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Motivation

Newton-Krylov methods have become popular for
solving difficult/stiff CFD problems

— Krylov methods provide robust linear system convergence

— Newton method provides quadratic convergence enabling
convergence to low residual tolerances

Newton methods require continuation for most
problems

Most of the time spent for solving CFD problems is
spent in the continuation process

Continuation methods can stall due to local effects
— “Unbalanced nonlinearities”

— Attempts made to break up into smaller nonlinear
problems
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Newton Method

* Tosolve: R(w) =0
* Linearize to get Jacobian dR/dw
* Take Newton steps as:

[dR(w")/dw"] Aw" = - R(w")
wtl = wh + o Aw"

with 0 < o <1 as determined by (backtracking) line
search to minimize | |R(w"?)[ ],



Pseudo-Transient Continuation
Newton Method

* Introduce pseudo-time term and solve
[M (w"*t—w") / At + R(w"*!) = R (w"*1)=0
* Take Newton steps as:
[M/At + dR(w")/dw"] Aw" = - R(w")
wMl = w" + o Aw"

with 0 < o <1 as determined by (backtracking) line search to
minimize | |R,(w"!)] ],

M is a suitable mass matrix

At is the pseudo time step (local time step = CFL At ;ci0)



Pseudo-Transient Continuation
Newton Method

* Introduce pseudo-time term and solve
[M (w"* —wn) / At + R(w™?) = R (W"1)=0
* Take Newton steps as:
[M/AT + dR(w")/dw"] Aw" = - R(w")

whtl = w" + g Aw"

with O <o <1 asdetermined b
minimize | |R,(w"!)] ],

acktracking) line search to

Note: R(w") = R,(w") ...... but R(w"*) R (w"*1)



Pseudo-Transient Continuation
Newton Method

* Introduce pseudo-time term and solve
[M (w"*t—w") / At + R(w"*!) = R (w"*1)=0
* Take Newton steps as:
[M/At + dR(w")/dw"] Aw" = - R(w")
wMl = w" + o Aw"

with 0 < o <1 as determined by (backtracking) line search to
minimize | |R,(w"!)] ],

Aw is guaranteed to be a descent direction for | |R,]| |,
provided [M/At + dR/dw] is an exact linearization of R,



Pseudo-Transient Continuation
Newton Method
[IM/At + dR(w")/dw"] Aw" = - R(w")

e Limit as At >> 1 : Recover Newton scheme
[dR(w")/dw"] Aw" = - R(w")

* Limit as At << 1: Recover point explicit scheme
[M/At] Aw" = - R(W") or Aw" =- At R(w")

M is simply cell volume for finite-volume scheme and is absorbed in
At above for simplicity



Pseudo-Transient Controller

* Magnitude of At (or CFL) controlled by success/failure of line
search

— Initial CFL~ 1

— Linesearchresult: o =1 CFL=CFL * 1.5
— Line search result: o0 < 0.1 CFL=CFL/ 10
— Otherwise CFL = constant

— Common failure mode: CFL> 0

Aw" = - At R(w") also =20

e (Observation:

— Common local nonlinear smoothers (block Jacobi, line Jacobi, Gauss-
Seidel) have no difficulties reducing residuals in cases where PTC fails in
above mode

— Explicit scheme is poor choice for anisotropic problems (line smoothers
preferred)



* Int

Desired Behavior ... ...

he limit CFL<< 1

Aw" = - D1 R(w")
— where D is some preconditioner/smoother

 Possible formulation:

e possibly nonlinear

initial residual
reduction

/

* Independent of CFL or At

a(AT)D+6(AT) %Q

with, for example....

a(A7) =-21— P(A7r)=:4¢

1+A7

AW" = —R(w")
Still recovers
Newton scheme

for At>>1

1+A7



Disadvantages

a(AT)D+6(AT) %Q

AW" = —-R(w")

e Left-hand side matrix is modified

— May require modification of linear solver
techniques especially for intermediate values of At

* Left-hand side matrix is no longer exact

linearization of RHS

— Descent direction for line search not guaranteed



Alternate Approach

* Leave LHS (Jacobian) unchanged
 Modify RHS as:

M+8_R AW" =—-R(W")-D
AT OW

M " M N
—ForAt<<1: —Aw =—D1—R(W)
AT AT

— For At >> 1: a—RAWn =—-R(w")
oW



Alternate Approach

* Leave LHS (Jacobian) unchanged
 Modify RHS as:

M 8R M
w" = —R(w" D‘l—RW
AT (’9W (W)= (W)

— For At << 1; %W D%(W )

— For At >>1: —AW =—-R(w")
OW




Residual Smoothing Interpretation

RY
__|__
AT OW

AW"

M

—R(W")-D"—R(W")

AT

— D'IM/A7 is a non-dimensional operator with a
non-trivial stencil (due to D)

— RHS may be interpreted as a smoothed residual

vector
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AW"
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AT

smoothing operator

R(W") =Ry, (W)



Residual Smoothing Advantages

M OR
__|__

AT OW

AW"

— Simple to implement:
» Add precomputed correction Aw=-D'R(w) to RHS and scale by

M/Az

— LHS Jacobian is unchanged from original scheme

| + D

M

At

* Make use of existing linear solvers

— LHS Jacobian is exact linearization of RHS

* Line search descent direction is guaranteed

R(W") =Ry, (W)

