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A high-fidelity multidisciplinary aeroelastic modeling and optimization capability is 

employed for optimization of structural properties of the 13 meter SWiFT wind turbine 

blade of Sandia National Laboratories.  Both the NSU3D RANS fluid dynamics solver and 

the AStrO structural finite element solver are developed in-house and validated in previous 

work.  Exact sensitivities of performance objectives are obtained using the adjoint method.    

For each of several load cases, the composite layup throughout SWiFT blade’s internal 

structure is optimized in order to minimize a scalar stress parameter that has been 

associated with the propagation of fatigue damage.  Three main types of loads regularly 

experienced by a wind turbine blade are identified: aerodynamic loads, centrifugal loads and 

gravitational loads.  The optimization is performed with the blade under each of these three 

loads individually, and again with all combined loads present.  A 40-60% reduction in the 

maximum fatigue stress criterion is consistently seen in all cases after optimization. 

Nomenclature 

At, As = material constants derived from static failure tests of composites 

𝐶𝑘𝑗 = damping matrix in structural dynamic equations 

𝐶𝑝𝑞𝑟𝑠 = 4th order material elastic stiffness tensor 

𝐷𝑖  = set of design variables used to define and modify the properties of a structure 

𝑓�̅� = body force per unit volume in a structure due to gravity 

𝑓�̅� = body force per unit volume in a structure due to centrifugal force 

𝐹𝑘 = total applied load vector in structural dynamic equations 

𝑔 = acceleration due to gravity 

h = Plank’s constant 

𝐼𝑚,𝑡 = invariant of matrix stress in a composite normal to the direction of fiber 

𝐼𝑖𝑟  = 3 X 3 identity matrix 

k = Boltzmann constant 

𝐾𝑘𝑗  = stiffness matrix in structural dynamic equations 

L = optimization objective function 

𝑀𝑘𝑗 = mass matrix in structural dynamic equations 

𝑛 = parameter quantifying fatigue damage at a point in a material 

𝑛0 = equilibrium parameter that depends on the damage accumulation exponent 

�̅� = normal projection vector from the axis of rotation to a point in a structure 

𝑅𝑘 = residual vector of the finite element equations governing the behavior of a structure under loading 

𝑆𝑝𝑞𝑟𝑠 = 4th order material elastic compliance tensor 

t = time 

𝑡𝑝
𝑠𝑢𝑟𝑓

 = traction applied over the surface of a structure 

U = activation energy associated with microcrack accumulation 

𝑈𝑗 = nodal displacement solution of a structure under deformation 
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�̇�𝑗 = nodal velocity solution of a structure under deformation 

�̈�𝑗 = nodal acceleration solution of a structure under deformation 

𝑢 = vector displacement of a point in a structure 

�̇�𝑟 = vector velocity of a point in a structure 

�̈�𝑟 = vector acceleration of a point in a structure 

𝑣𝑓 = fiber volume fraction of fiber-reinforced composite 

�̅� = position vector of a point in a structure 

𝛼 = scalar parameter used in implicit time integration scheme 

𝛼𝑝𝑟 = 3 X 3 direction cosine transformation matrix 

𝛽 = scalar parameter used in implicit time integration scheme 

𝛾 = activation volume associated with microcrack accumulation 

Δ𝑡 = time step/increment in numerical time integration scheme 

𝜖𝑝𝑞 = general strain at a point in a structure in vector form 

𝜁 = scalar parameter used in implicit time integration scheme. 

𝜆 = damage accumulation exponent 

Λ𝑘 = adjoint vector, used to determine gradient of optimization objective 

𝜉 = damping coefficient 

𝜌 = mass density 

𝜎𝑝𝑞 = general stress at a point in a structure in vector form 

𝜎𝑒𝑓𝑓
𝑜𝑓𝑓−𝑎𝑥𝑖𝑠

  = effective scalar off-axis stress in the matrix of a composite 

𝜎𝑚,𝑖𝑗 = tensor components of stress in the matrix of a composite 

𝜙𝑝𝑗 = matrix of interpolation functions in finite element soloution 

𝜔 = angular velocity of a rotating body 

Ω = spatial domain of integration 

I. Introduction 

IND energy represents an increasingly large portion of the ever-expanding renewable sector.  Although there 

is great potential in wind to sustainably meet global energy needs, numerous challenges still exist which 

could impede progress in this area.  One major concern regarding the economic viability of wind energy is longevity 

of turbine structures, as they are subject to complex gravitational, centrifugal and aerodynamic loads.  These are 

cyclic in nature and prone to sudden gusts and fluctuations, which can lead to fatigue and failure in both blades and 

gearboxes.  To maximize lifespan of turbine structures it is essential to optimize turbine blade designs to reduce load 

stresses while still maintaining power output. 

 Due to their light weight and high strength, wind turbine blades are largely composed of composite materials.  

One drawback to this in terms of optimizing lifespan is that fatigue behavior in composite materials has long been 

notoriously difficult to predict.1, 2  In order to maximize fatigue life, we must identify a means of quantifying the 

driving force behind fatigue damage.  It has been shown that fatigue in fiber-reinforced composites is predominantly 

matrix-driven, and that the physics of bond-breaking and damage propagation in polymer matrix can be 

appropriately modeled with the kinetic theory of fracture.3-7  The off-fiber-axis stresses, or shear stresses and normal 

stresses perpendicular to the fiber direction, are mainly responsible for such damage propagation.  Fertig et al.8-10 

identified a scalar stress criterion representing the effective off-axis stress in the matrix of a unidirectional fiber 

composite, and demonstrated its utility as the driving stress in the kinetic theory of fracture.  In this study we use this 

effective off-axis matrix stress as the objective function to be minimized in order to prolong the fatigue life of the 

SWiFT11 wind turbine blade of Sandia National Laboratories. 

