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The time-spectral method applied to the Euler equations theoretically offers significant computational sav-
ings for purely periodic problems when compared to standard time-implicit methods. A recently developed
quasi-periodic time-spectral (BDFTS) method extends the time-spectral method to problems with fast peri-
odic content and slow mean flow transients, which should lead to faster solution of these types of problems as
well. However, attaining superior efficiency with TS or BDFTS methods over traditional time-implicit meth-
ods hinges on the ability to rapidly solve the large non-linear system resulting from TS discretizations which
become larger and stiffer as more time instances are employed. In order to increase the efficiency of these
solvers, and to improve robustness, particularly for large numbers of time instances, the TS and BDFTS meth-
ods are reworked such that the Generalized Minimal Residual Method (GMRES) is used to solve the implicit
linear system over all coupled time instances. The use of GMRES as the linear solver makes these methods
more robust, allows them to be applied to a far greater subset of time-accurate problems, including those with
a broad range of harmonic content, and vastly improves the efficiency of time-spectral methods.

I. Introduction

For problems with strong periodic content, such as turbomachinery flows or rotorcraft aerodynamics, time-spectral
methods can be used to substantially reduce the cost of computing the full, time-dependent solution for a given level
of accuracy. In many cases, time-spectral methods using only a small number of time instances per period can provide
equivalent or superior accuracy, at substantially reduced cost, compared to traditional time-implicit solutions using
hundreds of time steps per period. In other cases, many time instances per period may be needed to resolve both high
and low frequency periodic content simultaneously. The present work primarily targets cases that require many time
instances to demonstrate the capabilities of the solver.

Both the time-spectral and harmonic-balance methods are based on the use of discrete Fourier analysis. These
methods, developed by Hall,1 McMullen,2, 3 and Gopinath,4, 5 transform the unsteady equations in the physical domain
to a set of steady equations in the frequency domain and then use the time-discretization operator to transform the
frequency content back into a discrete number of time instances that reside in the time domain. Each of these time
instances is coupled to all other time instances through the time-discretization operator, and the entire system is solved
as a single, large, steady problem. The time-spectral method was shown to be faster than the dual-time stepping
implicit methods using backwards difference time formulae for time periodic computations, such as turbomachinery
flows,2, 5 oscillatory pitching airfoil/wing cases,4, 6 flapping wing,7 helicopter rotor8, 9 and vortex shedding problems.3

In previous work, we have introduced a hybrid BDF/time-spectral approach (BDFTS) which aims to simulate
quasi-periodic flows with slow transients combined with relatively fast periodic content using global BDF time step
sizes of the order of the period length, while making use of the properties of the time-spectral approach to capture
accurate details of the periodic flow components.10, 11, 12, 13 Both the pure TS and the BDFTS methods have previously
been applied to problems with spectral content contained only in the first few harmonics,10, 11, 12, 13 because the number
of time instances that could be solved simultaneously has been limited in the past. Previously, a stationary iterative
method, such as Jacobi or Gauss-Seidel, has been used to solve the implicit, linear system. Because these meth-
ods require the Jacobian to be diagonally dominant, they rapidly become inefficient as the number of time-spectral
instances increases. To alleviate this problem, a method which does not require diagonal dominance must instead
be used to solve the implicit, linear system. The Krylov subspace, Generalized Minimal Residual method has been
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chosen for this purpose. By using GMRES, the disparate time instances are much more strongly coupled than in pre-
vious approaches. To accelerate the convergence of GMRES, a stationary iterative method, specifically block-colored
Gauss-Seidel (BCGS), is used as a preconditioner. This BCGS preconditioned GMRES represents an efficient linear
solver that allows time-spectral based methods to be applied to a much wider variety of problems than was previously
possible, including those problems that combine both fast and slow periodic content.

In the following sections we present the necessary components of the time-spectral discretization and the appli-
cation of GMRES to this discretization. We first outline the governing equations and the base solver for the Euler
equations. We then discuss additions to the flow solver required to implement the time-spectral method. Next, we dis-
cuss the linearization of the time-spectral Euler equations and the solution of the resultant linear system using BCGS
and GMRES. Following, we present results for two test cases, both of which contain the influence of higher harmonic
content. We examine the efficiency of the different linear solvers in depth to ascertain how efficiency increases are
obtained and how the time-spectral solver might be made even more efficient in the future. Finally, we discuss our
future work to improve the efficiencies and capabilities of the TS/BDFTS methods further.

II. Governing Equations

A. Base Solver

The Euler equations in conservative form can be written as:

∂U
∂t

+∇ ·F(U) = 0 (1)

where U represents the vector of conserved quantities (mass, momentum, and energy) and F(U) represents the con-
vective fluxes. Integrating over a (moving) control volume Ω(t), we obtain:∫

Ω(t)

∂U
∂t

dV +
∫

∂Ω(t)
(F(U) · ñ)dS = 0 (2)

Using the differential identity
∂

∂t

∫
Ω(t)

UdV =
∫

Ω(t)

∂U
∂t

dV +
∫

∂Ω(t)
U(ẋ · ñ)dS (3)

where ẋ and ñ are the velocity and normal of the interface ∂Ω(t), respectively, equation (2) becomes:

∂

∂t

∫
Ω(t)

UdV +
∫

∂Ω(t)
(F(U)−Uẋ) · ñdS = 0 (4)

Considering U as cell averaged quantities, these equations are discretized in space as:

∂

∂t
(V U)+R(U, ẋ(t), ñ(t)) = 0 (5)

where R(U, ẋ, ñ) =
∫

∂Ω(t) (F(U)− ẋU) · ñdS represents the discrete convective fluxes in ALE form and V denotes the
control volume. In the discrete form, ẋ(t) and ñ(t) now represent the time varying velocities and surface normals of
the control-volume boundary faces.