Smoothing
term
always

evaluated
at w"
(vanishes in

M

Rsm (Wn+1) — M (Wn+1 . Wn) + R(Wn+1) 4 D—1 Vb R(Wn) linearization)
AT A

T



Residual Smoothing Advantages

* Line search minimizes | |R, ||, instead of | |R| |,
* For At >>1 these are the same

* For At << 1 Line search usually takes full update since
we have:

R (W)~ M (awr)+ Rew™) + D M Rwn)
AT AT

small wrt to other terms

— and the the solution Aw"=-D-1R(w") implies
Re(WN+AW") ~ 0



Generalization and Implementation

M R aw =—rw) =DM g
AT OW | At

— Implement by adding precomputed update as
source term on RHS: AW =—D™'R(w")
— and rescale by M/At
— In practice Aw*™ can be the result of any sequence
of nonlinear smoothing operations

* Multistage Runge-Kutta designed for smoothing
(Jameson 1981)

* Any number of nonlinear (FAS) multigrid cycles



Results

* Implemented in unstructured mesh CFD code NSU3D

* Highly anisotropic meshes in near wall region
* Extract line structures for implicit line solve

— Nonlinear solver:
» 3 stage line-implicit Runge-Kutta
* Used as solver, or smoother for agglomeration Multigrid
— Newton-Krylov Solver
Pseudo-transient continuation with line search and CFL controller
Linear system solved by linear MG: Linear residual reduction =0.01
Original version (unsmoothed)
Smoothed version: 5 cycles of 3-stage line RK to compute smoothing term
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Results: Test Case 1

* Transonic flow over wing-body configuration

e Solution of Reynolds-Averaged Navier-Stokes Equations (RANS):
— 2" order finite-volume
— Mach=0.75, Incidence=0°, Re=3 million, Spalart-Allmaras Turbulence model
— 1.2 million point mesh (mixed tets, prisms)
— Highly anisotropic (1:10,000) near wall



Convergence of Nonlinear Solvers

e 3 stage line-implicit Runge Kutta smoother
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* Relatively monotone convergence in both cases
* As expected, multigrid solver 10X faster




Convergence of PTC Newton-Krylov
Original (Unsmoothed)

RMS Residual
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e 80 nonlinear cycles, 2063 total Krylov vectors
* Achieves quadratic convergence at end




Convergence of PTC Newton-Krylov
Original (Unsmoothed)

RMS Residual
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Some linear systems at startup (low CFL) are difficult to solve !
CFL only climbs rapidly after ~50 nonlinear cycles (out of 80)




Convergence of PTC Smoothed

Newton-Krylov
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* All settings identical to previous case

* Smoothing constructed using 5 nonlinear cycles of 3-stage line-RK
— Requires 10% of overall solution time

* Nonlinear cycles reduced from 80 to 43

* Cumulative Krylov vectors reduces from 2068 to 888




Convergence of PTC Smoothed
Newton-Krylov
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* Near monotonic rise of CFL in continuation process
e No difficult linear systems (as determined by number of Krylov

vectors)




Is it Smoothing or Solving ?
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Smoothing = 5 single grid nonlinear cycles

Smoothing = 5 multigrid nonlinear cycles

Multigrid and single grid smoothing produce similar overall convergence

Supporting evidence that smoothing is effective mechanism
— Recall: FAS MG 10X faster than single grid nonlinear solver




Is it Smoothing or Solving ?
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* Multigrid and single grid smoothing produce similar overall convergence

* Supporting evidence that smoothing is effective mechanism
— Recall: FAS MG 10X faster than single grid nonlinear solver




Test Case 2:
Time-Dependent 4-Bladed Rotor
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FAS Multigrid Solver
RANS equations with SA turbulence model first 5 time steps

2 million point mesh with highly anisotropic prisms near blade surfaces
BDF2 time discretization: 1 degree time step

Rotor started impulsively in freestream flow (tip Mach number ~ 0.9)

FAS Multigrid converges initial and subsequent time steps at similar rates




Time-Dependent Test Case
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Original (unsmoothed) Newton

Newton-Krylov method requires lengthy continuation to converge
first time step: 120 nonlinear cycles

— Impulsively started rotor
Subsequent time steps converge rapidly: < 10 nonlinear cycles
— Good initial guess from previous time step




Original (unsmoothed) Newton-Krylov
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* First time step
— 120 nonlinear steps, 1600 Krylov vectors

* Third time step
— 9 nonlinear steps, 150 Krylov vectors



Smoothed Newton-Krylov
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Smoothing constructed using 5 cycles of 3-stage line RK

First time step solution reduced from
— 120 to 20 nonlinear cycles
— 1600 to 220 Krylov vectors

Subsequent time steps similar to unsmoothed case
* Convergence of all time steps is more consistent



Original (unsmoothed) Newton-Krylov
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First time step generates

— Difficult linear systems
— Slow CFL growth




Smoothed Newton-Krylov
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* Smoothed solver produces monotonic CFL growth
* More similar convergence for all time steps




Conclusions

Continuation for Newton methods in CFD are often problematic

— Majority of solver time spent far from domain of quadratic convergence

— Pseudo-transient continuation can lead to ill-conditioned systems
generated by “bad” solution states

Addition of source term based on nonlinear smoothing can
accelerate PTC-Newton schemes

— Empirical evidence points to smoothing (vs. solving) as dominant
mechanism

Formulation prevents stalling due to small CFL values

— Reverts to local nonlinear smoother in limit CFL << 1

Difficulties may still occur if strong nonlinearities arise in
intermediate regions 1 << CFL << 0O

— Future work...
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