 In the field of aerodynamic design and shape optimization, adjoint methods in gradient-based optimization have 

become mainstream due to their efficiency for problems with many design variables.12-15  In this study, we utilize 

gradient optimization with adjoint-based sensitivities to tackle the problem of load stress minimization in turbine 

blades through optimization of composite layup.  In section II we introduce the aeroelastic fluid-structure modeling 

and optimization capability.  In section III we describe the wind turbine blade structural model.  In section IV we 

elaborate on the optimization objective and methodology, and introduce five specific optimization cases.  In section 

V we present the results of our optimizations and in section VI we give conclusions and projections of future work. 
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II. Aeroelastic Modeling and Optimization Capability 

This study utilizes a high-fidelity CFD flow solver and a high-fidelity structural finite element solver, both 

written in-house for multidisciplinary aeroelastic modeling.  The CFD flow solver is NSU3D (Navier-Stokes 

Unstructured in 3D), which is a widely validated and scalable Reynolds-averaged Navier-Stokes (RANS) solver for 

unstructured grids.  It uses a vertex-centered finite volume formulation, second-order accurate in space and time 

with a line-implicit multigrid solver.  NSU3D has been used in numerous simulations,13,16-18 and validated through 

participation in events such as the High-Lift Prediction Workshop.16 

The structural finite element solver is AStrO (Adjoint-based Structural Optimizer), developed over the last three 

years and demonstrated in previous work.17,18  AStrO supports linear and nonlinear finite element modeling of 3D 

solid continuum and shell structures.  Dynamic systems can be modeled with implicit second-order accurate time 

integration by the Hilbur-Huges-Taylor “alpha” method,19 and processing of model input files generated by 

Abaqus20 commercial finite element software is supported. 

NSU3D and AStrO are capable of running tightly coupled analysis through a fluid-structure interface17.  Each 

point in the CFD grid adjacent to the surface of the structural finite element mesh is initially projected to its nearest 

point on the structural surface, and hence imperfectly matching fluid and structural grids can be accomodated.  In 

addition, NSU3D is capable of deforming its grid to adapt to structural displacements using a linear elastic 

displacement analogy.  Each time step of a simulation, NSU3D solves for the aerodynamic loads given the current 

structural displacement, and passes those loads to AStrO through the interface mapping.  AStrO then updates the 

structural displacement given the loads, and passes those displacements back though the interface.  The process is 

repeated until the state at the next time step converges. 

Both NSU3D and AStrO are built with the capability for obtaining exact sensitivities of solution-derived 

objectives with respect to customized design parameters using the adjoint method.  With the use of the adjoint, only 

one adjoint solution is required on each optimization design cycle regardless of the number of design parameters,12-

14 enabling efficient gradient-based optimization for any number of parameters. 

In the present study, NSU3D and AStrO are used in the tightly-coupled simulation process described above to 

generate realistic steady-state aerodynamic loads applied to the SWiFT11 wind turbine blade model described in 

section III.  These aerodynamic loads are retained and considered constant throughout the process of a purely 

structural optimization, executed by AStrO alone.  Future works will incorporate both capabilities into fully-coupled 

optimization studies.  

In gradient optimization, an objective quantity 𝐿 to be optimized is defined as a function of a set of design 

variables 𝐷𝑖 , as well as a set of solution variables 𝑈𝑗 that define the physical response of a system. 

 

𝐿 = 𝐿 (𝐷𝑖 , 𝑈𝑗(𝐷𝑖))                 (1) 

 

The objective function is optimized by stepping through a series of iterations in which the design variables are 

incremented in a step direction determined by the gradient of 𝐿 with respect to 𝐷𝑖 .  From differentiation of Eq. (1), 

the gradient of 𝐿 is 

 
𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
+

𝜕𝐿

𝜕𝑈𝑗

𝜕𝑈𝑗

𝜕𝐷𝑖
                  (2) 

 

The solution variables must always satisfy the appropriate set of governing equations,  

 

𝑅𝑘(𝐷𝑖 , 𝑈𝑗(𝐷𝑖)) = 0             (3) 

 

Differentiating Eq. (3), we have 

 

𝑑𝑅𝑘

𝑑𝐷𝑖
=

𝜕𝑅𝑘

𝜕𝐷𝑖
+ [

𝜕𝑅𝑘

𝜕𝑈𝑗
]

𝜕𝑈𝑗

𝜕𝐷𝑖
= 0 ⟹  

𝜕𝑈𝑗

𝜕𝐷𝑖
= − [

𝜕𝑅𝑗

𝜕𝑈𝑘
]

−1 𝜕𝑅𝑘

𝜕𝐷𝑖
        (4) 

                     

 

We can then re-write Eq. (2) as 
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𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
−

𝜕𝐿

𝜕𝑈𝑗
[

𝜕𝑅𝑗

𝜕𝑈𝑘
]

−1
𝜕𝑅𝑘

𝜕𝐷𝑖
           (5) 

 
The most computationally expensive step in evaluating Eq. (5) is the solution of the linear system to apply the 

inverse matrix operation.  But the partial derivative of 𝐿 with respect to 𝑈𝑗 does not depend on 𝐷𝑖 , so if we first 

evaluate the adjoint, Λ𝑘 by solving 

 

[
𝜕𝑅𝑘

𝜕𝑈𝑗
] Λ𝑘 =  

𝜕𝐿

𝜕𝑈𝑗
            (6) 

 

and then evaluate 

 
𝑑𝐿

𝑑𝐷𝑖
=

𝜕𝐿

𝜕𝐷𝑖
− Λ𝑘

𝜕𝑅𝑘

𝜕𝐷𝑖
              (7) 

 

then we only need to solve one linear system (Eq. (6)) to get the gradient of the objective with respect to any number 

of design variables.  Note that Eq. (6) and (7) are in index notation, and the adjoint is solved with the transpose 

Jacobian of the discretized governing equations.   

 Since the present study involves structural optimization, the solution variables in this case are structural nodal 

displacements, and the governing equations are finite element equations, derived from the principle of virtual 

work.21  The general statement of the principle of virtual work for a structural dynamic system is as follows: 

 

∫ 𝜎𝑝𝑞𝛿𝜖𝑝𝑞𝑑Ω + 
 

Ω ∫ 𝜉�̇�𝑝𝛿𝑢𝑝𝑑Ω
 

Ω
+ ∫ 𝜌�̈�𝑝𝛿𝑢𝑝𝑑Ω

 

Ω
− ∫ 𝑓𝑝𝛿𝑢𝑝𝑑Ω

 

Ω
− ∫ 𝑡𝑝

𝑠𝑢𝑟𝑓
𝛿𝑢𝑝𝑑A

 

A
= 0  (8) 

 

In the above 𝑢𝑝, �̇�𝑝 and �̈�𝑝 are the vector displacement, velocity and acceleration at a point in a structure, 𝜎𝑝𝑞 and 

