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A recently developed quasi-periodic time spectral method is applied to the demanding problem of aeroelas-

tic flutter. Both a standard time-implicit method and a quasi-periodic time spectral method are developed that

take into account the coupling among the three fundamental aspects of computational aeroelastic calculations:

unsteady flow equations, time dependent structural response to aerodynamics loads, and dynamically moving

meshes. These two methods are then compared in order to demonstrate the capability of the quasi-periodic

time spectral method to solve aeroelastic flutter problems. Finally, it is demonstrated that the quasi-periodic

time spectral method can be used to solve aeroelastic flutter problems.

I. Introduction

For problems with strong periodic content, such as turbomachinery flows or rotorcraft aerodynamics, time-spectral

methods can be used to substantially reduce the cost of computing the full time-dependent solution for a given level

of accuracy. In many cases, time-spectral methods using only a small number of time instances per period can provide

equivalent or superior accuracy, at substantially reduced cost, compared to traditional time domain solutions using

hundreds of time steps per period .

The time spectral method, based on the use of discrete Fourier analysis, is similar to the harmonic balance method,

developed by Hall1 and McMullen,2, 3 which transforms the unsteady equations in the physical domain to a set of

steady equations in the frequency domain. Gopinath4, 5 proposed to solve the time spectral equations, not in the

frequency domain, but directly in the time domain by applying the time discretization operator. The time spectral

method was shown to be faster than the dual-time stepping implicit methods using backwards difference time formulae

for time periodic computations, such as turbomachinery flows,2, 5 oscillatory pitching airfoil/wing cases,4, 6 flapping

wing,7 helicopter rotor8, 9 and vortex shedding problems.3

In the recent past, the time spectral method has been proven capable of solving the coupled fluid/structure equations

for the purely periodic problem of a helicopter rotor in constant speed forward flight.8, 9 Similarly, the simulation

of aeroelastic flutter phenomena is computationally expensive and could benefit tremendously from the successful

application of a more efficient time integration scheme. However, time spectral methods are not directly applicable

to most flutter problems since these are usually not purely periodic. In previous work, we have introduced a hybrid

BDF/time-spectral approach (BDFTS) which aims to simulate quasi-periodic flows with slow transients combined

with relatively fast periodic content using global BDF time step sizes of the order of the period length, while making

use of the properties of the time-spectral approach to capture accurate details of the periodic flow components.10, 11, 12

The aeroelastic flutter problem is a coupled fluid/structural problem with strong periodic content, i.e. the pitching and

plunging of the airfoil or wing, and a slow transient, i.e. increasing or decreasing amplitude of the periodic motion.

These factors, coupled with the abundance of published solutions to aeroelstic flutter problems13, 14, 15 make it the ideal

motivation for a coupled fluid-structure, quasi-periodic time spectral method.

In the following sections we present the necessary components for solving a two-dimensional aeroelastic flutter

problem using the BDFTS time discretization. We first outline the governing equations and the base solver for the

aerodynamics component. We then discuss the time spectral method and subsequently the hybrid BDF/time-spectral

approach for the flow solver. Next, we discuss the structural equations and how they are transformed for efficient

solution. Subsequently, we discuss some of the details of solving the structural equations simultaneously with the flow

equations in the time BDFTS approach. Following, we present a brief discussion of a test problem for the BDFTS
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method for the Euler equations alone. Then, we solve the coupled fluid/structure equations using the standard BDF2

time-implicit method and compare these result to previously published results. Finally, BDFTS is applied to the

important practical problem of aeroelastic flutter, and the results are compared to the BDF2 approach, having been

validated above.

II. Theory and Methodology

A. Flow Equations and Solver

The Euler equations in conservative form can be written as:

∂U

∂t
+∇ · (F(U) = 0 (1)

where U represents the vector of conserved quantities (mass, momentum, and energy) and F(U) represents the con-

vective fluxes. Integrating over a (moving) control volume Ω(t), we obtain:

∫
Ω(t)

∂U

∂t
dV +

∫
∂Ω(t)

(F(U) · ñ)dS = 0 (2)

Using the differential identity
∂

∂t

∫
Ω(t)

UdV =
∫

Ω(t)

∂U

∂t
dV +

∫
∂Ω(t)

