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1 Introduction

The ability to accurately predict aerodynamic forces and moments is of the utmost impor-
tance to the aircraft designer. Whether this is achieved through 
ight testing, wind-tunnel
experiments, or computational techniques, the prediction of lift, drag, and moments, and
their changes as a function of design parameters is critical for reducing risk in the conception
stage and optimizing performance of the �nal product. For example, for long range transport
aircraft, small changes in cruise drag can have appreciable overall e�ects on direct operating
costs and mission range. Similarly, in the design of high-lift systems, simpli�ed mechanical
designs which maintain of exceed required levels of aerodynamic performance can lead to
substantially reduced manufacturing and maintenance costs. For these reasons, it is essential
to be able to predict forces and moments in general, and drag in particular, very accurately
throughout the design process.

For subsonic transport aircraft, accuracy requirements for drag prediction through wind
tunnel experiments are generally taken to be of the order of 1 drag count [1, 2]. This is the
level of accuracy and reliability which must be achieved from computational techniques, if
computational 
uid dynamics (CFD) is to ful�ll the promise of reduced design cycle costs,
and improved optimization procedures, by gradually displacing wind tunnel testing and
automating the design optimization process. This level of accuracy (1 drag count = 1.e-04) is
exceptionally stringent, and distinguishes the special sub�eld of computational aerodynamics
from the larger �eld of computational 
uid dynamics or computational physics.

Because of these requirements, it is unlikely that other generic or specialized computation
simulation capabilities (such as techniques for the simulation of automotive 
ows or explo-
sive weapons 
ows, two disparate example areas of computational 
uid dynamics which have
received much attention over the last decade) will be viable for aerodynamic drag prediction.
Computational aerodynamics involves not only stringent accuracy requirements, but includes
unique characteristics, such as very thin boundary layer and wake regions, and turbulence
and transitional e�ects. The former can only be resolved e�ciently through the use of highly
stretched meshes, which can have adverse e�ects on solution e�ciency if not dealt with explic-
itly in the solver formulation, while the latter requires the use of physical models specialized
for aerodynamic applications. Because of these unique characteristics, and because aerody-
namics is considered a core competency of most airframers, virtually all aircraft companies
worldwide today maintain some degree of in-house expertise in computational aerodynamics.
While the actual simulation capability may either be developed in-house or brought in from
the outside, the validation and certi�cation of this capability must be performed in-house
and retained as corporate knowledge. In this respect, it is not the absolute performance of
a simulation capability which is of value, but the knowledge of the extent, limitations, and
region of applicability of the simulation capability. In general, a suite of simulation codes
is assembled, with low �delity models such as panel methods being used for rapid analy-
ses, providing intuitive or empirically correlated feedback, and higher �delity models such
as inviscid 
ow coupled with boundary layers or Reynolds averaged Navier-Stokes methods
providing either incremental information, or ultimately, absolute predictions.

The �eld of computational 
uid dynamics has made great strides over the last 20 years
through combined hardware advances and algorithmic improvements. Over this period of
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time, the scienti�c literature has concentrated mostly on documenting algorithmic improve-
ments. Demonstrations on relatively simple test problems and qualitative assessments have
generally been the outcome of such studies. However, detailed validation studies, particularly
for drag prediction, seldomly have been reported. Now that computational aerodynamics has
become a�ordable to most industry organizations, it must earn credibility through detailed
validation and certi�cation studies in order to provide value in the design process. This fact
has been recognized over the last several years, and various activities have taken place or are
under way both in the United States and in Europe, with the undertaking of programs such
as the AIAA Drag Prediction Workshops in June 2001 and June 2003, and the European
AIRDATA and HiReTT programs, ERCOFTAC validation activities, and the formation of
the QNET CFD project (see [3] for an overview of European activities). It is in this spirit
that the current VKI lecture series on Drag Prediction has been organized.

It is generally acknowledged that for cruise conditions, with minimal regions of separated

ow, Reynolds-averaged Navier-Stokes methods can provide reliable predictions of surface
pressures. However, this in itself does not imply accurate drag prediction. One study found
that accurate drag prediction required much �ner grids and lower levels of convergence than
previously used for surface pressure prediction [4, 5], resulting in an order of magnitude
more computational expense. Furthermore, the ability to predict Reynolds number e�ects,
in order to enable reliable scaling from wind-tunnel to 
ight, is a current area of research
on both sides of the Atlantic [6, 7]. For o�-design conditions, such as post-stall bu�et,
and high-lift conditions, due to the increased geometric complexity and more complicated

ow physics, the reliable prediction of surface pressures in itself currently presents a serious
challenge.

The di�culty of the task of assessing the state-of-the-art in computational drag prediction
is compounded by the multitude of Navier-Stokes solver formulations available, as well as the
e�ects on accuracy of turbulence and transition modeling, and grid resolution. For the CFD
practitioner, the important issues are less related to the knowledge of the algorithmic details
of a given approach, but more related to understanding the interplay between grid resolution,
discretization, physical modeling, and the manners in which these characteristics can a�ect
the accuracy and reliability of drag prediction. It is with this purpose in mind that these
lecture notes have been written. While a basic level description of the algorithms comprising
current-day unstructured grid RANS solvers will be given, emphasis is directed towards the
e�ect various characteristics of current-day grid generation and solver technologies can have
on accurate drag prediction, and the types of numerical experiments required to validate
these �ndings.

These lecture notes are concerned exclusively with the use of unstructured mesh solvers
for aerodynamic drag prediction. Unlike many other �elds of computational physics, compu-
tational aerodynamics has been dominated for most of its existence by the use of structured
mesh techniques, which have been extended to block-structured and overlapping structured
methods for dealing with ever increasingly complex geometries. This has perhaps been a
result of the high cost and accuracy requirements of computational aerodynamics from the
outset. Over the last decade, unstructured mesh methods have gained more acceptance in
this �eld, as they have demonstrated increasingly competitive accuracy and e�ciency com-
pared to their structured grid counterparts. Currently, it can be said that for similar grid

3



resolutions and equivalent discretizations, structured and unstructured grid formulations can
deliver equivalent levels of accuracy on simple problems. However, unstructured grid solvers
can require up to two to three times more memory and cpu time than structured grid solvers
for equivalent problems, due to the extra overhead involved in indirect addressing, which
is required to describe an unstructured mesh. On the other hand, these di�erences are re-
duced by the extra overhead inherent in block-structured and overset-structured techniques,
required for more complex geometries, and by often superior parallel scalability achieved by
unstructured mesh methods due to the homogeneous nature of the data structures involved.
In fact, it is often the case that e�cient state-of-the-art unstructured grid solvers are more
computationally e�cient than many well established block- or overset-structured grid solvers.
The main advantages of the unstructured grid approach include substantial reduction of the
grid generation time required for complicated geometries, and a relatively straight-forward
implementation of adaptive meshing techniques, which can be used to optimize grid reso-
lution while providing a bound on the level of discretization error. Unfortunately, adaptive
meshing techniques have seldom achieved this level of automation and reliability, but this
potential remains to be exploited in the future.

In the following lecture notes, issues related to unstructured mesh CFD drag prediction
are discussed in detail. This work concentrates exclusively on aspects of drag prediction
which are speci�c to unstructured mesh methodologies, choosing to relegate to other works,
issues which are not speci�cally related to unstructured mesh approaches, such as turbulence
and transition modeling, or far-�eld drag integration methods. In section 2, the relative
capabilities and costs of various model �delities are discussed, including inviscid (Euler)
solvers, Euler with boundary layer corrections, Reynolds-averaged Navier-Stokes (RANS)
methods, and large eddy simulations (LES) on unstructured grids. Section 3 considers
discretization and grid resolution issues, which are naturally inter-related. An examination
of various unstructured mesh discretizations, including some of the subtleties involved and
their e�ect on drag prediction is given in section 3.1. Grid resolution, which represents
perhaps the most important issue in achieving accurate drag prediction is covered in section
3.2, where its e�ect on accuracy is examined, and guidelines for adequate grid resolution are
formulated.

