
A Residual Smoothing Strategy for
Accelerating Newton Method

Continuation

Dimitri Mavriplis

University of Wyoming

Motivation

• Newton-Krylov methods have become popular for
solving difficult/stiff CFD problems
– Krylov methods provide robust linear system convergence
– Newton method provides quadratic convergence enabling

convergence to low residual tolerances

• Newton methods require continuation for most
problems

• Most of the time spent for solving CFD problems is
spent in the continuation process

• Continuation methods can stall due to local effects
– “Unbalanced nonlinearities”
– Attempts made to break up into smaller nonlinear

problems
• ASPIN, RASPIN

Newton Method

• To solve: R(w) = 0

• Linearize to get Jacobian dR/dw

• Take Newton steps as:

 [dR(wn)/dwn] Dwn = - R(wn)

 wn+1 = wn + a Dwn

with 0 < a < 1 as determined by (backtracking) line
search to minimize ||R(wn+1)||2

Pseudo-Transient Continuation
Newton Method

• Introduce pseudo-time term and solve

 [M (wn+1 – wn) / Dt + R(wn+1) = Rt(w
n+1)=0

• Take Newton steps as:

 [M/Dt + dR(wn)/dwn] Dwn = - R(wn)

 wn+1 = wn + a Dwn

with 0 < a < 1 as determined by (backtracking) line search to
minimize ||Rt(w

n+1)||2

 M is a suitable mass matrix

Dt is the pseudo time step (local time step = CFL Dtexplicit)

Pseudo-Transient Continuation
Newton Method

• Introduce pseudo-time term and solve

 [M (wn+1 – wn) / Dt + R(wn+1) = Rt(w
n+1)=0

• Take Newton steps as:

 [M/Dt + dR(wn)/dwn] Dwn = - R(wn)

 wn+1 = wn + a Dwn

with 0 < a < 1 as determined by (backtracking) line search to
minimize ||Rt(w

n+1)||2

Note: R(wn) = Rt(w

n) …… but R(wn+1) = Rt(w
n+1)

Pseudo-Transient Continuation
Newton Method

• Introduce pseudo-time term and solve

 [M (wn+1 – wn) / Dt + R(wn+1) = Rt(w
n+1)=0

• Take Newton steps as:

 [M/Dt + dR(wn)/dwn] Dwn = - R(wn)

 wn+1 = wn + a Dwn

with 0 < a < 1 as determined by (backtracking) line search to
minimize ||Rt(w

n+1)||2

Dw is guaranteed to be a descent direction for ||Rt||2
provided [M/Dt + dR/dw] is an exact linearization of Rt

Pseudo-Transient Continuation
Newton Method

 [M/Dt + dR(wn)/dwn] Dwn = - R(wn)

• Limit as Dt >> 1 : Recover Newton scheme

 [dR(wn)/dwn] Dwn = - R(wn)

• Limit as Dt << 1: Recover point explicit scheme

 [M/Dt] Dwn = - R(wn) or Dwn = - Dt R(wn)

 M is simply cell volume for finite-volume scheme and is absorbed in

Dt above for simplicity

Pseudo-Transient Controller

• Magnitude of Dt (or CFL) controlled by success/failure of line
search
– Initial CFL ~ 1
– Line search result: a = 1 CFL = CFL * 1.5
– Line search result: a < 0.1 CFL = CFL / 10
– Otherwise CFL = constant

– Common failure mode: CFL  0

 Dwn = - Dt R(wn) also  0

• Observation:

– Common local nonlinear smoothers (block Jacobi, line Jacobi, Gauss-
Seidel) have no difficulties reducing residuals in cases where PTC fails in
above mode

– Explicit scheme is poor choice for anisotropic problems (line smoothers
preferred)

Desired Behavior

• In the limit CFL << 1

 Dwn = - D-1 R(wn)

– where D is some preconditioner/smoother

• possibly nonlinear

• Independent of CFL or Dt

• Possible formulation:

good for rapid
initial residual
reduction

)()()(nn wRw
w

R
D D












DD tta

tta
D

D
1

1)(
t

tt
D

DD
1

)(

with, for example….