U(ẋ · ñ)dS (3)

where ẋ and ñ are the velocity and normal of the interface ∂Ω(t), respectively, equation (2) becomes:

∂

∂t

∫
Ω(t)

UdV +
∫

∂Ω(t)
(F(U)−Uẋ) · ñdS = 0 (4)

Considering U as cell averaged quantities, these equations are discretized in space as:

∂

∂t
(V U)+R(U, ẋ(t), ñ(t)) = 0 (5)

where R(U, ẋ, ñ) =
∫

∂Ω(t) (F(U)− ẋU) · ñdS represents the discrete convective fluxes in ALE form and V denotes the

control volume. In the discrete form, ẋ(t) and ñ(t) now represent the time varying velocities and surface normals of

the control-volume boundary faces.

The Euler equations are discretized by a central difference finite-volume scheme with additional matrix-based ar-

tificial dissipation on hybrid, two-dimensional meshes, which may include triangles and quadrilaterals. Second-order

accuracy is achieved using a two-pass construction of the artificial dissipation operator, which corresponds to an un-

divided biharmonic operator. A single unifying edge-based data-structure is used in the flow solver for all types of

elements. For the base solver, the time derivative in equation (5) is discretized using a second order backwards differ-

ence (BDF2) scheme, resulting in a non-linear system to be solved at each time step. The implicit solution is achieved

using flexible Generalized Minimal Residual Method algorithm, with block-colored Gauss Seidel preconditioning.

This choice of linear solver allows for the efficient solution of both the BDF2 time-implicit method and the BDFTS

method using the full, exact Jacobian.

1. Time Spectral Method

If the flow is periodic in time, the variables U can be represented by a discrete Fourier series. The discrete Fourier

transform of U in a period of T is given by4

Ûk =
1

N

N−1

∑
n=0

Une−ik 2π
T n∆t (6)

where N is the number of time intervals and ∆t = T/N. The Fourier inverse transform is then given as

Un =

N
2 −1

∑
k=−N

2

Ûkeik 2π
T n∆t (7)
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It should be noted that N
2

is an integer division operation. Also note equation (7) corresponds to a collocation ap-

proximation, i.e. the function U(t) is projected into the space spanned by the truncated set of complex exponential

(spectral) functions, and the expansion coefficients (in this case the Ûk) are determined by requiring U(t) to be equal

to its projection at N discrete locations in time, as given by equations (6) and (7).

Differentiating equation (7) in time, we obtain:

∂

∂t
(Un) =

2π

T

N
2 −1

∑
k=−N

2

ikÛkeik 2π
T n∆t (8)

Substituting equation (6) into equation (8), we get16, 17

∂

∂t
(Un) =

N−1

∑
j=0

d j
nU j (9)

where

d
j
n =

{
2π
T

1
2
(−1)n− jcot(π(n− j)

N
) n 6= j

0 n = j
(10)

for an even number of time instances and

d
j
n =

{
2π
T

1
2
(−1)n− jcosec(π(n− j)

N
) n 6= j

0 n = j
(11)

for an odd number of time instances. The collocation approach for solving equation (5) consists of substituting the

collocation approximation for the continuous function U(t) given by equation (7) into equation (5), and requiring

equation (5) to hold exactly at the same N discrete locations in time (i.e. multiplying (5) by the dirac delta test

function δ(t − tn) and integrating over all time), yielding:

N−1

∑
j=0

d j
nV jU j +R(Un, ẋn, ñn) = 0 n = 0,1,2, ...,N −1 (12)

This results in a system of N equations for the N time instances Un which are all coupled through the summation

over the time instances in the time derivative term. The spatial discretization operators remain unchanged in the

time-spectral approach, with only the requirement that each spatial solution be evaluated at the appropriate temporal

location. Thus, the time-spectral method may be implemented without any modifications to an existing spatial dis-

cretization, requiring only the addition of the temporal discretization coupling term, although the N time instances

must be solved simultaneously due to this coupling.

2. Hybrid BDF/Time Spectral Method

The quasi-periodic time-spectral form is derived through the use of polynomial subtraction for quasi-periodic functions

by subtracting out the non-periodic transient, which can be modeled using a polynomial basis set, and approximating

the remaining purely periodic component with a spectral basis.18 From the point of view of a collocation method, this

corresponds to using a mixed spectral/polynomial basis set for the projection of the continuous solution (in the time

dimension).

