
A Discrete Adjoint-Based Approach for Optimization

Problems on Three-Dimensional Unstructured Meshes

Dimitri J. Mavriplis ∗

Department of Mechanical Engineering, University of Wyoming, Laramie WY 82071, USA

A comprehensive strategy for developing and implementing discrete adjoint methods
for aerodynamic shape optimization problems is presented. By linearizing each procedure
in the entire optimization problem, transposing each linearization, and reversing the se-
quential order of operations, the adjoint of the complete optimization problem, including
flow equations and mesh motion equations is constructed in a modular and verifiable fash-
ion. This construction is also shown to produce minimal memory overheads, and retain the
same convergence characteristics of the original analysis problem in the sensitivity analysis.
These techniques are implemented in a three-dimensional unstructured multigrid Navier-
Stokes solver, and demonstrated on a transonic drag reduction problem for a wing body
configuration.

I. Introduction

The use of the adjoint equations is now well established for design-optimization problems in computational
fluid dynamics (CFD) for the Euler and Navier-Stokes equations.1,2, 3, 4, 5 The advantage of adjoint

formulations is that they enable the computation of sensitivity derivatives of a given objective function or
output functional at a cost which is essentially independent of the number of design variables, requiring a
single flow solution and a single adjoint solution, for any number of design variables. In the continuous adjoint
method approach, the governing equations are first linearized and then discretized, while in the discrete
adjoint approach these two steps are performed in reverse order. Because the continuous approach affords
more flexibility at the discretization stage, formulations involving reduced memory and cpu overheads have
generally been achieved with this approach.2 The continuous approach also provides a framework for dealing
with discontinuous behavior in the discretization scheme, such as may be encountered with non-differentiable
limiters. On the other hand, the discrete adjoint approach reproduces the exact sensitivity derivatives of
the original discretization of the governing equations, which provides a verifiable consistency check on the
final gradients produced by the adjoint solution.3 The discrete adjoint approach also benefits from a relative
simplicity of implementation. This begins with the formulation of the primal or tangent problem, in which
the discretized governing equations are linearized. The solution of these linearized equations constitutes the
tangent problem for calculating sensitivity derivatives. The discrete adjoint formulation is then obtained
by transposing each matrix produced in the tangent problem, and performing all operations in reverse
order. The derivation of the tangent problem is generally more intuitive than that of the adjoint problem,
especially concerning the application of boundary conditions. In fact, often a linearization is required in
the formulation of an implicit solution scheme, and is thus readily available. The transposition of these
operations constitutes a straight forward procedure, which is easily verifiable, as will be shown in this paper.
Furthermore, as the formulation of the discrete problem is often constructed in a modular fashion with
various sequentially invoked functions or subroutines, the tangent linearization and adjoint models may also

∗Professor, Department of Mechanical Engineering, University of Wyoming, AIAA Associate Fellow.

1 of 20

American Institute of Aeronautics and Astronautics

be constructed in the same modular fashion, with a one-to-one correspondence between each original function
and the corresponding tangent/adjoint function, which can then be verified individually at the component
level before proceeding to the full simulation.

While the full design optimization problem involves various operations including flow solution, surface
deformation, and interior mesh deformation, most applications of adjoint methods have concentrated only on
developing and solving the adjoint problem for the governing flow equations. The sensitivities resulting from
other operations such as surface deformation, and interior mesh deformation are generally either bypassed
using simplified formulations (particularly in the case of structured grids),2 or by finite differencing these
components of the overall model,6 or by recomputing each sensitivity through a forward linearization.3 All of
these approaches either lack generality, or result in a cost which is a strong function of the number of design
variables. Recently, Nielsen and Park7 have shown how the adjoint problem of the mesh motion equations
can be used to obtain the mesh sensitivities at a cost which is independent of the overall number of design
variables. This approach has also been implemented in two-dimensions in previous work by the author.8

In the current paper, we attempt to generalize the idea of using the adjoint model for operations other
than simply the solution of the flow equations. Rather, we formulate the adjoint for the complete design
optimization problem, involving all phases from the prescription of design variables, to the computation
of the sensitivities. This is done by first forming the tangent (or forward differentiation) model of the
complete design optimization procedure, by specifically linearizing each procedure. The adjoint model is
then composed by transposing each operation, and performing all operations in reverse order. Exact duality
is preserved between tangent and adjoint models for the entire design optimization procedure, and this is
built up by first demonstrating duality for each individual operation or component, and then assembling the
components in the appropriate order to formulate the complete tangent and adjoint optimization problems.

The construction of the tangent and adjoint models is designed to mimic the construction of the original
problem at each individual stage. Thus, second-order accurate tangent and adjoint flow discretizations are
constructed using a two-pass approach, similar to the approach used for the non-linear flow equations. A
single modular solution algorithm, based on agglomeration multigrid with line preconditioning,9,10,8 is used
to solve all problems arising in the optimization procedure, including the non-linear flow equations, the mesh
motion equations and the tangent and adjoint models of both of these sets of equations, when required.

The proposed approach provides a mechanism for systematically obtaining sensitivities for complicated
procedures such as those involved in multi-disciplinary design optimization processes. Furthermore, the
one-to-one correspondence of the sensitivity analysis with the original problem formulation ensures that no
additional data-structures are required in the formulation of the sensitivity analysis over and above those
used in the original problem, and the use of equivalent solvers guarantees similar convergence rates and
overall efficiency.

In this manner, the current approach parallels what could be achieved using an automatic differentiation
procedure such as ADIFOR or ADJIFOR,11 but the manual implementation affords extra flexibility in
terms of data structures and solution techniques and results in a more thorough understanding of the
implementation.

II. General Sensitivity Formulation

Consider a simulation which produces various outputs L each of which constitutes an objective function
which we wish to minimize by varying certain parameters or design variables D in the simulation. The entire
simulation begins with the specification of the design variables D, and may involve the evaluation of multiple
functions Fi or sequential steps to finally obtain the values of the objectives L. Thus, the entire procedure
may be written as:

L(D) = L(Fn−1(Fn−2(....F2(F1(D))....)))) (1)

2 of 20

American Institute of Aeronautics and Astronautics

A variation in the design variables δD produces a corresponding variation the the objectives δL as:

δL =
dL
dD

δD (2)

where the sensitivity derivative may be calculated as:

dL
dD

=
∂L

∂Fn−1
.
∂Fn−1

∂Fn−2
.....