In section 4, the principal techniques involved in the construction of an e�cient parallel
unstructured grid solver are overviewed. Various drag prediction studies are outlined in
section 5, detailing the successes and failures of current day methods at predicting absolute
cruise drag, engine installation drag, and lift and drag for high-lift systems.

Finally, in section 6, the potential impact of existing and new technologies on the drag
prediction capability are discussed, including adaptive meshing, and higher-order methods.
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2 Physical Model Fidelity

Although current state-of-the-art aerodynamic drag prediction methods are centered on
Reynolds-Averaged Navier-Stokes (RANS) methods, it is useful to examine the capabili-
ties and relative merits of other models and to describe how these may complement current
RANS models. The aerodynamicist has at his disposal an entire suite of analysis tools,
ranging from simple panel methods, up to full Navier-Stokes simulations. Unstructured
mesh-based simulation methods may range from simple inviscid 
ow analyses, to complex
large-eddy simulations (LES), with RANS methods occupying the center ground. The vari-
ous levels of approximation possible for unstructured mesh methods are depicted in Table 1
along with their relative cost.

Table 1: Unstructured mesh based physical models and required computational resources

Physical Model Nominal Grid Size (Pts) (MG) Cycles for Convergence Normalized Run Time
Euler 105 � 106 50 - 100 1.0

Euler + IBL 105 � 106 100 - 300 2 - 3
RANS 106 � 107 250 - 1000 50 - 100
DES 107 � 108 5000 - 10000 5000 - 10000
LES 109 � 1011 O(106) O(108)

2.1 Inviscid Flow Analysis

The technology for computing inviscid 
ows on unstructured meshes is currently well de-
veloped. Several unstructured and adaptive cartesian mesh approaches have demonstrated
rapid turn-around and good utility for various aerodynamic problems, including important
applications such as missile aerodynamics, where viscous e�ects are secondary [8]. The
Tranair code developed by Boeing [9], based on potential 
ow with additional boundary-
layer corrections, has been used successfully for drag prediction of transport aircraft for over
one decade. Tetrahedral unstructured mesh Euler solvers have been available for over 15
years [10, 11, 12, 13], and have evolved into very e�cient, robust, and scalable solution
methodologies.

The solution of the Euler equations avoids many of the di�culties associated with RANS
calculations. In particular, since boundary layers and wakes are not present, grid stretch-
ing is not required, and isotropic tetrahedral meshes can be employed. The generation of
isotropic tetrahedral meshes is nowadays a well established robust process, for which many
e�cient commercial packages exist [14]. Since boundary-layer regions need not be resolved,
overall mesh resolution can be be considerably lower than that required in RANS calcula-
tions, and rapid solver convergence is generally attainable in the absence of appreciable grid
stretching [12, 13]. For these reasons, unstructured mesh Euler solvers generally require 50
to 100 times less computational resources than equivalent unstructured mesh RANS solvers.
As an example, consider the case of transonic 
ow analysis over the DLR-F4 wing body
con�guration shown in Figure 1.
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Figure 1: Unstructured mesh for inviscid 
ow
computations about DLR-F4 con�guration. Num-
ber of vertices = 250,000

Figure 2: Computed inviscid 
ow pressure con-
tours about DLR-F4 con�guration. Mach=0.75,
Incidence=1
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Figure 3: Comparison of convergence history for
inviscid 
ow and viscous 
ow simulations in terms
of density residual and lift coe�cient versus num-
ber of multigrid cycles

Figure 4: Computed viscous 
ow pressure con-
tours about DLR-F4 con�guration using NSU3D
solver on mesh of Figure 50. Mach=0.75,
Incidence=1

o, Reynolds number = 3 million
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ow and viscous 
ow computations

This geometry formed the basis of the 1st AIAA Drag Prediction workshop in June
2001 [15]. The minimum grid size that was found to provide reliable drag values using an
unstructured RANS simulation capability contained 1.65 million points, with spacing at the
wall of 7.e-06 chords, resulting in aspect ratios of 10,000 near the wall. On the other hand, a
suitable Euler solution on this geometry can be achieved using the same solver with 235,000
mesh points, involving exclusively isotropic mesh elements throughout the domain, as shown
in Figures 1 and 2. Convergence of the unstructured Euler solver for this case is shown as a
function of multigrid cycles in Figure 3, where it is compared with the convergence history
of the equivalent RANS solver, illustrating the convergence penalty incurred by the RANS
solver due to grid anisotropy. Converging the drag values to 5 signi�cant �gures requires a
total of 3 minutes on 8 Pentium IV 1700 GHz processors for the inviscid 
ow simulation (50
cycles, 3.5 seconds per cycle), while the viscous 
ow simulation required 75 minutes on 16
processors, (250 multigrid cycles, 18 seconds per cycle) or 50 times more resources.

Unfortunately, for transport aircraft in transonic cruise conditions, inviscid 
ow simula-
tions are of little use in predicting lift and drag values, due to the exclusion of all viscous
e�ects. For example, large di�erences between the RANS and Euler results can be seen in the
contour plots of Figures 2 and 4. Such di�erences are particularly notable for modern-day
supercritical airfoil sections, where the shock position is greatly in
uenced by the boundary
layer thickness, as can be seen be the overprediction of shock strength and aft location in
the inviscid analysis as compared to the RANS calculation in Figure 5.

2.2 Coupled Inviscid-Viscous Methods

One approach for overcoming these de�ciencies, while maintaining the e�ciency attributes of
the inviscid 
ow approximation, consists of coupling the unstructured mesh Euler solver with
a boundary-layer solution technique, which can be used to model the displacement thickness
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of the boundary layer, and its in
uence on shock strength and location. This approach has
been used successfully on unstructured grids by various practitioners [16, 17], as well as by the
current author. Using a two-dimensional boundary-layer solution approach, surface pressure
data is gathered along chordwise strips at various spanwise stations, and used to compute
a boundary-layer displacement thickness along each strip, which is then coupled back into
the Euler solution as a transpiration condition. In the context of unstructured meshes, the
principal di�culty resides in interpolating pressures from the unstructured surface mesh
onto the strips, and redistributing the resulting transpiration velocities calculated at the
boundary-layer strips back onto the global surface unstructured mesh. The former is achieved
by calculating the intersection of all mesh edges with the prescribed boundary-layer strips,
and interpolating the presures from the two ends of the intersected edges onto the intersection
point. The latter is achieved by solving a Poisson equation on the unstructured surface
mesh between every pair of adjacent boundary-layer strips, thus approximating a linear
interpolation of values between adjacent strips.

A direct boundary-layer method due to Nash and McDonald [18] has been coupled to the
NSU3D unstructured mesh solver developed by the author, and has been used to recompute
the 
ow over the DLR-F4 con�guration shown in Figure 1. A total of 18 spanwise boundary-
layer strips were employed for these computations are shown in Figure 6. The transpiration
condition is implemented by modifying the inviscid 
ow boundary condition of slip velocity
at an impermeable wall by prescribing a mass 
ux normal to the wall which is given as:

�wvw =
@(�eUe�

�)

@x
(1)

where �� is the boundary-layer displacement thickness, vw represents the blowing velocity,
Ue denotes the boundary-layer edge velocity, �w and �e refer to the density at the wall and
at the boundary-layer edge (which are taken to be the same), and x denotes the chord-
wise coordinate. Figure 7 depicts the surface pressure contours computed using the cou-
pled inviscid-boundary-layer approach, showing a more forward shock position with weaker
strength than in the inviscid computations (c.f. Figure 2), which is more consistent with the
RANS solution depicted in Figure 4. A comparison of the computed lift versus incidence for
the inviscid, coupled, and RANS methods are shown in Figure 8. The inviscid computations
overpredict lift by a large amount, while the coupled method agrees closely with the RANS
approach, both of which slightly overpredict the lift compared to the experimental data.
Figure 9 compares the drag polars produced by the three methods. Because the viscous
drag component is not available in the inviscid and coupled approaches, and because this
quantity is nearly constant throughout the polar range in the RANS calculations, the viscous
drag computed at 0 degrees incidence has been added to the inviscid method and coupled
method pressure drag results, for the purposes of this comparison.
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Figure 6: Illustration of spanwise location of 18
stations for interactive boundary layer computa-
tion on wing component of DLR-F4 con�guration

Figure 7: Computed pressure contours about
DLR-F4 con�guration using coupled inviscid 
ow
- boundary layer approach on mesh of Figure 1
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Figure 9: Comparison of computed drag po-
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Alternatively, the skin friction computed by the boundary layer code [18] could be inte-
grated over the wing for the coupled method, but since no viscous drag data is available for
the fuselage, this approach would still require empirical corrections to obtain absolute drag
numbers for the coupled method. From the polar plot, the predicted drag values are seen to
be substantially improved by the addition of the boundary-layer correction, although at the
lower incidences larger discrepancies with the RANS simulation are still observed. Figure
10 illustrates the improved prediction of the surface pressure pro�le at the 40.9% spanwise
station, using the coupled inviscid-viscous approach. The prediction of shock location and
strength are greatly improved from the inviscid 
ow simulation and agree closely with the
RANS simulation.