We proceed by splitting the quasi-periodic temporal variation of the solution into a periodic and slowly varying

mean flow as:

U(t) =

N
2 −1

∑
k=−N

2

Ûkeik 2π
T n∆t + Ū(t) (13)

where the slowly varying mean flow is approximated by a collocation method using a polynomial basis set as:

Ū(t) = φ12(t)U
m+1 +φ11(t)U

m (14)

for a linear variation and

Ū(t) = φ23(t)U
m+1 +φ22(t)U

m +φ21(t)U
m−1 (15)
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for a quadratic variation in time. Here Um and Um+1 represent discrete solution instances in time usually taken as

the beginning and ending points of the considered period in the quasi-periodic motion (and Um−1 corresponds to the

beginning point of the previous period). In the first case, φ12(t) and φ11(t) correspond to the linear interpolation

functions given by:

φ11(t) =
tm+1 − t

T
(16)

φ12(t) =
t − tm

T
(17)

with the period given as T = tm+1 − tm. Similarly, the φ23(t),φ22(t),φ21(t) are given by the corresponding quadratic

interpolation functions. Note that in this case, the collocation approximation leads to the determination of the Fourier

coefficients as:

Ûk =
1

N

N−1

∑
n=0

Ũne−ik 2π
T n∆t (18)

with Ũn = Un − Ūn defined as the remaining periodic component of the function after polynomial subtraction. Dif-

ferentiating equation (13) and making use of equations (9) and (18) we obtain the following expression for the time

derivative:
∂

∂t
(Un) =

N−1

∑
j=0

d j
nŨ j +φ′12(tn)U

m+1 +φ′11(tn)U
m (19)

for the case of a linear polynomial functions in time. The φ′12(tn) and φ′11(tn) represent the time derivatives of the

polynomial basis functions (resulting in the constant values −1
T

and 1
T

in this case), and the various time instances are

given by:

t j = tm +
j

N
(tm+1 − tm), j = 0, . . . ,N −1

We also note that Ū(tm) = Um = U(tm) and thus we have Ũ0 = 0. In other words, the constant mode in the spectral

representation must be taken as zero, since it is contained in the polynomial component of the function representation.

Therefore, the j = 0 component in the summation can be dropped, and rewriting equation (19) in terms of the original

time instances Un we obtain:

∂

∂t
(Un) =

N−1

∑
j=1

d j
nU j − (

N−1

∑
j=1

d j
nφ12(t j)−φ′12(tn))U

m+1 − (
N−1

∑
j=1

d j
nφ11(t j)−φ′11(tn))U

m (20)

Finally, the above expression for the time derivative is substituted into equation (5) which is then required to hold

exactly at time instances j = 1,2, ...,N −1 and j = N (which corresponds to the m+1 time instance):

N−1

∑
j=1

d j
nV jU j − (

N−1

∑
j=1

d j
nφ12(t j)−φ′12(tn))V

m+1Um+1 − (
N−1

∑
j=1

d j
nφ11(t j)−φ′11(tn))V

mUm (21)

+R(Un, ẋn, ñn) = 0 n = 1,2, ...,N

As previously, we have N coupled equations for the N unknown time instances, although in this case the j = 0 time

instance which corresponds to the Um values are known from the solution of the previous period, while the j = N or

Um+1 values are not known, since these are not equal to the j = 0 values as they would be in a purely periodic flow.

In the case of vanishing periodic content, summation terms involving the d
j
n coefficients vanish by virtue of equation

(19) with Ũ j = 0 and it is easily verified that the above formulation reduces to a first-order backwards difference

scheme with a time step equal to the period T . On the other hand, for purely periodic motion, we have Um+1 = Um

which results in cancellation of the polynomial derivative terms φ′12(tn) and φ′11(tn). Furthermore, using the identities

φ12(t j)+φ11(t j) = 1, and ∑
N−1
j=0 d

j
n = 0, it can be seen that the remaining polynomial terms reduce to the missing j = 0

instance in the summation. Given the equality Um+1 = Um, the last equation at j = N becomes identical to the j = 0

equation and the time-spectral method given by equation (12) is recovered.

In this description we have used linear polynomials corresponding to a BDF1 time-stepping scheme for clarity.

