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 In this paper computed results from Steamline Upwind/Petrov-Galerkin and Discontinuous Galerkin 

finite-element methods are compared for various two-dimensional compressible Navier-Stokes applications. 

Identical meshes are utilized for each comparison with linear, quadratic, and cubic elements employed. The 

order of accuracy is assessed for each scheme for viscous flows using the method of manufactured solutions, 

and results from each scheme are compared to experimental data. Each scheme is notionally of design order, 

and results from both compare well with experimental data. Both schemes are viable finite-element 

discretization techniques, and neither applies an unnecessary amount of artificial dissipation.   

 

 

I.   Introduction 

HE continuing improvement of high-performance computers has recently led to renewed interest in higher-

order finite-element (FE) techniques for compressible computational fluid dynamics (CFD) applications.
1-8

 

Finite-element techniques provide the capability of discretizing the flow field with arbitrarily shaped higher order 

elements, and they also allow for efficient grid spacing/polynomial order (h-p) refinement techniques. The 

utilization of a higher order finite-element scheme can generate a solution to the same level of accuracy as a 

first/second-order finite-volume scheme with substantially fewer degrees of freedom, potentially making such a 

scheme more computationally efficient.  

 Two of the most prevalent higher order finite-element techniques for the compressible Navier-Stokes equations 

are the Streamline Upwind/Petrov-Galerkin (SU/PG) and the Discontinuous Galerkin (DG) methods, and research 

efforts that utilize the DG method greatly outnumber those that utilize the SU/PG method. Each method attains 
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numerical stability for hyperbolic partial differential equations (PDEs) by spatially discretizing the governing 

equations with an upwind method. Upwinding is attained by modifying the central difference type Galerkin finite- 

element method. The SU/PG method employs upwinding by modifying the Galerkin weighting function,
9
 and the 

DG method employs upwinding by separating adjacent elements and applying a flux jump condition that 

approximates a solution to the Riemann problem at the element interfaces.  

 For the current effort, quantitative and qualitative comparisons are conducted between the SU/PG and DG 

methodologies in an attempt to decipher the differences in error vs. measures of computational work on identical 

meshes. The method of manufactured solutions is applied to both methods to quantitatively describe the L2 norm of 

the discretization error vs. the number of degrees of freedom and the number of elements for a given mesh. Also, as 

a demonstration of each method’s applicability to non-trivial geometries, each is implemented to generate a solution 

of the flow-field for the following cases using identical computational meshes: a steady-state NACA0012 airfoil at 1 

deg. angle of attack ( ) at a Mach number of 0.5 with a Reynolds number (Re) based on a chord length of 5,000, 

and a circular cylinder at a Mach number of 0.2 with a Reynolds number based on a diameter of 40. Linear, 

quadratic, and cubic elements are employed to discretize the field which means that the smooth portions of the 

solutions generated are notionally second-, third-, and fourth-order accurate. Both FE schemes use an exact (to 

machine precision including higher order contributions) Jacobian as an efficient and robust solver approach. Each 

FE scheme uses Newton’s method to solve the non-linear set of equations which result from spatial and implicit 

temporal discretization. The inherent matrix systems are solved at each time-step with a preconditioned GMRES
10

 

method. The flow fields generated from each FE solver are qualitatively compared by evaluating various contours of 

variables of interest and quantitatively compared by evaluating force coefficients for the real-world problems with 

nontrivial geometries.  

 

II.   Governing Equations 

 The compressible Navier-Stokes (NS) equations in conservative form describe the conservation of mass, 

momentum, and total energy as follows: 

 
       

  
                               (1) 

where   is a bounded domain. The vector of conserved flow variables,  , and the inviscid and viscous Cartesian 

flux vectors,   and    are shown in three spatial dimensions (even though the CFD solvers are currently two-

dimensional [2-D]) as follows: 
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where  ,  , and    denote the fluid density, pressure, and total energy per unit volume.           denotes the 

Cartesian velocity vector.   is the fluid viscous stress tensor, and since the fluid is assumed to be Newtonian,   is 

defined as 

       
   

   
 

   

   
 

 

 

   

   
     (3) 

where     is the Kronecker delta function, and the subscripts        refer to the Cartesian coordinate components for 

         .   is the fluid dynamic viscosity obtained by Sutherland’s law.   is the pressure, and for an ideal gas is 

defined by the equation of state as 

            
 

 
             (4) 

where   is the ratio of specific heats and is 1.4 for air.   and   represent the thermal conductivity and temperature 

respectively.  

