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Motivation 

• Newton-Krylov methods have become popular for 
solving difficult/stiff CFD problems 
– Krylov methods provide robust linear system convergence 
– Newton method provides quadratic convergence enabling 

convergence to low residual tolerances 

• Newton methods require continuation for most 
problems 

• Most of the time spent for solving CFD problems is 
spent in the continuation process 

• Continuation methods can stall due to local effects 
– “Unbalanced nonlinearities” 
– Attempts made to break up into smaller nonlinear 

problems 
• ASPIN, RASPIN 



Newton Method 

• To solve: R(w) = 0 

• Linearize to get Jacobian dR/dw 

• Take Newton steps as: 

 

                 [dR(wn)/dwn] Dwn = - R(wn) 

                   wn+1 = wn + a Dwn 

 

with  0 < a < 1 as determined by (backtracking) line 
search to minimize ||R(wn+1)||2 



Pseudo-Transient Continuation 
Newton Method 

• Introduce pseudo-time term and solve 

    [M (wn+1 – wn) / Dt + R(wn+1) = Rt(w
n+1)=0 

• Take Newton steps as: 

                 [M/Dt + dR(wn)/dwn] Dwn = - R(wn) 

                   wn+1 = wn + a Dwn 

with  0 < a < 1 as determined by (backtracking) line search to 
minimize ||Rt(w

n+1)||2 

 

 M is a suitable mass matrix 

Dt is the pseudo time step (local time step = CFL Dtexplicit) 
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Note: R(wn) = Rt(w

n) ……  but R(wn+1) = Rt(w
n+1)  



Pseudo-Transient Continuation 
Newton Method 

• Introduce pseudo-time term and solve 

    [M (wn+1 – wn) / Dt + R(wn+1) = Rt(w
n+1)=0 

• Take Newton steps as: 

                 [M/Dt + dR(wn)/dwn] Dwn = - R(wn) 

                   wn+1 = wn + a Dwn 
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Dw is guaranteed to be a descent direction for ||Rt||2 
provided [M/Dt + dR/dw] is an exact linearization of Rt 



Pseudo-Transient Continuation 
Newton Method 

                     [M/Dt + dR(wn)/dwn] Dwn = - R(wn) 

• Limit as Dt >> 1 : Recover Newton scheme 

                     [dR(wn)/dwn] Dwn = - R(wn) 

 

• Limit as Dt << 1: Recover point explicit scheme 

                   [M/Dt] Dwn = - R(wn)  or  Dwn = - Dt R(wn)  

                 
 M is simply cell volume for finite-volume scheme and is absorbed in 

Dt above for simplicity 



Pseudo-Transient Controller 

• Magnitude of Dt (or CFL) controlled by success/failure of line 
search 
– Initial CFL ~ 1 
– Line search result: a = 1                      CFL = CFL * 1.5 
– Line search result: a < 0.1                  CFL = CFL / 10 
– Otherwise                                              CFL = constant  

 
– Common failure mode: CFL  0 

                 Dwn = - Dt R(wn)   also  0 
 
• Observation:  

– Common local nonlinear smoothers (block Jacobi, line Jacobi, Gauss-
Seidel) have no difficulties reducing residuals in cases where PTC fails in 
above mode 

– Explicit scheme is poor choice for anisotropic problems (line smoothers 
preferred) 

 

 



Desired Behavior 

• In the limit CFL << 1 

     Dwn = - D-1 R(wn)    

– where D is some preconditioner/smoother 

• possibly nonlinear 

• Independent of CFL or Dt 

• Possible formulation: 

 

good for rapid 
initial residual 
reduction 
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with, for example…. 

Still recovers 
Newton scheme 
for Dt >> 1 



Disadvantages 

 

 

 

• Left-hand side matrix is modified 
– May require modification of linear solver 

techniques especially for intermediate values of Dt 

• Left-hand side matrix is no longer exact 
linearization of RHS  
– Descent direction for line search not guaranteed 
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Alternate Approach 

• Leave LHS (Jacobian) unchanged 

• Modify RHS as: 

 

 

 

– For Dt << 1:   

 

– For Dt >> 1:     
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Alternate Approach 

• Leave LHS (Jacobian) unchanged 

• Modify RHS as: 

 

 

 

– For Dt << 1:   

 

– For Dt >> 1:     
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Residual Smoothing Interpretation 

 

 

 

– D-1M/Dt  is a non-dimensional operator with a 
non-trivial stencil (due to D-1) 

– RHS may be interpreted as a smoothed residual 
vector    
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Residual Smoothing Advantages 
 

 

 

– Simple to implement:  

• Add precomputed correction Dw=-D-1R(w) to RHS and scale by 
M/Dt 

– LHS Jacobian is unchanged from original scheme 
• Make use of existing linear solvers 

– LHS Jacobian is exact linearization of RHS 
• Line search descent direction is guaranteed 
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Residual Smoothing Advantages 
 

• Line search minimizes ||Rsm||2 instead of ||Rt||2 

• For Dt >>1 these are the same 

• For Dt << 1 Line search usually takes full update since 
we have: 

 

 

 