In practice, BDF2 time-stepping schemes are required for accuracy purposes, and the equivalent scheme based on
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quadratic polynomials is given as:

N−1

∑
j=1

d j
nV jU j − (

N−1

∑
j=1

d j
nφ23(t j)−φ′23(tn))V

m+1Um+1 (22)

−(
N−1

∑
j=1

d j
nφ22(t j)−φ′22(tn))V

mUm − (
N−1

∑
j=1

d j
nφ21(t j)−φ′21(tn))V

m−1Um−1

+R(Un, ẋn, ñn) = 0 n = 1,2, ...,N

where the values Um−1 and Um, which correspond to the time instances at the beginning and end of the previous period

are known from the solution of earlier periods, and Um+1 = UN as previously.

3. BDFTS Flow Solver

Equation (22) is solved implicitly for the flow equations at each pseudo-timestep. The flow Jacobian, which couples

together the flow variables in all elements of the mesh as well as between the elements of one time instance and

those of the other time instances, is formed by differentiating equation (22) with respect to the flow variables. The

fully coupled flow Jacobian is a [(4xNxE)x(4xNxE)] matrix which must be inverted to find the flow update. N is

the number of time-spectral instances and E is the number of elements in the mesh. Only the non-zero blocks of the

Jacobian are computed and stored.

The flow Jacobian is inverted using a Flexible Generalized Minimal Residual method that uses a block-colored

Gauss-Siedel stationary iterative method as a preconditioner. For the preconditioner, each spatial solution (time-

instance) is preconditioned independently of the other time insatnces using the corresponding first-order spatial Jaco-

bian. A specified number of iterations of the preconditioner, usually ten to thirty, are run for each Krylov vector. As

many as 1024 Krylov vectors can be used in a given restart, and the FGMRES routine can restart as many as five times

for each non-linear iteration. Most non-linear iterations will converge without any restarts and fewer than 200 Krylov

vectors. More details of the FGMRES, BDFTS solver implementation will be given in a subsequent paper by the same

authors.

B. Structural Equations and Solver

The aeroelastic model is based on the response of an airfoil with two degrees of freedom, namely pitch and plunge as

shown in Figure (1).

bx
α

K

K

h

α

U

α

h

b

c

ba

Figure 1. Two degree of freedom 2-D aeroelastic problem schematic

The equations of motion for such a system can be summarized as:

mḧ+Sαα̈+Khh = −L (23)

Sαḧ+ Iαα̈+Kαα = Mea (24)
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where

m: mass of airfoil

Sα: static imbalance

Iα: sectional moment of inertia of airfoil

Kh: plunging spring coefficient

Kα: pitching spring coefficient

h: vertical displacement (positive downward)

α: angle-of-attack

L: sectional lift of airfoil

Mea: sectional moment of airfoil about elastic axis (positive nose up)

Non-dimensionalizing time in equations (23) and (24) by the uncoupled natural frequency of pitch yields:

[M] ¨̆q+[K]q = F (25)

where

[M] =

[
1 xα

xα r2
α

]
, [K] =




(
ωh
ωα

)2

0

0 r2
α


 (26)

are the non-dimensional mass and stiffness matrices. The corresponding non-dimensional load and displacement

vectors are:

F =
1

πµk2
c

[
−Cl

2Cm

]
, q =

[
h
b

α

]
, ¨̆q =

∂2q

∂τ2
(27)

where

b: semichord of airfoil

kc: reduced frequency of pitch, kc =
ωαc
2U∞

µ: airfoil mass ratio, µ = m
πρb2

ωh,ωα: uncoupled natural frequencies of plunge and pitch

xα: structural parameter defined as Sα
mb

r2
α: structural parameter defined as Iα

mb

Cl ,Cm: section lift coefficient and section moment coefficient about the elastic axis

τ: structural time, τ = ωαt

The reduced frequency kc is typically written in terms of the flutter velocity Vf as

kc =
ωαc

2U∞
=

1

Vf
√

µ
(28)

where c is the chord length of the airfoil, U∞ is the freestream velocity, and the flutter velocity Vf is defined as

Vf =
U∞

ωαb
√

µ
(29)

The natural pitch frequency is found by solving equation (29) for ωα in terms of the prescribed flutter velocity Vf .