∂F2

∂F1
.
∂F1

∂D
(3)

For an arbitrary number of design variables and objective functions, these sensitivity derivatives constitute
a rectangular matrix which will generally be costly to evaluate. However, we consider two special cases,
firstly the case where we have a single design variable and an arbitrary number of objective functions, and
secondly the case where we have a single objective function and an arbitrary number of design variables. In
the first case, the derivative ∂F1

∂D constitutes a vector which is either given, or may be assumed to be easily
computable. Since only the first derivative on the right-hand side of equation (3) depends on L, it proves
economical to precompute the product of all the other derivatives as:

dL
dD

=
∂L

∂Fn−1
.

[
∂Fn−1

∂Fn−2

[
.....

[
∂F2

∂F1

[
∂F1

∂D

]]]]
(4)

Thus, the final result in brackets is a vector which is obtained as a series of matrix vector products.
This vector may be stored and then used to compute the entire vector dL

dD (one element for each individual
objective function L) in a single matrix-vector multiplication. This constitutes the forward differentiation
model or the tangent model.

In the case where a single objective function is specified but multiple design variables are present, the
adjoint model provides the most economical approach for the calculation of dL

dD . For this purpose, we
transpose equation (3), obtaining:

dL
dD

T

=
∂F1

∂D

T

.
∂F2

∂F1

T

.
∂Fn−1

∂Fn−2

T

.....
∂L

∂Fn−1

T

(5)

Noting that ∂L
∂Fn−1

T
is a simple vector which is either given or easily computable, and ∂F1

∂D

T
is the only term

which depends on the multitude of design variables, the corresponding strategy is to precompute the right
most derivatives as:

dL
dD

T

=
∂F1

∂D

T

.

[
∂F2

∂F1

T

.

[
∂Fn−1

∂Fn−2

T

.

[
.....

[
∂L

∂Fn−1

T
]]]]

(6)

The vector of sensitivities for all design variables dL
dD

T
may then be obtained with a single matrix vector mul-

tiplication involving the matrix ∂F1
∂D

T
with the precomputed vector obtained from the sequence of bracketed

operations.

III. The Design Optimization Problem

In general, the shape design optimization process consists of at least four sequential steps. Assuming an
existing geometry and computational mesh already exist, and the design variables and objective functions
are specified, the initial step consists of using the design variables to define a new deformed surface mesh
geometry, producing specific values for the coordinates of the surface mesh. The surface mesh coordinates
are then used to compute the values of the interior mesh coordinates, usually through a mesh deformation
technique which aims to provide a smooth interior mesh with no overlapping cells. The third step involves the

3 of 20

American Institute of Aeronautics and Astronautics

computation of the flow field on this new deformed mesh, and the fourth (final) step involves the computation
of the objective function using the newly computed flow field. Following the notation used in equation (1),
the design optimization problem can be written as:

L(D) = L(F3(F2(F1(D))) (7)
(8)

with

xsurf = F1(D) (9)
xint = F2(xsurf) (10)

w = F3(xint) (11)
L = L(w,xint) (12)

where D and L represent the design variables and objectives as previously, xsurf represents the surface grid
point coordinates, xint denotes the interior grid point coordinates, and w corresponds to the flow variables
computed on the deformed grid. Actually, this equation is slightly more complicated than the formulation
given in (1) due to the fact that the objective functions considered in this work, based on lift and drag
coefficients, are functions of both the flow variables and the grid point coordinates as stated in equation
(12). Nevertheless, a straight forward differentiation of equation (12) leads to the following expression for
the sensitivity derivatives:

dL
dD

=
∂L
∂w

.
∂w

∂xint
.

∂xint

∂xsurf
.
∂xsurf

∂D
+

∂L
∂xint

.
∂xint

∂xsurf
.
∂xsurf

∂D
(13)

We next examine each term in the above equation. The ∂xsurf

∂D term corresponds to the sensitivity
of the surface mesh with respect to the design variables. For each design variable, this can be obtained
through a linearization of the design variable definition, as may be possible in parametric modeling packages.
Alternatively, these vectors may be obtained by finite differencing CAD-based design variable definitions. In
any case we will assume these are known vectors for each design variable.

The ∂xint

∂xsurf
term corresponds to the sensitivity of the interior mesh point positions with respect to surface

point displacements. In general, interior mesh deformation is governed by a discretized set of equations, such
as those arising from a system of springs based on the mesh edges,12,13,14 or by invoking linear elasticity
analogies.15,3, 16 In such cases, the interior mesh displacements are computed by solving the equation

[K] δxint = δxsurf (14)

where [K] represents the stiffness matrix obtained from the discrete mesh motion equations. The sensitivities
can thus be written conceptually as:

∂xint

∂xsurf
= [K]−1 (15)

This notation is used to imply that the product of the sensitivities with an arbitrary surface mesh vector f
is equivalent to [K]−1

f . This is also consistent with the derivation given in.7,8

An expression for the ∂w
∂xint

term is obtained by considering the constraint imposed by the flow equa-
tions. When the mesh is deformed, the discrete flow equations are no longer satisfied, and must be recom-
puted. If R represents the residual of the discretized flow equations, linearization about the converged state
R(w(xint),xint) = 0 in the absence of any other variations in the flow conditions results in the following
relation: [

∂R
∂w

]
∂w

∂xint
= − ∂R

∂xint
(16)

4 of 20

American Institute of Aeronautics and Astronautics

which may be re-written as:

∂w
∂xint

= −
[
∂R
∂w

]−1
∂R

∂xint
(17)

Substituting the above expressions into equation (13) we obtain the final expression:

dL
dD

= − ∂L
∂w

.

