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ABSTRACT

Over the last decade, advocacy for high performance computing has increasingly
been taken up by the science community with the argument that computational meth-
ods are becoming a third pillar of scientific discovery alongside theory and experi-
ment. On the other hand, the capabilities of computational engineering problems have
become increasingly stagnant as efforts have tended to concentrate on reducing sim-
ulation cost rather than increasing simulation capability. Computational engineering
problems differ in many aspects from discovery-based computational science prob-
lems, and specific techniques for addressing these differences must be developed in
order for engineering problems to benefit from the upcoming paradigm shift to mas-
sively parallel multicore architectures. Arguing that computational fluid dynamics in
general, and computational aerodynamics in particular, represent some of the most
advanced computational engineering applications, we identify specific barriers im-
peding the deployment of these problems to current and future HPC architectures and
suggest several strategies for overcoming these impediments. The long term objective
is to enable the development of significantly more capable production level compu-
tational fluid dynamic engineering tools by harnessing the power of the upcoming
generation of massively parallel multicore architectures.

INTRODUCTION

Today, computational science and engineering (CSE) stands at a cross-roads, sim-
ilar in some ways to the situation present twenty years ago at the initiation of the
ParCFD conference series [1]. In 1989, CSE was on the verge of a paradigm shift in
the transition from small numbers of high performance vector processors, to “mas-
sively” parallel configurations of microprocessors using on the order of hundreds of
cpus [2]. Today, although Moore’s law still holds, advanced computational capabil-
ities are increasingly being sought through rapid increases in the number of proces-
sor cores, rather than clock speeds, leading to an explosion in the degree of paral-
lelism which must be harnessed in order to make effective use of novel hardware.
However, in many ways the CSE landscape is also substantially different than it was
twenty years ago, when the leading high-performance computing drivers covered a
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broad area of science and engineering applications. Today, the advocacy for high
performance computing (HPC) is largely driven by the science community, with the
argument that increased investments in HPC will lead to greater scientific discov-
eries, using simulation as a third pillar in the scientific process, along with theory
and experiment [3, 4, 5]. Unfortunately, this argument does not hold for engineering
applications, since engineering is not discovery driven. Engineering problems can
differ substantially from science applications, and generally focus on their own set
of design-driven objectives, which incur a different set of barriers to effective use of
HPC architectures. Unfortunately, the last ten years has seen a drop off in the devel-
opment and deployment of new computational engineering techniques. During this
period, industrial efforts have turned largely to reducing the cost of fixed simulation
capabilities through migration to lower-cost hardware, with a general lack of interest
in participating in the development of new computational techniques which will be
needed to harness the full capabilities of the next generation of HPC hardware. The
case for increased investments in engineering-based simulation has only been ad-
dressed in a recent NSF report [6]. Focusing on the need to invest in advanced HPC
development specific to engineering problems is important, since the current situation
may lead to future engineering-based simulation software which is incapable of har-
nessing the full potential of new HPC hardware, and which will therefore be limited
to use only with low-end commodity hardware.

Although computational fluid dynamics (CFD) only overlaps partially with the
more general field of computational engineering, a strong argument can be made why
CFD in general, and computational aeronautics in particular, should play a leading
role in driving research and investment in new computational engineering develop-
ments. Aeronautics represents one of the most technologically advanced engineering
fields, and international advances in aeronautics have benefited from a particularly ef-
fective collaboration and combination between government, industrial, and academic
research which is seldom duplicated in other engineering fields. Aeronautics has
traditionally been at the forefront of HPC developments, and is thus naturally well
positioned to resume its role as a principal driver of advances in high performance
computing.

Ten years ago, this author delivered a plenary talk at the 1999 ParCFD conference
[7], describing what at the time was a leading-edge unstructured mesh aerodynamic
calculation using 35 million grid points running on 1500 processors on a CRAY T3E.
This achievement could be seen as having successfully addressed the challenge posed
in 1989 of migrating CFD simulations from vector processors to “massively” paral-
lel computer architectures. The question before us today is whether the engineering
community will be able to continue these advances by demonstrating radical new
simulation capabilities running on the massively parallel multicore architectures in-
volving 100,000 to 1 million cores projected to come on-line over the next decade.