The Euler equations are discretized by a central difference finite-volume scheme with additional matrix-based
artificial dissipation on hybrid meshes which may include triangles and quadrilaterals in two dimensions. Second-
order accuracy is achieved using a two-pass construction of the artificial dissipation operator, which corresponds to an
undivided biharmonic operator. A single unifying face-based data-structure is used in the flow solver for all types of
elements. For a given face, the residual contribution of that face can be written as:

R1stO,ik(U, ẋ(t), ñ(t)) = (Fi(Ui)+Fk(Uk)−Uikẋik) · ñ∆S+κT|Λ|T−1(Ui−Uk) (6)

for first-order matrix dissipation, where T is the left-eigenvector matrix, Λ is the eigenvalue matrix, and T−1 is the
right-eigenvector matrix of the convective fluxes. For second-order matrix dissipation, the residual on a face can be
written as follows:

R2ndO,ik(U, ẋ(t), ñ(t)) = (Fi(Ui)+Fk(Uk)−Uikẋik) · ñ∆S+κT|Λ|T−1(Li(U)−Lk(U)) (7)
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where L(U) is the undivided Laplacian operator, taken as:

Lp(U) =
neighbors

∑
q=1

(Uq−Up) (8)

In both cases, κ is an empirical constant with a typical value of 1/2 for first-order matrix dissipation and 1/8 for second-
order matrix dissipation.

B. Time-spectral Method

If the flow is periodic in time, the variables U can be represented by a discrete Fourier series. The discrete Fourier
transform of U in a period of T is given by4

Ûk =
1
N

N−1

∑
n=0

Une−ik 2π
T n∆t (9)

where N is the number of time instances and ∆t = T/N. The Fourier inverse transform is then given as

Un =

N
2 −1

∑
k=−N

2

Ûkeik 2π
T n∆t (10)

It should be noted that N
2 is an integer division operation. Also note that this corresponds to a collocation approxima-

tion, i.e. the function U(t) is projected into the space spanned by the truncated set of complex exponential (spectral)
functions, and the expansion coefficients (in this case the Ûk) are determined by requiring U(t) to be equal to its
projection at N discrete locations in time, as given by equations (9) and (10).
Differentiating equation (10) in time, we obtain:

∂

∂t
(Un) =

2π

T

N
2 −1

∑
k=−N

2

ikÛkeik 2π
T n∆t (11)

Substituting equation (9) into equation (11), we get14, 15

∂

∂t
(Un) =

N−1

∑
j=0

d j
nU j (12)

where

d j
n =

{
2π

T
1
2 (−1)n− j cot(π(n− j)

N ) n 6= j
0 n = j

(13)

for an even number of time instances and

d j
n =

{
2π

T
1
2 (−1)n− j csc(π(n− j)

N ) n 6= j
0 n = j

(14)

for an odd number of time instances. Next, substitute equation (12) into equation (5), and require equation (5) to hold
exactly at the same N discrete locations in time (i.e. multiply (5) by the Dirac delta test function δ(t− tn) and integrate
over all time), which yields the following time-spectral governing equation:

N−1

∑
j=0

d j
nV jU j +R(Un, ẋn, ñn) = 0 n = 0,1,2, ...,N−1 (15)

This results in a system of N equations for the N time instances Un which are all coupled through the summation
over the time instances in the time derivative term. The spatial discretization operators remain unchanged in the time-
spectral approach, with only the requirement that they be evaluated at the appropriate temporal location. Thus, the
time-spectral method may be implemented without any modifications to an existing spatial discretization, requiring
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only the addition of the temporal discretization coupling term, although the multiple time instances must be solved
simultaneously due to this coupling.

As was mentioned in the introduction, the time-spectral method has been extended to quasi-period problems in
previous work;10, 11, 12, 13 however, since none of the test cases presented herein make use of the BDFTS method, a
derivation of it has been omitted. This derivation is present in all of the works last referenced.

C. Fully Implicit Method

A common approach for solving the system of equations resulting from the time-spectral method (c.f. equation (15))
consists of adding a pseudo-time term as:

∂

∂τ
(V nUn)+

N−1

∑
j=0

d j
nV jU j +R(Un, ẋn, ñn) = 0 (16)

and time-stepping these equations until a pseudo-time steady state is achieved. However, for explicit pseudo-time
stepping approaches, it has been shown that the pseudo-time step is limited by stability considerations as:5

∆τn =CFL
V n

‖ λ ‖+V nk′
(17)

where λ is the spectral radius of the spatial discretization operator R(Un, ẋn, ñn) and k′ represents the largest wave-
number that can be resolved by the specified N time instance:

k′ =

πN
T if N is even

π(N−1)
T if N is odd

(18)

The impact of this restriction can be reduced by resorting to an implicit approach in pseudo-time. Such an approach
has been derived in reference16 using a first-order backwards difference scheme in pseudo-time.

A more general strategy consists of devising a Newton approach for solving the fully-coupled non-linear equations
at all time instances given by equation (15) or (16). The Newton scheme takes the form:

[A]∆U =−
N−1

∑
j=0

d j
nV jU j−R(Un, ẋn, ñn) (19)

with the resulting Jacobian matrix given by:16

[A] =


V 0

∆τ0
I+J0 V 1d1

0I . . . V N−1dN−1
0 I

V 0d0
1I V 1

∆τ1
I+J1 . . . V N−1dN−1

1 I
...

... . . .
...

V 0d0
N−1I V 1d1

N−1I . . . V N−1

∆τN−1
I+JN−1

 (20)

where a diagonal pseudo-time term can be included as shown for enhanced diagonal dominance of the Jacobian
matrix. Equation (17) provides a suitable estimate for the local pseudo-time step required for diagonal dominance.
Theoretically, use of this pseudo-time step should allow the same CFL number to be used regardless of the number of
time instances. However, it has been found that a larger CFL number can be used when the number of time instances
is small. As the number of time instances is increased, the CFL number asymptotically approaches a constant value
such that it must no longer be decreased as more time instances are added.