𝜖𝑝𝑞 are the stress and strain in second-order tensor form, 𝜉 is the damping coefficient, 𝜌 is the mass density, 𝑓𝑝 is 

applied body force per unit volume, and 𝑡𝑝
𝑠𝑢𝑟𝑓

 is applied surface traction per unit area on the structure.  The 𝛿 

operator indicates a variation on the function to its right, meaning the above must hold for any variation of the 

displacement field 𝑢𝑝.  The final term is an integral of traction applied over the surface area of the structure, while 

all other terms are volume integrals over the body of the structure.  Let us first consider the steady-state case, in 

which velocity and acceleration are zero.  Eq. (8) then reduces to 

 

∫ 𝜎𝑝𝑞𝛿𝜖𝑝𝑞𝑑Ω 
 

Ω
− ∫ 𝑓𝑝𝛿𝑢𝑝𝑑Ω

 

Ω
− ∫ 𝑡𝑝

𝑠𝑢𝑟𝑓
𝛿𝑢𝑝𝑑A

 

A
= 0        (9) 

 

In finite element analysis, the displacement solution is assumed to take the form 

 

𝑢𝑝 = 𝜙𝑝𝑗(𝑥𝑞)𝑈𝑗              (10) 

 

where 𝜙𝑝𝑗 is a matrix of known spatial interpolation functions (or basis functions), and 𝑈𝑗 is the discrete set of 

solution variables, in this case element nodal displacements, to be determined by the governing equations.  By 

extension we can define strain in terms of the gradients of displacement.  AStrO supports the use of nonlinear strain 

definitions, accommodating large deflections in the structure, but for the present work our studies are limited to the 

linear definition of strain, 

 

𝜖𝑝𝑞 =
1

2
(

𝜕𝑢𝑝

𝜕𝑥𝑞
+

𝜕𝑢𝑞

𝜕𝑥𝑝
) =  

1

2
(

𝜕𝜙𝑝𝑗

𝜕𝑥𝑞
+

𝜕𝜙𝑞𝑗

𝜕𝑥𝑝
) 𝑈𝑗          (11) 

 

We also presently assume linear elastic material behavior, meaning strain maps to stress with a material stiffness 

tensor, 𝐶𝑝𝑞𝑟𝑠, which is independent of deformation as follows 

 

𝜎𝑝𝑞 = 𝐶𝑝𝑞𝑟𝑠𝜖𝑟𝑠               (12) 
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The first term in Eq. (9), representing the elastic stiffness of the structure is invariant with respect to the coordinate 

system in which the stress and strain are defined.  It is convenient, and therefore common practice to define strain at 

each section of a structure in a coordinate system that aligns with the local material axes of symmetry.  We follow 

this practice in the present work, denoting strain in the local material coordinate system 𝜖𝑝𝑞
𝐿 ,  which relates to strain 

in the global coordinate system, 𝜖𝑟𝑠 as follows  

 

𝜖𝑝𝑞
𝐿 = 𝛼𝑝𝑟𝛼𝑞𝑠𝜖𝑟𝑠              (13) 

 

𝛼𝑝𝑟 represents the direction cosine transformation matrix that maps a tensor between the global and local coordinate 

systems.  The stress in the local coordinate system can then be found as 

 

𝜎𝑝𝑞
𝐿 = 𝐶𝑝𝑞𝑟𝑠

𝐿 𝜖𝑟𝑠
𝐿               (14) 

  

In variational calculus, variation functions follow chain-rule differentiation, so if we have a function Ψ of a set of 

discrete parameters 𝑈𝑘, then 

 

𝛿Ψ(𝑈𝑘) =
𝜕Ψ

𝜕𝑈𝑘
𝛿𝑈𝑘             (15) 

 

By this we can re-write the variations of displacement and strain assuming the discretized solution, 

 

𝛿𝑢𝑝 =
𝜕𝑢𝑝

𝜕𝑈𝑘
𝛿𝑈𝑘 = 𝜙𝑝𝑘𝛿𝑈𝑘            (16) 

 

𝛿𝜖𝑝𝑞 =
𝜕𝜖𝑝𝑞

𝜕𝑈𝑘
𝛿𝑈𝑘 =

1

2
(

𝜕𝜙𝑝𝑘

𝜕𝑥𝑞
+

𝜕𝜙𝑞𝑘

𝜕𝑥𝑝
) 𝛿𝑈𝑘         (17) 

 

𝛿𝜖𝑝𝑞
𝐿 =

𝜕𝜖𝑝𝑞
𝐿

𝜕𝑈𝑘
𝛿𝑈𝑘 = 𝛼𝑝𝑟𝛼𝑞𝑠

1

2
(

𝜕𝜙𝑟𝑘

𝜕𝑥𝑠
+

𝜕𝜙𝑠𝑘

𝜕𝑥𝑟
) 𝛿𝑈𝑘        (18) 

 

Substituting the discrete form of the variations of displacement and strain into Eq. (9), we have 

 

{
1

4
[∫ 𝛼𝑝𝑟𝛼𝑞𝑠 (

𝜕𝜙𝑟𝑘

𝜕𝑥𝑠
+

𝜕𝜙𝑠𝑘

𝜕𝑥𝑟
) 𝐶𝑝𝑞𝑡𝑢

𝐿 𝛼𝑡𝑣𝛼𝑢𝑤 (
𝜕𝜙𝑣𝑗

𝜕𝑥𝑤
+

𝜕𝜙𝑤𝑗

𝜕𝑥𝑣
) 𝑑Ω]𝑈𝑗

 

Ω
− ∫ 𝑓𝑝𝜙

𝑝𝑘
𝑑Ω

 

Ω
− ∫ 𝑡𝑝

𝑠𝑢𝑟𝑓
𝜙

𝑝𝑘
𝑑A

 

A
} 𝛿𝑈𝑘 = 0  (19) 

 

 Because the variation of the solution parameters 𝛿𝑈𝑘 appears in every term of the equation, and these parameters 

are not functions of space, it can be factored out of the whole expression as seen in Eq. (19).  Again the above must 

hold for any variation of the solution parameters, and therefore the expression in brackets must be zero.  This gives 

us our discretized governing equations for static displacement, in Eq. (20). 