Still recovers
Newton scheme
for Dt >> 1

Disadvantages

• Left-hand side matrix is modified
– May require modification of linear solver

techniques especially for intermediate values of Dt

• Left-hand side matrix is no longer exact
linearization of RHS
– Descent direction for line search not guaranteed

)()()(nn wRw
w

R
D D












DD tta

Alternate Approach

• Leave LHS (Jacobian) unchanged

• Modify RHS as:

– For Dt << 1:

– For Dt >> 1:

)()(1 nnn wR
M

DwRw
w

RM

tt D
D














D



)(1 nn wR
M

Dw
M

tt D
D

D



)(nn wRw
w

R
D





Alternate Approach

• Leave LHS (Jacobian) unchanged

• Modify RHS as:

– For Dt << 1:

– For Dt >> 1:

)()(1 nnn wR
M

DwRw
w

RM

tt D
D














D



)(1 nn wR
M

Dw
M

tt D
D

D



)(nn wRw
w

R
D





Residual Smoothing Interpretation

– D-1M/Dt is a non-dimensional operator with a
non-trivial stencil (due to D-1)

– RHS may be interpreted as a smoothed residual
vector

)()(1 nnn wR
M

DwRw
w

RM

tt D
D














D



)()(1 n

sm

nn wRwR
M

DIw
w

RM










D
D














D



tt
smoothing operator

Residual Smoothing Advantages

– Simple to implement:

• Add precomputed correction Dw=-D-1R(w) to RHS and scale by
M/Dt

– LHS Jacobian is unchanged from original scheme
• Make use of existing linear solvers

– LHS Jacobian is exact linearization of RHS
• Line search descent direction is guaranteed

)()(1 n

sm

nn wRwR
M

DIw
w

RM










D
D














D



tt

)()()()(1111 nnnnn

sm wR
M

DwRww
M

wR
tt D


D

 

Smoothing
term
always
evaluated
at wn
(vanishes in
linearization)

Residual Smoothing Advantages

• Line search minimizes ||Rsm||2 instead of ||Rt||2

• For Dt >>1 these are the same

• For Dt << 1 Line search usually takes full update since
we have:

– and the the solution Dwn=-D-1R(wn) implies
Rsm(wn+Dwn) ~ 0

)()()(~)(111 nnnn

sm wR
M

DwRw
M

wR
tt D

D
D



small wrt to other terms

Generalization and Implementation

– Implement by adding precomputed update as
source term on RHS:

– and rescale by M/Dt

– In practice Dwsm can be the result of any sequence
of nonlinear smoothing operations

• Multistage Runge-Kutta designed for smoothing
(Jameson 1981)

• Any number of nonlinear (FAS) multigrid cycles

)()(1 nnn wR
M

DwRw
w

RM

tt D
D














D



)(1 nsm wRDw D

Results
• Implemented in unstructured mesh CFD code NSU3D

• Highly anisotropic meshes in near wall region

• Extract line structures for implicit line solve

– Nonlinear solver:
• 3 stage line-implicit Runge-Kutta

• Used as solver, or smoother for agglomeration Multigrid

– Newton-Krylov Solver
• Pseudo-transient continuation with line search and CFL controller

• Linear system solved by linear MG: Linear residual reduction = 0.01

• Original version (unsmoothed)

• Smoothed version: 5 cycles of 3-stage line RK to compute smoothing term

Results: Test Case 1

• Transonic flow over wing-body configuration
• Solution of Reynolds-Averaged Navier-Stokes Equations (RANS):

– 2nd order finite-volume
– Mach=0.75, Incidence=0o, Re=3 million, Spalart-Allmaras Turbulence model
– 1.2 million point mesh (mixed tets, prisms)
– Highly anisotropic (1:10,000) near wall