One of the impediments to continual advances in computational engineering ca-
pabilities is a persisting notion that computational engineering problems are not com-
plex enough to warrant the use of computational resources on a vast scale compara-
ble to discovery-driven science problems. This must be countered by identifying the
potential new engineering frontiers to be opened by the availability of substantially
more capable computational hardware, and by describing specific enabling objectives
which new engineering simulations must target. In the next section, we describe vari-
ous computational aerodynamic engineering problems which are currently considered
intractable, but which could revolutionize the practice of aeronautical engineering if
brought to fruition. In the subsequent sections, we identify some of the barriers to



achieving these capabilities and propose various strategies for addressing these diffi-
culties.

TARGET ENGINEERING CFD CAPABILITIES

Higher Fidelity

The field of aeronautics has traditionally been a strong driver in the continual de-
velopment and adoption of higher fidelity computational engineering tools over the
last 30 years, from the appearance of panel methods in the 1970’s, to the develop-
ment of full potential methods in the 1980’s, and the adoption of Reynolds-averaged
Navier-Stokes methods (RANS) in the 1990’s. However, over the last decade, the
high-fidelity method of choice seems to have stalled out with RANS methods, and
efforts have often turned to reducing the cost of this fixed capability rather than pur-
suing even higher-fidelity tools. The obvious path towards higher fidelity involves the
development and adoption of Detached Eddy (DES) or Large Eddy (LES) simulation
methods in a production environment [8, 9]. The increased costs of these methods
stem not only from the need to employ much higher spatial resolution for capturing
all relevant turbulence structures down to the inertial range scales, but also from the
necessary inclusion of the temporal dimension in these inherently unsteady problems.
Therefore, successful deployment of these methods on future hardware will require
much higher scalability on much larger processor or core counts in order to provide
practical turnaround time in a production setting.

Flight Envelope Simulation

Characterization of the complete flight envelope of a new aerospace vehicle is
an important aerospace engineering design objective which can be met increasingly
with more sophisticated computational tools. In the simplest application, a purely
static data-base may be obtained, by computing and archiving force and moment co-
efficients for various instances of the relevant parameters defining the flight envelope.
The flight-envelope parameter space can be divided into flow parameters, and con-
figuration parameters. For example the flow parameters will generally consist of the
Mach number, the incidence and the sideslip (and possibly Reynolds number). The
configuration parameters may consist of various control surface deflections such as
ailerons, elevator, rudder etc. An example of work in this direction is provided in
References [10, 11, 12, 13]. Figure 1 provides an illustration of a flight-envelope
data-base generation using the CART3D simulation code for a hypothetical liquid
glide-back booster. The mesh used for the inviscid cartesian approach contains a total
of 1.4 million cells. Variations in the Mach number, incidence, and side-slip angles
were considered for the aerodynamic data-base generation, which required a total of
2863 inviscid flow steady-state solutions. Figure 1 depicts the computed aerodynamic
data-base, as a carpet plot of the pitching moment coefficient with respect to the Mach
number and incidence variations, at a fixed sideslip angle of 0 degrees, representing
just one slice of the entire data-base. The efficiency of the inviscid cartesian approach
enabled all 2863 simulations to be performed in a period of approximately one week
[12]. The long term objective must be to incorporate a wider range of parameters and
variations of each parameter in these simulations, while at the same time raising the
fidelity of the simulation to incorporate RANS and eventually LES techniques. Given
an optimistic estimated turnaround time of one hour for a single point RANS solu-



tion on current-day computational hardware, and an estimate of O(106) individual
simulations to be performed (covering 10 instances of 6 parameters each), the total
time required for such a data-base generation extends into the end of this century.
However, an O(103) increase in computational power, obtained either by waiting out
Moore’s law for 15 years, or by securing access to a machine of O(100,000) cpus,
results in the possibility of generating such a data-base in approximately one month
of elapsed time.