In the above matrix, J j corresponds to the Jacobian of the spatial discretization operator evaluated at time instance
j. For a first-order spatial discretization, J j,1stO is as follows:

J j,1stO =
∂R1stO

∂U
(21)

For a second-order spatial discretization, J j,2ndO contains many more entries, as each element of the mesh is not
only influenced by its nearest neighbors, but also by the neighbors of its neighbors. The second-order Jacobian is
derived as follows:
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J j,2ndO =
∂R2ndO

∂U

∣∣∣∣∣
L=constant

+
∂R2ndO

∂L

∣∣∣∣∣
U=constant

· ∂L
∂U

(22)

It should be readily apparent that the full Jacobian is of a size that could not be stored on modern computers
for computational mesh sizes that are typically used. Instead, only the non-zero blocks of the Jacobian are stored.
The first-order Jacobian is stored as an array of its diagonal blocks, which is (in 2D) [4× 4×Nc] where Nc is the
number of elements in the computational mesh, and an array of its off-diagonal blocks, which is stored on the faces
and is [2×4×4×N f ] where the 2 represents the opposite sides of each face and N f is the number of faces. The full
second-order Jacobian is not stored explicitly; rather, we enable the evaluation of the exact Jacobian-vector products as
required at each linear-solver iteration by storing three sets of diagonal and off-diagonal blocks, as shown in equation
(22), which are then used to assemble Jacobian-vector products. Returning to equation (19), each non-linear Newton
iteration requires solving the linear system

[A]∆U =−RTS(U) (23)

where RTS(U) represents the residual of the complete time-spectral system (i.e. right-hand side of equation (19)),
and [A] is a large matrix spanning all spatial and temporal degrees of freedom. Since direct inversion of [A] is
generally intractable, an inexact Newton scheme can be formulated using an approximate representation of [A] which
is simpler to invert. One possible simplification is to replace the exact spatial Jacobian in each diagonal block Ji by the
corresponding first-order Jacobian Ji,1stO as is typically done for steady-state solvers. Another simplification consists
of dropping all the off-diagonal terms representing the coupling between different time instances. When this is done,
the linear system becomes decoupled between time instances and can be written as:[

V i

∆τi
I+Ji,1stO

]
∆Ui =−RTS(U) (24)

for each time instance i = 0,1,2, ...,N− 1. Alternatively, the diagonal blocks in the [A] matrix may be retained and
the system solved in a block Jacobi fashion following:[

V i

∆τi
I+Ji,1stO

]
∆Ul+1

i =−RTS(U)−∑
j 6=i

[
V jd j

i I
]

∆Ul
j (25)

where the block size corresponds to an entire time instance and where l denotes the block Jacobi iteration index.

D. Block-colored Gauss-Seidel Linear Solver

As can be seen, both approaches require the inversion of the first-order spatial Jacobian (augmented with a pseudo-time
term) at each iteration. This may be accomplished using a suitable iterative solver such as block colored Gauss-Seidel
(BCGS). In this case, the block now corresponds to the 4×4 block diagonal matrix at each cell of the mesh, and the
iterative scheme can be written as:[

V i

∆τi
I+
[
Di,1stO

]]
∆Ul+1

i =−RTS(U)−∑
j 6=i

[
V jd j

i I
]

∆Ul
j−
[
Oi,1stO

]
∆Ul

i (26)

where Di,1stO denotes the 4× 4 block matrix for the current cell, and Oi,1stO refers to the off-diagonal blocks for
neighboring mesh cells. Although this equation describes a block Jacobi iteration (at the mesh cell level), a block-
colored Gauss-Seidel scheme can be recovered with a few simple modifications. First, the computational elements
are divided into computational “colors” such that no two adjacent elements are the same color. This coloring allows
the Gauss-Seidel method to be run in parallel. The BCGS method then updates all elements of each individual color
sequentially, such that each update uses the newest information available for all other colors. The BCGS algorithm,
written in residual form for a generic linear system is given in algorithm (1).

In algorithm (1), ζ is the maximum number of BCGS iterations allowed, ncolors is the number of colors into which
the elements have been divided, and ne j is the number of elements having the jth color. Additionally, Dk is the diagonal
block of the Jacobian for element k, and is inverted directly using LU-decomposition. The specification xcurrent is used
to indicate that for any given color, some elements will have information from the previous iteration xi while others
will have already been updated during the current iteration xi+1; in other words, whether from the previous or current
iteration, the most up to date information at the time of the evaluation of line 5 is used.
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Algorithm 1 : Block-colored Gauss-Seidel
1: Given Ax = b
2: for i=1,. . . ,ζ do
3: for j=1,. . . ,ncolors do
4: for k=1,. . . ,ne j do
5: Compute ri,k = b−Axcurrent

6: Compute ∆xi,k = D−1
k ri,k

7: Update xi+1,k = xi,k +∆xi,k
8: end for
9: end for

10: Compute RL,i = ‖ri‖2
11: If satisfied Stop.
12: end for

As noted earlier, the A matrix given in lines 1 and 5 of the algorithm can either include or exclude the off-diagonal
terms given in equation (20). When these time-coupling terms are excluded, this corresponds to a BCGS solver with
explicit time treatment, which is abbreviated “BCGS-EX.” When the off-diagonal terms are included, implicit time
treatment is used in the BCGS solver, and this method is abbreviated “BCGS-IM.”

E. Generalized Minimal Residual Method

Despite the additional stability the above fully-implicit BCGS affords over methods that are only spatially implicit, the
time-spectral Euler equations still become difficult to solve as the number of time instances or the reduced frequency of
the problem increases. With an increasing number of time instances and/or higher reduced frequencies, the Jacobian
given in equation (20) proceeds farther and farther from diagonal dominance. To restore diagonal dominance, a
decreasingly small pseudo-time step must be used. Thus, the potential efficiency gains of time-spectral methods over
time-implicit methods begin to evaporate.