The convergence rates of all three methods are compared in Figure 11. In the coupled
method, the boundary layer routine is called every 5 multigrid cycles, producing a sudden
increase in the 
ow residuals as the transpiration velocity is updated. The ensuing multigrid
cycles rapidly reduce the residuals, but the overall asymptotic convergence is governed by the
convergence of the coupling between the viscous and inviscid computations, and thus lags the
convergence of the inviscid method alone, although convergence remains substantially faster
than that achieved by the RANS approach. The additional cost of solving the boundary
layer equations at all 18 strips, every 5 multigrid cycles, is negligible, as the boundary
layer calculations are two-dimensional, and individual boundary layer strips are assigned to
di�erent processors in a parallel run. Thus, the increased cost over the inviscid method is
mainly a result of the slower asymptotic convergence of the coupled system. In this case,
the coupled method is approximately twice as costly as the inviscid method alone, but still
25 times less expensive than the full RANS solution with which it is compared.

The predictive ability of the coupled method must be quali�ed by its substantially lower
cost, and by the fact that this represents a relatively simple implementation of viscous e�ects
(direct boundary layer method, strip-wise two-dimensional). More sophisticated techniques
for accounting for viscous e�ects in coupled inviscid solvers can be considered, generally
resulting in improved predictive ability [19, 9]. Coupled Euler-boundary-layer methods can
provide good surface pressure pro�le predictions at substantially reduced cost, and are ul-
timately capable of adequate drag prediction under certain conditions. However, for cases
involving appreciable amounts of 
ow separation, and/or more complex three dimensional
geometries, the limitations of the coupling approach become more apparent, and at some
point the use of RANS methods, with their increased computational costs, becomes more
suitable, particularly when seeking accuracy of the order of a single drag count. On the other
hand, coupled Euler-boundary-layer methods are ideal for providing qualitative information
about shock location, strength, and 
ow separation, which can be used intuitively to improve
overall aerodynamic characteristics. Because of their low computational cost, coupled Euler-
boundary-layer methods are well suited for automated design optimization strategies, which
may involve multiple analysis runs for a single optimization. In these cases, the �nal opti-
mized design may be re-evaluated with a more accurate RANS code after the optimization
phase.
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2.3 Large Eddy Simulations

While RANS methodologies are currently the most suitable approaches for accurate drag
prediction, there are many situations where these methods have failed to provide adequate
drag prediction. Such cases involve 
ows with large amounts of separation, including post-
stall bu�et conditions, and many high-lift 
ows. While the inclusion of more sophisticated
turbulence modeling can be expected to improve predictive ability in certain cases, there
is a growing consensus that large eddy simulations (LES) may be required ultimately for
accurate simulation of 
ows with large amounts of separation. Just as RANS simulations
are much more costly than inviscid 
ow simulations, LES for aerodynamic 
ows represents
an increase in computational cost of several orders of magnitude over a steady-state RANS
simulation (c.f. Table 1). It is generally acknowledged that complete LES simulations of
full aircraft geometries will not be feasible for the foreseeable future [20]. Nevertheless,
important advances in LES for aerodynamic 
ows have been achieved over the last decade
[21, 22], with accurate LES calculations over an airfoil near stall having been demonstrated
[23]. Hybrid methods which make use of RANS methods in the near wall boundary-layer
regions, and LES methods in regions of massively separated 
ows have also been pursued,
in the interest of rendering the cost of LES-type simulations more feasible [20, 24, 25, 26].
While these methods have shown promise, they remaining their infancy, particularly with
regards to the accurate prediction of drag.

In this section, the relative advantages and drawbacks of the principal unstructured grid
methodologies for computational aerodynamics have been outlined. From this discussion
it should be clear that the current state-of-the-art in unstructured mesh drag prediction
capability and research lies almost exclusively in the domain of RANS methods, which will
comprise the entire focus of the remainder of these lecture notes.
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3 Grid Resolution and Discretization Issues

Perhaps the most important requirement for achieving accurate drag prediction centers on
the use of adequate grid resolution and suitable discretizations. It is di�cult to discuss grid
resolution issues separately from discretization issues, since the two are inter-dependent,
as an adequate level of grid resolution depends on the discretization at hand. Inadequate
grid resolution, even in localized areas, ultimately leads to poor and unreliable drag predic-
tion, while discretizations producing excessive numerical dissipation can render simulations
on highly resolved grid useless. In this section, the main unstructured grid discretization
alternatives are discussed and their implications for drag prediction are outlined. The par-
ticular elements of these discretizations which a�ect accuracy are given extra consideration.
The topic of grid resolution is then discussed, including the choice of element types, grid
stretching issues, and boundary layer resolution requirements.

3.1 Choice of Discretization and E�ect of Dissipation

3.1.1 Cells versus Points

There exists two major classes of discretizations for unstructured mesh CFD: cell-centered
and vertex-based discretizations. Unlike the case for structured meshes, or hexahedral
meshes, where the di�erences between cell-centered and vertex-based discretizations reduces
to small di�erences in accuracy and boundary condition implementation, for unstructured
tetrahedral meshes signi�cant di�erences exist between these two approaches. This is due to
the fact that tetrahedral meshes contain on the average 5 to 6 times more tetrahedral cells
than vertices, as opposed to hexahedral meshes in which the numbers of cells and vertices
are of the same order. Therefore, on a given tetrahedral mesh, a cell-centered approach
will result in more degrees of freedom than a vertex approach and can thus be expected to
produce higher accuracy, while also incurring higher costs than the vertex-based approach.
However, because the discretization stencils resulting from both approaches are vastly dif-
ferent (cell-centered quantities have 4 neighbors, while vertices have a variable number of
neighbors averaging 20 to 30), equivalent accuracy and cost are not achieved for equivalent
numbers of unknowns in both discretizations. Furthermore, the ratio of cells to vertices
is only 2 to 1 on the surface of the aircraft geometry, thus reducing the di�erence between
these two approaches in these regions. The most relevant metric for comparing both methods
would involve assessing the cost of both approaches for achieving equivalent levels of accu-
racy. This involves determining the precise levels of grid resolution which are required by
both discretizations for achieving the prescribed accuracy levels. This has proved di�cult to
quantify with precision, and the debate over cell-centered versus vertex-based unstructured
mesh discretizations has never been settled de�nitively from its inception over 15 years ago
[27, 28].
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Table 2: Detailed description of three unstructured meshes for computation of 
ow over DLR-F4 wing-body
con�guration. Reproduced from [29]

Grid Characterisitcs Vertex-Based Grid Cell Based Grid Cell Based Grid
(Full Viscous) (Full Viscous) (Wall Function)

