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This paper describes the implementation of various transition models used in conjunc-
tion with a single-equation turbulence model for predicting transitional flow over single
and multiple element airfoil configurations. The analysis problem is formulated as well
as the corresponding adjoint problem of the fully coupled flow-turbulence-transition equa-
tions. Test problems are shown for the computation of transitional airfoil cases, and the
design optimization of a transitional airfoil using the adjoint-derived sensitivities is also
demonstrated.

I. Introduction

Environmental responsibility and economic considerations require the aviation industry to develop more
efficient transport aircraft with less fuel burn, emissions and noise. Drag reduction is a significant issue in
aircraft design. Less drag means less fuel consumption, hence lower emissions. With increasing computational
capability, CFD has become a powerful tool for aerodynamic analysis and design. It has been common in the
context of aerodynamic shape optimization that the flows be considered as fully turbulent. In high-Reynolds
number applications, the fully turbulent assumption is quite reasonable, because the flows usually transitions
very close to the leading edge of the wing. However, for a large number of applications with lower Reynolds
numbers, where the dominant feature in the flow field is laminar-turbulent transition, the fully turbulent
assumption becomes questionable. Moreover, recent research has shown that the benefits of the natural
laminar flow(NLF) is a key element in achieving significant drag reduction. The ability to accurately predict
transition in RANS calculations and to incorporate laminar-turbulent transition calculations into the shape
optimization process therefore takes on additional importance.

The turbulence models used in Reynolds-Averaged Navier-Stokes solvers usually cannot predict the tran-
sition locations in a flowfield. To predict transition, one must apply a transition criterion. Accurately,
reliably and automatically predicting laminar-turbulent transition continues to be a challenge in CFD. In
recent years, many researchers have investigated different approaches to incorporate transition prediction
into RANS solvers. One approach is to solve additional locally defined transport equations, for example
the local-correlation transition model, originally proposed by Menter et al.15 and more fully developed by
Langtry and Menter.7 The model of Langtry and Menter solves for two additional transported scalars: inter-
mittency γ, which defines whether the flow is laminar or turbulent, and a transitional momentum-thickness
Reynolds number Reθ, which controls the transition correlations. More recently, Menter et al.16 presented a
one-equation model by replacing the Reθ equation with algebraic relations, thus simplifying the correlations
for the transition onset prediction. Menter’s γ-Reθ transition model is designed to be coupled with the
k−ω SST turbulence model. Medida and Baeder14 modified and coupled Menter’s γ-Reθ original transition
model with the one-equation Spalart-Allmaras(SA) turbulence model.20 Another approach for transition
modeling can be found in the amplification factor transport (AFT) model of Coder and Maughmer.3 The
AFT model is based on eN theory, specifically the approximate envelope method of Drela and Giles.5 AFT
has been coupled with both the SA and SST turbulence models. The lack of general Galilean invariance in
the AFT model has been fixed in a recent paper.2 Coder’s 2014 and 2017 AFT models are one equation
transition models. Coder4 presented an enhanced two-equation AFT transition model by adding a modified
intermittency γ equation to the original amplification factor equation.
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Shape optimization methods are important tools in the aircraft design process. Many shape optimization
techniques for aircraft have been demonstrated in previous research papers. Among several different kinds
of optimization methods, gradient-based optimization has been used in many cases for aircraft design. In
particular, the evaluation of aircraft performance objectives such as lift and drag requires significant compu-
tational effort due to the high cost of obtaining flow solutions, and thus gradient-based optimization is the
only feasible method in many cases. Gradient-based optimization needs an efficient method for computing
sensitivities of objective functions with respect to design variables. An adjoint method is well suited for
computing sensitivities because the adjoint method can compute the gradients of all design variables at a
computational cost that is independent of the number of design variables. Additionally, the discrete adjoint
method employs direct differentiation of the discretized governing equations, thus obviating the need to
assign an ambiguous perturbation value as required in the finite-difference method. Therefore, adjoint-based
shape optimization represents a powerful technique for aircraft design optimization. Lee and Jameson8 suc-
cessfully coupled a RANS solver(Baldwin-Lomax turbulence model) to a boundary-layer code and an eN

database method for NLF design. The gradient calculations in their work did not include the transition pre-
diction component. Khayatzadeh and Nadarajah6 successfully incorporated the Langtry-Menter transport
equation approach and k − ω SST turbulence model with an adjoint-based optimization framework in two
dimensions and applied the framework to the design of low-Reynolds-number NLF airfoils. More recently,
Rashad and Zingg17 employed a RANS solver(Spalart-Allmaras turbulence model) and the eN transition
model to an adjoint-based optimization framework in two dimensions, and applied this approach to the
design of natural-laminar-flow airfoils using single-point and multipoint optimizations.