 

𝑅𝑘 =
1

4
[∫ 𝛼𝑝𝑟𝛼𝑞𝑠 (

𝜕𝜙𝑟𝑘

𝜕𝑥𝑠
+

𝜕𝜙𝑠𝑘

𝜕𝑥𝑟
) 𝐶𝑝𝑞𝑡𝑢

𝐿 𝛼𝑡𝑣𝛼𝑢𝑤 (
𝜕𝜙𝑣𝑗

𝜕𝑥𝑤
+

𝜕𝜙𝑤𝑗

𝜕𝑥𝑣
) 𝑑Ω]𝑈𝑗

 

Ω
− ∫ 𝑓𝑝𝜙

𝑝𝑘
𝑑Ω

 

Ω
− ∫ 𝑡𝑝

𝑠𝑢𝑟𝑓
𝜙

𝑝𝑘
𝑑A

 

A
= 0  (20) 

 

The residual vector of the discretized equations in Eq. (20) is a function of both the displacement solution 𝑈𝑗 and the 

design variables 𝐷𝑖  defining a structure.  Stress and strain are inherently functions of displacement, and in some 

cases, such as coupled fluid-structural simulations, applied loads can vary with displacement as well.  However, for 

the scope of this work we will assume the applied loads to be constant with respect to displacement.  Therefore, the 

Jacobian of the governing equations with respect to displacement solution variables can be expressed 

 

[
𝜕𝑅𝑘

𝜕𝑈𝑗
] =

1

4
∫ 𝛼𝑝𝑡𝛼𝑞𝑢 (

𝜕𝜙𝑡𝑘

𝜕𝑥𝑢
+

𝜕𝜙𝑢𝑘

𝜕𝑥𝑡
) 𝐶𝑝𝑞𝑟𝑠

𝐿 𝛼𝑟𝑣𝛼𝑠𝑤 (
𝜕𝜙𝑣𝑗

𝜕𝑥𝑤
+

𝜕𝜙𝑤𝑗

𝜕𝑥𝑣
) 𝑑Ω 

 

Ω
       (21) 

 

 Design variables in general can affect the material stiffness tensor 𝐶𝑝𝑞𝑟𝑠
𝐿 , the size and shape of structural 

elements, which determine the gradient of the interpolation matrix 
𝜕𝜙𝑝𝑗

𝜕𝑥𝑞
, and the local material coordinate system, 

which determines the local transformation matrix 𝛼𝑝𝑞.  In the optimizations for the present study, we consider only 
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design variables that affect local material coordinate system, or 𝛼𝑝𝑞.  Under such circumstances, differentiating Eq. 

(20) by 𝐷𝑖  yields 

 

 

𝜕𝑅𝑘

𝜕𝐷𝑖
=

1

2
∫ (

𝜕𝜎𝑝𝑞
𝐿

𝜕𝐷𝑖
𝛼𝑝𝑟𝛼𝑞𝑠 (

𝜕𝜙𝑟𝑘

𝜕𝑥𝑠
+

𝜕𝜙𝑠𝑘

𝜕𝑥𝑟
) + 𝐶𝑝𝑞𝑟𝑠

𝐿 𝛼𝑟𝑡𝛼𝑠𝑢 (
𝜕𝜙𝑡𝑘

𝜕𝑥𝑢
+

𝜕𝜙𝑢𝑘

𝜕𝑥𝑡
)

𝜕

𝜕𝐷𝑖
(

𝜕𝜖𝑝𝑞
𝐿

𝜕𝑈𝑘
)) 𝑑Ω

 

Ω
   (22) 

 

  

where 
𝜕𝜎𝑝𝑞

𝐿

𝜕𝐷𝑖
=

1

2
𝐶𝑝𝑞𝑟𝑠

𝐿 (
𝜕𝛼𝑟𝑡

𝜕𝐷𝑖
𝛼𝑠𝑢 + 𝛼𝑟𝑡

𝜕𝛼𝑠𝑢

𝜕𝐷𝑖
) (

𝜕𝜙𝑡𝑗

𝜕𝑥𝑢
+

𝜕𝜙𝑢𝑗

𝜕𝑥𝑡
) 𝑈𝑗       (23) 

 

𝜕

𝜕𝐷𝑖
(

𝜕𝜖𝑝𝑞
𝐿

𝜕𝑈𝑘
) =

1

2
(

𝜕𝛼𝑝𝑟

𝜕𝐷𝑖
𝛼𝑞𝑠 + 𝛼𝑝𝑟

𝜕𝛼𝑞𝑠

𝜕𝐷𝑖
) (

𝜕𝜙𝑟𝑘

𝜕𝑥𝑠
+

𝜕𝜙𝑠𝑘

𝜕𝑥𝑟
)       (24) 

 

 

On each design cycle in the optimization process, the solution for nodal displacements is first found by solving Eq. 

(25) for 𝑈𝑗. 

 

[
𝜕𝑅𝑘

𝜕𝑈𝑗
] 𝑈𝑗 = −𝑅𝑘             (25) 

 

Since in the present study we assume small displacements (linear geometry), [
𝜕𝑅𝑘

𝜕𝑈𝑗
] is a constant matrix with respect 

to 𝑈𝑗, forming a linear system.  Eq. (25) is often denoted 

 

[𝐾𝑘𝑗]𝑈𝑗 = 𝐹𝑘             (26) 

 

This enables us to evaluate the objective function, as further explained in section IV.  The adjoint is then found 

using Eq. (6) and (21) and finally the gradient of the objective function is evaluated using Eq. (7) and (22).   

For dynamic problems, we use an implicit time integration scheme to obtain the displacement solution at each of 

a series of time steps throughout the period of interest.  Following a similar process as for the steady-state equations, 

the discretized form of virtual work for a dynamic system at a moment in time is 

 

𝑅𝑘 =
1

4
[∫ 𝛼𝑝𝑟𝛼𝑞𝑠 (

𝜕𝜙𝑟𝑘

𝜕𝑥𝑠
+

𝜕𝜙𝑠𝑘

𝜕𝑥𝑟
) 𝐶𝑝𝑞𝑡𝑢

𝐿 𝛼𝑡𝑣𝛼𝑢𝑤 (
𝜕𝜙𝑣𝑗

𝜕𝑥𝑤
+

𝜕𝜙𝑤𝑗

𝜕𝑥𝑣
) 𝑑Ω]𝑈𝑗

 

Ω
+ ∫ 𝜉𝜙𝑝𝑘𝜙𝑝𝑗𝑑Ω

 

Ω
𝑈�̇� + ∫ 𝜌𝜙𝑝𝑘𝜙𝑝𝑗𝑑Ω

 

Ω
�̈�𝑗 

  

 

  − ∫ 𝑓𝑝𝜙𝑝𝑘𝑑Ω
 

Ω
− ∫ 𝑡𝑝

𝑠𝑢𝑟𝑓
𝜙𝑝𝑘𝑑A

 

A
= 0         (27) 

 

Eq. (27) is often denoted 

 

𝑅𝑘 = [𝐾𝑘𝑗]𝑈𝑗 + [𝐶𝑘𝑗]𝑈�̇� + [𝑀𝑘𝑗]�̈�𝑗 − 𝐹𝑘 = 0        (28) 