  

III.   Spatial Discretization 

 The computational domain   is divided into a set of nonoverlapping elements. Within each element the 

conserved flow variables are assumed to vary as the sum of a linear combination of the polynomial basis functions, 

        , and the conserved flow variable at each node of the element,    for the case where certain basis functions 

are employed as 

                         (5) 

The spatial discretization derivations for both the SU/PG and DG finite-element methods start with the weighted 

residual statement of the governing equations 

     
       

  
                   

 
     

  
  (6) 

The weighting function,  , for an element is defined as the sum of the linear combination of the polynomial basis 

functions and an arbitrary displacement,  . The weighting function for an element is defined as 

                 (7) 

In order to implement the Galerkin method, the above weak form of the governing equations is integrated by parts as 

follows: 

      

       

  
          

                  

                           
 

 (8) 

 The Galerkin method is a central difference type method that is well-suited for elliptic PDEs, but is numerically 

unstable for convection dominated flows because the governing PDEs become strongly hyperbolic under these 

conditions. Upwinding is necessary to attain numerical stability for strongly hyperbolic PDE’s. Upwinding can be 

applied by adding dissipation to a central difference type scheme. The SU/PG method incorporates upwinding by 

adding a term to the Galerkin weighting function that provides dissipation in the streamwise direction.
9
 The DG 

method incorporates upwinding by separating adjacent elements and applying a flux jump condition that 

approximates a solution to the Riemann problem at element interfaces. The difference between the two methods is 

subtle. More precisely, the third term in Eq. (8) consists of the boundary contributions from all elements. Because 

the SU/PG method is continuous, the inter-element contributions vanish and only boundary terms are left. However, 

for the DG method the nodes that make up a face between adjacent elements are duplicated, and the number of 

degrees of freedom increases substantially compared to the SU/PG method for elements that have a substantial 

fraction of their nodes on the faces (lower order elements). Since upwinding is applied at the element interfaces for 

the DG method, the scheme is element-stable (with regards to solving the linear system). For the SU/PG method, 

upwinding is applied to each degree of freedom in a volumetric sense and the scheme is node-stable. 
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 In order to derive the SU/PG method, the following integration is carried out for each element in the 

computational domain: 

      

       

  
          

                  

    
   

  
    

   

  
    

   

  
        

       

  
                    

  
      (9) 

In the above equation,    ,    , and     are the inviscid flux Jacobian matrices, and     is a stabilization matrix that 

has the units of time. For inviscid flows,     is defined as
11
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                   (11) 

where     is the matrix of right eigenvectors and       is the matrix of the absolute value of the eigenvalues of the 

left-hand side of Eq. (11). For viscous flows this definition of     is overly dissipative and does not provide the 

design order of accuracy for viscous flows with low Reynolds numbers.
2
 The following definition of     is not 

overly dissipative for viscous flow with low Reynolds numbers and provides the design order of accuracy when 

verified with the method of manufactured solutions.
2
 This is the L1 definition that is based on the L2 definition in 

Ref. (12). 

          
   

  
    

   

  
    

   

  
     

   

   
     

   

   
   (12) 

In the above equation     is the set of viscous flux Jacobian matrices. 

 In order to derive the DG method, the integration shown in Eq. (8) for the Galerkin method is carried out for 

each element in the computational domain, except that element basis functions that are discontinuous at the element 

interfaces are employed, and the fluxes present in the third term are modified. The inviscid flux,       , is now 

denoted as         and is obtained as a solution of a local one-dimensional Riemann problem normal to the 

interface. The flux,        , depends on the internal interface state    and the adjacent element interface state 

  as well as the orientation of the interface defined by the normal vector  . Current implementations include the 

flux difference splitting schemes of Rusanov
13

, Roe
14

, HLL
15

, and HLLC
16-18

. The viscous flux,           , is 

now denoted   
          and is obtained via the symmetric interior penalty method (SIP)

19,20
, which seeks to 

penalize the solution for being discontinuous at the element interfaces. The SIP numerical flux is given as 