Convergence of Nonlinear Solvers
• 3 stage line-implicit Runge Kutta smoother

Single Grid Solver 4-Level FAS Multigrid Solver

• Relatively monotone convergence in both cases
• As expected, multigrid solver 10X faster

Convergence of PTC Newton-Krylov
Original (Unsmoothed)

• 80 nonlinear cycles, 2063 total Krylov vectors
• Achieves quadratic convergence at end

Convergence of PTC Newton-Krylov
Original (Unsmoothed)

• Some linear systems at startup (low CFL) are difficult to solve !
• CFL only climbs rapidly after ~50 nonlinear cycles (out of 80)

Convergence of PTC Smoothed
Newton-Krylov

• All settings identical to previous case
• Smoothing constructed using 5 nonlinear cycles of 3-stage line-RK

– Requires 10% of overall solution time
• Nonlinear cycles reduced from 80 to 43
• Cumulative Krylov vectors reduces from 2068 to 888

Convergence of PTC Smoothed
Newton-Krylov

• Near monotonic rise of CFL in continuation process
• No difficult linear systems (as determined by number of Krylov

vectors)

Is it Smoothing or Solving ?

• Multigrid and single grid smoothing produce similar overall convergence
• Supporting evidence that smoothing is effective mechanism

– Recall: FAS MG 10X faster than single grid nonlinear solver

Smoothing = 5 single grid nonlinear cycles Smoothing = 5 multigrid nonlinear cycles

Is it Smoothing or Solving ?

• Multigrid and single grid smoothing produce similar overall convergence
• Supporting evidence that smoothing is effective mechanism

– Recall: FAS MG 10X faster than single grid nonlinear solver

Smoothing = 5 single grid nonlinear cycles Smoothing = 5 multigrid nonlinear cycles

Test Case 2:
Time-Dependent 4-Bladed Rotor

• RANS equations with SA turbulence model
• 2 million point mesh with highly anisotropic prisms near blade surfaces
• BDF2 time discretization: 1 degree time step
• Rotor started impulsively in freestream flow (tip Mach number ~ 0.9)

• FAS Multigrid converges initial and subsequent time steps at similar rates

FAS Multigrid Solver
first 5 time steps

Time-Dependent Test Case

• Newton-Krylov method requires lengthy continuation to converge
first time step: 120 nonlinear cycles
– Impulsively started rotor

• Subsequent time steps converge rapidly: < 10 nonlinear cycles
– Good initial guess from previous time step

Original (unsmoothed) Newton

Original (unsmoothed) Newton-Krylov

• First time step
– 120 nonlinear steps, 1600 Krylov vectors

• Third time step
– 9 nonlinear steps, 150 Krylov vectors

Smoothed Newton-Krylov

• Smoothing constructed using 5 cycles of 3-stage line RK
• First time step solution reduced from

– 120 to 20 nonlinear cycles
– 1600 to 220 Krylov vectors

• Subsequent time steps similar to unsmoothed case
• Convergence of all time steps is more consistent

Original (unsmoothed) Newton-Krylov

• First time step generates
– Difficult linear systems
– Slow CFL growth

Smoothed Newton-Krylov

• Smoothed solver produces monotonic CFL growth

• More similar convergence for all time steps

Conclusions
• Continuation for Newton methods in CFD are often problematic

– Majority of solver time spent far from domain of quadratic convergence

– Pseudo-transient continuation can lead to ill-conditioned systems
generated by “bad” solution states

• Addition of source term based on nonlinear smoothing can
accelerate PTC-Newton schemes
– Empirical evidence points to smoothing (vs. solving) as dominant

mechanism

• Formulation prevents stalling due to small CFL values
– Reverts to local nonlinear smoother in limit CFL << 1

• Difficulties may still occur if strong nonlinearities arise in
intermediate regions 1 << CFL <<
– Future work…



Acknowledgements

• Sandia National Laboratory Contract 1852733

• NASA Grant NNX15AU23A under the Transformational
Tools andTechnologies (T3) project

• University of Wyoming Advanced Research Computing
Center (ARCC)