Digital Flight

A more ambitious computational challenge involves the dynamic simulation of a
time-dependent maneuvering aircraft, including all the relevant physical effects re-
quired for a realistic and useful simulation. At a minimum, these will most often in-
clude aerodynamics, structural analysis, and the flight-control system, although other
important effects may need to be considered such as surface heating, or acoustics,
depending on the application. In this approach, each simulation consists of inte-
grating the various disciplinary packages in a time-accurate coupled fashion for the
full duration of the simulated vehicle maneuver or trajectory. Figure 2 provides an
example of a comprehensive digital flight simulation capability under development
in the HIARMS project sponsored by the US Army Aeroflightdynamics Directorate
[14, 15]. In this project, an unstructured mesh approach is used near the body to
capture the geometric complexity, while a higher-order adaptive cartesian solver is
used away from the body to adequately capture the vortices and wake effects. These
codes are further linked through a Python interface to other modules which simulate
structural analysis and flight control. The goal is to enable the multidisciplinary sim-
ulation of maneuvering rotorcraft configurations on massively parallel machines with
higher accuracy and throughput compared to previous efforts. The HIARMS project
falls under the larger CREATE-AV effort established in the US by the Department of
Defense for building engineering software tools based on high fidelity computational
simulations which can make effective use of massively parallel hardware for reducing
risk in the weapons acquisition process [16, 17]. However, these efforts are geared
towards using existing solver and component technologies on current-day high-end
architectures involving O(1000) processors and are not directly addressing the advent
of even more radically large scale parallel multicore architectures.

Uncertainty Quantification

As engineering simulation tools mature and more complex simulation problems
are attempted, the quality and usefulness of the simulation results depends more and
more on our ability to quantify the uncertainties in the computed simulation outputs.
Thus, uncertainty quantification has begun to emerge as an important area in mod-
ern computational engineering. Today, it is no longer sufficient to predict objectives
related to vehicle performance using a specific physical model with deterministic
inputs. Rather, a probability distribution function of the simulation objectives is re-
quired as a function of the uncertainties inherent in the simulation input parameters,
in order to establish confidence levels over a range of performance predictions.

Consider, for example, the uncertainties caused by geometric variances such as
manufacturing tolerances. Sidwell and Darmofal have analyzed cooled turbine blades
and shown that a leading cause of decreased blade life is cooling flow variability
due to manufacturing tolerances [18]. Beyond the significant sensitivity of blade
life to temperature (and hence cooling flow), the impact of low-life blades is further



amplified by the large number of blades contained in a turbine row. Specifically, if the
probability of manufacturing a low-life blade is p, then for a row of n turbine blades,
the probability of having at least one low-life blade is: 1− (1− p)n. For example, if
a low-life blade is manufactured at a rate of 1%, then the probability of observing at
least one low-life blade in a row of 80 blades is approximately 55% [18].

A common, low-fidelity approach for modeling variability is to predict the lifing
of the nominal (design-intent) blade and then apply a historical variability to this pre-
diction. A Monte-Carlo approach to modeling the variability consists of performing
probabilistic simulations in which variability is propagated through the lifing anal-
ysis. Thus, instead of requiring a single lifing analysis, multiple (i.e. thousands or
more) lifing analyses are necessary. Parallel implementation of probabilistic methods
(such as Monte Carlo) is often trivial and in this sense represents a natural target of
opportunity for future HPC applications. However, at the same time the growth in the
number of simulations coupled with the drive to higher-fidelity simulations calls for
the development of more sophisticated uncertainty quantification methods.

Another source of uncertainty may be caused by empirical model inputs to the
simulation. As an example, consider the uncertainty inherent in numerical simula-
tions of aero-heating effects for the design of thermal protection systems for hyper-
sonic vehicles. Because many of the parameters used in the real gas models for high
speed flows have been determined empirically, any aero-heating uncertainty quan-
tification must include the effect of these model parameter uncertainties. This type
of uncertainty analysis has been performed in reference [19], using a Monte Carlo
technique where the real gas model parameters were varied based on assigned or es-
timated probability distribution functions, resulting in the requirement of performing
several thousand high-fidelity simulations in order to obtain a suitable description of
the aero-heating uncertainty distribution.

In practice, uncertainties in numerical simulations arise from multiple additional
sources including numerical error sources due to spatial and temporal discretization
error, algebraic errors due to incomplete numerical convergence, and inter-disciplinary
coupling errors for multidisciplinary simulations. Developing techniques which take
advantage of increased hardware capabilities for assessing and controlling all these
types of uncertainties will become increasingly important in future applications.