[
∂R
∂w

]−1
∂R

∂xint
[K]−1 ∂xsurf

∂D
+

∂L
∂xint

. [K]−1 ∂xsurf

∂D
(18)

For a single design variable, the tangent model can be implemented in the following steps:

1. Obtain surface mesh sensitivity ∂xsurf

∂D from design variable definition

2. Obtain interior mesh sensitivity by iteratively solving:

[K]
∂xint

∂D
=

∂xsurf

∂D
or

∂xint

∂D
= [K]−1 ∂xsurf

∂D
(19)

3. Get flow residual sensitivities by performing the matrix vector product:

∂R
∂D

=
∂R

∂xint
.
∂xint

∂D
(20)

4. Get the flow variable sensitivities by iteratively solving the equation:[
∂R
∂w

]
∂w
∂D

= −∂R
∂D

(21)

5. Compute final sensitivity as:

dL
dD

=
∂L
∂w

.
∂w
∂D

+
∂L

∂xint
.
∂xint

∂D
(22)

The adjoint model is obtained by transposing equation (18) which yields:

dL
dD

T

=
∂xsurf

∂D

T

[K]−T

[
∂L

∂xint

T

− ∂R
∂xint

T [
∂R
∂w

]−T
∂L
∂w

T
]

(23)

where the superscript −T denotes the inverse of the transposed matrix, and factorization has also been used
for further simplification. This corresponds to the formulation derived in reference,7 and implemented in for
two-dimensional problems in reference.8 For a single objective function, the adjoint model consists of the
following steps:

1. Obtain objective flow sensitivity vector ∂L
∂w

2. Iteratively solve adjoint flow problem given as:[
∂R
∂w

]T

Λw =
∂L
∂w

T

or Λw =
[
∂R
∂w

]−T
∂L
∂w

T

(24)

3. Obtain objective sensitivities with respect to interior mesh deformation with

dL
dx∗int

T

=
∂L

∂xint

T

− ∂R
∂xint

T

Λw (25)

which requires evaluating the matrix-vector product ∂R
∂xint

T
Λw.

5 of 20

American Institute of Aeronautics and Astronautics

4. Iteratively solve the adjoint mesh deformation problem given as:

[K]T Λx =
dL

dx∗int

T

or Λx = [K]−T dL
dx∗int

T

(26)

5. Compute final sensitivity as:

dL
dD

T

=
∂xsurf

∂D

T

Λx or
dL
dD

= ΛT
x

∂xsurf

∂D
(27)

where the second form may prove to be simpler to implement for cases where the transpose of the
design variable to surface mesh sensitivities are not readily available.

Although the steps described above for both the tangent and adjoint models appear to be relatively
straight-forward, steps 2 and 4 in both cases require the solution of a set of field equations, while step 3
requires the evaluation of a complicated matrix-vector product. Additionally, for the adjoint model, the
term ∂L

∂xint
must be constructed explicitly. Techniques for implementing each of these steps effectively with

no additional data structures other than those present in the implicit flow and mesh motion solvers are
described in the next section.

IV. Flow Tangent and Flow Adjoint Problem

Step 4 in the tangent formulation and step 2 in the adjoint formulation both require the solution of a
linearized flow problem given by equations (21) and (24) respectively.

[
∂R
∂w

]
in these equations represents

the Jacobian of the discretized flow equations, which for second-order accurate discretizations on unstruc-
tured meshes, involves an extended neighbors-of-neighbors stencil. The storage and inversion of this full
Jacobian is generally considered impractical. On the other hand, the non-linear second-order accurate resid-
ual for the flow equations is generally constructed in a two-pass approach, with each pass operating on a
nearest neighbor stencil. For example, the artificial dissipation approach achieves higher-order accuracy
by replacing differences of neighboring flow variables wk − wi by differences in undivided Laplacians i.e.
qi =

∑neighbors
k=1 wk − wi, while a reconstruction scheme first constructs gradients q(w), which are used to

extrapolate reconstructed flow variables to the control-volume face where the flux is computed. Therefore,
the full Jacobian may be evaluated using the chain rule as:[

dR

dw

]
=

∂R

∂w
+

∂R

∂q

∂q

∂w
(28)

while the discrete flow adjoint can be obtained as:[
dR

dw

]T

=
[
∂R

∂w

]T

+
[

∂q

∂w

]T [
∂R

∂q

]T

(29)

The action of this Jacobian on a field vector can now be evaluated in a two-pass approach as:

∆q =
∂q

∂w
.∆w (30)

∆R =
∂R

∂w
.∆w +

∂R

∂q
.∆q (31)

or, for the adjoint problem,

∆q =
[
∂R

∂q

]T

∆R (32)

∆w =
[
∂R

∂w

]T

∆R +
[

∂q

∂w

]T

∆q (33)

6 of 20

American Institute of Aeronautics and Astronautics

For the tangent model (c.f. equations (30) and (31)), this procedure corresponds to a straight-forward
linearization of each stage in the non-linear residual construction, while for the adjoint model (c.f. equations
(32) and (33)) this procedure corresponds to using the transpose of each individual operation in the tangent
model, but applied in reverse order. While these procedures do not necessarily simplify the construction and
storage of the full Jacobian, they enable a simple procedure for computing the (linear) residuals of equations
(21) and (24), which can be used to drive an iterative solution strategy. A standard preconditioning strategy
for solving equation (21) can be written as:

[P]
(

∂w
∂D

n+1

− ∂w
∂D

n)
= −∂R

∂D
−

[
∂R
∂w

](
∂w
∂D

)n

(34)

where [P] is a preconditioning matrix to be inverted. The corresponding duality preserving scheme for
solving the adjoint equations (c.f. equation (24)) can be written as:17,8

[P]T
(
Λw

n+1 −Λw
n
)

=
∂L
∂w

−
[
∂R
∂w

]T

Λw
n (35)

The right-hand side of equations (34) and (35) represents the linear flow residual and adjoint residual,
respectively. Because these contain a matrix-vector product involving the full second-order accurate Jacobian[

∂R
∂w

]
, they must be evaluated using the two-pass construction given by equations (30), (31) and (32), (33)

for the primal and dual problems, respectively.
The preconditioning matrix [P] should closely approximate the full Jacobian

[
∂R
∂w

]
, while being simple

to invert. A common strategy is to take [P] as the first-order Jacobian of the flow residual. This results in
a defect-correction approach, which is analogous to the solution strategy proposed for non-linear problems
in reference.18 In this case, the non-linear flow equations are solved using the approximate Newton scheme:[

∂R
∂w

]
first−order

∆w = −R(w) (36)

where R(w) represents the residual of the non-linear flow equations. The use of a full second-order Jacobian
on the left-hand side of this equation would correspond to an exact Newton scheme, which would converge
quadratically. Similarly, for the linearized equations (21) and (24), this would produce the exact solution in
a single step (matrix inversion). In the defect-correction approach, the simplified form of the left-hand-side
matrix results in a more tractable inversion problem at each step, but also results in slower overall conver-
gence. Furthermore, because of the approximate nature of the left-hand-side matrix in the defect-correction
approach, a more computationally efficient approximate inversion of this matrix is generally sufficient to
achieve the same overall convergence rate of the outer iteration procedure. For example, for the non-linear
flow equation solver described in reference,18 a small number of linear multigrid cycles (2 to 5) was found to
yield the optimal convergence efficiency. Similarly, for equations (21) and (24), a small number of multigrid
cycles can be used to compute the approximate inverse matrix vector product (given here in the case of the
adjoint problem):