In this paper, we investigate an eN based transition model and the local-correlation transition model is
coupled with the SA RANS solver under the adjoint-based optimization framework in two dimensions. In
the following sections, we first outline the governing equations and the base flow solver, next the transition
models used in this paper are presented, followed by the formulations of the adjoint-based optimization.
Finally, some validation results are presented.

II. Governing Flow Field Equations

The Navier-Stokes equations in conservative form can be written as:

∂U

∂t
+∇ · (F(U) + G(U)) = 0 (1)

where U represents the vector of conserved quantities (mass, momentum, and energy), F(U) represents the
convective fluxes and G(U) represents the viscous fluxes.

The Navier-Stokes equations are discretized by a central difference finite-volume scheme with additional
matrix-based artificial dissipation on hybrid meshes which may include triangular and quadrilateral elements
in two dimensions, or tetrahedra, pyramids, prisms and hexahedra in three dimensions. Second-order ac-
curacy is achieved using a two-pass construction of the artificial dissipation operator, which corresponds to
an undivided biharmonic operator. A single unifying edge-based data-structure is used in the flow solver
for all types of elements. For multigrid calculations, a first-order accurate discretization is employed for the
convective terms on coarse grid levels.12,13 The turbulence model used in this paper is the one-equation
Spalart-Allmaras(SA) turbulence model of the form:

Dν̃

Dt
= Pν −Dν +

1

σ

{
∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xj

]
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

}
(2)

where the production term is given as:
Pν = cb1Sν̃(1− ft2) (3)

and the destruction term is given as:

Dν = (cw1fw −
cb1
κ2
ft2)

(
ν̃

d

)2

(4)

III. Transition Model Formulation

The local flow variables available in the CFD code are used in the γ-Reθt correlation-based transition
model to predict the laminar-turbulence transition. In this model, a transport equation for the turbulence

2 of 14

American Institute of Aeronautics and Astronautics



intermittency γ and another equation for the transport of the momentum-thickness Reynolds number Reθt
are solved. The intermittency equation is given as:

Dργ

Dt
= Pγ −Dγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(5)

where the production term is

Pγ = FlengthCa1ρS[γFonset]
0.5(1− Ce1γ) (6)

and the destruction term is
Dγ = Ca2ρΩγFturb(Ce2γ − 1) (7)

and the momentum-thickness Reynolds number transport equation is given as:

Dρ ˜Reθt
Dt

= cθt
(ρU)2

500µ
(Reθt − ˜Reθt)(1− Fθt)

∂

∂xj

[
σθt(µ+ µt)

∂ ˜Reθt
∂xj

]
(8)

The γ-Reθt transition model is designed to be coupled with the k−ω SST turbulent model by Menter al
et.7,15 Later the γ-Reθt transition model was modified and extended to be coupled with the SA turbulence
model by Medida and Baeder.14 The solution of the intermittency transport equation is used to control the
production and destruction terms of the original SA turbulence model. The function ft2 is set to zero and
the production and destruction terms in the SA turbulence model become:

P̃ν = γPν and D̃ν = min(max(γ, β), 1.0)Dν , β = 0.5 (9)

Details of the terms of the γ-Reθt transition model and the boundary conditions can be found in Menter’s
paper7,15 and Medida’s paper.14

The AFT model3 presented by Coder and Maughmer predicts the development of the instability envelope
amplification factor, ñ, through the solution of an advection-diffusion equation,

Dñ

Dt
= ρΩFcritFgrowth

∂ñ

∂Reθ
+

∂

∂xj

[
(µ+ σnµt)