Boundary Points 48,339 23,290 25,175
Surface Triangles 96,674 46,576 50,346
Triangles on no-slip surfaces 72,902 30,037 38,571
Total Grid Points 1,647,810 470,427 414,347
Points in Viscous Layers 1,129,427 389,753 238,301
Tetrahedral Cells 9,686,802 2,743,386 2,390,089
Cells in Viscous Layers 6,495,828 2,208,260 1,281,854
Maximum Number of Viscous Layers 35 35 12
Number of Complete Viscous Layers 24 24 7
Grid Points Across Wing T.E. 5 5 5
Chordwise Grid Spacing at L.E. �0.250mm �0.450mm �0.450mm
Chordwise Grid Spacing at T.E. �0.500mm �0.800mm �0.800mm
Maximum Spanwise Spacing at L.E. �2.500mm �6.000mm �6.000mm
Maximum Spanwise Spacing at T.E. �3.500mm �3.500mm �3.500mm
Grid Spacing on Fuselage �10.00mm �10.00mm �10.00mm
Grid Spacing at Outer Boundary �3000.00mm �3000.00mm �3000.00mm
Normal Spacing at No-Slip Walls 0.001 mm 0.003 mm 0.0549 mm
Rate of geometric stretching 1.2 1.2 -
(viscous layers)
Outer Boundary Box Size 50 mean chords 50 mean chords 50 mean chords

The fact that cell-centered approaches achieve higher accuracy on coarse grids has been
an advantage in cases where highly resolved unstructured meshes have proved di�cult to
generate. However, the e�ciency of cell-centered approaches often lags behind that of vertex-
based approaches. A study by Levy [30] found that matching the number of surface grid
variables (2 to 1 in this case) achieved similar accuracy for aerodynamic quantities, which
resulted in substantial savings for the vertex-based approach over the cell-centered approach.
Both cell-centered and vertex-based approaches are in wide use currently, and the main
issue for the CFD practitioner is the realization that the level of grid resolution required
for accurate drag prediction will be substantially di�erent for either approach. To illustrate
this point, the drag polar for the DLR-F4 test case at Mach=0.75 has been computed using
the cell-centered code USM3D [31, 29] and the vertex-based code NSU3D [32, 33] on similar
grids, designed for cell-centered solvers. These two grids are not identical because the USM3D
solver relies on wall functions to model the inner portion of the turbulent boundary layer,
while the NSU3D solver resolves the full turbulent boundary layer, and thus requires �ner
grid resolution near the aircraft surfaces. However, both grids contain similar resolutions on
the surface and in the inviscid 
ow regions. These results are compared with those obtained
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by the NSU3D solver on a �ner grid designed for vertex-based solvers, where the number
of surface grid points approximates the number of surface cells in the previous two grids.
Detailed characteristics of these three grids are given in Table 2 (reproduced from [29]).

The computed lift versus incidence for these three cases is shown in Figure 12. The two
solvers produce nearly identical lift values on the cell-centered grids, while the �ner vertex-
based grid yields slightly lower lift with the NSU3D solver. In this respect it is surprising,
perhaps fortuitous, that the two solvers agree closely on predicted lift values on the two cell-
centered grids. As will be shown in section 5, experimental lift values are overpredicted in all
cases, but convergence of lift with mesh resolution for the NSU3D solver is non-monotonic,
and further mesh re�nement results in even higher lift values. Figure 13 shows substantial
di�erences in drag prediction between NSU3D and USM3D on equivalent cell-centered type
meshes, with the baseline NSU3D results (computed on the �ner mesh designed for vertex-
based schemes) falling in between these two results. Because of the di�erent turbulent
boundary layer wall models in both codes (i.e. USM3D employs wall functions), a polar plot
of pressure drag is given in Figure 14, in an e�ort to eliminate any systematic bias in friction
drag due to the di�erent wall treatments in both codes. The pressure drag computed by
USM3D on the cell-centered grid is seen to agree more closely with that predicted by NSU3D
on the vertex-based grid, with the NSU3D results on the cell-centered grid falling below these
others.

In addition to accuracy, the expense of these respective computations must be taken into
account. From Table 2, it can be seen that the vertex-based grid is approximately three
times larger than the cell-centered grid designed for integration to the wall, and almost four
times larger than the cell-centered grid designed for wall functions. However, the vertex-
based mesh still contains fewer degrees of freedom, i.e. fewer vertices than the number of
cells contained in the cell-centered meshes, and therefore, it should not be surprising that
the time to solution for the vertex solver NSU3D on the �ner vertex-based mesh is still
faster than that required by the cell-centered code USM3D on the coarser cell-centered mesh
(although precise accuracy equivalence of these solvers on these respective meshes has not
been conclusively established). The NSU3D results computed on the mesh designed for cell-
centered solvers is almost an order of magnitude faster than those obtained by the USM3D
solver, although the produced results have been shown to be of lower accuracy.

While the above comparison is informative, the reader must realize that it is only qual-
itative in nature. Signi�cant di�erences exist between the two solvers: USM3D relies on
an upwind scheme with gradient reconstruction and turbulent wall function boundary con-
ditions, while NSU3D is based on an arti�cial dissipation approach, and fully resolves the
turbulent boundary layer. As will be shown in the next section, these di�erences can have
a signi�cant e�ect on drag prediction even when implemented in the same code and run
on the same grid. Furthermore, it is di�cult to ensure that the ratio of resolution between
both cell-centered and vertex-based meshes is similar in all regions of the domain for the
above comparison. Finally, the NSU3D solver relies on a multigrid algorithm which provides
more rapid convergence to steady-state than the implicit time-stepping algorithm used by
USM3D, thus further complicating the meaning of the timing comparisons. The remainder
of these lecture notes will focus exclusively on vertex-based schemes, mainly due to the fact
that these are the schemes with which the author has the most experience.
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Figure 12: Comparison of Computed Lift
for DLR-F4 Con�guration at Mach=0.75 using
NSU3D (vertex-based) and USM3D (cell-centered)
on Grid Designed for Cell-Centered Scheme, and
Comparison with NSU3D results on grid designed
for vertex-based scheme.
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Figure 13: Comparison of Computed Drag Po-
lar for DLR-F4 Con�guration at Mach=0.75 using
NSU3D (vertex-based) and USM3D (cell-centered)
on Grid Designed for Cell-Centered Scheme, and
Comparison with NSU3D results on grid designed
for vertex-based scheme.
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Figure 14: Comparison of Computed Pres-
sure Drag Polar for DLR-F4 Con�guration at
Mach=0.75 using NSU3D (vertex-based) and
USM3D (cell-centered) on Grid Designed for Cell-
Centered Scheme, and Comparison with NSU3D
results on grid designed for vertex-based scheme.

3.1.2 Discretization Formulations

Current-day unstructured mesh aerodynamic production codes rely almost exclusively on for-
mally second-order accurate discretizations. The two main approaches for achieving second-
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order accuracy involve centrally-di�erenced convective terms with added arti�cial dissipation
[34, 33, 35] and projection-evolution schemes using linearly extrapolated values based on gra-
dient reconstruction [28, 29, 36, 37]. Other approaches include 
uctuation splitting schemes
[38, 39], and streamwise upwind Petrov-Galerkin schemes [40, 41, 42], although these ap-
proaches have not seen widespread use in computational aerodynamics and have not been
thoroughly validated for drag prediction. Although arti�cial dissipation schemes and pro-
jection evolution schemes have di�erent origins, the �nal discretizations are closely related.
Consider the evaluation of a 
ux at a control volume interface, as depicted in Figure 15.

i u uL R k

Figure 15: Illustration of 
ux evaluation at control volume inter-
face

The projection evolution scheme requires the solution of an approximate Rieman solver
at the interface. For example, the often used Roe Rieman solver can be written as [43]:

Fik = F(uL; uR) = F (uL) + F (uR) + T j�jT�1(uL � uR) (2)

where F(u) represents the convective 
ux, and where uL and uR represent the value of the

ow variables at the left and right sides of the control volume interface. For a �rst-order
scheme, these are simply taken as the values at the vertices corresponding to the control
volume on either side of the face:

uL = ui (3)

uR = uk (4)

To obtain second-order accuracy, the left and right states must be obtained by extrapolating
the control volume values based on a reconstructed gradient. Thus, the second-order accurate
scheme is obtained using:

uL = ui +rui:~rif (5)

uR = uk +ruk:~rkf (6)
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where ~rif denotes the position vector extending from vertex i to the control volume interface,
and the gradients ru are to be evaluated at the mesh vertices. These gradients may be
evaluated using a Green-Gauss contour integration around the vertex-based control volumes
[28], or by taking a least-squares approximation to the gradient at each vertex which �ts the
tangent plane constructed using a (least squares) best �t to all neighboring values [44, 45, 37].