To regain the efficiency improvements afforded by time-spectral methods, a linear solver that does not require
diagonal dominance of the Jacobian should be used. The Generalized Minimal Residual method is such a solver. A
welcome byproduct of this solver choice is that GMRES also more fully couples the various time instances. This
additional coupling arises because the Hessenberg matrix that is directly inverted as part of GMRES is constructed
using the full Jacobian of the linear system coupled over all time instances; whereas, the matrix that is directly inverted
during each iteration of a stationary iterative method is some easily invertible part of the full Jacobian (usually the
diagonal blocks). In other words, stationary iterative methods ignore some information (and thereby some coupling),
but GMRES uses this information and preserves the full coupling.

A flexible variant of the GMRES algorithm as described by Saad17 is used. This flexible variant allows the use of
an iterative method as preconditioner. The flexible GMRES (FGMRES) algorithm proceeds as given in algorithm (2).

Algorithm 2 : Flexible GMRES
1: Given Ax = b
2: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β

3: for j=1,. . . ,n do
4: Compute z j := P−1v j
5: Compute w := Az j
6: for i=1,. . . ,j do
7: hi, j := (w,vi)
8: w := w−hi, jv j
9: end for

10: Compute h j+1, j = ‖w‖2 and v j+1 = w/h j+1, j
11: Define Zm := [z1, . . . ,zm], H̄m = {hi, j}1≤i≤ j+1;1≤ j≤m
12: end for
13: Compute ym = argminy‖βe1− H̄my‖2 and xm = x0 +Zmym
14: If satisfied Stop, else set x0← xm and GoTo 1.

In this description, A corresponds to the full time-spectral Jacobian matrix [A] defined in equation (20), which
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may or may not be augmented with a pseudo-time step, b corresponds to the negative of the non-linear time-spectral
residual −RTS(U), and x is the non-linear update ∆U to be computed.

Preconditioning is applied in line 4 of the algorithm. The BCGS linear solver is used for preconditioning in three
different configurations as covered in the next subsection. For efficiency, each Krylov vector is preconditioned with
the corresponding first-order accurate flow Jacobian. A pseudo-time step must be applied to the BCGS system to
ensure diagonal dominance and convergence. To solve the minimization problem in line 13 of the algorithm, QR-
factorization by means of Givens rotations is utilized. Finally, line 14 of the algorithm indicates that this algorithm is,
in fact, truncated, restarting GMRES using n Krylov vectors per restart.

Although algorithm (2) shows the minimization problem outside the loop over Krylov vectors, we in fact update
this minimization as each additional Krylov vector is added. This is done so that the current value of the linear residual
is known for each iteration j. The FGMRES algorithm exits whenever this residual has either converged a specified
amount or has converged to machine zero.

A pseudo-time step is used in the matrix A in the FGMRES algorithm as well. By using this pseudo-time step
within FGMRES itself the routine is modified positively as follows: an update that will avoid over-correction issues
is used; the pseudo-time step is allowed to grow as the residual decreases, so quadratic convergence can be retained;
and the convergence rate of the FGMRES linear solver itself is increased (i.e. fewer Krylov vectors and/or restarts are
required to converge the linear system) because the pseudo-time step term makes the Jacobian better conditioned for
Krylov subspace methods. Thus, two different pseudo-time steps are used: one in the second-order Jacobian used by
the FGMRES algorithm itself and another in the first-order Jacobian used in the BCGS portion of the preconditioner.
Because the Jacobian used in the BCGS preconditioner must be diagonally dominant, the preconditioner pseudo-time
step is almost always smaller and grows more slowly (if at all) than the FGMRES pseudo-time step. Conversely, the
pseudo-time step used in the FGMRES algorithm grows rapidly such that the diagonal pseudo-time term becomes
vanishingly small and an exact Newton method is recovered after several orders of magnitude decrease in the non-
linear residual.

1. Preconditioning Methods for FGMRES

As mentioned above, all preconditioning methods make use of the block-colored Gauss-Siedel solver in one form or
another. The first preconditioning method uses BCGS with explicit treatment of time. In other words, we use algorithm
(1), with a specified number of iterations ζ on each Krylov vector. Here the [A] matrix, given by equation (20), uses
the first-order spatial Jacobian with a pseudo-time step that is different, and smaller, than the pseudo-time step used in
FGMRES. Additionally, [A] does not include the off-diagonal, time-spectral terms. We abbreviate GMRES using this
preconditioner as “GMRES-EX” in the remainder of this work.

The next preconditioner used is BCGS with implicit treatment of time. This preconditioner uses algorithm (1)
with a specified number of iterations ζ on each Krylov vector. The full [A] matrix, including the time-spectral
coupling terms, is used, but again, the first-order spatial Jacobian is used with a smaller pseudo-time step. This
solver/preconditioner combination is abbreviated “GMRES-IM”.

Both of the preconditioners presented thus far have a serious limitation: the pseudo-time step size needed to
preserve diagonal-dominance of the Jacobian and an appropriately scaled update remains relatively small. In order to
bypass this limitation, we form a preconditioner for FGMRES as a defect-correction method applied to the residual of
equation (25) as:[

V i

∆τBCGS
I+Ji,1stO

]
(∆Ul+1

i −∆Ul
i) =−RTS(U)−∑

j 6=i

[
V jd j

i I
]

∆Ul
j−
[

V i

∆τFGMRES
I+Ji,1stO

]
∆Ul

i (27)

where the right-hand-side corresponds to the residual of equation (25). A dual iteration strategy is required for this
preconditioner (thus the term defect-correction). Inner BCGS iterations are used to invert the left-hand side matrix
providing an updated value for ∆Ul+1

i , which is then substituted into the right-hand side terms, and the process is
repeated, effectively driving the right-hand-side residual to zero after a number of outer iterations. The advantage of
this approach comes from the fact that the pseudo-time step on the right-hand side residual is generally much larger
than that required for stability of the BCGS iterative scheme. This solver/preconditioner combination is abbreviated
“GMRES-DC”.

