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A high-lift multi-element airfoil is optimized using a discrete adjoint method. The 

unstructured mesh RANS solver NSU2D is used as the flow and adjoint solver, and LBFGS-

B, which is an optimization algorithm based on a quasi-Newton method, is used for driving 

shape optimization. In order to achieve a larger design space, the mesh deformation solver in 

NSU2D is modified by re-computing the mesh stiffness matrix during the mesh deformation 

process. Design variables consist of rigging parameters such as flap and slat gap, overlap 

and deflections, as well as surface shape parameters. Two kinds of objective functions are 

optimized, a drag coefficient constrained by a target lift coefficient and a maximum lift 

coefficient. In the first case, the optimized shape reduces drag by 64 counts, and in the 

second case, the maximum lift coefficient of the optimized shape is increased from the 

baseline value of 4.340 to 4.602.  

I. Introduction 

Shape optimization methods are important tools in the aircraft design process. Many shape optimization techniques 

for  aircraft have been demonstrated in previous works. Among several different kinds of optimization methods, 

gradient-based optimization has been used in many cases for aircraft design. Generally, the computational cost of 

gradient-based optimization is lower than non-gradient-based methods such as genetic algorithms (GA)
1
. In 

particular, the evaluation of aircraft performance objectives such as lift and drag requires significant computational 

effort due to the high cost of obtaining flow solutions, and thus gradient-based optimization is the only feasible 

method in many cases. Gradient-based optimization needs an efficient method for computing sensitivities of 

objective functions with respect to design variables. For example, a finite difference method is the most 

straightforward approach to compute sensitivities. However, the finite difference method requires one flow field 

solution for each design variable and is not practical for aircraft shape optimization which generally involves a large 

number of design variables. Additionally, the magnitude of the perturbation in the finite difference method can 

significantly affect the accuracy of the computed sensitivities. However, an adjoint method is well suited for 

computing sensitivities. That is because the adjoint method can compute the gradients of all design variables at a 

computational cost that is independent of the number of design variables. Additionally, the discrete adjoint method 

employs direct differention of the discretized governing equations, thus obviating the need to assign an ambiguous 

perturbation value as required in the finite difference method. Therefore, adjoint-based shape optimization 

represents a powerful technique for aircraft design optimization. 

 In past works, many aircraft optimization problems have been performed using the adjoint method
2-8

. In this 

paper, we focus on optimization of high-lift multi-element airfoils. Although there is significant previous work 

concerning optimization of high-lift airfoils
9-12

, optimization of high-lift systems remains an important concern 

today. A major difficulty of these optimizations is due to the complex flow fields around high-lift airfoils
13

, which 

often include massive separation regions in the wake, unsteady flow in the cove of the slat and main elements, 

strong streamline curvature, turbulent transition and so on. Additionally, the maximum lift coefficient is an 

important parameter for high-lift airfoils, which means that an accurate flow solution at the stall point is required. 
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Additionally, high-lift optimization problems generally involve complex geometries that require more complicated 

mesh configurations, which must be deformed at each optimization cycle.  A large design space is desirable to 

obtain good optimization results, but the large deformations associated with large shape changes tend to produce 

invalid computational meshes. Hence, lack of robustness of the mesh deformation limits the design space. 

 In this work, NSU2D
14, 15

 is used to obtain the flow and adjoint solutions. NSU2D is a two-dimensional flow 

solver for unstructured computational meshes which has been used for many flow fields including stall conditions
16

. 

NSU2D also incorporates a discrete adjoint method which computes the sensitivity of selected performance 

objectives with respect to design variables. The advantage of NSU2D is that it fully linearizes all computational 

operations including mesh deformation, as opposed to other adjoint solvers that may use finite differences or 

approximate formulations in some part of the linearization. Hence, NSU2D can compute exact sensitivities and the 

cost of these computations is independent on the number of design variables. NSU2D includes a mesh deformation 

capability, but the robustness for large deformations was found to be lacking. Hence, the mesh deformation solver in 

NSU2D has been modified to increase robustness and enable a larger design space. 