1. Transformation of Structural Equations into First Order Form

The aeroelastic equations as shown in Equation (25) are second-order partial differential equations. A transformation

to first-order equations is used in order to facilitate a solution procedure for the standard BDF2 time discretization.

The transformation used is:

r1 = q (30)

r2 = ˙̆r1 (31)
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The resulting first-order equations are then:

˙̆r1 = r2 (32)

˙̆r2 = −[M]−1[K]r1 +[M]−1F (33)

and in matrix notation:
{

˙̆r1

˙̆r2

}
+

[
0 −[I]

[M]−1[K] 0

][
r1

r2

]
=

{
0

[M]−1F

}
(34)

˙̆r + [Ψ]r = {Φ} (35)

The matrix [Ψ] is a constant and can be precomputed and stored for use during the time-integration process. The time

derivative term ˙̆r can be discretized using second-order (or first-order) accurate backward difference formulas similar

to the time derivative term in the flow equations, as follows:

3rn+1 −4rn + rn−1

2∆τ
+ [Ψ]rn+1 = {Φ} (36)

or it can be discretized using BDFTS formulae, similar to equation (22), as:

N−1

∑
j=1

d̆ j
nr j − (

N−1

∑
j=1

d̆ j
nφ̆23(τ j)− φ̆′23(τn))r

m+1 − (
N−1

∑
j=1

d̆ j
nφ̆22(τ j)− φ̆′22(τn))r

m (37)

−(
N−1

∑
j=1

d̆ j
nφ̆21(τ j)− φ̆′21(τn))r

m−1 +[Ψ]rn = {Φ} n = 1,2, ...,N

It should be noted that the time-step ∆τ appearing in the denominator of the discretized version of the structural

equations is different from the time-step of the flow equations, and their relation is ∆τ = ωα∆t, where ∆t is the non-

dimensional time-step used for the flow equations. Similarly, the period used to calculate the d̆
j
n and φ̆ in BDFTS is

the structural period. A breve (˘) is placed above all quantities that use stuctural time for clarity.

2. Structural Solver

For the time-implicit approach, Equation (36) is rearranged to get the terms that are independent of the current solution

on the right hand side and only the dependent terms on the left hand side, which gives the following matrix equation:

[
[Ψ]+

3

2

[I]

∆τ

]
rn+1 = {Φ}+2

rn

∆τ
− 1

2

rn−1

∆τ
(38)

This matrix equation is then solved by inverting the [4x4] matrix on the left hand side directly using LU-decomposition.

Once the vector rn+1 at a time-level n+1 has been found, the displacement vector is known and the orientation of the

mesh (i.e. xn+1) can be computed, and the subsequent time-step can then be solved.

The solution of the BDFTS structural equations follows a similar approach. First, Equation (37) is rearranged into

dependent and independent sides as:
[
[Ψ]rn +

N−1

∑
j=1

d̆ j
nr j − (

N−1

∑
j=1

d̆ j
nφ̆23(τ j)− φ̆′23(τn))r

m+1

]
= (39)

{Φ}+(
N−1

∑
j=1

d̆ j
nφ̆22(τ j)− φ̆′22(τn))r

m +(
N−1

∑
j=1

d̆ j
nφ̆21(τ j)− φ̆′21(τn))r

m−1 n = 1,2, ...,N

Although it may not be immediately clear, the left had side of (39) is a [(4xN)x(4xN)] matrix that couples the four

solution variables from each of the N time instances together with all other time instances, and the right hand side

is a {4xN} vector that couples each of the structural variables to the flow variables CL and Cm and to the past values

of the structural variables. This equation is then solved by inverting the BDFTS structral matrix on the left hand

side. Although, N is generally sufficiently small that the BDFTS structural matrix could be inverted directly, it was

decided to use Generalized Minimal Residual Method for the inversion so that an increase in N does not slow this

step significantly. Coupling the fluid and structure equations for the BDFTS approach is more complicated than the

time-implicit coupling and will be discussed in the next subsection.
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3. Details of the BDFTS Aeroelastic Approach and Coupling

The most complicated aspect of solving the coupled fluid/structure equations is how to best couple the two sets of

equations. For the time-implicit approach, the small time-step used allows a full coupling to be used at every pseudo-

time iteration as the solution for a given time-step is solved. For the BDFTS approach, however, the much larger

time-step, which is a full flutter period, precludes the possibility of such close or frequent coupling updates. For