∂ñ

∂xj

]
(10)

The source term in above equation is based on the integral boundary-layer shape factor, H12, which
is estimated using a localized shape factor HL to maintain compatibility with CFD solvers. The original
formulation of HL proposed in reference3 is not Galilean invariant. Following the work of Menter et al.,16

Coder2 proposed a new local shape factor:

HL =
d2

µ
[∇(ρ~u · ∇d) · ∇d] (11)

This shape factor is entirely localized and has no dependence on the free-stream conditions, nor any assump-
tions about the outer flow behavior. Galilean invariance is attained through the use of the wall distance as
the length scale and the use of the wall-normal direction for evaluating the velocity derivative.

The interaction of the amplification-factor-transport model and the SA turbulence model is obtained by
modifying the function ft2 in the production and destruction terms in the original SA turbulence model:

ft2 = ct3{1− exp[2(ñ−Ncrit)]} exp

[
− ct4

(
ν̃

ν

)2]
(12)

An improved AFT model was recently proposed by Coder4 by adding another transport equation for the
intermittency γ:

Dγ̃

Dt
= c1ρSFonset[1− exp(γ̃)]− c2ρΩFturb[c3 exp(γ̃)− 1] +

∂

∂xj

[
(µ+ σγµt)

∂γ̃

∂xj

]
(13)

The new AFT2017b(AFT2) model is coupled with the original SA turbulence model by modifying the ft2
function:

ft2 = ct3[1− exp (γ̃)] (14)

The details of the terms of the AFT2 transition model and the boundary conditions can be found in Coder’s
paper.2–4
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IV. Adjoint-Based Optimization Procedure

In general, the shape design optimization process consists of at least four sequential steps. Assuming an
existing geometry and computational mesh already exist, and the design variables and objective functions
are specified, the initial step consists of using the design variables to define a new deformed surface mesh
geometry, producing specific values for the coordinates of the surface mesh. The surface mesh coordinates
are then used to compute the values of the interior mesh coordinates, usually through a mesh deformation
technique which aims to provide a smooth interior mesh with no overlapping cells. The third step involves the
computation of the flow field on this new deformed mesh, and the fourth (final) step involves the computation
of the objective function using the newly computed flow field. The design optimization problem can be
written as:

L(D) = L(F3(F2(F1((D))) (15)

with
xsurf = F1(D) (16)

xint = F2(xsurf ) (17)

w = F3(xint) (18)

L = L(w,xint) (19)

where D and L represent the design variables and objective, xsurf represents the surface grid point co-
ordinates, xint represents the interior grid point coordinates, and w represents the flow, turbulence and
transition variables on the deformed grid. A straight forward differentiation of equation (15) leads to the
following expression for the sensitivity derivatives:

dL

dD
=
∂L

∂w
· ∂w

∂xint
· ∂xint
∂xsurf

· ∂xsurf
∂D

+
∂L

∂xint
· ∂xint
∂xsurf

· ∂xsurf
∂D

(20)

The
∂xsurf

∂D term represents the sensitivity of the surface mesh with respect to the design variables. The
∂xint

∂xsurf
term represents the sensitivity of the interior mesh point positions with respect to surface point

displacements. Usually, the interior mesh displacements are computed by solving the equation:

[K]δxint = δxsurf (21)

where [K] represents the stiffness matrix of the mesh motion equations. Then the sensitivities can be written
as:

∂xint
∂xsurf

= [K]−1 (22)

The term ∂w
∂xint

can be obtained by linearization about the converged state R(w(xint),xint) = 0 in the
following relation: [

∂R

∂w

]
∂w

∂xint
= − ∂R

∂xint
(23)

or re-written as:
∂w

∂xint
= −

[
∂R

∂w

]−1
∂R

∂xint
(24)

Substituting the above expressions into equation (20) leads to:

dL

dD
= − ∂L

∂w
·
[
∂R

∂w

]−1
∂R

∂xint
[K]−1

∂xsurf
∂D

+
∂L

∂xint
· [K]−1

∂xsurf
∂D

(25)