                                                                (13) 

where     and     are the average and jump operators, respectively: 

      
     

 
                   (14) 

where   is a scalar, vector, or matrix and   is the penalty parameter. The matrix     is given such that 
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IV.   Numerical Results 

A.  Method of Manufactured Solutions 

 A quantitative study of the discretization error of both SU/PG and DG discretizations is conducted using the 

method of manufactured solutions (MMS), which applies a forcing term to the NS equations such that a known 

analytical solution satisfies the NS equations exactly. For this study, the exact solution of density, momentum, and 

total energy is specified at the boundary of the computational domain. The MMS nondimensional solutions for 

density, velocity, and total energy are shown in Fig. 1.  
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Figure 1. Specified variable contours for the method of manufactured solutions. 

The meshes utilized to conduct this study are a sequence of triangulated structured meshes with 90, 418, and 1,794 

elements. All meshes have element aspect ratios of one. The three meshes are shown in Fig. 2.  

   

Figure 2. Meshes utilized for method of manufactured solutions study. 

 Fig. 3 shows the order of accuracy for the SU/PG and DG methods with linear, quadratic, and cubic (p = 1, 2, 

and 3) elements employed for a Reynolds number of 10 to be notionally of design order (order = 2 for linear 

elements, order = 3 for quadratic elements, and order = 4 for cubic elements). Figure 3 also shows that for a given 

level of error in density, velocity, or total energy, fewer degrees of freedom        are employed for the SU/PG 
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method as compared to the DG method for p = 1, 2, and 3.  It should be noted that the solution with cubic elements 

for the DG method on the finest grid is outside of the asymptotic region.  

  

   

Figure 3. Comparison of the L2 error norm vs.         for the SU/PG and DG methods at Re = 10 for 

method of manufactured solutions. 

 Fig. 4 compares error in density, velocity, and total energy vs. the number of elements         in each mesh for 

the SU/PG and DG methods. Fig. 4 shows that on a given mesh the level of error is comparable for both FE methods 

at p = 1, 2, and 3.  
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Figure 4. Comparison of the L2 error norm vs. 1/NElmt for the SU/PG and DG methods at Re=10 for method 

of manufactured solutions. 

 Table 1 is a breakout of the data presented in Figs. 3 and 4 with the addition of the number of non-zero entries in 

the matrix system for each FE method on each grid at each p level. The number of non-zero entries in the matrix 

system is a rough measure of the work involved in inverting the matrix system. For the meshes utilized in this study 

at p = 1 the DG method has ~10 times more nonzero       entries, at p = 2 the DG method has ~6 times more 

nonzero entries, and at p = 3 the DG method has ~5 times more nonzero entries to the matrix system.  

Table 1. Comparison of grid and matrix metrics for SU/PG and DG techniques for method of manufactured 

solutions. 

a. 90 Elements 

Order (P) NDoF NNZ                                                 

DG 1 270 3240 2.1041844E-4 1.7427689E-4 1.2802861E-5 1.9114469E-4 

SU/PG 1 60 358 2.1578774E-4 4.7476862E-4 7.0044856E-5 8.7069725E-5 

DG 2 540 12960 1.4902872E-6 8.7650590E-7 1.4187059E-7 3.8677042E-7 

SU/PG 2 209 2183 1.9135246E-6 1.6286604E-6 3.8418864E-7 3.1097047E-6 

DG 3 900 36000 4.3064904E-8 2.5067797E-8 3.5406886E-9 1.1947010E-8 

SU/PG 3 448 7096 3.7692124E-8 3.7194980E-8 5.7117978E-9 6.2500787E-8 
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b. 418 Elements 

