THE DEVELOPMENT OF UNSTRUCTURED GRID METHODS FOR COMPUTATIONAL AERODYNAMICS

Dimitri J. Mavriplis

ICASE NASA Langley Research Center Hampton, VA

University of Illinois at Urbana-Champaign April 29, 2002

MOTIVATION

- Development of Practical Aerodynamic CFD Capability
 - Unstructured Grids for Complex Geometries
 - Algorithmic Research
 - * Discretization
 - * Solution Techniques
 - Computer Science Research
 - * Cache Efficiency
 - * (Vector)/Parallel Processing
 - Validation on Realistic Aerodynamic Problems
 - * NASA Wind Tunnel Data
 - * Collaboration with Industry

OVERVIEW

- Unstructured Grid Advantages/Disadvantages
- Discretization
- Solution Procedures
 - Multigrid Methods
- Grid Anisotropy
 - Directional Preconditioning
- Parallelization
- Validation
 - Large Research Cases on Supercomputers
 - Smaller Production Cases on PC Clusters
- Current and Future Topics

OVERVIEW

- (Block) Structured Grids
 - Logically Rectangular
 - Supports Dimensional Splitting Algorithms
 - Banded Matrices
 - Block Structure for Complex Geometries
- Unstructured Grids
 - Lists of Cell Connectivity, Graphs (Edges, Vertices)
 - Alternate Discretization/Solution Strategies
 - Sparse Matrices
 - Complex Geometries, Adaptive Meshing
 - More Efficient Parallelization (homogeneous)

DISCRETIZATION

- Governing Equations: Reynolds Averaged Navier-Stokes
 - Conservation of Mass Momentum and Energy
 - Single Equation Turbulence Model (Spalart-Allmaras)
 - * Convection Diffusion Production
- Vertex-Based Discretization
 - 2nd order upwind finite-volume scheme
 - 6 variables per grid point
 - Flow equations fully coupled (5×5)
 - Turbulence equation uncoupled

SPATIAL DISCRETIZATION

- Mixed Element Meshes
 - Tetrahedra, Prisms, Pyramids, Hexahedra
- Control Volume Based on Median Duals
 - Fluxes based on edges
 - * $\mathbf{F_{ik}} = f(\mathbf{u_{left}}, \mathbf{u_{right}})$
 - * $\mathbf{u}_{left} = \mathbf{u}_i, \mathbf{u}_{right} = \mathbf{u}_k$: 1st order accurate
 - $\mathbf{u}_{\mathrm{left}} = \mathbf{u}_{\mathrm{i}} + rac{1}{2}
 abla \mathbf{u}_{\mathrm{i}} \cdot \mathbf{r}_{\mathrm{ik}}$
 - * $\mathbf{u_{right}} = \mathbf{u_k} + \frac{1}{2} \nabla \mathbf{u_k}.\mathbf{r_{ki}}$: 2nd order accurate
 - $* \nabla u_i$ evaluated as contour integral around CV
 - Single Edge Based Data Structure represents all element types

SOLUTION OF SPATIALLY DISCRETIZED EQUATIONS

 $\frac{du}{dt} + \mathbf{R}(\mathbf{u}) = 0$

- Integrate to Steady-State
- Explicit : $u^{n+1} = u^n \Delta t \, \mathbf{R}(\mathbf{u}^n)$
 - Simple
 - Slow Convergence : Local Procedure
- Implicit : $(\frac{I}{\Delta t} + \frac{\partial \mathbf{R}}{\partial u})(u^{n+1} u^n) = -\Delta t \, \mathbf{R}(\mathbf{u}^n)$
 - Large Memory Requirements
- Matrix-Free Implicit : $\frac{\partial \mathbf{R}}{\partial \mathbf{u}} \Delta u = \frac{\mathbf{R}(\mathbf{u}) \mathbf{R}(\mathbf{u} + \epsilon \Delta \mathbf{u})}{\epsilon}$

– Most Effective with Matrix-Based Preconditioner

Multigrid Methods

CYCLING STRATEGIES

V-Cycle

- *T* = *Time-Step*
- R = Restriction
- *P* = *Prolongation*

PARALLEL IMPLEMENTATION

- Intersected Edges Resolved by Ghost Vertices
- Generates Communication between Original and Ghost Vertex
 - Handled using MPI and/or OpenMP
 - Portable, Distributed and Shared Memory Architectures
- Local Reordering within partition for Cache-Locality

PARTITIONING

- Graph Partitioning Must Minimize Number of Cut Edges to Minimize Communication Volume
- Standard Graph Based Partitioners: MeTis, CHACO
 - Require only Weighted Graph Description of Grid
 - * Edges, Vertices and Weights (taken as unity)
 - Ideal for Edge Data Structure
- Line Solver Inherently Sequential
 - Partition Around Lines using Weighted Graphs

SAMPLE CALCULATIONS AND VALIDATION

- Subsonic High-Lift Case
 - Geometrically Complex
 - Large Case: 25 million points, 1450 processors
 - Research Environment Demonstration Case
- Transonic Wing Body
 - Smaller Grid Sizes
 - Full Matrix of Mach and C_L conditions
 - Typical of Production runs in design environment

OBSERVED SPEEDUPS FOR 24.7M PT GRID

- Good Multigrid Scalability up to 1450 PEs
- Multigrid Scalability Decrease due to Coarse Grid Communication
 - (single grid solver not feasible: 100 times slower)
- 1 hour solution time on 1450 PEs (82 Gflops)