The adjoint model is obtained by transposing above equation:

dL

dD

T

=
∂xsurf
∂D

T

[K]−T
[
∂L

∂xint

T

− ∂R

∂xint

T [
∂R

∂w

]−T
∂L

∂w

T]
(26)

For a single objective function, the adjoint model consists of the following steps:
1. Obtain objective flow sensitivity vector ∂L

∂w
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2. Iteratively solve the adjoint flow problem:[
∂R

∂w

]T
Λw =

∂L

∂w

T

or Λw =

[
∂R

∂w

]−T
∂L

∂w

T

(27)

3. Obtain objective sensitivities with respect to interior mesh deformation

dL

dx∗int

T

=
∂L

∂xint

T

− ∂R

∂xint

T

Λw (28)

4. Iteratively solve the adjoint mesh deformation problem:

[K]TΛx =
dL

dx∗int

T

or Λx = [K]−T
dL

dx∗int

T

(29)

5. Compute final sensitivity:

dL

dD

T

=
∂xsurf
∂D

T

Λx or
dL

dD
= ΛTx

∂xsurf
∂D

(30)

We emphasize that in this formulation, the residual R represents the residual vector of all coupled
equations, including flow, turbulence and transition. Therefore, the adjoint is based on the exact linearization
of the fully coupled system

[
∂R
∂w

]
which represents a block matrix with 7x7 blocks, consisting of 4 flow

equations in 2D, one turbulence equation, and two transition equations. Although the steps described above
appear to be relatively straight-forward, steps 2 and 4 in both cases require the solution of a set of field
equations, while step 3 requires the evaluation of a complicated matrix-vector product. Furthermore, the
term ∂L

∂xint
must be constructed explicitly. Details of the techniques for implementing each of these steps

effectively can be found in references.9,10

The addition of one or two transition equations often makes the fully coupled system of equations more
difficult to converge fully. Obtaining deep convergence levels at each design step is important in order
to obtain precise functional and sensitivity values for use in the optimization process. In order to obtain
reliable convergence, we use a pseudo-transient continuation(PTC) Newton method1 with added residual
smoothing.11

There are many choices for the optimization algorithm in gradient-based optimization. The simplest
one is the steepest-descent method. Although this method is easy to implement, it often exhibits poor
performance when the number of design parameters is large. In the present work, LBFGS-B is used for the
optimization algorithm. LBFGS-B21 is a quasi-Newton method for bound-constrained optimization, which
requires only sensitivity and objective function values. The LBFGS-B algorithm also can set the bounds of
the design space to prevent invalid geometry configurations.

V. Validations and Results

A. Zero-Pressure-Gradient Flat Plate

A flat plate with zero pressure gradient is the simplest boundary-layer flow. Its laminar-turbulent transition
behavior has been widely studied for a range of freestream turbulence intensities. Figure 1a shows the mesh
used in the flat plate case, which includes about 52,000 nodes with normal spacing at the wall of 4 × 10−6

and 255 points on the wall. Predicted skin-friction distributions obtained by the λ-Reθt model and the
AFT model coupled with the SA turbulence model are plotted in Figure 1b with experiment data, and the
Blasius laminar profile. The figure shows good agreement between predicted results and experiment data
for different freestream turbulence levels. The N factor contours are shown in Figure 1c.

B. NASA NLF-0416 Airfoil

The NASA NLF-0416 was designed for general aviation applications and was tested in the Low-Turbulence
Pressure Tunnel (LTPT) at NASA Langley. The near field mesh for the NLF-0416 airfoil is shown in
Figure 2a, which includes approximately 63,000 nodes with normal wall spacing of 1.2× 10−6 chord lengths
and 775 points on the airfoil surface. The resulting drag polars for Re = 4.0× 106 are plotted in Figure 2b.
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The agreement between the transitional predictions and the LTPT data are good for both the λ-Reθt model
and the AFT2 model. Figure 2c and 2d show the comparison of the skin-friction distributions at α = 0◦ and
α = −2◦, respectively.