(
Λw

n+1 −Λw
n
)

=
[
P̃

]−T
[

∂L
∂w

−
[
∂R
∂w

]T

Λw
n

]
(37)

for each outer iteration n, where
[
P̃

]−T

represents the approximate inverse of [P]T , with a corresponding
expression for the tangent problem. In this work we use a line-preconditioned block-Jacobi driven agglom-
eration multigrid method at each iteration n of the defect-correction scheme. On each grid level of the
multigrid algorithm, an iterative smoothing strategy may be constructed by decomposing the [P] matrix

7 of 20

American Institute of Aeronautics and Astronautics

into implicitly treated components denoted as [D] and explicitly treated components [O], and writing the
iteration as:

[D]T
(
Λw

n+1 −Λw
n
)k+1

= (38)

∂L
∂w

−
[
∂R
∂w

]T

Λw
n − [O]T

(
Λw

n+1 −Λw
n
)k

in the case of the adjoint problem, where k denotes the iterative smoothing counter. For viscous turbulent
flows, the linearization must include the full coupling between the flow equations and the turbulence model.
The block sub-matrices are thus 6× 6 blocks, using a single equation turbulence model in three dimensions.
Furthermore, a line-implicit scheme is employed to relieve the stiffness associated with high mesh stretching
in boundary-layer and wake regions.19,9 This is achieved by constructing lines in the mesh by grouping
together sets of edges in the mesh, using a graph algorithm, producing line sets as shown in Figure 1 (a).
Each line is solved implicitly by taking the [D] components as the union of all the [P] matrix entries which
correspond to points and edges within the lines, while the [O] components are composed of the remaining
entries. In this approach, the constructed lines have variable length, and reduce to a single grid point
in isotropic regions of the mesh. Therefore, all grid points are contained in the set of lines. This solution
scheme corresponds to a line-Jacobi strategy in highly-stretched regions of the mesh, which reverts to a point
Jacobi scheme in isotropic regions of the mesh. This solver is used as a smoother on each grid level in the
agglomeration multigrid algorithm, where the coarse grid levels are formed by grouping together neighboring
control volumes to form sets of larger but fewer control volumes on each level, as depicted in Figure 1 (b).

(a) (b)

Figure 1. (a) Illustration in two dimensions of line construction for directional implicit solver and (b) coarse
agglomerated multigrid level used for flow and mesh analysis, tangent and adjoint problems.

Because the full Jacobian is only required to evaluate the tangent and adjoint residuals of equations (34)
and (35) in the above iterative solution strategies, and this can be done using the two pass approach described
above, the question arises as to whether the individual matrices in equations (28) and (29) should be stored
and reused for the entire solution process, or reconstructed ”on-the-fly” each time a residual evaluation
is performed. The fact that only a small number of (multigrid) sub-iterations are generally employed in
the defect-correction scheme implies that a relatively large number of residual evaluations will be required
during the solution process, which favors the storage approach over the re-computation approach. However,

8 of 20

American Institute of Aeronautics and Astronautics

memory limitations may make the recomputation approach necessary for large problems. On the other
hand, it should be noted that preconditioning matrix [P] is always stored, and can be used to reconstruct
the full Jacobian component matrices. Because the first order discretization is obtained by replacing the
reconstructed variables q with the original flow variables w, we have the relation:

[P] =
[
∂R

∂w

]
first−order

=
[
∂R

∂w

]
+ α

[
∂R

∂q

]
(39)

where α is a scalar coefficient, which should nominally be unity, but may be required to account for different
scalings between first and second-order dissipation terms. Using this expression, the formulation of the full
Jacobian in equation (28) can be re-written as:[

dR

dw

]
=

[
∂R

∂w

]
first−order

+
[
∂R

∂q

] [
∂q

∂w
− [I]α

]
(40)

with a corresponding transposed equation for the adjoint formulation. However, recalling that the precon-
ditioning matrix is split into [D] and [O] terms, and that the [D] terms are LU factorized along the implicit
lines, and at each grid point, storing a separate unfactorized copy of these terms would negate most of the
memory savings sought through the use of equation (40). Note that the LU factorized form of the [D] terms
occupy the same memory space as the unfactored version of these terms, but enable the evaluation of the
inverse matrix vector product x = [D]−1

f in a two step forward and backwards substitution process as:

y = [L]−1
f (forward substitution) (41)

x = [U]−1
y (back substitution) (42)

This two pass approach requires the same number of operations as multiplying the inverted matrix [D]−1

with the vector f . Thus, similarly, the original matrix vector product g = [D]x can be also be evaluated in
the same memory space and number of operations using the factorized form of the matrix as:

y = [U]x (forward substitution) (43)
g = [L] y (back substitution) (44)

Thus, for the tangent model, the iterative solution scheme is constructed as:

[L] [U]
(

∂w

∂D

n+1

− ∂w

∂D

n)k+1

= (45)

− ∂R

∂D
− [[L] [U] + [O]]

∂w

∂D

n

−
[[

∂R

∂q

] [
∂q

∂w
− [I]α

]]
∂w

∂D

n

− [O]
(

∂w

∂D

n+1

− ∂w

∂D

n)k

and for the adjoint problem, the transposed equivalent scheme becomes:

[L∗] [U∗]
(
Λn+1 − Λn

)k+1
= (46)

∂L

∂w

T

−
[
[L∗] [U∗] + [O]T

]
Λn −

[[
∂q

∂w

T

− [I]α

] [
∂R

∂q

]T
]

Λn − [O]T
(
Λn+1 − Λn

)k

where [L∗] and [U∗] correspond to the factorization of the transposed first-order Jacobian, and it is under-
stood that the L and U matrices on the left hand side are used to solve the linear system through forward
and back substitution, as described in equations (41) and (42).

In these formulations, the L,U and O matrices are obtained for free on the right-hand side at each outer
iteration, since they are already stored for the preconditioning matrix. The only additional matrices which

9 of 20

American Institute of Aeronautics and Astronautics

are required to be either formed on the fly at each outer iteration, or stored throughout the solution process
are the

[
∂q
∂w

]
and

[
∂R
∂q

]
matrices.