Other Areas

In a previous survey publication [20] we have outlined various other applica-
tions and objectives which could be made feasible with increased computational ca-
pabilities. For example, the simulation of a complete turbofan engine using three-
dimensional unsteady CFD would allow a virtual engine testing capability, through
which a better understanding of engine component interactions could be obtained,
and which could be made to rival the accuracy of physical testing, through the de-
velopment of better algorithms and models which make effective use of advanced
hardware capabilities.

The broad field of design optimization remains one of the principal objectives
of many computational engineering problems. While low-fidelity methods are often
used for non-local optimization problems, adjoint techniques have made the use of
high-fidelity simulation tools practical for local optimization problems, particularly
in the case of steady-state and single discipline problems. However, these capabilities
must be extended to more complex problems such as time-dependent problems (for
example involving the optimization of time-dependent rotorcraft blades or maneu-



vering vehicles), multidisciplinary optimization (aeroelastic, aero-servo-elastic, and
aerothermo-servo-elastic optimization) [21, 22, 23, 24, 25], as well as optimization
under uncertainty, often referred to as robust optimization [26, 27]. Additionally,
improved non-local design optimization techniques [28, 29] which enable the use of
high-fidelity simulations for finding truly global optima must be developed and made
practical on future HPC hardware.

COMPUTATIONAL ENGINEERING ROADBLOCKS

High resolution requirements

One of the principal reasons that computational science and engineering prob-
lems are so demanding is that the governing physical phenomena involve such a wide
range of spatial and temporal scales, which interact in complex nonlinear manners. In
aerospace engineering problems, these scales occur both due to geometrical consid-
erations, as well as due to the governing physical phenomena such as turbulence and
transition. An illustrative example is provided in Figure 3(a), which depicts the wide
range of scales present in unsteady turbomachinery flows. The scale issue has been
the principal driver towards consistently higher resolution since the dawn of com-
putational aerodynamics. However, as community studies such as the AIAA Drag
Prediction Workshops (DPW) [30, 31, 32] have shown, lack of sufficient resolution
remains the principal limiting factor in achieving accurate and predictive simulation
outcomes, even for relatively well understood problems such as steady-state cruise
condition aerodynamics. This is illustrated in Figure 3(b) where the collective results
from the third DPW workshop plotted as a function of grid resolution are shown, il-
lustrating a lack of convincing grid convergence even for grid sizes ranging up to 100
million points. The importance of increased resolution for computational engineer-
ing simulations is hard to overstate. When the simulation resolution is increased, not
only are the same physical phenomena simulated more accurately, but new physics
can be resolved and simulated, rather than modeled, offering the possibility of greatly
increased simulation fidelity. This is the principal idea behind large eddy simulation
(LES), which is predicated on resolving all scales down to the universal turbulence
range, where modeling is much more reliably achieved due to the universality of these
sub-grid turbulence scales.

For science-based simulations, which often can be performed in the presence
of simple geometries that can be represented analytically or through customized
software, increased spatial resolution can be accommodated in a relatively straight-
forward manner with expanding parallelism through multicore architectures. By con-
trast, the complex geometries most often associated with engineering problems have
made the generation of highly resolved meshes (billion plus cells) impractical, since
specialized (mostly commercial) grid generation and geometry definition (CAD) soft-
ware is required, which most often runs in serial. Additionally, these large mesh data-
sets must be loaded onto the parallel machine at startup, and retrieved along with the
computed solution at each time step (or selected time steps) of the simulation, for
time-dependent dynamic mesh problems, constituting an I/O bottleneck on current
HPC hardware. For these reasons, practical engineering applications have generally
been confined to commodity-type hardware, making use of the order of hundreds of
cpus or cores, and prospects for scaling up to extremely large parallel architectures
remain uncertain.