Order (P) NDoF NNZ                                                 

DG 1 1254 15048 4.4941492E-5 3.7329989E-5 2.3917577E-6 4.0923215E-5 

SU/PG 1 240 1554 4.7503233E-5 1.0333975E-4 1.7654636E-5 3.0568125E-5 

DG 2 2508 60192 1.7729169E-7 8.8741424E-8 1.5483129E-8 3.9251549E-8 

SU/PG 2 897 9855 2.8709335E-7 1.6887693E-7 4.0301236E-8 4.5934434E-7 

DG 3 4180 167200 1.8965142E-9 1.1405213E-9 1.669977E-10 5.310525E-10 

SU/PG 3 1972 32428 1.7578031E-9 1.6648038E-9 2.141679E-10 2.9330966E-9 

 

c. 1794 Elements 

Order (P) NDoF NNZ                                                 

DG 1 5382 64584 1.0441537E-5 8.6961671E-6 5.2012633E-7 9.5266343E-6 

SU/PG 1 960 6466 1.0958612E-5 2.4378150E-5 4.1793215E-6 9.6427219E-6 

DG 2 10764 258336 2.2235117E-8 1.0085325E-8 1.8257676E-9 4.4572374E-9 

SU/PG 2 3713 41759 3.9743217E-8 1.9364769E-8 4.5314748E-9 6.3425261E-8 

DG 3 17940 717600 2.092352E-10 1.472061E-10 1.559322E-11 7.978069E-11 

SU/PG 3 8260 138172 9.652045E-11 8.889664E-11 1.042542E-11 1.618252E-10 

 

B.  NACA0012 Laminar Airfoil 

 The second test case is the simulation of the flow over a NACA0012 airfoil using both the SU/PG and DG FE 

methods. The flow conditions are Mach number = 0.5,     , Re = 5,000 (based on chord length), which results in 

a flow that is steady in the limit of infinite time. The airfoil surface is assumed to be an adiabatic no-slip wall, and 

subsonic flow characteristic in/out flow boundary conditions are specified at the far-field. Regardless of the 

discretization method employed, all results are shown at steady-state conditions and were obtained by solving the 

steady NS equations using a damped Newton’s method. For this case, the mesh contains 9,214 triangular elements 

and discretization orders p = 1, 2, and 3 are employed. While every effort was made to minimize implementation 

differences between the two CFD solvers, the DG solver employs orders of p+1 for curved boundaries, and the 

SU/PG solver employs geometry orders of p.  

 Fig. 5 shows the computational mesh (the outer boundary is ~40 chord lengths away from airfoil) and the 

computed Mach number contours generated by both FE methods for p = 1, 2, and 3. For this case both SU/PG and 

DG methods produce similar qualitative results on the same mesh. In both cases p = 3 or cubic polynomials offer 

increased wake resolution compared with solutions generated with lower p.  

 

Initial Mesh, Linear Elements 
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                    SU/PG Method, Linear Elements                    DG Method, Linear Elements 

  
              SU/PG Method, Quadratic Elements                            DG Method, Quadratic Elements 

  
                   SU/PG Method, Cubic Elements                                          DG Method, Cubic Elements 

Figure 5. Qualitative comparison of Mach number contours of the SU/PG and DG methods for flow over a 

NACA0012 airfoil at     , Re = 5,000, and Mach number = 0.5. 
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 Table 2 contains the computed lift and drag coefficients obtained using the SU/PG and DG methods compared to 

reference quantities generated by the DG method on a mesh with 250,000 degrees of freedom and p = 4 elements 

employed. Table 2 shows that using the same mesh and discretization order SU/PG and DG methods obtain similar 

results for these simulation outputs. Recalling that FE methods literature is mainly made up of DG methods, it is 

encouraging to note that the SU/PG solver is generating results that very closely match a well- verified/validated DG 

solver.
3,7

 

Table 2. Comparison of grid and matrix metrics for SU/PG and DG methods for flow over a NACA0012 

airfoil at     , Re = 5,000 and Mach number = 0.5. 

a. 9,214 Elements 

Order (P) NDoF NNZ CL  CL Ref CD CD Ref 

DG 1 27642 331704 0.0242452 0.0184321 0.0549085 0.0559061 

SU/PG 1 4689 32495 0.0149908 0.0184321 0.0548850 0.0559061 

DG 2 55284 1326816 0.0196699 0.0184321 0.0561271 0.0559061 

SU/PG 2 18592 212578 0.0191174 0.0184321 0.0550188 0.0559061 

DG 3 92140 3685600 0.0192616 0.0184321 0.0560289 0.0559061 

SU/PG 3 41709 706101 0.0186652 0.0184321 0.0551122 0.0559061 

 