Table (1) summarizes the various solvers and solver/preconditioner combinations presented in the current work
and the abbreviations used to describe them.
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Table 1. Summary of Solvers and Preconditioners

Linear Solver Preconditioner Abbreviation
Time-explicit BCGS N/A BCGS-EX
Time-implicit BCGS N/A BCGS-IM
FGMRES Time-explicit BCGS GMRES-EX
FGMRES Time-implicit BCGS GMRES-IM
FGMRES Defect Correction with

Time-implicit BCGS
GMRES-DC

F. Implementation

The various time instances in the time-spectral approach are coupled and must be solved simultaneously. This cou-
pling can be implemented serially, whereby a single time-instance is solved at any given moment, and then transmits
its update to the next time instance, which is then solved and the process repeated sequentially until all time instances
have been updated. However, since the coupling only comes through a source term, each individual time instance
may be solved in parallel with the other time instances. This introduces an additional dimension for achieving par-
allelism compared to time-implicit computations, where progress in the time dimension is necessarily sequential. In
our implementation, two levels of parallelism are introduced, the first in the spatial dimension, and the second in the
time dimension where the various time instances are solved by spawning multiple instances of the spatial solver on
a parallel computing cluster. The implementation uses MPI for parallelism in the time dimension and OpenMP for
additional parallelism in the space dimension.

One of the drawbacks of the TS/BDFTS methods is that each time instance must broadcast its entire solution
field to all other time instances, which can result in a significant amount of communication. Various strategies for
communicating the different time instances to all processors have been investigated. Currently, a round-robin approach
is implemented, where each processor sends its solution vector to a single neighboring processor. The received time-
instance solution vector is added to the time derivative source term on the local processor, and then passed on to
the next processor. By repeating this procedure N− 1 times, where N is the number or time instances, the complete
time derivative involving summations from all time instances is accumulated without the requirement of creating a
local temporary copy of all the additional time-instance solution vectors or performing any communication intensive
broadcast operations.

In the time-spectral method, each time-spectral instance is converged such that the the root-mean-square of its
non-linear residual vector is less than 1× 10−11. Similarly, for the time-implicit results that are presented, at each
time step, the root-mean-square of the non-linear residual vector is driven to that same 1× 10−11 level of precision.
While this convergence tolerance would be considered to be overly tight by most industry standards, we feel it is good
practice for algorithm development and scientific inquiry.

III. Results

A. Test Case 1: 1st and 7th Harmonic Pitching Motion

A two-dimensional inviscid flow test case is constructed with the forced, pitching oscillation of the NACA-0012 airfoil
at two reduced frequencies kc1 = 0.02 and kc2 = 0.14. It should be noted that the second frequency is 7× the first;
in other words, motion occurs in the first and seventh harmonics. This case is run at a freestream Mach number
M∞ = 0.50 and pitches about the airfoil quarter chord. The amplitude of pitching in the first harmonic is α1 = 2.5o

and α7 = 1.0o in the seventh harmonic; additionally, α0 = 0.0o. This motion is given by the following equation:

α(t) = α0 +α1 sin(ωt)+α7 sin(7ωt). (28)

The angular frequency is related to the reduced frequency as follows:

ω =
2U∞kc

c
(29)
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where U∞ is the freestream velocity and c is the airfoil chord length. The unstructured, computational mesh consists
of 8747 triangles. Figure (1) shows this near field mesh. Figure (2) plots the lift and moment coefficients as functions
of non-dimensional time for a reference, time-implicit solution which uses 512 time steps per period and time-spectral
solutions using N = 3,11,13, and 15 time instances. As can be seen, N = 15 time instances matches the reference
time-implicit solution quite well for both lift and moment coefficients. This is the expected result as the number of
time instances required is N = H×2+1 where H is the highest harmonic of content that can be resolved by these N
time instances. Since lift is primarily a function of angle-of-attack, and the 7th harmonic is the highest harmonic of
pitching motion, 15 time instances can accurately resolve the lift. In this case, the moment coefficient is primarily a
function of lift; thus 15 time instances can also resolve the moment coefficient.

Figure (3) plots the convergence history of the non-linear residual versus both the non-linear iteration count and
wall-clock time for N = 3,7,11, and 15 time instances obtained using the GMRES-IM solver, which was the best
performing solver for most numbers of time instances. As can be seen, all cases converge very smoothly. Additionally,
this case converges along very similar non-linear iteration paths for all four time instance numbers shown. Wall-clock
time convergence scales along expected lines since all cases were run on the same hardware. Finally, Figure (4) plots
the wall-clock time needed to converge this test case for 32,64,128,256, and 512 time steps per period (top axis) using
the time-implicit method and for 3,5,7,9,11,13, and 15 time instances (bottom axis) using the time-spectral method.
As can be seen, the time-spectral method, even using the maximum of N = 15 time instances, converges more quickly
than the time-implicit method in all cases.

1. Performance comparison of solver variants

Figure (5) plots the convergence of the time-spectral method for the this test case using N = 3 time instances for the
five different solver configurations summarized in Table (1). In order to resolve any details for the GMRES based
solvers, it was necessary to scale the x-axis such that the full convergence history of both BCGS-EX and BCGS-IM
are not visible. However, it can readily be seen how much more efficient the GMRES based solvers are. Also note
that all solvers were run on identical hardware. Table (2) summarizes the convergence of the various solvers that are
shown in Figure (5), including at what point both BCGS-EX and BCGS-IM eventually reach convergence.

Table 2. Convergence of the First Test Case with N = 3 Time Instances

Solver Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
BCGS-EX 6,699 21,442 N/A 161
BCGS-IM 2,777 16,870 N/A 98
GMRES-EX 12 2,907 651 12
GMRES-IM 12 2,986 501 13
GMRES-DC 11 2,683 447 13

It can be seen that the GMRES-based solvers are by far the fastest in every measure. In comparison to the BCGS-
EX solver, the BCGS-IM solver reduces the number of non-linear iterations by a factor of 2.4, the number of BCGS
iterations by a factor of 1.3, and the wall-clock time by a factor of 1.6. These gains are accomplished almost exclusively
by the increased CFL number allowed by BCGS-IM. A CFL number of 7.2 can be used for BCGS-EX, while a CFL
number 4.17× higher, i.e. 30.0, can be used for the BCGS-IM solver.