For an artificial dissipation scheme, the
[

∂q
∂w

]
matrix represents the linearization of the undivided Lapla-

cian, which is a trivial matrix in this case containing unity entries for each edge of the mesh. For a MUSCL-
type reconstruction scheme, the matrix corresponds to the linearization of the gradient construction with
respect to the flow variables, which corresponds to the weights used in the gradient re-construction scheme,
which are already stored by the discretization scheme for the non-linear flow equations. In either case, this
matrix either need not be stored or is readily available. The

[
∂R
∂q

]
matrix is equivalent to contributions

from a first-order artificial dissipation (applied to the q variables), thus constituting a symmetric matrix
(neglecting variations in the interface coefficient matrix, which is evaluated at the Roe state20), and thus
only half the matrix needs to be stored. Furthermore, this is only a block 5× 5 matrix, since no turbulence
modeling quantities are involved in the q variables, and thus the additional storage required by this matrix
is approximately 35% of the storage of the first-order accurate Jacobian or preconditioning matrix [P]. This
is the only additional storage required for the solution of the tangent or adjoint flow models over and above
a nearest-neighbor first-order accurate Jacobian, which is present in the flow solver in the first place. While
this additional matrix could easily be recomputed at each outer iteration in the defect-correction scheme,
we choose to store it in this work due to the modest size of the matrix and the added cpu time benefits.

V. Mesh Deformation Tangent and Adjoint Problem

Step 2 in the tangent formulation and step 4 in the adjoint formulation both require the solution of
the mesh motion or adjoint mesh motion problem given by equations (19) and (26) respectively. In the
current work, the mesh deformation process is governed by a system of spring-analogy equations, where
each mesh edge is modeled as a spring with a stiffness inversely proportional to the edge length. The spring
constants are based on the initial configuration of the mesh, and are not updated as the mesh is deformed.
Equation (14) is used to compute interior mesh point displacements, subject to given boundary mesh point
displacements. These displacements resulting from the solution of equation (14) are then added to the mesh
point coordinates in order to obtain the new deformed mesh configuration. Since the spring coefficients
are always based on the initial mesh geometry, the governing equations are linear, and the tangent model
coincides with the physical mesh motion model. Furthermore, the spring analogy approach results in a
nearest-neighbor stencil, such that the [K] matrix can be represented as a block 3 × 3 matrix, using an
edge-based data-structure, similar to the first-order Jacobian for the flow solver described above. Since the
entire matrix is stored, the adjoint problem is obtained by simply transposing the entire [K] matrix.

The mesh motion (and tangent problem) and the adjoint problem are solved using a line-preconditioned
agglomeration multigrid approach, similar to that described above for the flow equations, although a defect
correction scheme is not required, since the mesh motion equations are linear and operate on a nearest
neighbor stencil, and in this case, the preconditioner [P] corresponds to the [K] matrix. Splitting this
matrix into LU factorized components and remaining terms denoted as [O], the iterative solution scheme for
the mesh motion or tangent problem can be written as:

[L] [U]
(

∂xint

∂D

)k+1

=
∂xsurf

∂D
− [O]

(
∂xint

∂D

)k

(47)

while the corresponding adjoint mesh solution scheme can be written as:

[L∗] [U∗] Λx
k+1 =

dL
dx∗int

T

− [O]T Λx
k (48)

where, as previously, the for the flow adjoint problem, the splitting

[K]T = [L∗] [U∗] + [O]T (49)

10 of 20

American Institute of Aeronautics and Astronautics

has been invoked. However, in this case, since a defect correction scheme is not required, the right hand
sides of equations (19) and (26), or the first terms on the right hand sides of equations (47) and (48) are held
constant throughout the iterative solution process. Thus, these terms need only be computed once for each
mesh tangent or adjoint solution, which corresponds to once for each function evaluation (or flow solution)
during the optimization process.

VI. Matrix vector product for grid sensitivities

The right hand sides of the mesh tangent and adjoint problems are evaluated as matrix vector products in
step 3 for both the tangent and adjoint formulations. For the tangent problem, step 3 consists of evaluating
the product

∂R
∂xint

.
∂xint

∂D
(50)

while for the adjoint problem, the product (
∂R

∂xint

)T

Λw (51)

must be evaluated. The matrix ∂R
∂xint

, which appears in both expressions, corresponds to the linearization of
the flow residual with respect to the mesh point coordinates. This constitutes a sparse rectangular matrix
which can have a fairly complicated structure. This is due to the fact that the mesh coordinates may appear
both directly in the residual construction routines, as well as indirectly, through the dependence of other
mesh metrics on the mesh point coordinates. The stencil of this matrix will thus not correspond to a nearest
neighbor stencil and cannot be supported on an edge-based data structure. However, since only the product
of this matrix with a field vector is required in the tangent or adjoint model, and since this product need only
be evaluated once for each function call (once per flow solution and mesh motion solution) prior to solving
the mesh tangent or adjoint problem, this matrix vector product is constructed in a multi-pass approach
which computes the required terms ”on-the-fly”. For a typical flow discretization where the residual depends
on the mesh point coordinates both explicitly, and implicitly through the use of precomputed mesh metrics,
the above matrix-vector product may be evaluated as:

dR
dx

.δx =
∂R
∂x

δx +
∂R
∂fn

.
∂fn
∂x

δx +
∂R
∂vol

.
∂vol
∂x

δx (52)

where fn represents the vector of control volume face normals over the mesh, and vol represents the vector
of mesh control volumes. Note that equation (52) is used as an illustrative example and is not meant to
precisely describe all dependencies of the current flow discretization on the mesh point coordinates. The
evaluation of this matrix vector product is performed in a multi-step procedure, given as

δfn =
∂fn
∂x

δx (53)

δvol =
∂vol
∂x

δx (54)

dR
dx

δx =
∂R
∂x

δx +
∂R
∂fn

δfn +
∂R
∂vol

δvol (55)

Note that the first two steps involve matrix vector products based on a linearization of the mesh metric
routines, while the last step involves the linearization of the flow residual with respect to the mesh metrics
and coordinates, which appear directly in these routines.