 

The Hilbur-Huges-Taylor “alpha” method19 of time-integration is used, such that the governing equations for each 

time step, with the step denoted by the superscript 𝑁, are as follows  

 

𝑅𝑘
𝑁 = (1 + 𝛼){[𝐾𝑘𝑗]𝑈𝑗 + [𝐶𝑘𝑗]𝑈�̇� + −𝐹𝑘}

𝑁
− 𝛼{[𝐾𝑘𝑗]𝑈𝑗 + [𝐶𝑘𝑗]𝑈�̇� + −𝐹𝑘}

𝑁−1
+ [𝑀𝑘𝑗]�̈�𝑗

𝑁 = 0   (29) 

 

The velocity �̇�𝑟  and acceleration �̈�𝑟  at any point in the structure are defined by the Newmark Beta19 series 

expansions as follows: 

 

𝑈𝑟
𝑁 = 𝑈𝑟

𝑁−1 + Δ𝑡�̇�𝑟
𝑁−1 +

Δ𝑡2

2
((1 − 2𝛽)�̈�𝑟

𝑁−1 + 2𝛽�̈�𝑟
𝑁)       (30) 

 



 

American Institute of Aeronautics and Astronautics 
 

 

7 

�̇�𝑟
𝑁 = �̇�𝑟

𝑁−1 + Δ𝑡 ((1 − ζ)�̈�𝑟
𝑁−1 + 𝜁�̈�𝑟

𝑁)         (31) 

 

In Eq. (29), (30) and (31), 𝛼, 𝛽 and 𝜁 are weighting parameters set within the following ranges: 

 

−1 < 𝛼 ≤ 0    
0 < 𝛽 ≤ 0.5                (32) 

0 < 𝜁 ≤ 1 

 

The above time integration scheme can be set to be both unconditionally stable, and second-order accurate in time.  

Modifying the parameters in Eq. (32) control aspects like numerical dissipation, stability and accuracy, making it a 

versatile method.  On a dynamic time step, the Jacobian matrix is expressable as 

 

[
𝜕𝑅𝑘

𝑁

𝜕𝑈𝑗
𝑁] = (1 + 𝛼)([𝐾𝑘𝑗] +

𝜁

Δ𝑡𝛽
[𝐶𝑘𝑗])  +

1

𝛽Δ𝑡2 [𝑀𝑘𝑗]        (33) 

 

The displacement solution at each time step can then be found by solving 

 

[
𝜕𝑅𝑘

𝑁

𝜕𝑈𝑗
𝑁] 𝑈𝑗 = −𝑅𝑘

𝑁             (34) 

 

using the solution for displacement, velocity and acceleration at the previous time step.  Velocity and acceleration at 

the current time step can then be updated using Eq. (30) and (31). 

The optimization process for dynamic simulations is fundamentally the same as for steady-state cases, except 

that the displacement solution and adjoint must be found at every individual time step.  
𝜕𝑅𝑘

𝜕𝐷𝑖
 can still be evaluated as 

described in Eq. (22) for the steady-state case.  On each optimization design cycle, the displacement history is 

solved for given the current values of the design variables using Eq. (34) and written to disk for each time step.  

Then for each time step in reverse order (due to the fact that the adjoint is found from the transpose of the global 

system), the adjoint is calculated using Eq. (6), and the gradient, or sensitivity of the objective function with respect 

to each design variable at that time step is evaluated from Eq. (7).  After all time steps are completed, we have the 

total gradient of the objective function at that design cycle, and we can proceed with the optimization.  

III. Structural Model of Sandia SWiFT 13 meter Wind Turbine Blade 

The wind turbine blade model used as the subject for this work is a 13 meter blade with a 0.6 meter cylindrical 

section diameter from Sandia National Laboratories used for the SWiFT project11.  For this model detailed 

geometric and material composition data is readily available, and previous work has been done by Bhuiyan et al.22 

in generating the model in Abaqus for conducting fatigue studies.  The blade’s  outer skin geometry is constructed 

by lofting together a series airfoil cross-sections defined at each of 34 stations along the spanwise length.  The cross-

section at outboard stations consists of leading edge and trailing edge panels, and a central box beam with thick 

reinforced spar caps on the upper and lower sides and shear webs connecting the spar caps running normal to the 

chord.  Figure 1 illustrates the general blade geometry.   

 
 

Figure 1. Cross-sectional design and spanwise geometry of SWiFT wind turbine blade (Ref. 22). 
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 The finite element mesh for the model was generated in Abaqus out of 16,310 4-node shell elements, following 

the definition of each spanwise station cross-section from the SWiFT report11.  Originally, the blade structure was 

divided into 388 sections, each with a composite layup definition made from an assortment of materials, as 

illustrated in Figure 2.  For the present studies, the entire blade structure is considered to be a made from UD1200 

glass-fiber reinforced polyester resin laminate, with each individual element composed of a single ply with a unique 

fiber orientation, further explained in the following section. 

 

 

 
Figure 2.  Section divisions of the SWiFT wind turbine blade originally defined by the structural finite 

element model. 

 

  In their previous work, Bhuiyan et al.22 used a scalar effective off-axis matrix stress as the driving force of 

composite fatigue damage in their model based on the kinetic theory of fracture.  The effective off-axis matrix stress 

is defined as22 

 

𝜎𝑒𝑓𝑓
𝑜𝑓𝑓−𝑎𝑥𝑖𝑠

= √𝐴𝑡{𝐼𝑚,𝑡}
2

+ 𝜎𝑚,12
2 + 𝜎𝑚,13

2 + 𝐴𝑠(
1

4
(𝜎𝑚,22 − 𝜎𝑚,33)

2
+ 𝜎𝑚,23

2 )       (35) 

 

Here 𝐴𝑡 and 𝐴𝑠 are material parameters obtained from static failure tests of a particular composite.  𝐼𝑚,𝑡 is an 

invariant derived from the components of matrix stress normal to the fiber direction.  Macaulay brackets {} indicate 

that the term becomes zero if the quantity inside is negative.  In the present application of the kinetic theory of 

fracture, a damage parameter, 𝑛, is used to quantify the accumulation of microcracking and fatigue damage at a 

point in a material.  The above effective off-axis stress parameter is used to calculate the rate of damage 

accumulation as follows22: 

 