COMPARISON WITH EXPERIMENTAL DATA

- Lift versus Incidence Slightly Over Predicted
- Drag Polar Well Predicted on Fine Grid
- Maximum Lift Point Overpredicted by 1.0 degree
- *High Lift Flows among most difficult to predict accurately*
 - Geometric Complexity
 - Complex flow physics
 - Extremely fine grids required

TRANSONIC WING BODY TEST CASE

- Test Case for AIAA Drag Prediction Workshop
 - Assess Capability of Modern CFD Methods for Drag Prediction
 - Realistic but Simple Geometry
 - Drag polars, Drag Rise Curves
 - * Typical for aircraft design studies
- Grid Resolution Effects
- Rapid Turnaround for Large Number of Cases on Commodity Hardware
- Joint Work with Cessna Aircraft (D. Levy)

- DLR-F4 Wing-Body Configuration
- Supplied Grid, Custom built Grids
- Mandatory Cases:

- Fixed Point M=0.75, C_L =0.5, Drag Polar at M=0.75

- Optional Cases
 - Drag Rise Curves (Drag vs. Mach at constant C_L)

CASES RUN

- BASELINE GRID: 1.6 million points
 - Full Drag Polars for Mach Numbers: 0.5, 0.6, 0.7, 0.75, 0.76, 0.77, 0.78, 0.8
 - Interpolated Incidence on Polars at Prescribed Lift Value
 - Total: 72 cases
- MEDIUM GRID: 3.0 million points
 - Full Drag Polars for Each Mach Number
 - Total: 48 cases
- FINE GRID: 13 million points
 - Computed Drag Polar at Mach = 0.75
 - Computed C_L =0.5 case at Mach=0.75
 - Total: 7 cases
 - Highest Incidence case not fully converged

SAMPLE SOLUTION ON BASELINE GRID (1.65 M pts)

- *Mach* = 0.75, *C*_{*L*} = 0.6, *Re* = 3 million
- Baseline Grid (1.65 million points)

SAMPLE SOLUTION ON BASELINE GRID

- Adequate Boundary Layer Resolution on Baseline Grid
- Force Coefficients Converged in 250 Multigrid Cycles for this case
- All Cases run Minimum of 500 Multigrid Cycles

BASELINE GRID CASES RUN ON ICASE CLUSTER

- Polars for all Mach Numbers: 72 Cases
- 2.5 hours per case on 16 1.7GHz Pentium CPUs
- About 1 week to compute all cases

RESULTS FOR CASE 1: Mach = 0.75, CL=0.5, Re = 3M

Case	C_L	α	C_D	C_M
<i>Experiment</i> (<i>ONERA</i>)	0.5000	$+.192^{o}$	0.02896	1301
Experiment(NLR)	0.5000	$+.153^{o}$	0.02889	1260
<i>Experiment</i> (<i>DRA</i>)	0.5000	$+.179^{o}$	0.02793	1371
Grid1(1.6Mpts)(ICASE)	0.5004	241^{o}	0.02921	1549
Grid1(1.6Mpts)(Cessna)	0.4995	248^{o}	0.02899	1548
Grid2(3.0Mpts)	0.5000	417^{o}	0.02857	1643
Grid3(13Mpts)	0.5003	367^{o}	0.02815	1657

- Good Overall Drag Agreement (10 counts)
- Notable Incidence Offset

LIFT VERSUS INCIDENCE

• Substantial Overprediction of Lift at Given Incidence

– Observed by majority of workshop participants

- Slope Overpredicted by $\approx 5\%$
- Unaffected by Grid Resolution

DRAG POLAR FOR MACH= 0.75 (CASE 2)

- Good Drag Prediction Despite C_L Shift
- Better Agreement at Low C_L with Increased Grid Resolution

DRAG RISE COMPARISON WITH EXP. DATA (CASE 4)

- Reasonable Overall Comparison for Relatively Coarse Grid
- Increased Discrepancies at Higher Mach Number and Lift

ADDITIONAL DRAG POLARS

- Increased Accuracy for Finer Grid at Lower Lift Values
- Increased Discrepancies at Higher Mach Number and Lift

DRAG UNDERPREDICTION AT HIGH CL/Mach

- Separation Likely Underpredicted at High C_L/Mach Conditions – Influence of Turbulence Models
- Free Transition in Computations
 - Computationally observed $\approx 5\%$ to 7% chord
 - Experimentally Set 15%(upper) and 25%(lower) chord
- Possible Effects due to C_L-Incidence Offset

VALIDATION SUMMARY

- Unstructured Grid Methods Comparable and Often Superior to Structured Counterparts
 - Similar Accuracy
 - Reduced Setup Time
 - Good Parallelization Characteristics
- CFD Methods Perform Well at Design Conditions (Attached Flow)
- High Incidence, High Lift More Problematic
- Transition, Turbulence Modeling Important Issues
- Grid Resolution always an Issue

CURRENT AND FUTURE RESEARCH AREAS

- Adaptive Meshing
 - Mixed Element Subdivision
 - Refinement Criteria Pacing Issue
 - Dynamic Load Balancing for Parallel Computing
- Unsteady Flows
 - Implicit Time Solution Procedures
 - Moving Grids, Overlapping Grids
 - Overlapping Grids
- LES and DES Simulations of Separated Flows
- Higher-Order Methods
 - 4th order in Time (Implicit Runge-Kutta)
 - Discontinuous Galerkin, SUPG Methods