The GMRES-EX method gains over the BCGS-IM by using 17% the number of BCGS iterations, while decreasing
the number of non-linear iterations by a factor of 231× and the wall-clock time by a factor of about 8.2×. The gains
of GMRES-EX first occur by allowing each BCGS iteration to use a higher CFL number, i.e. 20.0, than can be used
by BCGS-EX as the linear solver, itself. This solver also allows each non-linear iteration to make use of more BCGS
iterations. This aspect decreases the overhead cost of each BCGS iteration, which decreases the total wall-clock time
even further. Because this test case using three time instances is well-conditioned for time-spectral solution, the more
complicated GMRES-IM and GMRES-DC solvers exhibit few efficiency gains. Most notably, the number of Krylov
vectors used is reduced, but the increased overhead costs (because of increased MPI communications) of these two
methods more than account for this computational savings when it comes to wall-clock time.

Results for the various solvers when N = 15 are presented in Table (3) except BCGS-EX is omitted since it is so
clearly inefficient.
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Table 3. Convergence of the First Test Case with N = 15 Time Instances

Solver Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
BCGS-IM 16,730 38,566 N/A 3,550
GMRES-EX 12 8,687 2,502 316
GMRES-IM 13 5,469 1,832 204
GMRES-DC 13 5,859 1,111 196

The convergence of this test case, run with N = 15 time instances, follows similar trends to N = 3. Because of
the increased stiffness of the problem introduced by the additional time instances, the GMRES-IM and GMRES-DC
solvers both show efficiency gains. This benefit occurs in reduced numbers of BCGS iterations and Krylov vectors
primarily as a result of the implicit coupling among the time-instances present in these solvers. Overall, it can be seen
that the addition of GMRES as the linear solver greatly increases the efficiency of time-spectral methods.

B. Test Case 2: AGARD test case No. 5

The second test case uses the same computational mesh as the first. A forced, pitching oscillation of the NACA-0012
airfoil at a Mach number of 0.755 and a mean incidence α0 of 0.016 degrees is prescribed at the quarter chord of the
airfoil as follows:

α(t) = α0 +αA sin(ωt). (30)

The reduced frequency kc is equal to 0.0814 and the amplitude αA is equal to 2.51 degrees. This test case corresponds
to the AGARD test case No. 5. Figure (6a) shows the comparison of the lift coefficient versus non-dimensional time
between a reference solution obtained using a second-order accurate time-implicit solver with ∆t = T/4096 (where
T denotes the period of airfoil motion) and the time-spectral method with N = 3,7,15, and 47 time instances. For
this case, the lift generated by the time-spectral method with even 1 harmonic or 3 time instances shows reasonable
agreement with the reference solution. Figure (6b) shows the comparison of the moment coefficient versus non-
dimensional time for the same reference and time-spectral solutions. The moment history contains multiple harmonics
and thus is not captured accurately with N = 3 in the TS method; in fact, a rather large number, N = 47, of time
instances is needed to produce near-exact agreement. Figure (6c) shows the comparison of the drag coefficient versus
non-dimensional time for those same solutions. It should be noted that, since the results use the Euler equations, the
drag shown is pressure drag and does not contain viscous effects. The drag coefficient shows good agreement for the
N = 47 solution. The most difficult areas of the pressure drag curve to resolve occur around t = 7s and t = 28s, where
the N = 47 and reference solutions show a slight reversal. It can be seen that the results of the TS method converges
to the reference solution as the number of time instances increases.

Figure (7) compares the wall-clock time required to complete a converged solution for different numbers of time
instances for the time-spectral method using the GMRES-DC solver and for different numbers of time steps per period
for the time-implicit method. Although, not included in the present work, examination of the accuracy of the time-
implicit solutions show that at least 256 time steps per per period are needed to replicate the reference solution. As can
be seen from this figure, time-spectral solutions using up to 27 time instances can be converged in about the same or
less time than the 256 time steps per period time-implicit solution. The result that in fact 47 time instances are needed
to reproduce the reference solution and that the N = 47 time-spectral solution requires 2.4× the wall-clock time of the
256 time steps per period time-implicit solution to converge, however, indicates that future work remains to make the
time-spectral method more efficient than the time-implicit method for complicated-flow test cases like the AGARD 5
test case.

It should be noted that all time-implicit solutions are run on a single 16-core cluster node. Time-spectral solutions
for N = 3, ..,15 are run on a single 16-core cluster node. The time-spectral solutions for 17 or more time instances
are run on as many nodes as are necessary such that each time instance uses one CPU core. For example, the 39
time-instance solution is run on 3× 16-core cluster nodes with each time instance using one core; thus 9 cores among
the three nodes are left idle. It should also be noted that the wall-clock time of the time-spectral solutions can be
decreased by utilizing additional computational resources. In this way, even the N = 47 time instances, time-spectral
solution can still be completed in less wall-clock time than the time-implicit solution.

If the convergence of the first and second test cases are compared, it is obvious that the first test case converges
much more quickly than the second case when using the time-spectral method. Two factors are the main causes of the
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increased convergence time of the second test case: first, the transonic nature of the freestream Mach number of the
second case, and second, the higher reduced frequency of the first harmonic of its airfoil motion.

The transonic Mach number naturally means that shock waves will be present in the flow. For this particular test
case, the shock waves develop on the the upper and lower surfaces at different moments in time, periodically depending
on the angle-of attack of the airfoil at each moment. These moving, disappearing and reappearing shock waves
complicate the flow solution and introduce higher frequency (possibly non-smooth) content into the time dependent
solution. The increased reduced frequency of the second test case also leads to convergence degradation since the
coupling between the time-spectral instances is increased, as determined by the coefficients in equations (13) and (14),
which are directly proportional to the reduced frequency. It can also be seen from equations (17) and (18) that an
increase in the reduced frequency results in a smaller pseudo-time step size for a given CFL number. Despite these
phenomena that cause the second test case to be more difficult to converge time-spectrally, time-spectral methods still
prove competitive when compared to time-implicit methods.