𝑑𝑛

𝑑𝑡
= (𝑛0 − 𝑛)𝜆 𝑘𝑇

ℎ
exp (

𝛾𝜎𝑒𝑓𝑓
𝑜𝑓𝑓−𝑎𝑥𝑖𝑠

−𝑈

𝑘𝑇
)                                                 (36) 

 

 In Eq. (36) 𝜆 is a damage accumulation exponent, 𝑈 is an activation energy associated with microcracking, and 𝛾 

is an activation volume associated with microcracking, all material-dependent.  𝑇  is absolute temperature, ℎ  is 

Plank’s constant and 𝑘 is Boltzmann’s constant.  By integrating the damage parameter throughout the structure over 

cyclic loading history, we can perform progressive fatigue failure analysis and predict the life of the structure.  The 

off-axis stress components in Eq. (35) refer to volume-averaged constituent-level stresses in the matrix of the 

composite, not the overall macroscopic composite stress.  Matrix stresses in a composite are obtained from structural 

stresses in the finite element analysis using multi-continuum theory (MCT)23-24, a widely validated technique 

developed at the University of Wyoming for extracting constituent stresses in heterogeneous materials.  If the elastic 

material properties are known for a composite as a whole, as well as for the fiber and matrix as individual 

constituents, and the fiber volume fraction 𝑣𝑓 is also known, then the volume-averaged stresses for fiber 𝜎𝑓,𝑖𝑗 and 

matrix 𝜎𝑚,𝑖𝑗 can be obtained from composite stress 𝜎𝑐,𝑖𝑗  through the following equations: 

 

(1 − 𝑣𝑓)𝜎𝑚,𝑖𝑗 + 𝑣𝑓𝜎𝑓,𝑖𝑗 = 𝜎𝑐,𝑖𝑗           (37) 

 

 (1 − 𝑣𝑓)𝑆𝑚,𝑖𝑗𝑘𝑙𝜎𝑚,𝑘𝑙 + 𝑣𝑓𝑆𝑓,𝑖𝑗𝑘𝑙𝜎𝑓,𝑘𝑙 = 𝑆𝑐,𝑖𝑗𝑘𝑙𝜎𝑐,𝑘𝑙       (38) 
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 Here 𝑆𝑚,𝑖𝑗𝑘𝑙 , 𝑆𝑓,𝑖𝑗𝑘𝑙, and 𝑆𝑐,𝑖𝑗𝑘𝑙  are the material compliance tensors, or the inverse stiffness tensors for matrix, 

fiber, and composite respectively.  Combining Eq. (36) and (37) to eliminate the fiber stress gives us a relationship 

between composite stress and matrix stress 

 

𝜎𝑚,𝑖𝑗 =
1

(1−𝑣𝑓)
[𝐼𝑖𝑟𝐼𝑗𝑠  − 𝐶𝑓,𝑖𝑗𝑝𝑞𝑆𝑚,𝑝𝑞𝑟𝑠]

−1
[𝐼𝑟𝑘𝐼𝑠𝑙 −  𝐶𝑓,𝑟𝑠𝑝𝑞𝑆𝑐,𝑝𝑞𝑘𝑙]𝜎𝑐,𝑘𝑙      (39) 

 

 𝐼𝑖𝑟  is the 3 X 3 identity matrix,  and 𝐶𝑓,𝑖𝑗𝑝𝑞  is the material stiffness tensor for the fiber.  The composite stress in a 

structure is calculated using the finite element displacement and strain solution (using Eq. (14)).  From this we can 

obtain the necessary matrix stresses from Eq. (39), and calculate the effective off-axis stress from Eq. (35). 

IV. Optimization Objective and Methodology 

 Based on the established model from the kinetic theory of fracture in Eq. (36), minimization of the effective off-

axis stress in Eq. (35) should impede the progression of fatigue damage, and maximize the lifespan of the structure.  

Specifically, we define our scalar objective function, 𝐿 to be the 4th power of the effective off-axis stress, integrated 

in space and time, 

 

𝐿 = ∫ ∫ (𝜎𝑒𝑓𝑓
𝑜𝑓𝑓−𝑎𝑥𝑖𝑠

)
4 

Ω
𝑑Ω𝑑𝑡

𝑡

0
            (40) 

 

By using the 4th power we target the regions of highest effective stress in the blade, prioritizing those regions in the 

optimization.  We minimize the objective in Eq. (40) by tailoring the composite ply orientations.  Specifically, each 

design variable represents the angle of rotation of the composite fiber direction about the local z-axis of a structural 

element, with respect to its original orientation.  The local z-axis of shell element is always defined normal to the 

element’s midplane, and therefore the fiber direction always stays within the midplane of the shell.  A given design 

variable 𝐷𝑖  defines the material local coordinate system for the 𝑖𝑡ℎ element as follows 

 

𝛼𝑝𝑞
𝑖 (𝐷𝑖) = [

cos(𝐷𝑖) sin(𝐷𝑖) 0

− sin(𝐷𝑖) cos(𝐷𝑖) 0
0 0 1

]

𝑝𝑟

𝛼𝑟𝑞
𝑖,0

         (41) 

 

where 𝛼𝑟𝑞
𝑖,0

 is the initial coordinate system transformation matrix for element 𝑖, aligning the fiber direction in the 

global z-direction (see Figure 3) projected onto the element midplane.  Eq. (41) is used to obtain the displacement 

solution, as well as the objective gradient by incorporating 𝛼𝑝𝑞
𝑖  and 

𝜕𝛼𝑝𝑞
𝑖

𝜕𝐷𝑖
 into Eq. (22), (23) and (24). 

 
Figure 3.  Stuctural-level and element level local coordinate systems for SWiFT blade model. 

 

 One of the greatest advantages to using the adjoint method to obtain objective sensitivities in gradient 

optimization is the near independence of the cost of calculating sensitivities to the number of design variables.  That 

is, for the cost of one steady-state/dynamic simulation, the sensitivities of the objective with respect to any number 

of design variables can be obtained, as explained in section II.  We utilize that power here by allowing every 

individual element in the entire structural mesh to have its own composite ply orientation, optimized for the state of 

stress at that particular point.  This makes a total of 16,310 design variables, one for each element in the structure.   

The optimization algorithm used is a steepest descent backtracking line search25, using the gradient of the 

objective function obtained using the adjoint method as the search direction at each design cycle.  As described in 
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section II, each design cycle involves first solving for the structural displacements at the current values of the design 

variables, then solving for the adjoint and calculating the gradient of the objective function with respect to the design 

variables.  Solutions of linear systems are performed with a direct solver built into AStrO.  The size of the structural 

finite element model in this case is such that the optimizations can be run on a single desktop Linux machine, 

running about 30 seconds per design cycle per time step in the solution domain.  For all the present studies, the 

optimizer runs through ten design cycles for each design problem. 