Arti�cial dissipation schemes employ a central di�erence for the convective terms, and
augment these quantities by a dissipative term which is required for stability. The 
ux at
an interface for a �rst-order accurate arti�cial dissipation scheme can be written as:

Fik = F (ui) + F (uk) + �(ui � uk) (7)

where � may be a scalar (scalar arti�cial dissipation) or a matrix (matrix arti�cial dissipa-
tion). In the case where � is a matrix, a natural choice for �, by analogy with equation (2)
is:

� = �2 T j�jT
�1 (8)

where �2 is a constant to be determined empirically. If �2 is taken as unity, then the �rst-order
accurate matrix dissipation scheme becomes identical to the �rst-order accurate projection
evolution scheme. On structured meshes, second-order accurate arti�cial dissipation schemes
are obtained by replacing the �rst di�erence in equation (7) by a third di�erence [46]. On
unstructured meshes, a second-order accurate arti�cial dissipation 
ux can be constructed
as [11, 27, 47, 48]:

Fik = F (ui) + F (uk) + � (Li(u)� Lk(u)) (9)

where Li(u) represents an undivided Laplacian operator, taken as:

Li(u) =
neighborsX

k=1

(uk � ui) (10)

resulting in an arti�cial dissipation term which is of the same order as a third di�erence.
Thus, the second-order accurate matrix dissipation scheme can be obtained by replacing
the di�erence of reconstructed states in the projection evolution scheme by a di�erence of
undivided Laplacian operators [13]. Although these quantities are of the same order, they
are not directly proportional to each other, and therefore the parameter �2 cannot be taken
as unity in this case, but must be determined empirically. There are also discrepancies be-
tween the centrally di�erenced convective 
uxes in both schemes, since these are evaluated
at reconstructed states in the upwind scheme, rather than at vertex values as in the arti�-
cial dissipation scheme. However, numerical experiments reveal that these di�erences have
virtually no e�ect on drag prediction accuracy in the transonic regime.

The T matrices on the right hand side of equation (2) represent the eigenvectors associated
with the linearization of the equations of inviscid compressible 
ow normal to the control
volume face ik [43], while the j�j matrix is a diagonal matrix containing the absolute values
of the �ve eigenvalues associated with these equations. Of these �ve eigenvalues, three are
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repeated, leaving three distinct eigenvalues which are proportional to: u, u+c, u-c, where
u is the velocity normal to the control volume face, and c is the speed of sound. When
one of these eigenvalues vanishes, the dissipation for that component at that location also
vanishes, which may lead to numerical instabilities. For this reason, it is common to limit
the eigenvalues to a minimum fraction of the maximum eigenvalue, such as:

u = sign(u) �max(juj; �(juj+ c)) (11)

u+ c = sign(u+ c) �max(ju + cj; �(juj+ c)) (12)

u� c = sign(u� c) �max(ju� cj; �(juj+ c)) (13)

where juj+c is the maximum eigenvalue, and � is a parameter to be chosen empirically which
varies between 0 and 1. When � is taken as 0, no eigenvalue limiting is applied. When � is
taken as 1, the j�j matrix reverts to a scaled identity matrix, since all eigenvalues are now
taken as juj + c, and the triple matrix product T j�jT�1 reduces to a scalar quantity. For
the arti�cial dissipation discretization, this constitutes the de�nition of the scalar arti�cial
dissipation, i.e.

� = �2 �max eigenvalue (14)

which can be computationally cheaper than requiring the evaluation of the full matrices.
Small values of � of the order of 0.1 are common in many production codes, and this process
is often referred to as an entropy �x [49].

For 
ows with strong gradients, most notably in the vicinity of shock waves, the above
second-order accurate formulations may lead to instabilities, and additional dissipative mech-
anisms are required. In the upwind scheme, these take the form of limiters applied to the
computed gradients [28], while in the arti�cial dissipation schemes, the di�erence of undi-
vided Laplacian operators is replaced by a blend of �rst di�erences and undivided Laplacian
operators [11, 50]. The blending is achieved by multiplying the �rst di�erence terms by a
pressure switch, (essentially a Laplacian of pressure which becomes large near pressure dis-
continuities), and scaling these terms with an additional coe�cient denoted as �1. In both
cases, accuracy is reduced from second to �rst order locally in regions where this additional
dissipation is required. For su�ciently �ne grids, these regions will be con�ned to the vicinity
of discontinuous 
ow features (i.e. shocks) and the overall e�ect on global accuracy will be
negligible. However, many practical applications cannot a�ord the level of grid re�nement
where limiter/dissipation blending action becomes unobtrusive, and these e�ects must be
monitored closely for accurate drag prediction.

To summarize the above, we have described two alternative forms of dissipative terms,
one based on gradient reconstruction, which itself can be done in two manners (Green Gauss
or least squares), the other based on undivided Laplacian operators. In both cases, entropy
�xes may be applied or omitted, and limiters or di�erence blending may be used to overcome
numerical instabilities at the cost of accuracy. In the following, we will examine the impact
all these di�erent discretization details can have on the accuracy of drag prediction.

The baseline test case consists of the transonic 
ow over the DLR-F4 wing-body con�g-
uration at a Mach number of 0.75 and a Reynolds number of 3 million, computed on the
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1.65 million point unstructured mesh detailed in Table 2. Although results on �ner grids are
available, the computational results on this mesh agree reasonably well with the experimen-
tal values, and the use of meshes of this resolution level should accentuate the di�erences
between discretizations which we are seeking, since all the considered discretizations are
consistent, and should converge towards the same result as mesh resolution is continually
increased.

For the purposes of this study, the baseline discretization consists of the matrix arti�cial
dissipation scheme with the parameter settings: �1 = 0; �2 = 1:0; � = 0:1. Figures 16
through 19 illustrate the sensitivity of computed lift and drag throughout the range of
incidences to the variation in these parameters in the arti�cial dissipation discretization.
Precise numerical values are recorded in Table 3, for the single incidence of 0 degrees. In all
cases, a more accurate baseline computation using a �ner grid of 13 million points is given
for comparison purposes. Figures 16 and 17 illustrate the sensitivity of the computed force
coe�cients to the levels of dissipation in the discretization. In the absence of any low-order
disspation blending (�1 = 0:0), lowering the nominal dissipation scaling factor (�2 = 0:5)
produces slightly higher lift values, and moderately lower drag values. From Table 3, the lift
is seen to increase by 16 counts, while the drag decreases by 6 counts at 0 degrees incidence.
The lower dissipation value appears to yield higher accuracy, as the results tend towards
those computed on the �ner grid. This is expected, since one of the main characteristics
of increased grid resolution is the reduction of arti�cial dissipation e�ects. While lowering
the dissipation coe�cient �2 below its nominal level can lead to more accurate solutions
at little additional cost, numerical instabilities may develop due to insu�cient dissipation
levels, and the loss of robustness associated with this approach is generally not acceptable
in a production environment.

The sensitivity due to the value of the entropy �x in the arti�cial dissipation discretization
is depicted in Figures 18 and 19. Doubling the entropy �x value from � = 0:1 to � = 0:2
has very little e�ect on the computed results. Di�erences of less than one count in lift and
drag are observed in Table 3. This indicates that the solutions are not very sensitive to
small values of the entropy �x parameter, and non-zero values are acceptable for increasing
robustness while minimally impacting accuracy. On the other hand, when the value of the
entropy �x parameter is increased to � = 1:0, the drag increases by a substantial amount
(25 counts at 0 degrees incidence from Table 3). The setting � = 1:0 corresponds to a purely
scalar arti�cial dissipation scheme, which can be evaluated at reduced cost compared to the
matrix dissipation formulation. However, these savings are counterbalanced by the lower
accuracy of the scalar approach, which in turn may require the use of �ner meshes to regain
acceptable accuracy levels. Note the importance of considering both lift and drag values
in this case, since the small increase in lift values associated with the scalar dissipation
computations may, in isolation, convey an impression of higher accuracy with regards to
the baseline case. While straight-forward application of scalar dissipation to aerodynamics
calculations can be problematic for accurate drag predictions, modi�ed (scaled) forms of this
dissipative operator have been developed, which improved drag prediction ability [51, 35, 52].