1. Convergence Study

Figure (8) plots the convergence of the time-spectral method for the AGARD 5 test case using N = 3 time instances
for the five different solver configurations summarized in Table (1), just as was done for the first test case. Similarly,
in order to resolve any details for the convergence of the GMRES based solvers, it was necessary to scale the x-
axis such that the full convergence history of both BCGS-EX and BCGS-IM are not visible. Table (4) summarizes
the convergence of the various solvers that were shown in Figure (8). For the second test case, it can be seen that

Table 4. Convergence of the AGARD 5 Test Case with N = 3 Time Instances

Solver Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
BCGS-EX 106,844 213,687 N/A 2,317
BCGS-IM 8,744 17,487 N/A 214
GMRES-EX 151 9,205 4,564 72
GMRES-IM 25 6,101 2,061 37
GMRES-DC 21 6,800 540 30

the GMRES-DC solver is the most computationally efficient in three of the four measures. When comparing the
BCGS-EX solver to the BCGS-IM solver, the latter reduces the number of non-linear iterations, the number of BCGS
iterations, and the wall-clock time all by more than a factor of 10. These gains are accomplished almost exclusively by
the increased CFL number allowed by the time-implicit BCGS. A CFL number of only 0.25 can be used for BCGS-EX,
while a CFL number more than 10× higher, i.e. 2.6, can be used for the BCGS-IM solver.

The GMRES-EX method gains over the BCGS-IM by halving the number of BCGS iterations used, while decreas-
ing the number of non-linear iterations by a factor of 58 and the wall-clock time by a factor of almost 3. The gains
of GMRES-EX were already outlined for the first test case but are henceforth summarized as follows: each BCGS
iteration is more efficient when used as a preconditioner rather than as the main linear solver and GMRES allows the
use of more BCGS iterations for every non-linear iteration, reducing overhead costs. The further efficiency increases
provided by the GMRES-IM solver over the GMRES-EX solver occur, again, because of the implicit coupling among
time instances.

The gains of adding a defect-correction step to the GMRES preconditioner, which were not significant for the
first test case, accrue mainly because of the decreased numbers of non-linear iterations and Krylov vectors, which
decreases the total overhead cost of convergence to the final solution. This is evidenced by the number of BCGS
iterations increasing slightly as compare to the GMRES-IM method while the number of non-linear iterations and the
number of Krylov vectors used decreases.

Results for the various solvers when N = 15 are presented in Table (5) except BCGS-EX is again omitted. As can
be seen once again, the same trends hold for the N = 15 solutions as were discussed for the N = 3 solutions. It should
be reiterated that all cases for both N = 3 and N = 15 have been run on a single 16-core cluster node. This identical
hardware means that each time instance of the N = 3 solutions is run on 5 cores, whereas each time instance of the
N = 15 solution is run on a single core. The wall-clock time to convergence of the N = 15 solution can be greatly
decreased if each time instance is run on 5 cores, as was done in the N = 3 case. This will have required a total of 75
cores for the N = 15 case.
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Table 5. Convergence of the AGARD 5 Test Case with N = 15 Time Instances

Solver Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
BCGS-IM 12,992 27,653 N/A 2,430
GMRES-EX 125 22,197 11,098 873
GMRES-IM 124 11,551 3,922 440
GMRES-DC 22 14,525 383 423

2. An Investigation of the Effects of Additional Preconditioning

To establish a better idea of how the time-spectral solver might be further improved, particularly for stiffer cases such
as the second test case, the convergence effects of the amount of preconditioning performed on each Krylov vector
is examined. It is expected that increasing the number of defect-correction steps will reduce the number of Krylov
vectors needed to converge a solution. Figure (9) plots the non-linear iteration and Krylov vector convergence for
N = 3 time instances using 2,4,6, and 8 defect-correction steps per Krylov vector. This data is then summarized with
additional data points in Table (6).

Table 6. Comparison of the Nature of Convergence for Test Case 2 with 3 Time Instances

Defect Correction Steps Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
2 27 7,529 1,385 35.9
3 24 7,044 994 32.7
4 24 6,923 767 31.8
5 22 6,937 659 30.5
6 21 6,800 540 29.7
7 21 7,529 509 32.1
8 21 7,902 476 34.7
9 21 7,994 431 35.6
10 21 8,376 405 36.5

As can be seen from this figure and table, the number of cumulative Krylov vectors needed to produce a converged
solution can be reduced substantially when more preconditioning iterations are used. Additionally, added precondi-
tioning also moderately reduces the number of non-linear iterations needed. However, both the cumulative number
of BCGS iterations used and the wall-clock time are little affected. These results indicate that one way to make the
solver more efficient is to use a better stationary iterative method than BCGS, such that each stationary iterative solve
accomplishes a greater residual reduction, i.e. is more computationally efficient.

Figure (10) plots the same information as the last figure except for N = 15 time instances using 6,12,18, and 24
defect-correction iterations per Krylov vector, and Table (7) summarizes these results with more data points. Similarly,
Figure (11) is a comparison of the convergence for N = 31 time instances using 5,15,25, and 35 defect-correction
preconditioning iterations per Krylov vector. Again, this data is summarized in Table (8), with additional data points.