– and the the solution Dwn=-D-1R(wn) implies              
Rsm(wn+Dwn) ~ 0 
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Generalization and Implementation 

 

– Implement by adding precomputed update as 
source term on RHS: 

– and rescale by M/Dt 

– In practice Dwsm can be the result of any sequence 
of nonlinear smoothing operations  

• Multistage Runge-Kutta designed for smoothing 
(Jameson 1981) 

• Any number of nonlinear (FAS) multigrid cycles 
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Results 
• Implemented in unstructured mesh CFD code NSU3D 

• Highly anisotropic meshes in near wall region 

• Extract line structures for implicit line solve 

– Nonlinear solver:  
• 3 stage line-implicit Runge-Kutta 

• Used as solver, or smoother for agglomeration Multigrid 

– Newton-Krylov Solver 
• Pseudo-transient continuation with line search and CFL controller 

• Linear system solved by linear MG: Linear residual reduction  = 0.01 

• Original version (unsmoothed) 

• Smoothed version: 5 cycles of 3-stage line RK to compute smoothing term 

 



Results: Test Case 1 

• Transonic flow over wing-body configuration 
• Solution of Reynolds-Averaged Navier-Stokes Equations (RANS):  

– 2nd order finite-volume 
– Mach=0.75, Incidence=0o, Re=3 million, Spalart-Allmaras Turbulence model 
– 1.2 million point mesh (mixed tets, prisms) 
– Highly anisotropic (1:10,000) near wall 



Convergence of Nonlinear Solvers 
• 3 stage line-implicit Runge Kutta smoother 

Single Grid Solver 4-Level FAS Multigrid Solver 

• Relatively monotone convergence in both cases 
• As expected, multigrid solver 10X faster  



Convergence of PTC Newton-Krylov 
Original (Unsmoothed) 

• 80 nonlinear cycles, 2063 total Krylov vectors 
• Achieves quadratic convergence at end 



Convergence of PTC Newton-Krylov 
Original (Unsmoothed) 

• Some linear systems at startup (low CFL) are difficult to solve ! 
• CFL only climbs rapidly after  ~50 nonlinear cycles (out of 80) 



Convergence of PTC Smoothed       
Newton-Krylov 

• All settings identical to previous case 
• Smoothing constructed using 5 nonlinear cycles of 3-stage line-RK 

– Requires 10% of overall solution time 
• Nonlinear cycles reduced from 80 to 43 
• Cumulative Krylov vectors reduces from 2068 to 888 

 



Convergence of PTC Smoothed                 
Newton-Krylov 

• Near monotonic rise of CFL in continuation process 
• No difficult linear systems (as determined by number of Krylov 

vectors) 



Is it Smoothing or Solving ? 

• Multigrid and single grid smoothing produce similar overall convergence 
• Supporting evidence that smoothing is effective mechanism 

– Recall: FAS MG 10X faster than single grid nonlinear solver 

Smoothing = 5 single grid nonlinear cycles Smoothing = 5 multigrid nonlinear cycles 
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Test Case 2: 
Time-Dependent 4-Bladed Rotor 

• RANS equations with SA  turbulence model 
• 2 million point mesh with highly anisotropic prisms near blade surfaces 
• BDF2 time discretization:  1 degree time step  
• Rotor started impulsively in freestream flow (tip Mach number ~ 0.9) 

 
• FAS Multigrid converges initial and subsequent time steps at similar rates 

FAS  Multigrid Solver 
first 5 time steps 



Time-Dependent Test Case 

• Newton-Krylov method requires lengthy continuation to converge 
first time step: 120 nonlinear cycles 
– Impulsively started rotor 

• Subsequent time steps converge rapidly: < 10 nonlinear cycles 
– Good initial guess from previous time step 

Original (unsmoothed) Newton  



Original (unsmoothed) Newton-Krylov 

• First time step 
– 120 nonlinear steps, 1600 Krylov vectors 

• Third time step 
– 9 nonlinear steps, 150 Krylov vectors 



Smoothed Newton-Krylov 

• Smoothing constructed using 5 cycles of 3-stage line RK 
• First time step solution reduced from  

– 120 to 20 nonlinear cycles 
– 1600 to 220 Krylov vectors 

• Subsequent time steps similar to unsmoothed case 
• Convergence of all time steps is more consistent 

 



Original (unsmoothed) Newton-Krylov 

• First time step generates  
– Difficult linear systems 
– Slow CFL growth 

 



Smoothed Newton-Krylov 

• Smoothed solver produces monotonic CFL growth 

• More similar convergence for all time steps 



Conclusions 
• Continuation for Newton methods in CFD are often problematic 

– Majority of solver time spent far from domain of quadratic convergence 

– Pseudo-transient continuation can lead to ill-conditioned systems 
generated by “bad” solution states 

• Addition of source term based on nonlinear smoothing can 
accelerate PTC-Newton schemes 
– Empirical evidence points to smoothing (vs. solving) as dominant 

mechanism 

• Formulation prevents stalling due to small CFL values 
– Reverts to local nonlinear smoother in limit CFL << 1 

• Difficulties may still occur if strong nonlinearities arise in 
intermediate regions 1 << CFL <<  
– Future work… 


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