11 of 20

American Institute of Aeronautics and Astronautics

In the case of the adjoint model, the matrix vector product of equation (52) can be evaluated in a similar
fashion. Taking the transpose of equation (52), we obtain the relation:

dR
dx

T

Λw =
∂R
∂x

T

Λw +
∂fn
∂x

T ∂R
∂fn

T

Λw +
∂vol
∂x

T ∂R
∂vol

T

Λw (56)

which can be evaluated in a multi-step procedure as:

δfn =
∂R
∂fn

T

Λw (57)

δvol =
∂R
∂vol

T

Λw (58)

dR
dx

T

Λw =
∂R
∂x

T

Λw +
∂fn
∂x

T

δfn +
∂vol
∂x

T

δvol (59)

As in the previous case, a (transposed) linearization of each individual routine is invoked, but in the reverse
order of that used by the original discretization in the tangent model. For example, the first two steps of
equations (57) and (58) involve the linearization of the flow residual with respect to the mesh metrics, while
the last step (c.f. equation (59)) involves the linearization of the mesh metrics with respect to the mesh
point coordinates.

In both cases, the matrix vector product involving the matrix ∂R
∂x , which may involve a complex de-

pendence of the residual on the mesh point coordinates, can be built up systematically by linearizing each
component routine in the residual construction process, and other routines upon which these depend, and
then concatenating the results by calling the appropriate routines in the proper order.

VII. Other required sensitivities

For the adjoint problem, the construction of the vector ∂L
∂xint

T
is required explicitly. Considering for

example an objective function based on a pressure force coefficient such as pressure drag, it should be
evident that the final form of the above vector is non-zero only at the surface grid points (where pressure
forces are integrated), and thus storage of this vector is not in itself problematic. However, the construction
of this vector must take into account the fact that surface forces are based on surface element face normals,
which in turn depend on the surface mesh point coordinates through the surface element face normals. Thus
the evaluation of this vector should be done in the above described modular fashion as:

∂L
∂xint

=
∂L
∂fn

∂fn
∂x

(60)

Because the resulting vector must be obtained explicitly (as opposed to its inner product with another
vector as in the previous cases), each of the expressions on the right hand side of equation (60) must be
evaluated explicitly as well. While this is straight-forward for the first term, the second term is slightly more
complicated due the fact that the face normal area associated with each grid point control volume is assembled
from fractions of surrounding cell face normals, which in turn depend on the cell mesh point coordinates, as
depicted in Figure 2. Although these dependencies can be computed, additional data-structures would be
required for the storage of the ∂fn

∂x terms.
An alternative approach is to transpose equation (60) as:

∂L
∂xint

T

=
∂fn
∂x

T ∂L
∂fn

T

(61)

In this manner, the required vector can be evaluated as a matrix vector product. The vector ∂L
∂fn

T
has a

simple structure and is easily computed and stored in a first step. The matrix vector product is then built

12 of 20

American Institute of Aeronautics and Astronautics

up systematically by forming the equivalent adjoint routine to each phase in the mesh metric routines which
compute surface vertex normals. These routines are then called in the appropriate (reverse) order to obtain
the final vector ∂L

∂xint
using only the same boundary face data structures used in the mesh metric routines.

VERTEX NORMAL

face normals

Figure 2. Illustration of construction of surface vertex normal based on surrounding surface face normals and
the resulting stencil of surface mesh points which are used in this operation for mixed triangular quadrilateral
surface meshes.

VIII. Implementation Details

The basic strategy of this paper is to construct a complete tangent and adjoint model for the entire
shape optimization problem in a modular fashion, which mimics the implementation of the original physical
simulation including the flow solution and mesh motion.

Considering each individual routine required for the construction of the simulation as a function with
an input vector x, and an output vector f(x) (which may have different dimensions than the input vector),
an equivalent tangent routine is constructed which, given an input vector δx, produces the output vector
∂f
∂xδx, and an equivalent adjoint routine is also constructed which, given an input vector δf produces the

output ∂f
∂x

T
δf . For both tangent and adjoint models, the loop structure and data access patterns of the

new routines mimics those of the original f(x) routine, and thus no additional data-structures or storage are
required, and the run-time expense of all three versions of each function are closely related.

The tangent routine is generally constructed first, since its relation to the original simulation routine is
more intuitive than the adjoint process, especially concerning the implementation of boundary conditions.
Furthermore, the correctness of the tangent routines can easily be verified by finite differencing the analysis
routines. Once a particular tangent routine has been implemented and verified, the corresponding adjoint
routine is implemented. The correctness of the adjoint routine is then verified using the duality princi-
ple. Consider an analysis routine which, given an input vector x, produces an output vector f(x). The
corresponding tangent and adjoint routines can be written as:

δf1 =
∂f

∂x
δx1 (tangent routine) (62)

δx2 =
∂f

∂x

T

δf2 (adjoint routine) (63)

Inverting the second (adjoint) equation above and taking the transpose yields

δfT
2 = δxT

2

∂f

∂x

−1

(64)

Combining this equation with the above tangent equation to form the dot product δfT
2 .δf1, yields the

13 of 20

American Institute of Aeronautics and Astronautics

following relation:

δfT
2 .δf1 = δxT

2 .δx1 (65)

which is known as the duality relation. The duality principle is well known and has seen widespread use in
optimization procedures. For example, duality has been invoked to design efficient solvers for the adjoint
flow and mesh motion problems in previous work.21,17 However, the above statement is the most general
form of the duality principle, and states that given any arbitrary input vectors δx1 and δf2, the relation in
equation (65) should hold. Since this is a necessary test for correctness, but not a sufficient test, we make
use of sequences of arbitrary input vectors to test for correctness of our adjoint routine implementations,
rather than simply testing these routines in the context of a practical analysis run. For steps 2 and 4 in
section III where the tangent and adjoint models involve the solution of system of equations, such as

[K]x = f (tangent model) (66)

[K]T y = g (adjoint model) (67)

the following duality principle must be verified:

xT g = yT f (68)

given the input vectors f and g, and the final converged solution vectors x and y. This must be verified
for the final converged solutions, and may be enforced as well at each cycle in the iterative solution process,
as advocated in,17,8 although full duality throughout the iterative solution process is usually not strictly
enforced in the current work, for practical reasons.

Once the individual tangent and adjoint routines have been implemented and verified, larger simulation
components are built up by calling the relevant routines in the appropriate order (in reverse order for the
adjoint problem), and checking the results by finite difference and the duality principle at each stage. This
is repeated until the full sequence from design variable input to objective function calculation is verified by
finite difference and demonstrated to be duality preserving.