Low resolution requirements

In spite of the need for high resolution described above, many engineering sim-
ulations provide suitable information without the need for overall high accuracy and
resolution. This is because engineering problems are often concerned with a small
number of specific objectives, which are needed to evaluate product performance or
guide design decisions. Furthermore, the accuracy required for useful simulations
in the design process is highly variable, where sometimes crude ball-park accuracy is
sufficient, while at other times high accuracy is required. In most cases however, good
accuracy in the relevant objective does not require fully resolving all physical phe-
nomena present in the governing physics, but only those that have a strong impact on
the important objectives. These characteristics of engineering simulations often mean
that extensive spatial resolution (for example billion plus grid cell calculations) is not
necessary for many problems. However, these problems remain extremely computa-
tionally intensive due to the need to take large numbers of small time steps, the cost of
solving stiff non-linear systems at each time step, and in the case of design optimiza-
tion problems, the cost of performing large numbers of optimization steps. Since
most current-day applications rely on spatial domain decomposition for achieving
parallelism, most engineering simulations have lagged at exploiting the levels of par-
allelism needed for achieving petaflops simulations on the most recent hardware. In
such cases, parallelism nust be sought in directions other than the spatial dimension.
For example, space-time parallelism may prove to be useful for long-time integration
problems of modest spatial resolution. Enhanced parallelism may also be sought in
the design space for optimization problems, or through the formulation of more scal-
able sensitivity analysis techniques. For uncertainty quantification problems, natural
parallelism opportunities exist in the use of Monte Carlo or other ensemble averaging
techniques.

Multidisciplinary Complexity

It is widely appreciated that the important engineering problems in today’s en-
vironment are becoming increasingly multi-disciplinary. This implies, from a simu-
lation standpoint, that additional physics from different disciplines must be incorpo-
rated into leading-edge simulations, and the appropriate or important coupling effects
of these disciplines must be taken into account. There are various challenges asso-
ciated with multi-physics or multi-disciplinary simulations. The most prevalent ap-
proach for building up multi-disciplinary simulation capabilities is to couple together
existing mature single-discipline simulations. However, wide disparities in algorith-
mic techniques, simulation accuracy, resolution, and computational scalability, tend
to complicate such exercises. While loose coupling is often chosen as the implemen-
tation path of least resistance, many of the important problems are highly coupled in
nature and will require stronger coupling approaches, both for solution of the analy-
sis problem, and for other important and emerging tasks, such as sensitivity analysis
and uncertainty propagation and quantification. Software complexity is also greatly
increased, due to the wider range of physical phenomena to be simulated, the more
complex coupling between these areas, and the different legacies associated with each
component code.



ENABLING TECHNIQUES

Specialized algorithms and techniques must be developed to overcome the road-
blocks discussed in the previous section, and to enable the solution of specific engi-
neering problems to benefit from current and future emerging HPC hardware.

Parallel Mesh Management

For simulations which require high levels of spatial resolution, parallelism will
be obtained naturally through domain decomposition. However, the barriers to gen-
erating and maintaining highly resolved boundary fitted computational meshes, as
mentioned previously, must be overcome. One approach to this problem is to invest
in the development of parallel mesh generation strategies. Another approach is to
place more reliance on in-situ parallel adaptive mesh refinement. Under this strategy,
an initial coarse mesh is first generated sequentially using existing mesh generation
software and loaded onto the parallel machine. As the simulation progresses, the
mesh is adaptively refined and de-refined on the parallel machine. In fact, a com-
prehensive approach to enabling large-scale simulations should bypass all sequential
and I/O bottlenecks by only sending coarse initial meshes to the machine, and only re-
trieving visualization information and a small number of engineering objectives from
the simulation. The realization of this approach to large scale engineering simulation
requires that a full description of the geometry be directly accessible from the paral-
lel machine for tasks including adaptive mesh refinement and design optimization. In
general this is not the case today, since most geometry definitions reside inside CAD
systems which have only been ported to traditional workstation-class computers and
are not available in source form. Therefore, flexible access to geometric information
from current and future massively parallel architectures must be developed, using
paradigms such as client-server models and/or surrogate geometry representations.