 The optimization process of the present work is described in Fig. 1. At first, the flow solution about the initial 

shape is computed, and then the sensitivities of the objective function with respect to design variables       are 

computed using the adjoint method at the state given by the flow variables  . The new design variables      are 

computed by an optimization algorithm using the quasi-Newton method, LBFGS-B
17

, and then new mesh 

coordinates      are generated using the mesh deformation method. The optimization process is iterated until the 

objective function is minimized.  The design variables consist of the rigging parameters (physical locations) and 

surface shapes of the high-lift devices. In this work, two kinds of optimizations are conducted: 

 

 1. Minimization of drag coefficient at constant lift 

 2. Improvement of maximum lift coefficient 

 

Obviously, drag minimization for high-lift devices should not compromise generated lift. Therefore, we try to 

decrease the drag coefficient while keeping the lift coefficient of the initial shape constant in the first case. In the 

second case, the flow angle is treated as one of the design variables and the lift coefficient is maximized. This case 

searches for an optimized shape of high-lift devices which has larger maximum lift coefficient.  

 

 
 

Figure 1: Procedure of the adjoint-based shape optimization. 
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II. Flow solver 

The NSU2D flow solver is described briefly in this section. In the present computations, the Reynolds-Averaged 

Navier-Stokes equations (RANS) are solved to compute the turbulent flow.  

 

A. Governing equations 

 The conservative form of the Navier-Stokes equation can be written as: 
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where   is the vector of conservative variables, and   ( )  and   ( )  are the convective and viscous fluxes 

respectively. The viscous stress tensor is represented by     and can be written as  
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where   is the viscous coefficient. In order to include the turbulent effect in the solution, the eddy viscosity 

approximation is employed. In the approximation, the viscous coefficient and thermal conducive coefficient are 

modified as: 
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where    and     are the fluid laminar viscosity and Prandtl number respectively. The variable     is the turbulent 

Prandtl number. In the present work, the turbulent eddy viscosity    is computed using the Spalart-Allmaras (SA) 

model. This model computes the turbulent eddy viscosity by solving the transport equation for an eddy viscosity 

variable. The details of this model can be found in ref. 18. 

 Equation (1) is integrated over the control volume   and then the divergence theorem is applied. The integrated 

form of the flow equation is: 
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where   is the control surface and   is normal vector of control surface. The present work only considers steady-

state problems, so the time derivative term can be ignored. Finally, the residual form of flow equation is written as: 
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B. Spatial discretization 

 The flux terms are discretized as follows: 
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where       is the edge number of each cell and     
  and     

  are convective and viscous fluxes normal to the 

edges. The convective flux is computed using the central difference scheme with an artificial matrix dissipation term 

as: 
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where velocity normal to the edge    is computed as        . The variables    and    represent components of 

unit edge normal vector. The linearization of the convective flux is decomposed by a diagonal matrix of eigenvalues 

[ ] and a matrix [ ] consisting the corresponding eigenvectors (    
   ⁄  [ ][ ][ ]  ). The term consisting of 

the decomposed flow Jacobian matrix and the undivided Laplacian     is a dissipation term, while the other terms 

corresponds to a simple central difference of the convective fluxes. The undivided Laplacian operator corresponds to 

a multidimensional third difference, and thus this formulation results in a second-order accurate matrix dissipation 

scheme. The parameter   in the dissipation term controls the amount of artificial dissipation. Further details of the 

discretization used in the flow solver can be found in ref. 14 and 15. 

 

C. Implicit flow solver 

 The nonlinear residual eq. (7) is linearized and solved using Newton’s method as:  
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(12) 

 

where    is the update value of each non-linear iteration step, and    tends to zero when the solution is fully 

converged. Newton’s method displays quadratic convergence if the flow Jacobian [  (  )    ⁄ ]  is an exact 

linearization of  ( ). The linear system is solved using an agglomeration multigrid
19

 method and a preconditioned 

GMRES
20

 solver using multigrid as the preconditioner. A simple Jacobi method is used as the smoother in the 

multigrid algorithm. 

 

D. Convergence check of flow solver 

 Figure 2 shows the convergence of flow solution. In this computation, the agglomeration multigrid solver is used 

in the first stage of the calculation, and then the preconditioned GMRES solver is used to obtain the final fully 

converged solution. Multigrid is conducted using a W-cycle with 5 grid levels, although a small        value is 

used to ensure the robustness for the various cases that may be encountered during the optimization procedure, 

particularly near stall conditions. The GMRES method uses multigrid as a preconditioner, and is restarted at every 
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100 steps. The computational mesh is shown in Fig. 3. This mesh has approximately 69,000 nodes and consists of 

triangular cells. The freestream flow conditions are       ,          and      [deg]. 