IX. Results

The methodology described above has been used to drive an optimization problem for an aircraft wing
design problem, using the Reynolds averaged Navier-Stokes equations with the Spalart-Allmaras turbulence
model22 to simulate the viscous turbulent flow over the aircraft wing-body geometry. The design problem
consists of minimizing the drag coefficient while holding the lift coefficient at a constant value. The objective
function used for this purpose is given as

L =
(
CL − CLtarget

)2 + 10 (CD)2 (69)

where CLtarget
represents the constant lift coefficient value to be maintained, and the weighting factor

(10) is used to balance the different magnitudes of lift and drag coefficients. For simplicity, the objective
function only considers the pressure lift and drag components. The design variables consist of the normal
displacements of each surface grid point on the wing surface between approximately the 10% and 90% span
locations and from the leading edge to the 80% chord location within this span region on both the upper
and lower surfaces. This choice of design variables results in a simple block diagonal form of the ∂xsurf

∂D
sensitivity matrix, where the diagonal elements correspond to the direction cosines of the surface normal
for each point. The optimization procedure follows the steepest descent approach described by Jameson.2,1

Once the objective function sensitivities dL
dD have been computed using the method described above, an

increment in the design variables is prescribed as:

δD = −λ
d̃L

dD
(70)

14 of 20

American Institute of Aeronautics and Astronautics

where λ represents a small time step, chosen small enough to ensure convergence of the optimization proce-
dure, and d̃L

dD represents the smoothed gradients dL
dD , obtained using an implicit smoothing technique, which

is necessary to ensure smooth design shapes, as described in reference.2 In actual fact, it is the Λx = ∂L
∂xsurf

sensitivities which are smoothed, prior to the evaluation of equation (27), since the smoothing must take
place in geometric space rather than in design space. The current implementation of the steepest descent
optimization procedure is not optimal, in that λ is determined empirically, but is sufficient for demonstrating
the utility of the adjoint solution techniques described herein.

The initial geometry and computational mesh are depicted in Figure 3. The geometry corresponds to the
DLR-F6 wing body configuration which constituted one of the test cases for the recent AIAA Drag Prediction
Workshop series.23,24 The unstructured mesh was generated using the VGRID grid generation program,25

and was originally supplied as one of the standard grids for the workshop. This grid contains a total of
1.12 million points or 4.2 million cells, and contains principally prismatic elements in the boundary layer
regions and tetrahedral elements in the inviscid regions of flow away from the aircraft surfaces. The Mach
number for this case is M=0.75, the Reynolds number based on the mean aerodynamic chord is 3 million,
and the incidence is 1 degree. The computed lift and drag coefficients at these conditions are CL = 0.6767
and CD = 0.0302, respectively, and a relatively strong shock is observed on the upper surface of the wing.

The convergence of the flow solver for this case is shown in Figure 4, using the non-linear agglomeration
multigrid solver with four grid levels, and implicit line preconditioning on each level as described previously.
The residuals are reduced by 3 orders of magnitude over 500 multigrid cycles, and the lift coefficient is seen
to attain a constant value well within the 500 cycle limit. This calculation is performed on a cluster of PCs
using 16 cpus, and requires approximately 40 minutes of wall clock time.

Figure 5(a) illustrates the convergence of the flow adjoint problem at a particular design iteration during
the optimization procedure. This is compared in the same figure with the convergence of the corresponding
tangent flow problem. The defect correction scheme is used to converge both problems, using the linear
agglomeration multigrid scheme with four levels and line-implicit preconditioning on each level to drive the
inner problem of the defect correction scheme. A total of four linear multigrid cycles are used within each
defect-correction cycle, and the convergence in plotted in terms of the number of (outer) defect-correction
cycles. Similar convergence rates are observed for both problems, resulting in a decrease of the residuals by
just under 3 orders of magnitude over 100 defect correction cycles, which corresponds to 400 linear multigrid
cycles. Note that in this particular implementation, the two methods do not preserve exact duality at each
iteration, due to practical considerations, although the final converged results preserve exact duality.

Figure 5(b) depicts the convergence of the mesh motion and mesh adjoint equations at a particular
cycle in the design procedure. The same solver (line preconditioned four-level agglomeration multigrid)
developed for the flow and flow adjoint equations is used to solve these two problems as well. The mesh
motion equations obtained using the spring analogy approach correspond to a set of three uncoupled Poisson
equations, and therefore converge very rapidly with the multigrid algorithm, reaching machine precision in
approximately 50 multigrid cycles. This rapid convergence, combined with the smaller block size of the mesh
motion equations (3× 3 blocks versus 6× 6 blocks for the flow and turbulence equations), ensures that the
solution of the mesh motion and adjoint equations comprises a small fraction (less than 10%) of the overall
solution time within a design optimization run.

Figure 6 illustrates the flow solution in terms of pressure contours on the wing upper surface for the initial
and modified geometry of the final design, showing a considerably reduced shock strength compared to the
initial solution. This suggests most of the drag reduction has come from the effect of wave drag. The normal
displacements of the surface points on the wing (ie. the values of the design variables) are plotted in Figure
7, showing a relatively smooth deformation near the leading edge and mostly on the upper surface of the
wing. Figure 8 depicts the convergence of the optimization procedure, in terms of the objective function and
in terms of the computed lift and drag coefficients over a total of 15 design cycles. The objective function is
seen to decrease monotonically at each design cycle. The lift coefficient is held relatively constant, while the
drag coefficient is reduced from CD = 0.0302 to CD = 0.0288, for a total drag reduction of 14 counts. The

15 of 20

American Institute of Aeronautics and Astronautics

complete sequence of 15 design iterations required approximately 6 hours of wall clock time running on 16
cpus of the PC cluster.

X

Y
Z

(a)

X

Y

Z

(b)

Figure 3. Illustration of DLR-F6 wing-body configuration and hybrid unstructured mesh for wing design
optimization problem.

X. Conclusions

The discrete adjoint approach developed in this work results in an efficient scheme for computing sensi-
tivity derivatives for large numbers of design variables. The procedure requires minimal memory overheads
over and above those already required by an implicit flow solver, and retains the efficiency of the underlying
flow and mesh motion solvers by using the same solvers for the corresponding adjoint problems. The notion
of applying the adjoint technique to the entire optimization process, rather than only to the flow solution
process, and the development of a systematic procedure for implementing this approach, results in a veri-
fiable correct scheme, which should also be extendable to more complicated simulations such as unsteady
simulations, and coupled multi-disciplinary problems. In addition to these areas, future work will also con-
centrate on the development of more effective optimization strategies, and more sophisticated techniques for
defining design parameters and coupling these to the proposed framework.