Alternate avenues for parallelism

As mentioned in the previous section, there exist many engineering problems
which do not require ever increasing levels of spatial resolution, yet which remain
very computationally intensive. In such cases, parallelism must be sought in direc-
tions other than the spatial dimension. For unsteady problems, various techniques
have been proposed for extracting additional parallelism from the time dimension.
One example can be found in time spectral methods, which simulate a nearly peri-
odic flow using multiple instances in time which must all be solved simultaneously
[33, 34, 35]. Another possibility is the use of space-time slabs, particularly when us-
ing different time step sizes in different regions of the domain within a time-implicit
approach. Such an approach is motivated by the observation (using local error esti-
mates) that the majority of the temporal error contributions is confined to relatively
small spatial domains. This is illustrated by the temporal error plot in Figure 4(a),
taken from a two-dimensional oscillating airfoil calculation using the adjoint ap-
proach to estimate temporal error with the airfoil lift as the objective function [36],
showing the temporal error near the airfoil surface to be several orders of magnitude
larger than the average domain error values. A variable time-step space-time slab
formulation is illustrated in Figure 4(b) for a simple first-order backwards-difference
time discretization. This approach results in a larger implicit system which can take
advantage of increased parallelism in the time domain. Note that the entire time do-
main is not treated in parallel in this approach, but only each specific time slab in



sequence. Additionally, computational savings are expected through the use of larger
time steps in regions of the domain where high temporal accuracy is not required. In
this approach, each space-time slab must be redistributed across the parallel machine
in order to ensure load balancing for the ensuing fully-coupled implicit solution pro-
cedure, and this can be achieved using the same dynamic load-balancing approaches
developed for parallel adaptive mesh refinement [37, 38].

For design optimization problems, and for uncertainty quantification problems,
natural opportunities for increased parallelism exist by performing simultaneous sim-
ulations in parameter space. The principal development tasks in these cases involve
the development of parallel management software for spawning cases and retriev-
ing and combining results in an automated fashion, making the most effective use of
available computational hardware. However, the computational requirements of these
tasks can grow exponentially with increasing parameter space size, and the develop-
ment of effective reduced-order models which can be computed efficiently in parallel
will remain an important area of future development [39].

Increased simulation reliability

Adjoint methods have become popular for aerodynamic design optimization prob-
lems [40, 41, 42], and more recently for error estimation and control [43, 44, 36]. The
power of adjoint methods is that they enable the calculation of the sensitivity of one
simulation objective with respect to any number of simulation inputs or design vari-
ables at the cost of one adjoint solution, which is approximately equivalent to the cost
of one additional simulation. In the discrete adjoint approach, the discretized form
of the original governing equations is linearized and transposed, and then solved to
obtain the sensitivities. This process can be modularized and extended to relatively
complex simulation frameworks, including unsteady and multidisciplinary simulation
problems [23, 45]. In addition to enabling efficient implementation of gradient-based
optimization for such problems, this formulation can also be used to provide esti-
mates of error sources arising in complex simulations, including spatial discretiza-
tion errors, temporal errors, algebraic errors and disciplinary coupling errors. These
error estimates can be used either to provide error bounds on the simulation outputs,
and/or to drive adaptive processes which seek to reduce these different error sources
through spatial or temporal refinement, or increases in convergence tolerances. Fig-
ure 5 illustrates the use of adjoint-driven temporal and algebraic error control for a
pitching airfoil/vortex problem. In this case, the vortex is convected past a pitching
airfoil, altering the unsteady lift distribution on the airfoil as the vortex approaches.
The error in the time-integrated airfoil lift is estimated using the adjoint procedure,
and used to refine the time step sizes in regions of large temporal error and to tighten
up the implicit system convergence tolerances in regions of large algebraic error. The
resulting automatically determined distribution of time step sizes and convergence
tolerances after three adaptive passes are depicted in Figure 5(c) and (d) respectively.
This adaptive procedure was shown to result in enhanced accuracy at reduced cost
for the time-dependent lift objective compared to global time step and convergence
tolerance settings in reference [36].

Adjoint-based error estimation problems are relatively expensive, particularly in
the unsteady case, since the entire time-history of the solution must be saved, and the
adjoint equations must be integrated backwards in time [23, 21, 24]. Additionally,
if there exists more than one important objective, the process must be repeated for
each individual objective. However, the benefit is a solution which is not only more



accurate, but for which the accuracy level can be quantified with some certainty, and
for which the relative contribution of various error sources can be identified. There-
fore, as computational capabilities increase, it will prove useful to progressively in-
corporate more techniques of this sort, which enhance the quality of the solution at
additional computational cost, and to seek out strategies for mapping multiple adjoint
problems or sub-problems to parallel hardware for complex real world engineering
problems.