 

 
 

Figure 2: Convergence of the flow solution. The agglomeration multigrid scheme is used in the first stage of the 

calculation and the final converged solution is obtained using the GMRES solver.  

 

  
(a) Far field view (b) Close up view 

 

Figure 3: Computational mesh for three-element high-lift airfoil 

 

III. Mesh deformation method 

It is necessary for shape optimization problems to generate a new computational mesh at each optimization cycle. 

There are two possible mesh modification approaches, mesh deformation and mesh re-generation. However, mesh 

re-generation, which alters the discretization stencil, is not appropriate in this case because it involves non-



 

American Institute of Aeronautics and Astronautics 
 

 

6 

differentiable operations that cannot be linearized for the adjoint process. On the other hand, the mesh deformation 

approach can compute the new mesh coordinates without altering the node connectivity, which is a differentiable 

operation, and therefore suitable for the present work. However, this approach lacks robustness for large 

deformation cases because the mesh topology cannot always be preserved. Obviously, a large design space is 

preferred for optimization, and thus the robustness of the mesh deformation process is an important consideration for 

shape optimization problems. 

There are two kinds of commonly used mesh deformation approaches, tension spring
21, 22

 and linear elasticity
23, 

24
 approaches. Both approaches are formulated following: 

 

 ( )  [ ]               (13) 

 

where       represents the variation of the inner mesh point coordinates and        corresponds to the displacement 

on the boundary surface. The matrix [ ] is a stiffness matrix. 

 

A. Tension spring approach 

 Tension spring approach is formulated as: 
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where     is the inverse of the squared edge length. This approach models the mesh edge as a spring. The spring 

strength is related to the edge length, and the force balance of adjacent springs is computed at each node. 

 

B. Linear elasticity approach 

 In the linear elasticity approach, the motion of the computational mesh is assumed to obey the equations of linear 

elasticity. The linear elasticity equations can be written as: 
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where,   and   represent stress and strain. [ ] is constitutive matrix and   is an external force. Applying a standard 

Galerkin method to eq. (15), the equations are formulated as: 
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(17) 

 

where, [ ] is the linear shape functions. The boundary displacements are given by the surface mesh deformation, so 

the external force   is not required. Therefore, the right-hand of eq. (16) is substituted by the displacement of 

surface nodes       , and then eq. (16) becomes of the same form as eq. (13). 

 The stiffness matrix  [ ] is a function of the modulus of elasticity  . Cells that have large values of   are 

displaced as rigid bodies during the mesh deformation process, and therefore large values of   are prescribed in 
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small cells in order to prevent deformation and cross-over in these regions. In the present computation,   is 

prescribed as proportional to the inverse of the cell volume. 

 

C. Deformation of geometry by bump functions 

 The baseline geometry is deformed by moving the surface nodes. In order to achieve a smooth surface 

deformation, Hicks-Henne bump functions
25

 are used to control the surface displacement. These functions are 

written as: 

 

  ( )            (    ) 

     (   )   (   
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(18) 

 

where    
 is the location of the bump, and    ( ) is the displacement length of the each bump location in the 

direction normal to the x-coordinate. The coefficient      is the magnitude of the bump at    
, and    is a 

parameter that controls the width of the bump. The bump function generates a smooth curve centered at the location 

of    
 in the range      . A smooth surface displacement can be achieved by the superposition of several bump 

functions. 

 

D. Comparing tension spring and linear elasticity approach 

 In order to examine the quality of the mesh deformation method, the computational mesh of a high-lift airfoil 

used in the present work (Fig. 3) is deformed using the tension spring and linear elasticity approach. The number of 

negative volume cells (i.e. crushed cells) in the deformed mesh is counted. Generally, the location of high-lift 

devices are defined by the gap, overlap and deflection of the slat and flap (see Fig. 4). The initial gaps of the slat and 

flap are 0.0298 and 0.0132, and these gaps are altered keeping the deflection angle constant. The mesh motion 

equation is solved iteratively using the line Jacobi method until the residual is reduced by 10 orders of magnitude. 

The stiffness matrix is computed based on the initial mesh coordinates and remains constant during the iterative 

process.  

