
THE DEVELOPMENT OF UNSTRUCTURED GRID METHODS
FOR COMPUTATIONAL AERODYNAMICS

Dimitri J. Mavriplis

ICASE
NASA Langley Research Center

Hampton, VA

University of Illinois at Urbana-Champaign

April 29, 2002



MOTIVATION
� Development of Practical Aerodynamic CFD Capability

{ Unstructured Grids for Complex Geometries

{ Algorithmic Research

� Discretization

� Solution Techniques

{ Computer Science Research

� Cache Efficiency

� (Vector)/Parallel Processing

{ Validation on Realistic Aerodynamic Problems

� NASA Wind Tunnel Data

� Collaboration with Industry



OVERVIEW
� Unstructured Grid Advantages/Disadvantages

� Discretization

� Solution Procedures

{ Multigrid Methods

� Grid Anisotropy

{ Directional Preconditioning

� Parallelization

� Validation

{ Large Research Cases on Supercomputers

{ Smaller Production Cases on PC Clusters

� Current and Future Topics



OVERVIEW
� (Block) Structured Grids

{ Logically Rectangular

{ Supports Dimensional Splitting Algorithms

{ Banded Matrices

{ Block Structure for Complex Geometries

� Unstructured Grids

{ Lists of Cell Connectivity, Graphs (Edges,Vertices)

{ Alternate Discretization/Solution Strategies

{ Sparse Matrices

{ Complex Geometries, Adaptive Meshing

{ More Efficient Parallelization (homogeneous)
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DISCRETIZATION
� Governing Equations: Reynolds Averaged Navier-Stokes

{ Conservation of Mass Momentum and Energy

{ Single Equation Turbulence Model (Spalart-Allmaras)

� Convection - Diffusion - Production

� Vertex-Based Discretization

{ 2nd order upwind finite-volume scheme

{ 6 variables per grid point

{ Flow equations fully coupled (5� 5)

{ Turbulence equation uncoupled



SPATIAL DISCRETIZATION
� Mixed Element Meshes

{ Tetrahedra, Prisms, Pyramids, Hexahedra

� Control Volume Based on Median Duals

{ Fluxes based on edges

� Fik = f(uleft;uright)

� uleft = ui;uright = uk: 1st order accurate

� uleft = ui +
1

2
rui:rik

� uright = uk +
1

2
ruk:rki: 2nd order accurate

� rui evaluated as contour integral around CV

{ Single Edge Based Data Structure represents all element types
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SOLUTION OF SPATIALLY DISCRETIZED EQUATIONS

du
dt
+R(u) = 0

� Integrate to Steady-State

� Explicit : un+1 = un ��tR(un)

{ Simple

{ Slow Convergence : Local Procedure

� Implicit : ( I
�t +
@R

@u
)(un+1 � un) = ��tR(un)

{ Large Memory Requirements

� Matrix-Free Implicit : @R
@u�u = R(u)�R(u+��u)

�

{ Most Effective with Matrix-Based Preconditioner

� Multigrid Methods



CYCLING STRATEGIES
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PARALLEL IMPLEMENTATION

Communication Path

Partition 
Boundary

Ghost
Vertex

Created Internal Edges

� Intersected Edges Resolved by Ghost Vertices

� Generates Communication between Original and Ghost Vertex

{ Handled using MPI and/or OpenMP

{ Portable, Distributed and Shared Memory Architectures

� Local Reordering within partition for Cache-Locality



PARTITIONING
� Graph Partitioning Must Minimize Number of Cut Edges

to Minimize Communication Volume

� Standard Graph Based Partitioners: MeTis, CHACO

{ Require only Weighted Graph Description of Grid

� Edges, Vertices and Weights (taken as unity)

{ Ideal for Edge Data Structure

� Line Solver Inherently Sequential

{ Partition Around Lines using Weighted Graphs



SAMPLE CALCULATIONS AND VALIDATION
� Subsonic High-Lift Case

{ Geometrically Complex

{ Large Case: 25 million points, 1450 processors

{ Research Environment Demonstration Case

� Transonic Wing Body

{ Smaller Grid Sizes

{ Full Matrix of Mach and CL conditions

{ Typical of Production runs in design environment



OBSERVED SPEEDUPS FOR 24.7M PT GRID
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� Good Multigrid Scalability up to 1450 PEs

� Multigrid Scalability Decrease due to Coarse Grid Communication

{ (single grid solver not feasible: 100 times slower)

� 1 hour solution time on 1450 PEs (82 Gflops)



COMPARISON WITH EXPERIMENTAL DATA
� Lift versus Incidence Slightly Over Predicted