C. S204, slotted Natural-Laminar-Flow Airfoil

The S204 airfoil19 is a slotted natural-laminar-flow (SNLF) airfoil for light business jet applications. The
S204 is a two-element configuration designed to achieve higher lift coefficients and lower drag coefficients than
the single-element natural-laminar-flow airfoils. The S204 airfoil is designed in such a way to keep the fore
element entirely laminar in order to reduce overall drag. The SNLF concept as well as the S204 configuration
is proprietary to Airfoils Inc. and protected by a patent, requiring a license for its use. The specific airfoil
geometry used in this paper was obtained by digitizing a figure of the airfoil geometry in reference19 with
permission from the author. Because the performance of SNLF airfoils can be sensitive to small geometry
perturbations, this approach may not be entirely accurate due to the approximate airfoil coordinates used
in this case. Figure 3a shows the near field mesh for the S204 airfoil. The normal wall spacing in this mesh
is 1.2 × 10−6 chord lengths. There are 390 surface mesh points on the main element and 226 points on
the slat. The total number of mesh points is about 51,000. The drag polars for M = 0.5, Re = 12 × 106

and freestream turbulence intensity Tu∞ = 0.07% are plotted in Figure 3b. The agreement between the
transitional predictions and the reference results19 is generally good. Figure 3c shows the pressure coefficient
distribution at α = 0◦. The skin-friction distribution at α = 0◦ is shown in Figure 3d, which shows entirely
laminar flow on the fore element upper surface.

D. MD 30P/30N Multi-element Airfoil

The McDonnell-Douglas 30P/30N airfoil is a conventional multi-element high-lift configuration that was
tested in the NASA Langley Low-Turbulence Pressure Tunnel(LTPT) in 1990s. The unforced transition
tests on all elements at different Reynolds numbers and angles of attack were conducted in the LTPT. The
measured transition locations18 are given as a range in terms of x/c, and are available for angles of attack
of 4◦ , 8◦ , 19◦ , and 21◦. The MD 30P/30N configuration is a good candidate for two-dimensional code
validation. Figure 4 shows the near field mesh for the MD 30P/30N configuration. There are 69,000 nodes
in this mesh with a normal wall spacing of 1.2 × 10−6 chord lengths. The number of mesh points on the
main element, the slat and the flap are 275, 302 and 215, respectively. Figures 5 show the intermittency
at α = 19◦. Figures 6 show the comparison of the skin-friction distributions at α = 19◦ on the slat, main
element and flap between fully turbulent (SA alone) and transitional calculations using the AFT2 model.
The transition locations predicted by the AFT2 model qualitatively agree with the reported ranges on the
slat and main element as shown in Table 1. The disagreement on the flap is thought to be due to the
relatively coarse mesh resolution present in the main cove region, as seen in Figure 4 and deserves further
consideration.

Table 1. Comparison of measured and predicted transition positions.

α = 19◦

Experiment18 Predicted Results

Slat Upper (x/c) [−0.085,−0.082] [−0.084,−0.08]

Main Upper (x/c) [0.061, 0.068] [0.06, 0.08]

Flap Upper (x/c) [0.892, 0.921] Fully turbulent

E. Optimization NACA0012

In order to demonstrate the current adjoint-based optimization capability, a NACA0012 airfoil in viscous
flow with free transition is optimized for reducing drag or maximizing the ratio of lift over drag. In this
case the AFT2 transition model is used with the Spalart-Allmaras turbulence model. The flow conditions
include a freestream M = 0.2, an angle of attack of α = 2.31◦ and Re = 2 × 106. The near field mesh for
the NACA0012 airfoil is shown in Figure 7a. Figure 7b shows a typical convergence history for both the
flow variables and the turbulence/transition variables. In this case we use a Newton-Krylov method with
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pseudo-transient continuation augmented with a residual smoothing technique11 for ensuring convergence
of all equations to machine zero. The ability to converge each design point throughout the optimization to
very low residual levels is important for success of the optimization process and the use of a Newton method
has been found to be beneficial in this context. The objective L for minimizing drag at prescribed lift is
constructed as:

L = (CL − CLtarget)
2 + 10C2

D (31)

Figure 8a shows the comparison between the initial and final optimized airfoil shape. Bezier parameteriza-
tions are used in this case, with 12 design variables used to optimize the airfoil shape. Figure 8b show the
convergence of the objective function, the lift coefficient and the drag coefficient versus design cycles. The
comparison of the surface pressure coefficient and the skin-friction distributions are shown in the Figure 9a
and Figure 9b, respectively. Overall, the drag is reduced by 13 counts in 16 design cycles in this optimization.