All the above results have been computed using the fully second-order accurate disspa-
tion model. For 
ows with strong discontinuities, additional lower-order dissipation terms
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may be required to ensure stability. Figures 20 and 21 illustrate the e�ect on computed
force coe�cients of the addition of lower-order di�erences by setting the value �1 = 1:0. In
general, very little changes are observed. From Table 3, of the order of one count variation
in lift and drag is observed at 0 degrees incidence. These results imply that the blending of
lower-order di�erence dissipation is triggered only in con�ned areas which do not appreciably
a�ect overall force coe�cient values. However, past experience has shown that lower-order
dissipation terms can be triggered in areas of strong gradients when inadequate grid resolu-
tion is employed, such as at leading edge expansions and in the vicinity of trailing edges, with
a resulting decrease in solution accuracy. For these reasons, the blending of lower-order dis-
sipation terms is generally omitted for transonic transport aircraft con�gurations, where the
shock strengths are moderate enough to enable robust capturing with purely second-order
accurate dissipation models.
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Figure 16: E�ect on computed lift values of vari-
ations in the arti�cial dissipation scaling parame-
ter for DLR-F4 con�guration at Mach=0.75
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Figure 17: E�ect on computed drag polar of vari-
ations in the arti�cial dissipation scaling parame-
ter for DLR-F4 con�guration at Mach=0.75
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Figure 18: E�ect on computed lift values of vari-
ations in the arti�cial dissipation entropy �x pa-
rameter for DLR-F4 con�guration at Mach=0.75
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Figure 19: E�ect on computed drag polar of vari-
ations in the arti�cial dissipation entropy �x pa-
rameter for DLR-F4 con�guration at Mach=0.75
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Figure 20: E�ect on computed lift values of ap-
plication of blended lower-order arti�cial dissipa-
tion for DLR-F4 con�guration at Mach=0.75
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Figure 21: E�ect on computed drag polar of ap-
plication of blended lower-order arti�cial dissipa-
tion for DLR-F4 con�guration at Mach=0.75
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Table 3: Variations of computed lift and drag values at Mach=0.75, Reynolds
= 3 million and 0

o incidence for DLR-F4 test case as a function of variations in
arti�cial dissipation parameters

Discretization CL CD

Fine Mesh (13M pts) 0.5459 0.03011
Baseline Mesh : �1 = 0:0; �2 = 1:0; � = 0:1 0.5307 0.03051
Baseline Mesh : �1 = 0:0; �2 = 0:5; � = 0:1 0.5323 0.02990
Baseline Mesh : �1 = 0:0; �2 = 1:0; � = 0:2 0.5307 0.03054
Baseline Mesh : �1 = 0:0; �2 = 1:0; � = 1:0 0.5416 0.03302
Baseline Mesh : �1 = 1:0; �2 = 1:0; � = 0:1 0.5308 0.03054

In Figures 22 through 25 and Table 4, several variations of the upwind discretization
scheme are compared with the matrix dissipation scheme discussed previously. The baseline
case for the upwind discretization scheme involves gradient reconstruction using the least
squares procedure [44, 53], a vanishing entropy �x parameter � = 0:0, and no limiting. The
lift values produced by this discretization scheme are slightly lower than those computed
with the arti�cial dissipation discretization, and since the lift values increase with lower
dissipation levels and �ner grid resolution, it may be inferred that the least-squares gradient-
based upwind discretization is slightly more di�usive than the matrix dissipation scheme.
Because the nominal value of the �2 coe�cient in the matrix dissipation scheme has been
determined empirically, it is conceivable that a simple rescaling of the dissipation terms
could be used to improve the accuracy in the upwind scheme as well. On the other hand,
the drag values produced by this scheme are slightly lower than those obtained with the
matrix dissipation scheme. From Table 4, the drag value at 0 degrees incidence is seen to be
8 counts lower than that computed using the matrix dissipation scheme on the same grid.
Therefore, there are more substantial di�erences between these two schemes which extend
beyond the simple scaling of the �nal dissipative terms.

Returning to the baseline unlimited case, the entropy �x parameter is now increased from
0.0 to � = 0:1, which is the level used in the baseline matrix dissipation settings. In this
case, the computed lift values are substantially lower than those obtained with a vanishing
entropy �x, and the drag values are substantially higher. From Table 4, the drag at 0o

incidence is seen be increase by 17 counts, with much larger variations in lift. In essence,
the accuracy of the scheme has been completely compromised by this small value of the
entropy �x, which had little e�ect on the accuracy of the matrix dissipation scheme. This
behavior is attributed to a poor estimate of the gradients in the boundary layer region using
the least squares procedure. By under-estimating the gradients in the boundary layer region,
the least-squares approach e�ectively increases the dissipation and reduces the accuracy of
the discretization in these regions. This is evident in the solutions produced by the � = 0:1
case, which resemble �rst-order accurate solutions. However, this argument does not explain
how good accuracy was achieved in the baseline upwind discretization case when using a
vanishing entropy �x. The answer lies in the alignment of the grid with the 
ow direction
in the boundary layer region. Due to the advancing layers nature of the VGRIDns grid
generation package [54] which was used to generate the grids discussed herein, the highly
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stretched thin mesh elements in the boundary layer region are closely aligned with the

ow direction. This results in near vanishing 
ow velocity normal to the control volume
interfaces in this direction. Since this normal velocity represents one of the eigenvalues of
the dissipation matrix (c.f. equation (2)), it is seen that the additional dissipative e�ect due
to the poor gradient estimate is counterbalanced by a vanishing eigenvalue precisely at the
same location. Thus, any limit on the minimum size of this eigenvalue, through the use of
an entropy �x, triggers the excessive dissipative e�ect of the poor gradient estimate. It is
interesting to note that, although the eigenvalues associated with the normal velocity are
small, the two acoustic wave eigenvalues associated with u+c and u-c are not a�ected by the

ow alignment, and yet good accuracy is retained despite the use of inaccurate gradients for
these dissipative terms.

Returning to the baseline upwind discretization with vanishing entropy �x, the applica-
tion of limiters is invoked in order to examine the e�ect on solution accuracy. The multi-
dimensional monotonicity preserving limiter due to Barth and Jespersen [28] is employed.
A small increase in lift and a moderate increase in drag are observed in Figures 24 and 25,
respectively. At 0o incidence, the drag is increased by 8 counts, as shown in Table 4. For

ows with strong shocks, the use of limiters may be required to guarantee stability. Unfortu-
nately, as the current example illustrates, the use of limiters has an adverse e�ect on overall
solution accuracy for production type grids of this resolution. Therefore, for transonic 
ows
where shock strengths are not severe, the use of limiters is not recommended. However, it
should also be noted that alternate limiter formulations are available, such as the non-strictly
monotone limiter of Venkatakrishnan [55], which result in less accuracy degradation, and the
current results should be regarded as establishing an outer bounds to limiter sensitivity.
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Figure 22: Comparison of least squares gradi-
ent based upwind discretization and matrix arti-
�cial dissipation discretization schemes for com-
puted lift values on DLR-F4 con�guration at
Mach=0.75.
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Figure 23: Comparison of least squares gradi-
ent based upwind discretization and matrix arti-
�cial dissipation discretization schemes for com-
puted drag polar on DLR-F4 con�guration at
Mach=0.75.
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Figure 24: E�ect of limiter on computed lift val-
ues for DLR-F4 con�guration at Mach=0.75.
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Figure 25: E�ect of limiter on computed drag
polar for DLR-F4 con�guration at Mach=0.75.

Table 4: Variations of computed lift and drag values at Mach=0.75, Reynolds
= 3 million and 0

o incidence for DLR-F4 test case as a function of variations in
least-squares gradient-based upwind discretization.