BDFTS, coupling proceeds as follows:

1. Completely solve the flow equations (22) for the current values of the structural variables r

2. Use the flow solution to calculate lift and moment coefficients, CL and Cm

3. Use the calculated CL and Cm in equation (37) to find new values for r

4. Subtract the old values of r from the new values to find ∆r

5. Add κ∆r to the old values of r to find new values of r

6. If ∆r is sufficiently small, exit and proceed to the next period; if not, go to 1 and repeat until converged

The kappa (κ) above is a structural relaxation coefficient. Values for κ between 0.05 and 0.1 have been found to

be sufficient for many cases. Values below 0.05 do not appear to offer any additional advantage in terms of increased

robustness and significantly lessen the convergence rate. It should also be noted that the flow solution is converged

completely before the structural equations are updated. This complete convergence of the flow solution is done prin-

cipally for robustness and future work will investigate more efficient strategies for solving the coupled aeroelastic

system.

Another exceptional aspect of the quasi-periodic time spectral method is that the period of motion must be known

beforehand. If we examine the equations for the time spectral coefficients, equations (10), (11), (16), (17), etc., we

see that the period of motion appears in each. For flutter problems, the flutter frequency is usually close to the natural

frequency of pitch, but it is rarely exactly the same. Essentially, to solve the flutter problem using the BDFTS method,

one needs to know the period of flutter, which is itself obtained by solving the flutter problem. To validate the BDFTS

approach for aeroelastic problems we assume that period of flutter is known, in the present work (it can be found from

the corresponding BDF2 solution). Ultimately, however, the period of flutter must be found as part of the BDFTS

aeroelastic solution itself for this method to be viable for real world applications. Fortunately, Gopinath et. al.19

has already demonstrated that it is possible to find the period of motion (in their case vortex shedding motion) while

simultaneously solving for flow equations, although for a purely periodic problem. In furture work, a carefully picked

objective will be used in conjunction with a similar, general strategy to find the period of flutter as the aeroelastic

solution is found.

Finally, another drawback of the BDFTS aeroelastic approach is picking the number of time instances to use.

When too few time insatnces are used for purely aerodynamic problems, the solution will converge, but will only

include as many harmonics as the number of time instances allow, i.e. N−1
2

rounded down. However, even though

most aeroelastic solutions appear to contain motion in only one harmonic, necessitating only three time instances,

using three time instances has been found to yield inaccurate results or even to cause convergence failure. It has been

found in the present work that a minimum of five time instances must be used. Ideally, we could use many (15 or

more) time instances to guarantee accuracy and convergence, but the more time instances that are used, the longer the

aerodynamic system takes to converge, so a desire exists to use as few time instances as possible.

III. Test Case and Results

A. BDFTS Aerodynamic Validation

The BDFTS method is validated for aerodynamic flow problems using the same test case as in our previous work:10

a two-dimensional inviscid pitching-climbing motion using the NACA0012 airfoil. The test case Mach number is set

to 0.555. A periodic pitching motion is prescribed about the airfoil’s quarter chord. Simultaneously, the mean angle

of attack of the airfoil changes as the airfoil translates with prescribed vertical and horizontal velocity transients. This

motion is illustrated in Figure (2(a)), while the periodic pitching motion, mean angle of attack, and horizontal and

vertical velocities of the airfoil are plotted in Figure (2(b)). The angle of attack is prescribed as:

α(t) = α0 + ᾱ(t)+α1sin(ω1t)+α2sin(ω2t) (40)
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where the mean angle of attack is given as:

ᾱ(t) =

{
0 t < t1

αm
1
2
{1− cos[ωm(t − t1)]} t ≥ t1

where t1 is the prescribed time at which the transient motion begins (taken as 1 period) and with the constants taken

as:

α0 = 0.016o, αm = 2o, α1 = 2.51o, α2 = 1.25o

ω1 = 0.1632, ω2 = 3ω1, ωm = 0.1ω1

The angle of attack and the forward/upward velocity are shown in Figure (2(b)), which clearly illustrates that the varia-

tions in the mean angle of attack and the airfoil translational motion represent slow transients compared to the periodic

pitching motion, which itself contains multiple harmonics. Figure (3(a)) shows the comparison of the computed lift

coefficient in the first period (based on the frequency ω1). Because the highest mode of the pitching motion ω2 is three

times that of the base mode ω1, seven time instances are need to produce an accurate solution. Also, from Figure (3),

the BDFTS scheme with five time instances shows poor agreement with the reference BDF2 results obtained using

512 time steps per period. On the other hand, using seven or more time instances with the BDFTS scheme produces

very good agreement with the reference BDF2 solution over the complete time history which includes eleven periods,

as shown in Figure (3(b)).