C.  Low Speed Laminar Circular Cylinder 

 The third test case studies the unsteady flow over an impulsively started circular cylinder using both the SU/PG 

and DG FE methods. The flow conditions are Mach number = 0.2,     , Re = 40 (based on cylinder diameter), 

which results in unsteady laminar flow. For each FE method second-order backward differencing with a constant 

nondimensional time-step      
    

 
  of 0.05 is employed along with Newton’s method to march the solution 

forward in time. Both the SU/PG and DG solvers drive the residual to machine zero at each time step through the 

usage of subiterations. The cylinder surface is assumed to be an adiabatic no-slip wall, and subsonic flow 

characteristic in/out flow boundary conditions are specified at the far-field. For this case the mesh contains 9,355 

elements, and discretization orders p = 1, 2, and 3 are employed.  

 Fig. 6 shows the computational mesh (the outer boundary is ~20 diameters away from the cylinder) and the 

computed Mach number contours generated by both methods for p = 1, 2, and 3 at nondimensional time based on 

free-stream velocity  
   

 
  = 10.5. As with the NACA0012 case, for the cylinder case both FE methods produce 

similar qualitative results on the same mesh, and wake resolution is increased with higher p.  

 

Initial Mesh, Linear Elements 
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                        SU/PG Method, Linear Elements                                          DG Method, Linear Elements 

 

 

                       SU/PG Method, Quadratic Elements                                 DG Method, Quadratic Elements 

 

  

                       SU/PG Method, Cubic Methods                                             DG Method, Cubic Elements 

Figure 6. Qualitative comparison of Mach number contours of the SU/PG and DG methods for flow over a 

2D cylinder at Re = 40, Mach number = 0.2, Time = 10.5. 

 

 Fig. 7 shows the computed solution from the SU/PG and DG methods compared to an experimental solution
21, 22 

at nondimensional time equals 2.7, 3.7, 5.3, and 10.5. For this mesh both CFD solvers show good agreement with 

the experimental data at each time and p level.  
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                   SU/PG Method, Linear Elements                                             DG Method, Linear Elements 

  
                   SU/PG Method, Quadratic Elements                                  DG Method, Quadratic Elements 

  
                   SU/PG Method, Cubic Elements                                            DG Method, Cubic Elements 

Figure 7. Comparison of SU/PG and DG methods with experimentally generated data. 
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 Table 3 contains the computed lift and drag coefficients obtained using the SU/PG and DG methods at 

nondimensional time = 10.5 as compared to reference quantities.
23

 Table 3 shows that for this unsteady problem, the 

SU/PG and DG methods compute similar force coefficients for p = 1, 2, and 3. Table 3 also shows that the number 

of degrees of freedom and the number of nonzero entries in the matrix system are significantly fewer for the SU/PG 

method.  

Table 3. Comparison of grid and matrix metrics for SU/PG and DG methods for cylinder. 

a. 9,355 Elements 

Order (P) NDoF NNZ CL (T=10.5) CL
Ref

 CD (T=10.5) CD
Ref

 

DG 1 28065 331704 0.019940008 0 1.705180 ~1.65 

SU/PG 1 4809 33137 0.033484060 0 1.659555 ~1.65 

DG 2 56130 1326816 0.001166707 0 1.646849 ~1.65 

SU/PG 2 18973 216217 0.005346940 0 1.660706 ~1.65 

DG 3 93550 3685600 -0.000079718 0 1.644808 ~1.65 

SU/PG 3 42492 717630 0.004346445 0 1.663870 ~1.65 

 

V.   Conclusion 

 These test cases demonstrate that SU/PG and DG FE methods give comparable qualitative and quantitative 

results using the same meshes for various real-world flow problems. The SU/PG method employs fewer degrees of 

freedom and has fewer nonzero entries in its matrix system at the p levels tested than the DG method. For the levels 

of p examined in this paper, both the SU/PG and DG methods are viable finite-element discretization methods. In 

the future, both of these methods will be implemented in three spatial dimensions in the same code, which will 

eliminate implementation differences between the two methods so that valid wall-clock time measurements can be 

made for an array of test cases.  Further testing will be performed with this unified code on three-dimensional steady 

and unsteady flow cases covering a wide range of flow speeds including cases with shocks and turbulent flow. Since 

both FE methods give comparable results on identical meshes, wall-clock time is an appropriate quantity to 

compare. However, due to the differences in implementation this is left for future research.  
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