References

1Jameson, A., “Aerodynamic Shape Optimization using the Adjoint Method,” VKI Lecture Series on Aerodynamic Drag
Prediction and Reduction, von Karman Institute of Fluid Dynamics, Rhode St Genese, Belgium.

2Jameson, A., Alonso, J. J., Reuther, J. J., Martinelli, L., and Vassberg, J. C., “Aerodynamic shape optimization tech-
niques based on control theory,” AIAA Paper 98-2538.

3Nielsen, E. J. and Anderson, W. K., “Recent Improvements in Aerodynamic Optimization on Unstructured Meshes,”
AIAA Journal , Vol. 40, No. 6, June 2002, pp. 1155–1163.

4Elliot, J. and Peraire, J., “Practical three-dimensional aerodynamic design by optimization,” AIAA Journal , Vol. 35,
No. 9, 1997, pp. 1479–1485.

5Soto, R. L. O. and Yang, C., “An Adjoint-Based Design Methodology for CFD Optimization Problems,” AIAA-Paper

16 of 20

American Institute of Aeronautics and Astronautics

Figure 4. Convergence of flow analysis problem using non-linear multigrid solver as measured by the density
residual and lift coefficient in terms of the number of multigrid cycles.

(a) (b)

Figure 5. (a) Convergence of flow adjoint and corresponding flow tangent problems using 4 linear multigrid
cycles for each defect correction cycle in terms of the number of (outer) defect correction cycles. (b) Con-
vergence of mesh motion and corresponding mesh adjoint problem in terms of number of multigrid cycles for
wing body configuration.

17 of 20

American Institute of Aeronautics and Astronautics

(a) (b)

Figure 6. (a):Surface pressure coefficient contours on initial DLR-F6 configuration at Mach=0.75 and 1o

incidence showing upper surface shock wave. (b):Surface pressure coefficient contours on DLR-F6 configuration
after 15 design cycles at Mach = 0.75 and 1o incidence showing reduced strength of upper surface shock wave.

(a) (b)

Figure 7. Surface normal displacements, or design variable magnitudes on top (a) and bottom (b) of final
redesigned DLR-F6 configuration.

18 of 20

American Institute of Aeronautics and Astronautics

(a) (b)

Figure 8. (a) Convergence of objective function with number of design cycles, and (b) evolution of lift and
drag coefficients as a function of design cycles.

2003-0299.
6Thomas, J. P., Hall, K. C., and Dowell, E. H., “Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design

Sensitivities,” AIAA Journal , Vol. 43, No. 9, 2005, pp. 1931–1936.
7Nielsen, E. J. and Park, M., “Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design,”

AIAA-Paper 2005-0491.
8Mavriplis, D. J., “Formulation and Solution of the Discrete Adjoint for Optimization Problems on Unstructured Meshes,”

AIAA-Paper 2005-0319, to appear in AIAA Journal.
9Mavriplis, D. J., “Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flow Solvers,”

AIAA Journal , Vol. 37, No. 10, Oct. 1999, pp. 1222–1230.
10Mavriplis, D. J. and Pirzadeh, S., “Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis,”

AIAA Journal of Aircraft , Vol. 36, No. 6, Dec. 1999, pp. 987–998.
11Bischof, C., Carle, A., Khademi, P., and Mauer, A., “The ADIFOR 2.0 System for the Automatic Differentiation of

Fortran 77 Programs,” Tech. Rep. CRPC-TR94491, Center for Research on Parallel Computation, Rice University, 1994.
12Batina, J. T., “Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes,” AIAA Journal , Vol. 28, No. 8,

1990, pp. 1381–1288.
13Venkatakrishnan, V., “Implicit Method for the computation of unsteady flows on unstructured grids,” Journal of Com-

putational Physics, Vol. 127, 1996, pp. 380–397.
14Degand, C. and Farhat, C., “A Three-Dimensional Torsional Spring Analogy Method for Unstructured Dynamic Meshes,”

Computers and Structures, Vol. 80, 2002, pp. 305–316.
15Baker, T. J., “Mesh Movement and Metamorphosis,” Engineering with Computers, Vol. 18, No. 3, 2002, pp. 188–198.
16Yang, Z. and Mavriplis, D. J., “Unstructured Dynamic Meshes with Higher-order Time Integration Schemes for the

Unsteady Navier-Stokes Equations,” AIAA-Paper 2005-1222.
17Nielsen, E. J., Lu, J., Park, M. A., and Darmofal, D. L., “An Exact Dual Adjoint Solution Method for Turbulent Flows

on Unstructured Grids,” AIAA Paper 2003-0272.
18Mavriplis, D. J., “An Assessment of Linear versus Non-Linear Multigrid Methods for Unstructured Mesh Solvers,” Journal

of Computational Physics, Vol. 175, Jan. 2002, pp. 302–325.
19Mavriplis, D. J., “Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes,” Journal of Com-

putational Physics, Vol. 145, No. 1, Sept. 1998, pp. 141–165.
20Hirsch, C., Numerical Computation of Internal and External Flows, Volume II: Computational Methods for Inviscid and

Viscous Flows, Wiley, New York, NY, 1988.
21Giles, M., Duta, M., and Muller, J.-D., “Adjoint Code Developments Using the Exact Discrete Approach,” AIAA Paper

2001-2596.

19 of 20

American Institute of Aeronautics and Astronautics

22Spalart, P. R. and Allmaras, S. R., “A One-equation Turbulence Model for Aerodynamic Flows,” La Recherche
Aérospatiale, Vol. 1, 1994, pp. 5–21.

23Laflin, K., Brodersen, O., Rakowitz, M., Vassberg, J., Wahls, R., and Morrison, J., “Summary of Data from the Second
AIAA CFD Drag Prediction Workshop,” AIAA Paper 2004-0555.

24“Second AIAA Drag Prediction Workshop. Orlando, FL,” http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw.
25Pirzadeh, S., “Three-Dimensional Unstructured Viscous Grids by the Advancing-Layers Method,” AIAA Journal , Vol. 34,

No. 1, 1996, pp. 43–49.

20 of 20

American Institute of Aeronautics and Astronautics

	Introduction
	General Sensitivity Formulation
	The Design Optimization Problem
	Flow Tangent and Flow Adjoint Problem
	Mesh Deformation Tangent and Adjoint Problem
	Matrix vector product for grid sensitivities
	Other required sensitivities
	Implementation Details
	Results
	Conclusions