An important consideration is that the optimum ply orientation layup for the structure will inevitably depend on 

loading.  Wind turbines are routinely subject to three main types of applied loads: 1) aerodynamic loads 2) 

gravitational loads and 3) centrifugal loads.  In this work we perform the optimization analysis with each type of of 

loading individually before examining the total combined loading to compare their contributions to the results.  We 

investigate a total of five load cases, detailed in the following sections. 

 

1. Steady-State Analysis Under Centrifugal Loading Only 

 

The first load case subjects the turbine blade to centrifugal loads only.  The structural response of the blade is 

analyzed by AStrO in a coordinate system rotating with the blade with its y-axis as the axis of rotation.  The x-axis 

runs in the blade’s general chord direction and the z-axis runs parallel with the longitudinal axis of the blade, as 

shown in Figure 3.  Under such conditions the centrifugal loads can be modeled as a static body force distributed 

throughout the structure.  The body force per unit volume due to centrifugal loading is constant in time at any point 

in the structure, since the angular velocity is assumed constant, and is calculated by 

 

𝑓�̅� = 𝜌𝜔2�̅�(�̅�)               (42) 

 

where 𝜌 is the mass density of the material at a point in the structure, 𝜔 is the angular velocity of the rotating blade, 

and �̅� is the normal position vector projected from the axis of rotation (y-axis) to the point, or 

 

�̅�(�̅�) = [𝑥𝑐 , 0, 𝑧𝑐]              (43) 

 

The angular velocity is set to correspond with the optimal rate for power production for this particular turbine,  or 43 

rpm. 

 

2. Dynamic Analysis Under Gravitational Loads Only 

 

 The second load case subjects the blade to gravitational loads only.  In the local rotating frame of motion, the 

gravitational component of the body force is constant in magnitude at a given point on the structure, but its direction 

varies cyclically with a frequency matching the angular velocity of the blade.  For this component, 

 

𝑓�̅� = 𝜌𝑔�̅�(𝑡)              (44) 

 

where 𝑔 is the acceleration due to gravity, and the unit vector �̅� varies in time as follows: 

 

�̅�(𝑡) = [sin(𝜔𝑡) , 0, −cos (𝜔𝑡)]                  (45) 

 

Because of the load’s dependence on time, this case must be analyzed dynamically.  The structure is started from 

rest, with both displacement and velocity at zero.  Under such conditions there can be an initial transient period 

before the structure settles into its periodic response.  Therefore, the blade is rotated through three full revolutions 

under the load field defined in Eq. (44) to more thoroughly capture the range of motion.  The optimization is 

performed based on the stress response integrated over the entire time period. 

 

3. Steady-State Analysis Under Aerodyamic Loads Only 

 

The third load case subjects the blade to aerodynamic loads only.  Aerodynamic loads on the blade structure are 

pre-generated by the NSU3D flow solver, by solving for the pressure distribution and skin friction over the blade 

surface assuming an inflow wind velocity of 12 meters per second, as described in section II.  In reality, these 

aerodynamic loads are time-varying, but in this case we take them to be constant throughout the optimization 
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process, corresponding to the steady-state solution under these conditions.  We then perform the optimization based 

on the steady-state response under these loads. 

 

4. Steady-State Analysis Under Combined Loading 

 

The fourth load case subjects the blade to centrifugal, gravitational and aerodynamic loads combined, with the 

gravitational load in Eq. (44) evaluated at 𝜔𝑡 = 𝜋/2.  That is, with the gravitational load purely in the direction 

normal to the blade axis, corresponding to the blade in the horizontal position.  In this position the bending loads due 

to gravity are maximized, as are the maximum stresses in the structure.  The optimization is then performed based 

on the static response under these loads. 

 

5. Dynamic Analysis Under Combined Loading 

 

In the fifth and final load case, we again apply all three types of loads simultaneously, but simulate the full 

dynamic response of the structure.  We account for the time-dependence of the gravitational loads, but still consider 

the aerodynamic loads to be constant, corresponding to the steady state solution as with load case 3.  Again we run 

the analysis through three full revolutions. 

 

Three of the five of the above load cases are run as steady-state simulations, which may seem inappropriate since 

fatigue is an inherently time-dependent phenomenon.  However, fatigue analysis often assumes a given load 

distribution with a periodically varying amplitude.  Under this assumption, the maximum stress in a steady state 

response can be used to estimate fatigue life. 

V. Optimization Results 

For all of the load cases described in the previous section, we perform the optimization analysis, keeping track of 

three key quantities at each design cycle: 1) the value of the objective function, 2) the root-mean-square of the 

objective gradient, and 3) the maximum value of the effective off-axis matrix stress encountered by any point in the 

structure at any moment in the time history.  The progression of all these quatities, non-dimensionalized by their 

initial values can be seen in Figures 4 and 5. 

Although the optimized ply configuration is different for each load case, the optimization consistently reduces 

the maximum effective off-axis matrix stress by about 40-60%.  Table 1 shows the change in the maximum effective 

off-axis matrix stress for each of the five load cases. 

 

Table 1.  Maximum effective off-axis matrix stress in SWiFT blade structure before and after optimization. 

 

Load Case 

Max. Stress  

Before Opt. 

(MPa) 

Max. Stress 

After Opt. 

(MPa) 

Percent 

Reduction 

Steady-State, Centrifugal 15.39 6.245 59.41% 

Dynamic, Gravitational 17.10 7.610 55.49% 

Steady-State, Aerodynamic 17.64 10.18 42.30% 

Steady-State, Combined 26.90 12.35 54.08% 

Dynamic, Combined 31.08 15.20 51.11% 

 

To estimate the corresponding effect on fatigue life, we consult S-N fatigue data for E-glass/epoxy published by 

Hashin and Rotem1.  Figure 6 shows a logarithmic plot of stress versus number of cycles to failure for the published 

data points, along with a trendline fit to the data. 