 Table 1-4 show the number of negative volume cells produced in the deformed mesh. The linear elasticity 

approach is more robust than the tension spring approach. The tension spring approach causes negative volume cells 

even for small deformations. An illustration of the crushed cells produced by the tension spring approach is shown 

in Fig. 5. This figure shows the region near the trailing edge of the slat. The crushed cells show up in the boundary 

layer region where thin cells are clustered. Meanwhile, the linear elasticity does not crush the thin cells because the 

small volume cells are assigned high E values and respond as rigid bodies. However, cells in the other areas may be 

crushed, for example, cells between the slat and main elements as shown in Fig. 6 (b).  

 In order to improve the robustness of the mesh deformation method, we alter the stiffness matrix evaluation 

procedure. In the previous cases, the stiffness matrix was taken as a constant with values computed based on the 

initial shape. However, if large mesh deformation occurs, the stiffness matrix computed using the initial shape may 

be inappropriate. Therefore, the robustness of mesh deformation approach can be improved if the stiffness matrix is 

updated during the deformation. In this case, the mesh motion equation becomes a non-linear system. The non-linear 

mesh deformation equation is formulated as: 
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(19) 

 

where    is a number of non-linear iterations. The displacement of the surface is divided into   steps and the 

stiffness matrix is updated at each step. Table 5 and 6 show the results of mesh deformation by the linear elasticity 

approach using the non-linear step approach. The number of non-linear iterations is 5 and 10. Figure 6 (c) shows an 

example of the deformed mesh produced by the non-linear mesh deformation method. The results show that the 

robustness of mesh deformation is greatly improved by the non-linear iteration approach. Although invalid cells still 

show up when slat and flap are moved very close to main element, the robustness is sufficient for the present 

optimization.  
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Figure 4: Definitions of gap, overlap and deflection 

 

Table 1: Number of generated negative volume cells (slat, gap increase) 

gap 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Tension 

spring 
0 24 - - - - - - 

Linear 

elasticity 
0 0 0 0 2 36 - - 

  

Table 2: Number of generated negative volume cells (slat, gap decrease) 

gap 0.025 0.02 0.015 0.01 0.005 0.001 

Tension 

spring 
8 26 - - - - 

Linear 

elasticity 
0 0 2 70 - - 

 

Table 3: Number of generated negative volume cells (flap, gap increase) 

gap 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

Tension 

spring 
2 44 - - - - - - 

Linear 

elasticity 
0 0 0 0 7 11 - - 

 

Table 4: Number of generated negative volume cells (flap, gap decrease) 

gap 0.01 0.005 0.001 

Tension 

spring 
17 102 - 

Linear 

elasticity 
0 24 - 
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(a) Initial mesh (b) Deformed mesh (tension spring analogy method) 

 
(c) Deformed mesh (linear elasticity method) 

 

Figure 5: Crushed cells produced by the tension spring method (trailing edge of the slat)  
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(a) Initial mesh (b) Deformed mesh (linear elasticity method) 

 
(c) Deformed mesh (linear elasticity method using non-linear stiffness matrix iteration approach) 

 

Figure 6: Crushed cells produced by the linear elasticity method (between the main element and slat) 

 

Table 5: Number of generated negative volume cells (non-linear mesh deformation, slat, gap decrease) 

gap 0.025 0.02 0.015 0.01 0.005 0.001 

Linear 

elasticity 

(   ) 

0 0 0 0 0 140 

Linear 

elasticity 

(    ) 

0 0 0 0 0 29 
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Table 6: Number of generated negative volume cells (non-linear mesh deformation, flap, gap decrease) 

gap 0.01 0.005 0.001 

Linear 

elasticity 

(   ) 

0 0 18 

Linear 

elasticity 

(    ) 

0 0 3 

 

 

IV. Adjoint method 

  In this section, the discrete adjoint method used in the NSU2D solver is described. In the present work, the 

objective function   is a scalar function which consists of aerodynamic performance quantities such as lift and drag 

coefficients. The objective function depends on the design variables  , flow variables    and mesh coordinate    . 

The sensitivity of objective function with respect to design variables can be written as: 
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This is the forward linearization of objective function. The forward linearization is not efficient for optimizations 

involving large numbers of design variables. Therefore, the forward linearization is transposed and the adjoint 

linearization is formulated as: 
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(21) 

 

In this equation, the derivatives of the flow and mesh variables with respect to the design variables (     ,    
  ) are unknowns. These derivatives are determined using the flow and mesh deformation equations. 