Discretization CL CD

Fine Mesh (13M pts) 0.5459 0.03011
Baseline Mesh : Arti�cial Dissipation 0.5307 0.03051
Baseline Mesh : Least Squares: Limiter OFF: � = 0:0 0.5161 0.02970
Baseline Mesh : Least Squares: Limiter OFF: � = 0:1 0.3995 0.02797
Baseline Mesh : Least Squares: Limiter ON: � = 0:0 0.5235 0.03054

3.2 Grid Resolution Requirements

Adequate grid resolution is perhaps the single most important issue for achieving an accurate
drag prediction capability. Cost constraints and turn-around time requirements prohibit the
use of excessively �ne grids, particularly in the course of a drag study, which requires the
computation of many single point solutions to populate drag polars and drag rise curves. On
the other hand, inadequate grid resolution, even in a single critical isolated region, will likely
result in unreliable or even unusable drag results. The problem is rooted in the fact that fully
grid-converged RANS solutions are almost never possible in a production environment, and
thus changes in grid resolution will produce non-negligible changes in the solution. Su�cient
grid resolution is required to enable the capturing of all relevant 
ow physics (in particular
all regions of separated 
ows), and to ensure that the remaining discretization error is either
small enough, or inconsequential. For example, when studying incremental drag di�erences
between two con�gurations, non-negligible discretization errors may be manageable provided
they are of the same magnitude on both con�gurations, and therefore cancel out in the study
of incremental e�ects. The issue is also particularly complex due to the large range of scales
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present in aerodynamic 
ows, thus requiring vastly di�erent resolutions in di�erent regions
of the domain. For example, in the 1.65 million point vertex-based mesh described in Table
1, the ratio of smallest to largest element volume is close to 109, and the largest cell-aspect
ratio is of the order of 10000. The CFD practitioner must understand the grid resolution
requirements of the problem at hand in order to achieve some level of balance between cost
and accuracy. Unfortunately, this is still more an art than a science, and is achieved mostly
through experience and extensive validation, often building up a set of experience-based rules
for grid resolution.

Adaptive meshing techniques are inherently well suited for unstructured mesh methods,
and they o�er the possibility for ensuring adequate grid resolution in all regions of the do-
main, by re�ning and coarsening the mesh locally as the solution evolves. However, successful
application of adaptive meshing requires techniques for estimating local discretization error,
in order to guide the re�nement process. While the mechanics of re�ning and coarsening un-
structured meshes are reasonably well understood today, it is the lack of reliable re�nement
criteria or error estimators which has held back the potential of adaptive meshing. Most
error estimates assume that the solution is asymptotically close to the converged result, an
assumption which may not be valid for non-linear problems such as 
uid 
ow, where entire

ow patterns(i.e. a separation region) may not be present until su�cient grid resolution is
achieved. Because of these di�culties, adaptive meshing strategies have seldom been ex-
ploited for demanding problems such as drag prediction. In cases where adaptive meshing
has been utilized, heuristic re�nement criteria are generally employed, coupled with empirical
evidence, and extensive validation [56, 48, 57, 58, 52]. Even in such cases, the construction
of well resolved initial meshes remains crucial towards ensuring good �nal accuracy through
the adaptive process.

3.2.1 Choice of Element Type

Figure 26: Merging triplets of tetrahedra into prismatic
elements

As mentioned in the previous section, the appropriate level of grid resolution is dependent
on the discretization employed, and the example of Table 1 illustrates how di�erent these
requirements can be. A separate issue is related to the type of mesh elements employed, par-
ticularly in boundary layer regions. In the boundary layer regions, where the mesh is highly
anisotropic, prismatic elements may be substituted in the place of tetrahedral elements. The
simultaneous requirements of avoiding large dihedral angle elements for accuracy reasons
[59, 60] and high anisotropy for e�ciency reasons, leads to right angle tetrahedra in bound-
ary layer regions, as are produced by the advancing layers method [54]. These tetrahedra
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can easily be combined into prismatic elements by identifying and grouping together triplets
of tetrahedra into prismatic elements [61] as shown in Figure 26. On the other hand, the
direct use of prismatic elements constitutes a natural choice in near-wall regions, since there
exists an inherent structure in the direction normal to the wall, and semi-structured mesh
generation techniques which naturally produce prismatic elements have been proposed [62].
The choice of the type of mesh element to be employed in the near wall regions depends
on the delivered accuracy, e�ciency, and 
exibility of the numerical solver. A two dimen-
sional study by Aftosmis et al. [63] found little di�erence in accuracy between equivalent
grids of quadrilateral and triangular elements. Three dimensional experiments have drawn
similar conclusions between prismatic and tetrahedral elements, although published stud-
ies examining the particular e�ect on drag prediction are not known. Figures 27 and 28
illustrate a comparison of predicted lift and drag values between the NSU3D solver, which
makes use of prismatic boundary layer elements, and the FUN3D solver which makes use of
fully tetrahedral meshes [53], both operating on the same mesh of 1.65 million vertices. In
both cases, the discretization is based on a vertex-centered upwind Roe approximate Rieman
solver, with least-squares gradient reconstruction. The agreement between the two codes is
very close throughout the range of incidences, thus validating the claim that the accuracy is
relatively una�ected by the choice of element type in the boundary layer regions. However,
this result must be quali�ed by the fact that there likely exists implementation di�erences
between these two codes whose individual e�ect on accuracy is not precisely known, and the
reported agreement may include fortuitous cancelling of errors. Nonetheless, the displayed
agreement lends strong credence to the argument of accuracy insensitivity to element type.
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Figure 27: Comparison of computed lift val-
ues using NSU3D solver on hybrid prismatic-
tetrahedral mesh and FUN3D solver on fully tetra-
hedral mesh with identical point distributions for
DLR-F4 con�guration at Mach=0.75.
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Figure 28: Comparison of computed drag po-
lars using NSU3D solver on hybrid prismatic-
tetrahedral mesh and FUN3D solver on fully tetra-
hedral mesh with identical point distributions for
DLR-F4 con�guration at Mach=0.75.

While accuracy may not be strongly a�ected by element type, solution e�ciency can
bene�t substantially through the use of prismatic elements. Because each 
ux evaluation
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at each mesh control-volume interface corresponds to a particular edge in the mesh (c.f.
Figure 15), the number of 
ux evaluations required to perform a residual evaluation in a
mesh containing prismatic elements is substantially reduced over that required in a fully
tetrahedral mesh. This is simply due to the topology of prismatic meshes, which contain on
average four times as many edges as vertices (and twice as many cells as vertices) compared
with tetrahedral meshes which contain up to 7 times as many edges as vertices (and 6
times as many cells). This can easily be seen by noting that a single hexahedron can be
subdivided into two prismatic elements, or six tetrahedral elements, without any addition of
new vertices, or by observing the reduction in edges through the element merging operation
depicted in Figure 26. Although the boundary layer regions occupy only a small portion of
the computational domain, it is not uncommon for more than half of the mesh resolution to
be packed into this small region (c.f. Table 1), and thus prismatic element meshes can lead
to signi�cant memory and cpu time savings. Another bene�t of prismatic element boundary
layer meshes derives from the semi-structured nature of such meshes. This facilitates the
use of structured mesh techniques such as line solvers in the direction normal to the wall,
which can greatly improve solver e�ciency [64].

3.2.2 Grid Resolution Issues

As stated previously, the problem of determining and prescribing adequate grid resolution
in all regions of the computational domain is central to achieving good drag prediction. The
CFD practitioner requires a set of guidelines for determining adequate grid resolution in
critical areas such as at leading and trailing edges, as well as general mesh characteristics
such as chordwise, spanwise and boundary layer resolution. In the absence of a robust
adaptive meshing capability, the approximate location of important 
ow features must be
anticipated and additional grid resolution prescribed in these regions. This can be very
rudimentary, such as prescribing higher mesh resolution on the wing upper surface than on
the lower surface, in the anticipation of stronger suction peaks and shocks. These issues are
not tied to the use of unstructured meshes in particular, but appear equally for structured
multi-block and overset mesh techniques. Basic studies in two and three dimensions have
demonstrated that the accuracy achieved by vertex-based unstructured mesh discretizations
is very close to that achieved by equivalent structured mesh discretizations on similar mesh-
point distributions [65, 66, 15]. Thus, mesh resolution guidelines developed for structured
mesh methodologies apply equally to vertex-based unstructured mesh methodologies.