The objective L for maximizing the ratio of lift and drag is constructed as:

L =

∣∣∣∣CDCL
∣∣∣∣ (32)

Similarly to the previous optimization case, Bezier parameterizations with 12 design variables are used.
Figure 10a shows the airfoil shape comparison while Figure 10b shows the convergence of the objective
function, the lift coefficient and the drag coefficient versus design cycles. The comparison of the surface
pressure coefficient and the skin-friction distribution are shown in the Figure 11a and Figure 11b, respectively.
Table 2 summarizes the comparison of the drag reduction and the lift-drag ratio for the baseline airfoil and
optimized airfoils. Overall, the lift to drag ratio is increased from 23.8 to 46.7 in 14 design cycles for this
case.

Table 2. Comparison of lift and drag coefficients for the NACA0012 and the optimized airfoil.

CL CD ∆(CD) CL

CD

Baseline 0.2402 0.01011 - 23.8

Optimized for min
CLtarget

(CD) 0.2393 0.00882 -0.00129 -

Optimized for max (CL

CD
) 0.4764 0.01021 - 46.7

VI. Conclusion

The incorporation of current state-of-the-art transition models has been described and demonstrated
in this work. The performance of two predictive transition models coupled with the Spalart-Allamaras
single-equation turbulence model for two-dimensional single and multi-element airfoil configurations has been
examined through a series of computational test cases. The fully coupled adjoint of the flow-turbulence-
transition system of equations has also been derived and demonstrated for use in an airfoil optimization test
case. These results indicate that current transition models can be used for predictive aerodynamic airfoil
problems as well as for design optimization of airfoil performance.
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(a) (b)

(c)

Figure 1. (a) Mesh for flat plate boundary layer test case (b) Cf comparison and (d) N factor contours with
Ncrit=9

.
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Figure 2. (a) Near field mesh for NLF0416 airfoil (b) Force comparison at M = 0.2, Re = 4×106 and Tu∞ = 0.15%
(c) skin-friction distribution at α = 0◦ and (d) skin-friction distribution at α = −2◦
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Figure 3. (a) Computational mesh for S204 slotted airfoil (b) force comparison at M = 0.5, Re = 12 × 106 and
Tu∞ = 0.07% (c) pressure distribution (SA-AFT2) and (d) skin-friction distribution (SA-AFT2) at α = 0◦.

Figure 4. Near field mesh for MD-30P30N multi-element airfoil.
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Figure 5. Intermittency contours at α = 19◦ and Re = 9× 106, using SA-AFT2 transition model.

x

C
f

0.08 0.06 0.04 0.02 0 0.02

0.04

0.02

0

0.02

0.04 SA

SAAFT2

Slat

x

C
f

0.2 0.4 0.6 0.8
0.03

0.02

0.01

0

0.01

0.02

0.03

0.04

SA

SAAFT2

Main airfoil

x

C
f

0.85 0.9 0.95 1 1.05 1.1 1.15

0.03

0.02

0.01

0

0.01

0.02

0.03

SA

SAAFT2

Flap

Figure 6. Computed skin-friction distribution on slat, main element and flap.
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Figure 7. (a) Near field computational mesh for NACA0012 airfoil (b) convergence history for flow variables
and turbulence/transition variables.
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Figure 8. Drag minimization at constant lift optimization problem: (a) NACA0012 airfoil shape comparison
(b) Optimization function and forces vs. design cycles, SA-AFT2.
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Figure 9. Drag minimization at constant lift optimization problem:(a) Initial and optimized pressure distri-
butions and (b) Initial and optimized skin-friction distributions, SA-AFT2
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Figure 10. Lift to drag ratio optimization problem: (a) NACA0012 airfoil shape comparison (b) Optimization
function and forces vs. design cycles, SA-AFT2.
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Figure 11. Lift to drag ratio optimization problem:(a) Comparison of initial and optimized pressure distribu-
tions and (b) skin-friction distributions, SA-AFT2
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