Differentiating the residual form of the flow equation with respect to the design variables: 
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where        denotes the flow boundary conditions. The residual form of the mesh deformation equation is also 

differentiated as: 
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where       is the value of the boundary conditions, i.e. displacement of the geometry surface. The derivatives of 

state variables can be written using the eq. (22) and (23) as: 
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This equation is substituted into eq. (21), and the sensitivities of objective function can be written as 
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(25) 

 

where   ,    are defined as flow and mesh adjoint variables. Finally, the formulation of the adjoint methods is 

written as: 
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   (28) 

 

Further details of the formulation can be found in ref. 26. Figure 7 and 8 show the convergence of flow and mesh 

adjoint variables i.e., equations (26) and (27) respectively. The flow adjoint equation is solved by the preconditioned 

GMRES method using linear multigrid as the preconditioner which is restarted at every 100 steps. The mesh adjoint 

equation is solved using the line-Jacobi method based on normal lines constructed in the boundary layer region 

(without multigrid).  

 

  
 

Figure 7: Convergence of the flow adjoint problem 

computed using the GMRES. 

 

Figure 8: Convergence of the mesh adjoint problem 

computed using the line-Jacobi method. 
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V. Optimization algorithm 

There are various possible choices for the optimization algorithm in the context of gradient-based optimization. 

The simplest choice is the steepest-descent method
2, 3

. This method can be written as       (     ) where    

is the correction of the design variables at each optimization cycle. This method is easy to implement, but exhibits 

poor performance when the number of design parameters is large
30

. Additionally, the optimal value of the 

coefficient   must be determined. In the optimization process, each optimization cycle incurs high computational 

cost. Hence, it is necessary to use a more efficient optimization method and to obtain the optimized result in as few 

design cycles as possible. In the present work, LBFGS-B
17

 is used for the optimization algorithm. LBFGS-B is a 

quasi-Newton method for bound-constrained optimization. The quasi-Newton method approximates the Hessian 

matrix of second derivatives using the optimization history, and thus requires only sensitivity and objective function 

values. The algorithm can set the bounds of the design space, and so it is able to prevent the generation of invalid 

geometry configurations. 

VI. Verification of optimization method 

 In this section, verification of the optimization method is conducted. At first, the sensitivity computed using the 

adjoint method is compared with that computed using the finite difference method and the complex step method. 

Next, a simple optimization, which involves finding the maximum lift coefficient        using only  the  flow angle 

as a design variable, is conducted in order to check the behavior of the optimization process. 

 

A. Comparing adjoint sensitivities with the finite difference sensitivities 

 The sensitivities computed using the adjoint method are verified using the finite-difference method. The 

sensitivities are computed using the finite difference method as:  

 

  

  
 

 (   )   ( )

 
 (29) 

 

where   is a small perturbation. The flow solutions with the small perturbation value are computed for each design 

variable, and then the finite difference sensitivity is computed using the results with and without perturbation. In this 

verification case, there are 9 design variables. The locations of slat and flap are defined as displacement in the x and 

y directions and their rotation from the initial location (3 design variables:            2: slat and flap). The 

rotation centers are located at the midpoints of their chord. The coefficients of specified bump functions are also 

defined as design variables (            (18)). In this verification case, one bump function is located on the main 

element and one on the flap. Additionally, the flow angle   is treated as a design variable. Table 7 shows the 

sensitivities of inverse lift coefficient    ⁄  computed using the adjoint and finite difference method. The 

perturbation   is         . The flow angle is 16 [deg] and all other design variables are evaluated at         . 

The uniform flow conditions are         and         . The adjoint sensitivities display good agreement 

with the finite-difference sensitivities, and these difference are less than 1% in all cases. 

 

Table 7 Comparison of  sensitivities computed by the adjoint method with the finite-difference method. 