For the present puposes, the trend in Figure 6 is qualitative since the state of stress represented by the data does 

not match that in every point thoughout the SWiFT blade structure.  Nevertheless it is clearly evident that the 

amount of off-axis stress reduction shown in Figures 4 and 5 has great potential to impact the number of cycles to 

failure.  In the final case of dynamic simulation under combined loading, for example, our optimization brought the 

maximum effective off-axis stress from 31 MPa down to 15 MPa.  Although these values do not fall within the 

range of the data set, the trend of the data would indicate an increase in the number cycles to failure by several 

orders of magnitude. 
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Figure 4. Optimization history for individual loading conditions on the SWiFT turbine blade. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Optimization history for combined loading conditions on the SWiFT turbine blade. 
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Figure 6.  Published S-N data for E-glass epoxy composite (Ref. 1), loaded at 60o from fiber direction with 

corresponding trendline. 

 

To weigh the relative contributions of each type of loading, we can compare the final optimized ply angles for 

each element between the different cases.  We use the final load case, incorporating all loads in dynamic simulation, 

as a benchmark of comparison for the others, as it is presumably the most realistic simulation of what a turbine blade 

experiences.  In Table 2, we compare the 2-norm of the difference between the optimized ply angles of each element 

for the final load case with each of the previous load cases.  The smaller the value of the norm, the smaller the 

difference and the closer the overall agreement in the optimized ply configurations with the final combined load 

case. 

 

Table 2.  Comparison of final optimized ply angles between final load case, and all previous load cases. 

 

 Centrifugal Only 

(steady-state) 

Gravitational Only 

(dynamic) 

Aerodynamic Only 

(steady-state) 

All Loads 

(steady-state) 

‖𝑫𝒊 − 𝑫𝒊,𝒇𝒊𝒏𝒂𝒍 𝒄𝒂𝒔𝒆
‖

𝟐
 773.2o 973.2o 534.9o 398.4o 

 

This metric would indicate that under the conditions assumed in this case, aerodynamic loading has the strongest 

influence on the optimum ply configurations of the three main types of loading.  The configuration for the static 

analysis under combined loading shows the closest agreement of all, implying that a reasonable solution could 

perhaps be obtained from a static approximation of a dynamic problem.  The same observations can be seen 

qualitatively from the spatial plots of angle change and effective off-axis matrix stress in Figures 7-11. 

One potential concern for the present optimization approach is that it may not be practical from a fabrication 

point of view to allow each structural finite element’s representative fragment on the blade to have its own unique 

ply configuration.  However, the results may still teach us valuable information that could be utilized within the 

confines of fabrication.   

Two key observations can be taken from Figures 7-11.  First, the vast majority of elements in the structure had 

very little change in their ply angle due to optimization, less than 1o change.  The most affected areas are 

concentrated near the root of the blade, which is intuitive since these are the areas of highest stress for a structure 

under primarily bending loads.  Second, elements of similar angle change tend to cluster together in groups, since 

neighboring elements tend to experience similar states of stress under a given loading. 

The implication from these observations is that if a blade were to be fabricated to accommodate optimizations 

such as these, it would likely be only a few regions that would need special customization of ply orientations.  Also 

the sections of the most affected areas could be defined to encompass elements of similar ply orientation, and each 

section given a homogenized ply configuration, resulting in relatively few specifically tailored regions.  

Alternatively, further optimizations could be conducted using ply orientation design variables that affect pre-

determined regions or groups of elements in the finite element model. 
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Figure 7.  Spatial distribution of local composite ply angle change and effective off-axis matrix stress before 

and after optimization for steady-state optimization subject to centrifugal loads only. 

 

 

 
 

Figure 8.  Spatial distribution of local composite ply angle change and effective off-axis matrix stress before 

and after optimization for dynamic optimization subject to gravitational loads only. 
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Figure 9.  Spatial distribution of local composite ply angle change and effective off-axis matrix stress before 

and after optimization for steady-state optimization subject to aerodynamic loads only. 

 

 
 

Figure 10.  Spatial distribution of local composite ply angle change and effective off-axis matrix stress before 

and after optimization for steady-state optimization subject to combined loading. 
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Figure 11.  Spatial distribution of local composite ply angle change and effective off-axis matrix stress before 

and after optimization for dynamic optimization subject to combined loading. 

 

VI. Conclusions and Future Work 

The present work can be thought of as an initial demonstration of the potential of adjoint-based structural 

optimization.  The methods employed are computationally efficient, in this case requiring only a single desktop 

machine.  Also the optimizations are evidently effective, seeing that in every optimization case the maximum 

fatigue-driving stress was reduced by at least 40%.  Yet we have only scratched the surface of all that deserves to be 

investigated.  The present optimization results indicate the potential to significantly improve fatigue life of wind 

turbine blades by only tailoring the composite ply configurations, without adding any mass, material cost or 

changing the external shape of the structure.  However, we have assumed single-ply, unidirectional fiber composite 

makeup for every section of the blade, which is not accurate in practice.  It is worth investigating further the effect 

of considering more realistic composite layups. 

Our prediction of fatigue life improvement based on the S-N data trendline is optimistic, but is merely an 

estimation based on maximum values of off-axis matrix stress before and after optimization.  An appropriate next 

step would be to perform a progressive failure fatigue analysis using the capability of Bhuiyan et al.22  This would 

more thoroughly capture the evolution of damage from the actual states of stress in the blade, and give us a more 

accurate prediction of fatigue life. 

Results under these conditions indicate that aerodynamic loads had the greatest influence on the optimal 

composite layup of the blade structure.  This could be on account of the aerodynamic loads being primarily bending 

loads about the chord-direction, which generally lead to the highest stresses.  However, the influence of gravitational 

and centrifugal loads were not drastically lower based on our metrics.  Furthermore the SWiFT blade is relatively 

small at only 13 meters in length, and in general centrifugal and gravitational loads increasingly dominate the total 

loading experienced by a turbine blade as size increases.  It would be of interest to investigate how the relative 

influence of each type of loading changes with increasing turbine size. 

Although realistic aerodynamic loads generated by NSU3D were applied to the blade, the loads were for steady-

state, idealized conditions, and were pre-generated before optimization.  In reality wind blades regularly experience 

sudden gusts, which drastically increase loading and stresses on the blade.  To truly capture this behavior, 

optimizations should be done with the fluid and structural solvers fully-coupled, simulating unsteady wind 

conditions while acconting for nonlinear geometric behavior.  In this modeling environment, a blade’s structural 

(a) Angle Change After Opt.                     (b) Effective Stress Before Opt.               (c) Effective Stress After Opt. 

(Degrees)                                                        (Pa)                                                            (Pa) 
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properties could be tailored not only to reduce stress under a given load, but to allow the structure to adapt passively 

to varying wind conditions.  This, along with the aforementioned follow-up studies are feasible goals for our aero-

structural optimization capability in the years ahead. 
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