B. BDFTS Structural Validation

The solver for the structural equations discretized in the BDFTS framework is validated independently of the flow

solver. Lift (CL) and moment (Cm) coefficents are prescribed as functions of time and the structural equations given

by (38) and (39) are solved for the time-implicit and time-spectral frameworks, respectively. For the time-implcit

case, the [4x4] structural matrix is directly inverted for each time-step. For the time-spectral case, the [(4xN)x(4xN)]
structural matrix is inverted using a simple GMRES algorithm. Note that N in the BDFTS matrix is the number of

time instances used.

As long as a sufficient number of time steps are used in the BDF2 approach and a sufficient number of time-spectral

instances N are used to account for the harmonics present in the prescribed lift and moment coefficient functions for

the BDFTS approach, agreement between BDF2 and BDFTS is exact (to computational accuracy) for the structural

equations alone.

C. Aeroelastic Validation

To validate the aeroelastic aspect of the solvers the two-dimensional swept wing model exhibiting the transonic dip

phenomenon suggested by Isogai20 is chosen as the test case. The structural parameters for this case are:

xα = 1.8

r2
α = 3.48

ωh
ωα

= 1.0

µ = 60

a = -2.0

The quantity a is the non-dimensional elastic axis location along the chord of the airfoil measured from the mid-

chord of the airfoil when it is in the neutral position. Since it is non-dimensionalized by the semi-chord of the airfoil,

the elastic axis is located half a chord length ahead of the leading edge of the airfoil in this particular case. The air-

foil under consideration is the NACA64a010 (Ames) airfoil operating with a mean angle-of-attack α0 of 0o and an

amplitude of forced pitching αmax of 1o. A computational mesh composed of 1717 nodes and 3280 elements is used,

as shown in Figure (4). For the BDF2 time implementation, the solution process involves forcing the airfoil in pitch

for three periods at the natural frequency of pitch before allowing it to respond aeroelastically. Between 64 and 128

timesteps per period were used for these calculations depending on the length of the period. The convergence of the

first few timesteps of a BDF2 solution are shown in Figure (5). The goal of the validation procedure is to compute

and compare a flutter boundary against existing data. Computation of the flutter boundary is performed by manually

modifying the flutter velocity at various Mach numbers with the objective of obtaining a neutral aeroelastic response.

Although the aeroelastic solvers were not directly validated against experimental data, the predicted flutter boundary
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matches well with computational results from References13, 15 as indicated by the flutter diagram in Figure (6). The

flow solution at two different time-steps is shown in Figure (7) for a flutter case at M∞ = 0.875. This plot show how

the shockwaves transverse the airfoil with its flutter motion.

D. BDFTS Aeroelastic Results

The BDFTS flow solver, validated above, is combined with the aeroelastic structural equations discretized according

the BDFTS approach to form a BDFTS aeroelastic solver. The solution process for the BDFTS implementation is as

follows: first a purely periodic time spectral solution is found at the flutter frequency. Then, a single period of first-

order BDFTS is solved as the airfoil is allowed to respond aeroelastically. Next, enough additional periods are run

using second-order BDFTS to determine if the solution is aeroelastically damped, neutral, or excited (i.e. experiencing

flutter). It should be noted that for now, the period of flutter is assumed to be known and prescribed for the BDFTS

solutions.