Design variables Adjoint sensitivities Finite-difference sensitivities 

       -0.474922939 -0.474909584 

       0.313688317 0.313827521 

       -0.096193935 -0.096174877 

       -0.238173739 -0.238620514 

       0.548861240 0.548008924 

       -0.065843774 -0.065679976 

  -0.256415575 -0.256402551 

           0.185608371 0.185679962 

           0.004748858 0.004715814 
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B. Comparing with the sensitivities computed by the complex step method 

 Although the finite difference method can be used to compute sensitivities, the perturbation size affects the 

accuracy of the computed sensitivities. However, the complex step method can compute sensitivities tohigher 

accuracy as this method is not sensitive to roundoff error. In this section, the adjoint sensitivities are verified using 

the complex step method. A derivative of any real function  ( )  can be computed by expanding the complex 

operator  (    ) as: 

 

 (    )   ( )       ( )    (30) 

   ( )  
  [ (    )]

 
 (31) 

 

where   is the complex perturbation. The derivative is simply the imaginary part of the complex function divided by 

the perturbation. This method allows setting the perturbation to an arbitrarily small value, and so it is possible to 

compute the derivative to within machine precision. The complex operator  (    ) is computed using a complex 

version of the NSU2D code, which is developed by redefining all floating point variables as complex. The objective 

function and the flow conditions are identical to the previous case, except for the flow angle. The flow angle is 0 

[deg] and the complex perturbation   is           . The sensitivities of the flow angle   computed by the adjoint 

and the complex step method are -1.54729353596978 and -1.54729353596967, and they show almost perfect 

agreement. 

 

C. Simple optimization case 

 A simple optimization is conducted to check the behavior of the optimization process. The objective function to 

be minimized is an inverse lift coefficient   ⁄
  and the single design variable is the flow angle  . If the 

optimization process works correctly, the optimized objective function should converge to        ⁄ . The initial 

flow angle is 0 [deg], and the bound of the design space is taken as         [deg]. The uniform flow 

conditions are         and         . Figure 9 shows the optimization history of the design variable (i.e. 

flow angle). The optimization cycle is run for 30 iterations, and the final values are          and         . 

Figure 10 shows the plots of lift coefficient and flow angle at each optimization cycle. The optimized result is very 

close to the stall point and indicates that the optimization cycle works properly. The variation of the absolute value 

of sensitivity is shown in Fig. 11. The final sensitivity is 1 order of magnitude smaller than initial value. However, 

the ideal value of the final sensitivity should be zero because the optimized point must be a minimum.  In this case, 

the variation of the lift coefficient around the stall point shows a nearly discontinuous variation, making it difficult 

to drive the sensitivity to zero 
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Figure 9: Optimization history of the design variable. 
Figure 10: Lift coefficients computed at each 

optimization cycle. 

 

 
 

Figure 11: Variation of the sensitivity. 

 

VII. Results 

In this work, two types of optimizations are performed. In the first case, the drag coefficient is minimized 

keeping the lift coefficient constant. In the second case, the flow angle is treated as one of the design variables and 

the rigging parameters and airfoil shapes are optimized to increase the maximum lift coefficient       .  

 

A. Minimization of drag coefficient at constant lift 

 A small drag coefficient is desirable for an aircraft while the most important role of high-lift devices is to 

produce sufficient lift under takeoff and landing conditions. The first optimization case attempts to minimize the 

drag coefficient while maintaining the lift coefficient of the initial shape. The objective function is written as: 

 



 

American Institute of Aeronautics and Astronautics 
 

 

16 

  (           
)
 

   (  )  (32) 

 

where         
 is a target value of the lift coefficient, and the weighting factor (  ) is used to balance the different 

magnitudes of lift and drag coefficients. The target lift coefficient is 4.0371. The design variables for this 

optimization are the location and deflection of the slat and flap (        ). The freestream flow conditions are 

given as       ,          and      [deg]. The bounds of design variables are set as:  

 

                   

                   

                 [   ] 
                  

                 

                 [   ] 

(33) 

 

Figure 12 shows the optimization history of the objective function and the sensitivities of the objective function with 

respect to each design variable. Table 8 shows the lift and drag coefficient of the optimized airfoil and the value of 

the objective function. The optimization succeeds in minimizing the objective function, and the value decreases 

from 0.067129 to 0.058168. The drag coefficient of the optimized airfoil is approximately 57 drag counts lower than 

the initial value while the variation of the lift coefficient is small (under 1%).  Table 9 shows the final values of the 

design variables and Fig. 13 shows the optimized configuration. 