� Drag Polar Well Predicted on Fine Grid

� Maximum Lift Point Overpredicted by 1.0 degree

� High Lift Flows among most difficult to predict accurately

{ Geometric Complexity

{ Complex flow physics

{ Extremely fine grids required



TRANSONIC WING BODY TEST CASE
� Test Case for AIAA Drag Prediction Workshop

{ Assess Capability of Modern CFD Methods for Drag Prediction

{ Realistic but Simple Geometry

{ Drag polars, Drag Rise Curves

� Typical for aircraft design studies

� Grid Resolution Effects

� Rapid Turnaround for Large Number of Cases on Commodity Hardware

� Joint Work with Cessna Aircraft (D. Levy)



DRAG PREDICTION WORKSHOP
� DLR-F4 Wing-Body Configuration

� Supplied Grid, Custom built Grids

� Mandatory Cases:

{ Fixed Point M=0.75, CL=0.5, Drag Polar at M=0.75

� Optional Cases

{ Drag Rise Curves (Drag vs. Mach at constant CL)



CASES RUN
� BASELINE GRID: 1.6 million points

{ Full Drag Polars for Mach Numbers: 0.5, 0.6, 0.7, 0.75, 0.76, 0.77, 0.78, 0.8

{ Interpolated Incidence on Polars at Prescribed Lift Value

{ Total: 72 cases

� MEDIUM GRID: 3.0 million points

{ Full Drag Polars for Each Mach Number

{ Total: 48 cases

� FINE GRID: 13 million points

{ Computed Drag Polar at Mach = 0.75

{ Computed CL=0.5 case at Mach=0.75

{ Total: 7 cases

{ Highest Incidence case not fully converged



SAMPLE SOLUTION ON BASELINE GRID (1.65 M pts)
� Mach = 0.75, CL = 0.6, Re = 3 million

� Baseline Grid (1.65 million points)



SAMPLE SOLUTION ON BASELINE GRID
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� Adequate Boundary Layer Resolution on Baseline Grid

� Force Coefficients Converged in 250 Multigrid Cycles for this case

� All Cases run Minimum of 500 Multigrid Cycles



BASELINE GRID CASES RUN ON ICASE CLUSTER
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� Polars for all Mach Numbers: 72 Cases

� 2.5 hours per case on 16 1.7GHz Pentium CPUs

� About 1 week to compute all cases



RESULTS FOR CASE 1: Mach = 0.75, CL=0.5, Re = 3M

Case CL � CD CM

Experiment(ONERA) 0.5000 +:192o 0.02896 -.1301

Experiment(NLR) 0.5000 +:153o 0.02889 -.1260

Experiment(DRA) 0.5000 +:179o 0.02793 -.1371

Grid1(1:6Mpts)(ICASE) 0.5004 �:241o 0.02921 -.1549

Grid1(1:6Mpts)(Cessna) 0.4995 �:248o 0.02899 -.1548

Grid2(3:0Mpts) 0.5000 �:417o 0.02857 -.1643

Grid3(13Mpts) 0.5003 �:367o 0.02815 -.1657

� Good Overall Drag Agreement (10 counts)

� Notable Incidence Offset



LIFT VERSUS INCIDENCE
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� Substantial Overprediction of Lift at Given Incidence

{ Observed by majority of workshop participants

� Slope Overpredicted by � 5%

� Unaffected by Grid Resolution



DRAG POLAR FOR MACH= 0.75 (CASE 2)
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� Good Drag Prediction Despite CL Shift

� Better Agreement at Low CL with Increased Grid Resolution



DRAG RISE COMPARISON WITH EXP. DATA (CASE 4)
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1.6M Grid

� Reasonable Overall Comparison for Relatively Coarse Grid

� Increased Discrepancies at Higher Mach Number and Lift



ADDITIONAL DRAG POLARS
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� Increased Accuracy for Finer Grid at Lower Lift Values

� Increased Discrepancies at Higher Mach Number and Lift



DRAG UNDERPREDICTION AT HIGH CL/Mach
� Separation Likely Underpredicted at High CL/Mach Conditions

{ Influence of Turbulence Models

� Free Transition in Computations

{ Computationally observed � 5% to 7% chord

{ Experimentally Set 15%(upper) and 25%(lower) chord

� Possible Effects due to CL-Incidence Offset



VALIDATION SUMMARY
� Unstructured Grid Methods Comparable and Often Superior to Struc-

tured Counterparts

{ Similar Accuracy

{ Reduced Setup Time

{ Good Parallelization Characteristics

� CFD Methods Perform Well at Design Conditions (Attached Flow)

� High Incidence, High Lift More Problematic

� Transition, Turbulence Modeling Important Issues

� Grid Resolution always an Issue



CURRENT AND FUTURE RESEARCH AREAS
� Adaptive Meshing

{ Mixed Element Subdivision

{ Refinement Criteria Pacing Issue

{ Dynamic Load Balancing for Parallel Computing

� Unsteady Flows

{ Implicit Time Solution Procedures

{ Moving Grids, Overlapping Grids

{ Overlapping Grids

� LES and DES Simulations of Separated Flows

� Higher-Order Methods

{ 4th order in Time (Implicit Runge-Kutta)

{ Discontinuous Galerkin, SUPG Methods


