the temporal error exceeds the error threshold which is now at 4 and time steps at both the
start and end of the time series are agged for re�nement. For the next cycle of the algorithm the temporal
error resulting from the now non-uniformly spaced time steps is below the decreasing threshold value but
on the 4th cycle again the temporal error threshold is exceeded only this time all time steps are agged for
re�nement

The element re�nement plots (Fig. 15) show the spatial error was found to exceed the spatial threshold
every cycle of the re�nement algorithm. For the initial re�nement the number of elements went up by almost
a factor of two, indicating roughly a quarter of the elements had spatial error contributions in excess of the
threshold value of 8. On this same cycle the convergence and temporal error thresholds were met indicating
that not only were many elements exceeding the limits but that spatial error was the dominant error on the
initial discretization.

Images of the re�ned region within the computational mesh at non-dimensional times of t = 0, 30 and 60
are shown in Figure 16 for each sweep of the algorithm. Again the mesh re�nement patterns show re�nement
not only around the convecting vortex but also along the path of its inuence on the airfoil which by use of
the objective function is identi�ed as the item of interest within the problem.

To evaluate the cost of obtaining the adapted solution we have again calculated the work units required
to solve a single ow solution and the cumulative work units to achieve an adapted solution in Figure 17.
As a comparison the initial discretization was uniformally re�ned with increasing levels of convergence, as
done for the isolated vortex case of Section V.A, and plotted along with the resulting objective values. As
before the adapted discretization achieves comparable values of the objective function to that of uniform
re�nement while requiring far less cumulative work to achieve the results.
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Figure 16. NACA 0012 airfoil with convecting vortex and adapted grid at time = 0, 30, and 60 for 5 di�erent re�nement
sweeps.

Figure 17. Work units and cumulative work units for each sweep of the time accurate simulation.
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VI. Conclusions

This work presented a framework for the reduction of the spatial, temporal and algebraic error by use of
the discrete adjoint solution. Using the three error estimates it was shown that re�nement of only one error
term without consideration of the other two error contributions would not increase the over all accuracy of
the simulation. A method was developed and presented to equally weigh each of the three error contributions
and selectively re�ne the regions with the highest error, thereby equidistributing the error over the whole
domain. Two test cases were shown where signi�cant gains in e�ciency were demonstrated, even when taking
into account for the solution of the ow and adjoint on all previous re�nement cycles. This research has
focused on 2 dimensional problems of short time duration but the real bene�t would come in 3 dimensional
problems were the extra dimension equates to a much larger computational expense and consequently an
algorithm to more e�ciently target error would result in larger cost savings. In the long term, the ideal
application of this research would be within a space-time framework where all elements could be selectively
re�ned in space, time and convergence without regard for keeping all elements at the same time or converging
all elements within a time step an equal amount.
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