 In the previous case, the surface shape of the high-lift devices is fixed and only their locations are changed. In 

the next case, their surface shape is also deformed using the bump functions. In order to retain the aerodynamic 

performance at the cruise condition, the deformation is limited to the unexposed area of the airfoils in the stowed 

configuration. The deformation area is shown in Fig. 14.  Ten bump functions are set on the main element and flap 

upper surfaces only within the first 10% chord, and these are located at equal intervals. The bounds of the bump 

functions are prescribed as: 

 

                  (34) 

 

The initial locations of the slat and flap are the final values of the previous case (Table 9). Figure 15 shows the 

optimization history of the objective function and the sensitivities of the objective function with respect to each 

design variable. Table 10 shows the lift and drag coefficient of the optimized airfoil and the value of the objective 

function. The optimization process decreases the objective function from 0.058168 to 0.057261. In this optimization, 

the drag coefficient decreases by 7 drag counts. Figure 16 shows the surface deformation compared with the initial 

shape. Table 11 shows the final values of the design variables and Fig. 17 shows the final design configuration. 

Table 12 shows the lift and drag coefficient of each element. In these elements, the variations of the slat and main 

element are relatively large. The performance of the slat is increased while the main element shows lower 

performance. Figure 18 shows distributions of the pressure coefficient near the gap of the slat and main element. 

The optimized airfoil has higher pressure on the back side of the slat than the initial one, and mainly this higher 

pressure affects the performance of the slat and main element. 
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(a) Objective function (b) Sensitivities of objective function 

 

Figure 12: Optimization history for lift-constrained drag minimization problem 

 

Table 8 Lift, drag  and objective function values of optimized configuration for lift-constrained drag minimization 

         

Initial airfoil 4.0371 0.081932 0.067129 

Optimized airfoil 4.0235 0.076146 0.058168 

  -0.0136 -0.005786 -0.008961 

 

 

Table 9 Final design variables for lift-constrained drag minimization problem 

          [deg] 

Slat 0.0064448 0.0025146 2.0883 

Flap 0.0010717 -0.00023812 -2.5162 

 

  
(a) Slat (b) Flap 

 

Figure 13: Optimized shape of high-lift devices for lift-constrained drag minimization problem (redline represents 

the optimized shape and black line represents the initial shape) 
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Figure 14: Deformation region of applied bump functions for optimization. Only upper surfaces of main element 

and flap are deformed. 

 

  

(a) Objective function 

(b) Sensitivities of objective function (sensitivity of 

bump functions is an average value of all bump 

functions) 

 

Figure 15: Optimization history for lift-constrained drag case including surface deformation using bump functions 

 

Table 10 Lift, drag and objective values of optimized configuration for lift-constrained drag optimization including 

surface deformations using bump functions 

         

Optimized shape without 

bump functions 
4.0235 0.076146 0.058168 

Optimized shape 4.0181 0.075432 0.057261 

  -0.0054 -0.000714 -0.000907 
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(a) Main element (b) Slat 

 

Figure 16: Surface deformation of main element and flap. The airfoil locations are not changed and only surface 

deformation is shown. (redline represents the optimized shape and black line represents the initial shape) 

 

Table 11 Final airfoil location design variables for lift-constrained drag optimization including surface deformations 

using bump functions 

          [deg] 

Slat 0.0076427 0.0016760 2.1141 

Flap -0.0020604 -0.0044401 -2.4980 

 

  
(a) Slat (b) Flap 

 

Figure 17: Optimized shape of high-lift devices for lift-constrained drag optimization including surface deformations 

using bump functions(redline represents the optimized shape and black line represents the initial shape) 
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Table 12: Lift and drag coefficients of each element 

 Slat Main element Flap 

   (Initial airfoil) 0.59655 3.0421 0.39850 

   (Optimized airfoil) 0.67690 2.9265 0.41472 

   (Initial airfoil) -0.51106 0.26647 0.32653 

   (Optimized airfoil) -0.58492 0.34944 0.31092 

 

  
(a) Initial shape (b) Optimized shape 

 

Figure 18: Distributions of pressure coefficient near the gap of slat. 