The same Krylov vector trend as was seen with the N = 3 case holds for the N = 15 and N = 31 cases. It
can also be seen that the number of BCGS iterations increases as the number of time instances increases, while the
number of non-linear iterations needed remains roughly the same (for the 3 and 15 time instance cases) when enough
preconditioning iterations are used, and the number of cumulative Krylov vectors needed does not necessarily grow as
more time instances are utilized. When examining the data for the N = 31 case, it is seen that the number of non-linear
iterations decreases monotonically at first, then spikes at 30 defect-correction steps per Krylov vector, after which it
again decreases monotonically. For some as yet unknown reason, when 30 or more defect-correction steps are used,
the GMRES CFL number growth rate must be reduced for the solution to be convergent. Why this reduction in CFL
number growth occurs and how non-linear convergence can be restored warrants future investigation.
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Table 7. Comparison of the Nature of Convergence for Test Case 2 with 15 Time Instances

Defect Correction Steps Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
6 37 13,351 1,055 538
9 30 13,592 713 524
12 29 14,311 565 461
15 25 14,668 463 478
18 22 14,525 383 423
21 22 14,963 338 479
24 21 14,596 289 453
27 22 15,940 282 468

Table 8. Comparison of the Nature of Convergence for Test Case 2 with 31 Time Instances

Defect Correction Steps Non-linear Iter. BCGS Iter. Krylov Vectors Wall-clock Time (s)
5 106 15,650 1,490 888
10 58 16,270 794 1,033
15 51 16,342 530 865
20 49 17,259 423 935
25 40 18,342 361 974
30 79 19,432 350 1,068
35 66 20,320 308 1,103
40 41 19,899 250 1,232

It can also be observed that the number of cumulative BCGS iterations needed for solution convergence is inversely
proportional to BCGS CFL number. Table (9) summarizes this proportionality in its fourth column which contains
the product of the CFL number and the cumulative BCGS iteration count. The inverse proportionality is shown by the
numbers in this column being roughly equal. This result indicates that another avenue to obtain a better preconditioner
would eliminate this CFL number constraint altogether through the use of a more global preconditioner, such as ILU.

Table 9. Proportionality of BCGS iteration count to BCGS CFL number

Time Instances BCGS CFL Fewest BCGS Iter. (NBCGS) BCGS CFL × NBCGS
3 2.6 6,923 18,000
15 1.4 13,351 18,691
31 1.2 15,650 18,780

IV. Conclusions and Future Work

The GMRES-DC solver described in the present work has been successfully applied to the time-spectral Euler
equations. It has been demonstrated in this work that the current solver can converge time-spectral test problems
using as many as N = 47 time instances. In fact, in work that was very recently presented,18 solution of N = 79
time-instances was demonstrated on a fully-coupled time-spectral, aeroelastic problem.18 In addition, it has been
shown that the GMRES-DC solver is much more efficient than the time-spectral solvers presented in our own previous
work.10, 11, 12, 13 For the first-test case, a time-spectral solution was obtained much more quickly than a time-implicit
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solution of similar accuracy. However, for the second test case, the time-spectral solver is not more efficient than the
time-implicit solver when a similar level of accuracy is sought. The decreased efficiency of the time-spectral solver
when applied to this test case results from its transonic nature as well the higher reduced frequency of its first harmonic;
more study is needed to quantify the effects of Mach number and reduced frequency on the cost of equivalent accuracy
of time-spectral methods when compared to time-implicit methods.

To further improve the efficiency of the GMRES solver, more efficient preconditioners than simple BCGS should
be considered. Since it has been demonstrated that adding defect-correction steps mainly improves efficiency by
reducing the number of Krylov vectors while leaving the total number of BCGS iterations needed for convergence
roughly unchanged, an obvious improvement could be obtained by replacing BCGS with a more efficient stationary
iterative method, such as linear multigrid, or resorting to global preconditioners such as ILU. Another possibility that
may increase preconditioning effectiveness would be to use the second-order spatial Jacobian in the defect-correction
step instead of the first-order Jacobian approximation currently used. Of course, there are innumerable combinations
of all the aforementioned preconditioners that could be combined to produce even further increases in efficiency.

Even if it proves impossible to make the time-spectral method more efficient than the time-implicit method for all
practical time-accurate problems when run on the same number of computational cores, the time-spectral method will
in all likelihood be able to converge these cases in less wall-clock time by taking advantage of the additional parallelism
in time that the time-spectral method affords. This is especially likely since all the current computing trends seem to
indicate that, while processor clock speed is not going to increase substantially, processor core count will, and with it,
opportunities for increased parallelism. For a time-implicit solver, the advantages of additional computational cores
will eventually deteriorate as parallelism in the spatial dimension is exhausted.

Overall, the use of GMRES as the linear solver for the implicit time-spectral method has addressed the main
limitations of the method heretofore: the ability to handle large numbers of time instances and robustness when
applied to stiff problems. With the practical limitations addressed, future work will be focused on efficiency increases
through better preconditioner selection.
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Figure 1. Near field mesh for the NACA-0012 airfoil
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Figure 2. Comparison of computed lift coefficient (a) and moment coefficient (b) using the time-spectral method to a reference, time-implicit
solution for Test Case 1
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Figure 3. Comparison of convergence of Test Case 1 using different number of time-spectral time instances with Non-linear Iterations (a)
and Wall-clock time (b) on the x-axis
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Figure 5. Comparison of convergence for Test Case 1 with 3 time-spectral time instances using the 5 different solvers discussed with
Non-linear Iterations (a), BCGS Iterations (b), Krylov Vectors (c), and Wall-clock time (d) on the x-axis
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Figure 6. Comparison of computed lift coefficient (a), moment coefficient (b), and pressure drag coefficient (c) using the time-spectral
method to a reference, time-implicit solution for Test Case 2
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Figure 8. Comparison of convergence for Test Case 2 with 3 time-spectral time instances using the 5 different solvers discussed with
Non-linear Iterations (a), BCGS Iterations (b), Krylov Vectors (c), and Wall-clock time (d) on the x-axis
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Figure 9. Comparison of convergence of Test Case 2 using 3 time-spectral time instances and the GMRES-DC solver using different
numbers of defect-correction iterations per Krylov vector with Non-linear Iterations (a) and Krylov Vectors (b) on the x-axis
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Figure 10. Comparison of convergence of Test Case 2 using 15 time-spectral time instances and the GMRES-DC solver using different
numbers of defect-correction iterations per Krylov vector with Non-linear Iterations (a) and Krylov Vectors (b) on the x-axis
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Figure 11. Comparison of convergence of Test Case 2 using 31 time-spectral time instances and the GMRES-DC solver using different
numbers of defect-correction iterations per Krylov vector with Non-linear Iterations (a) and Krylov Vectors (b) on the x-axis
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