Alternate discretizations

The use of alternate discretizations must also be considered for enhancing the
scalability of engineering simulation problems. In particular, the use of high-order
discretizations such as Discontinuous Galerkin methods offers promising benefits for
use with future HPC architectures. Employing a higher-order accurate discretization
entails the use of lower resolution meshes for equivalent levels of accuracy, as com-
pared to a traditional second-order accurate formulation. This reduces not only the
sequential grid generation and I/O bottleneck, but also de-emphasizes the cost and
complexity of all grid related operations, such as pre- and post-processing, adaptive
refinement, and dynamic load balancing. Additionally, DG discretizations rely on a
compact (nearest-neighbor) stencil, with dense block matrices at the element level
and demonstrate superior scalability on highly parallel multi-core architectures even
for relatively coarse meshes. This is illustrated in Figure 6, where the scalability of
a Discontinuous Galerkin solver running on a relatively coarse mesh of 2.5 million
cells is plotted, using up to 2008 processors on the NASA Columbia Supercomputer.
Although poor scalability is observed for low order discretizations (corresponding to
the situation in traditional finite-volume schemes), scalability improves dramatically
for higher order discretizations on the same mesh due to the increasingly large and
dense matrix block sizes as the order of accuracy is raised.

CONCLUSIONS

In this paper, we have outlined some of the characteristics which make engineer-
ing problems in general, and computational fluid dynamic problems in aerodynamics
in particular, different than the class of discovery-based science problems which are
increasingly dominating the field of high performance computing. Because we are
on the verge of another paradigm shift in future HPC hardware trends, it is important
to proactively consider how this will affect the field of computational fluid dynam-
ics and to develop new strategies early on for dealing with these changes. We have
identified some of the important barriers for porting current-day CFD methods to
massively parallel multicore architectures, and have offered some insights into tech-
niques for addressing these issues. The long term goal is to enable the development
of large-scale engineering simulation tools which can take full advantage of future
HPC architecture capabilities, thus opening new frontiers in engineering simulation
capabilities. Failure to do so will result in the stagnation of our simulation capabilities
as current tools are forced to run exclusively on low-end commodity hardware.
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(a) (b)

Figure 1. Cut-cell Cartesian mesh and computed carpet plot showing the variation of pitching
moment with Mach number and angle of attack at 0 degrees sideslip for an aerospace vehicle
configuration. Reproduced from [10] with permission.

(a) (b)

(c)

Figure 2. Illustration of multidisciplinary digital flight simulation for rotorcraft configuration
under the US Army HIARMS project [14]; (a) Dual mesh paradigm using unstructured mesh
near body and rotor, and structured mesh off-body; (b) Adaptive mesh refinement for captur-
ing wakes and vortices; (c) Multidisciplinary software structure for linking disciplinary codes
including CFD, structural dynamics, and flight control (6DOF).



(a) (b)

Figure 3. (a) Illustration of wide variation of scales in turbomachinery flow (reproduced from
[46]); (b) Collective results from 3rd Drag Prediction Workshop showing questionable grid
convergence with increasing grid resolution for wing-body test case with side-body separation
(left), and wing-body test case with no separation (right).
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Figure 4. (a) Contours of adjoint-estimated temporal error for pitching airfoil problem illus-
trating large spatial variation of temporal error. (b) Illustration of implicit space-time for-
mulation in one spatial dimension making use of different size time steps in different spatial
locations in mesh.
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Figure 5. Adaptive solution of pitching airfoil/vortex problem reproduced from reference
[36]. (a) Computational mesh and solution at initial time illustrating convecting vortex and
airfoil position. (b) Time history of lift coefficient on airfoil. (c) Adaptively selected time
steps using adjoint temporal error estimation scheme (compared with local temporal error
estimation scheme based on ordinary differential equation integration techniques). (d) Adap-
tively selected implicit system convergence tolerance at each time step.

(a) (b)

Figure 6. (a) Illustration of inviscid compressible flow computed over aircraft configuration
using high-order Discontinuous Galerkin discretization using mesh of 2.5 million tetrahedra.
(b) Scalability of DG aircraft simulation on NASA Columbia machine for various orders of
discretization accuracy on same mesh.