 

 

B. Improvement of maximum lift coefficient 

 One of the most important performance metrics of high-lift devices is the maximum lift coefficient. In this 

section, the shape is optimized to obtain a higher maximum lift coefficient. The flow angle is treated as one of the 

design variables and the objective function is defined as the inverse of the lift coefficient    ⁄ . First, only the 

locations (rigging parameters) of the high-lift devices are optimized without any surface deformation. The initial 

flow angle is 16 [deg], and the bound of the design space is: 

 

        [deg] (35) 

 

The bounds of the other variables are the same as in the previous cases. The flow conditions are        and 

        . The optimization histories of lift coefficient and the sensitivities of the objective function with 

respect to each design variable are shown in Fig. 19. The maximum lift coefficient of the optimized shape is 4.580 

and the stall point is 23.30 [deg], while maximum lift coefficient of initial shape is       and the stall point is 21.95. 

Table 12 shows the final design variables and Fig. 20 shows the final optimized geometry.  

 Next, the airfoil shape is deformed by the bump functions. Ten bump functions are placed on the main element 

and flap as previously described. The initial locations of the flap and slat are the same as the values in Table 12. 

Figure 21 shows the optimization histories of lift coefficient and the sensitivities of the objective function with 

respect to each design variable. . The maximum lift coefficient of the optimized shape is 4.602 and the stall point is 

23.37 [deg] Figure 22 shows the surface deformation compared with the initial shape. Table 13 shows the final 

values of design variables and Fig. 23 depicts the optimized geometries. Figure 24 compares the flow fields of the 

optimized shape and the initial shape around the slat. The flow angle of this figure is 23 [deg], and at this flow 

condition the initial shape exhibits separation at the leading edge of the main element. Meanwhile, the optimized 

shape suppresses the separation and achieves a higher stall point with higher       .  
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(a) Objective function (b) Sensitivities of objective function  

 

Figure 19: Optimization history of the lift coefficient for CLmax optimization 

 

Table 12 Final design variables for CLmax optimization  

          [deg] 

Slat 0.0024513 -0.0036617 0.085264 

Flap 0.015216 -0.0031194 2.23308 

Flow angle [deg] 23.302 

 

  
(a) Slat (b) Flap 

 

Figure 20: Optimized shape of high-lift devices for CLmax optimization case (redline represents the optimized shape 

and black line represents the initial shape) 
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(a) Objective function 

(b) Sensitivities of objective function (sensitivity of 

bump functions is an average value of all bump 

functions) 

 

Figure 21: Optimization history of the objective function for CLmax optimization case with surface deformation using 

bump functions 

 

  
(a) Main element (b) Slat 

 

Figure 22: Surface deformation of main element and flap for CLmax optimization case using bump functions. The 

locations are not changed and only surface deformation is shown. (redline represents the optimized shape and black 

line represents the initial shape) 

 

Table 13 Final design variables for CLmax optimization case (with bump functions) 

          [deg] 

Slat 0.0018141 -0.010908 -0.19197 

Flap 0.015412 -0.0048131 2.2518 

Flow angle [deg] 23.372 

 



 

American Institute of Aeronautics and Astronautics 
 

 

23 

  
(a) Slat (b) Flap 

 

Figure 23: Optimized shape of high-lift devices for CLmax optimization case with surface deformation using bump 

functions (redline represents the optimized shape and black line represents the initial shape) 

 

  
(a) Initial shape (b) Optimized shape 

 

Figure 24: Mach number distributions of the flow around the slat (     [deg]) 

 

VIII. Conclusions 

 In the present work, shape optimization of a high-lift airfoil is conducted using the NSU2D solver. A gradient-

based  optimization method is used and the sensitivity of the objective function with respect to the design variables 

is computed by the discrete adjoint method. In order to extend the design space, the mesh deformation method is 

modified by re-computing the stiffness matrix during the deformation process and solving the non-linear system. 

The design variables for the optimization consist of the location of high-lift devices (i.e. rigging parameters) and the 

surface shape of the main element and flap upper surface sections that area hidden in the stowed configuration. In 

the first optimization, the drag coefficient is minimized at constant lift. The optimized airfoil shows a 64 drag count 

reduction while maintaining almost the same lift coefficient as the initial airfoil. In the next case, the objective 
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function is the inverse of the lift coefficient and flow angle is treated as one of the design variables in order to 

improve the maximum lift coefficient. In this case, the maximum lift coefficient of the optimized shape is 4.602 

while the maximum lift coefficient of the initial shape is 4.340. Future work will investigate more effective 

optimization strategies, define more sophisticated and flexible shape design parameters than the Hicks-Henne bump 

functions, and consider multi-point optimization problems 
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