A damped, neutral, and excited case are run using the same structural parameters and computational mesh as

in subsection (III.C) above. Figures (8)-(10) compare BDFTS flutter solutions to the corresponding time-implicit

solution. It should be noted that the BDF2 solutions were rerun using the flutter frequency for the first three prescribed

periods to facilitate direct comparison of the data. As can be seen from these figures, there is close agreement between

the time-implicit and time-spectral solutions, indicating that the BDFTS method is capable of solving the coupled

fluid/structure equations. Most importantly, the solutions exhibit the correct flutter response, i.e. damped, neutral,

or excited. The cases presented in Figures (8)-(10) were all run at a free stream Mach number M∞ = 0.875, using

five time-spectral instances, and at the flutter velocity indicated by the Figure caption. It should also be noted that,

although BDFTS and BDF2 response plots match almost exactly for the neutral response, the BDFTS response decays

more slowly in the damped case and grows more slowly in the excited case. This discrepency is thought to result from

the BDFTS aeroelstic coupling and will be investigated further in future work.

Figure (11) shows the convergence of the BDFTS aeroelastic solver. Figure (11(a)) demonstrates that the FGMRES

flow solver converges the flow equations quadratically. Figure (11(b)) shows this same period of prescribed motion

(ending at interation 180), plus the first two aeroelastic response periods (the first of which ends at iteration 675). Each

of the short dips in these two aeroelastic periods indicates that the mesh was moved to accomodate updated structural

variables. The flow solver converges to machine zero in only two to three non-linear iterations for each update of the

structure. The noteworthy trend in which the flow residual returns to a smaller value each time the structure is moved

indicates the structure is being moved less with each subsequent update; in other words, the fully-coupled aeroelastic

problem is converging for all time instances.

Although good agreement was reached for the above cases, many other cases on the flutter boundary diagram given

in Figure (6) eluded solution. Specifically, these cases would diverge as the coupling procedure given in subsection

(II.B.3) was repeated. Generally, cases with a flutter velocity above Vf > 0.7 could not be solved at present. It is

thought that these difficulties result from inadequate coupling between the two sets of equations. To remedy this

problem, a stronger coupling strategy must be produced.

IV. Conclusions and Future Work

The BDFTS method has been demonstrated to be capable of solving the coupled unsteady fluid-structure equations

and results compare favorably with the standard time-implicit solutions. However, further improvements are needed in

order for this method to solve flutter problems efficiently and without any prior knowledge about the airfoil response

characteristics. First, a method must be found to allow for the resolution of the flutter period as the BDFTS aeroelastic

solution progresses. Next, a method to couple more strongly the fluid and structure equations must be devised. Finally,

the general solver efficiency needs to be improved so that many time instances can be used without concern for

degredation of the solution speed. We also anticipate that this method can be extended to gust response and other

quasi-periodic, coupled fluid/structure problems in the future.
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Figure 2. (a) Illustration of quasi-periodic pitching-climbing airfoil and (b) prescribed horizontal and vertical velocities and pitching angle.
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Figure 3. Comparison of computed lift coefficient using BDFTS versus time-domain (BDF2) solution for (a) first period of motion and (b)

11 periods of motion for pitching-climbing airfoil.

Figure 4. Nearbody computational mesh for the NACA64a010 airfoil (1717 nodes, 3280 elements)

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0  100  200  300  400  500  600

N
o
n
-l
in

e
a
r 

R
e
s
id

u
a
l

Flow Iteration

Figure 5. Convergence of the BDF2 flow solver for the first six time-steps
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Figure 6. Comparison of predicted flutter boundary against other references
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Figure 7. Flow solutions for M∞ = 0.875 demonstrating the change in position of the shockwave with airfoil orientation
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Figure 8. Comparison of the Aeroelastic response for BDF2 and BDFTS methods: Damped response (M∞ = 0.875,Vf = 0.4)
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Figure 9. Comparison of the Aeroelastic response for BDF2 and BDFTS methods: Neutral response (M∞ = 0.875,Vf = 0.537)
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Figure 10. Comparison of the Aeroelastic response for BDF2 and BDFTS methods: Excited response (M∞ = 0.875,Vf = 0.65)

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0  20  40  60  80  100  120  140  160  180

N
o
n
-l
in

e
a
r 

R
e
s
id

u
a
l

Flow Iteration

(a)

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0  200  400  600  800  1000

N
o
n
-l
in

e
a
r 

R
e
s
id

u
a
l

Flow Iteration

(b)

Figure 11. BDFTS flow convergence for (a) the initial, prescribed motion; and (b) the inital motion plus the first two periods of aeroelastic

response
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