Two dimensional studies have shown that of the order of 200 to 300 vertices in the
chordwise direction are required to achieve a good predictive ability for viscous airfoil 
ow
in cruise conditions, with high-lift 
ows often requiring substantially more resolution [67].
Therefore, similar chordwise resolution should be expected in three-dimensional simulations
of transport aircraft con�gurations, noting that this is often not achieved due to resource
constraints. Spanwise resolution can be signi�cantly lower than chordwise resolution, since
spanwise gradients are generally much weaker, especially for high-aspect ratio wings. How-
ever, unlike structured grid methods, the prescription of di�ering chordwise and spanwise
resolutions does not come naturally to unstructured mesh methodologies, which cannot eas-
ily distinguish between these geometric coordinate directions. The use of isotropic surface
meshes on transport-aircraft-type con�gurations generally leads to excessive spanwise resolu-
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tion and relatively large meshes with ine�cient grid-point placement. Various unstructured
mesh surface generators, specialized for computational aerodynamics, have the capability for
surface mesh stretching in prescribed directions. This capability is illustrated in the surface
mesh plots of Figures 29 generated by the VGRIDns program [54], where strong spanwise
stretching near the leading edge of a wing is visible. This capability in the VGRIDns pro-
gram generally results in a reduction of the overall number of grid points by a factor of 3,
without sacri�cing overall accuracy.

Figure 29: Illustration of spanwise grid stretching capability of VGRIDns grid generation software (repro-
duced from Ref. [29])

Precise control over the spacings in the mesh boundary layer regions is required in order
to ensure accurate viscous 
ow calculations. For example, most turbulence models require
that the �rst grid point o� the wall be inside the laminar subregion, usually within the
range y+ = 1. Using a 
at plat turbulent boundary layer estimate, this distance can easily
be calculated as a function of Reynolds number. For Reynolds numbers of the order of 10
million, this requires a wall spacing of approximately 1.e-06 chords, which results in grid
aspect ratios of the order of 10000 in these regions. As the mesh traverses the boundary
layer, the mesh spacing is allowed to grow in the direction normal to the wall, and the
increase in spacing between two adjacent cells is generally accepted to be no more than 1.2
This results in 20 to 30 mesh points spanning the direction normal to the boundary layer.
The importance of boundary layer grid resolution on engineering aerodynamic quantities
is illustrated by the simple case of 
ow over a 
at plate in two dimensions. The NSU2D
unstructured RANS solver [68] has been used to compute this 
ow on the grid shown in Figure
30, for a Mach number of 0.2 and a plate-based Reynolds number of 10 million, using the
Spalart-Allmaras turbulence model [69]. This mesh contains a normal spacing at the plate
surface of 1.e-05 plate lengths. Figure 31 depicts the skin friction computed on this mesh as
compared with experimental data taken from [70], showing substantial underprediction of
the skin friction coe�cient. Recomputing this 
ow on a mesh with a normal resolution of 1.e-
06 plate lengths (with otherwise identical resolution), results in substantially improved skin
friction correlation, as shown in Figure 31. This simple example illustrates the importance
of adequate boundary layer resolution in drag prediction.

While improper boundary layer resolution can hinder drag prediction directly through
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3.3 Grid Convergence

One of the requirements for a viable discretization of any CFD code is that it be consistent.
This implies that, as the grid is continually re�ned, the result of the simulation approaches
the solution of the continuous problem, in the limit of in�nitely small grid resolution and
thus vanishing discretization error. The ultimate goal of any numerical simulation should
be the approximation of this continuous result, either directly through extrapolation, or
indirectly by certifying that the discretization errors are small enough to be safely neglected.
The fully grid converged solution can be estimated through Richardson extrapolation of a
sequence of coarser level grid solutions. Figures 33 and 34 illustrate the process for a simple
two-dimensional inviscid 
ow simulation about an RAE2822 airfoil using the NSU2D solver
[68]. The 
ow conditions are subsonic, with a Mach number of 0.3, and an incidence of 2.31
degrees. The simulation is performed on a sequence of progressively �ner meshes, and a plot
of computed lift and drag as a function of the mesh resolution is constructed. Using this plot,
the results of can be extrapolated to the limit of in�nite grid resolution. Alternatively, a grid
convergence index (GCI) [72] can be estimated. from this sequence of results. For a second-
order accurate discretization, the GCI should be equal to 2, although slightly lower values
are often observed due to boundary e�ects, or other phenomena such as accuracy reducing
limiters or other shock capturing phenomena. Once this index has been established, solution
values in the limit of in�nitely �ne grid resolution can be estimated through extrapolation
along the slope determined by the CGI.

In Figure 34, the results are plotted against a measure of the grid spacing squared (i.e.
h2), normalized by the average spacing (squared) on the coarsest grid. For a second-order
accurate scheme, the convergence of the numerical results should appear as a linear function
of h2. This is observed for the lift values, while the drag values display a more non-linear
behavior. Note that for this inviscid subsonic case, the theoretically correct behavior of
vanishing drag in the continuous limit is observed.

Figure 33: Intermediate resolution unstruc-
tured grid taken from sequence of three grids
used for computation of grid converged solu-
tion of 
ow past RAE 2822 airfoil
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Figure 34: Illustration of grid convergence for two-
dimensional inviscid 
ow over RAE2822 airfoil using
NSU2D solver
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A more practical approach involves observing the results obtained on a sequence of pro-
gressively re�ned grids, and certifying that the sensitivity of the results to changes in reso-
lution on the �nest grid are within the acceptable tolerances.

For three-dimensional RANS calculations, the di�culty resides in the a�ordability of
grids �ne enough to provide the aforementioned certi�cation. Furthermore, because of the
wide variation in scales, (over 109 in the grid of Table 1, for example), if the grids are not
designed with adequate distributions of resolution in all regions of the domain from the
outset, full grid convergence will prove to be intractable. The reality is that very few three-
dimensional RANS simulations are adequately grid converged, due to resource constraints.
Grid resolution guidelines, as those discussed previously, and careful validation for the speci�c
engineering quantities of interest must be undertaken in order for the simulation to result in
a useful engineering tool. Advances in error estimation and adaptive meshing, which hold
promise for alleviating these di�culties, are discussed in section 6.
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4 Designing an E�cient Unstructured Mesh Solver for

Computational Aerodynamics

A useful aerodynamic analysis capability must not only be accurate, but must be e�cient
and robust as well. This is particularly true for drag prediction studies, where large numbers
of analysis cases are required to populate drag polars and drag rise curves, thus requiring
full automation with rapid turn-around for individual analysis cases. In order to achieve
these characteristics, algorithmic choices specially tailored for aerodynamic problems must
be made which enhance accuracy, e�ciency and robustness. These include discretization
choices, design of appropriate data-structures, development of e�cient solution algorithms,
and parallelization strategies suited for modern parallel computing hardware. The method-
ologies discussed in this section consist largely of techniques developed or reproduced by the
author and have been implemented in the NSU3D unstructured mesh solver.

4.1 Discretization

One of the �rst choices to be made by the CFD practitioner involves the use of vertex-based
versus cell-centered discretization approaches. As mentioned previously, while cell-centered
schemes may prove advantageous when available grid resolution is insu�cient for vertex-
based schemes, we believe vertex-based schemes o�er substantial e�ciency advantages over
cell-centered approaches for equivalent levels of accuracy. Another design decision involves
the choice of appropriate element types. For vertex-based schemes, prismatic elements have
been shown to o�er similar accuracy characteristics to tetrahedral elements, while providing
greater computational e�ciency. In fact, for ultimate 
exibility, discretizations which are
applicable on various types of elements such as tetrahedra, prisms, pyramids, and hexahedra,
are most desirable. This can be accomplished using a single edge-based data structure,
as shown in Figure 35, rather than a collection of data structures based on the individual
elements types. Returning to Figure 15, it can be seen that each control volume interface for a
vertex-based scheme is associated with a mesh edge, and hence the 
ux balance computation
for a mesh of arbitrary element types can be computed by looping over the mesh edges [32].
The set of vertices and edges of an unstructured mesh represent the graph of the mesh,
which corresponds to the lowest level description of the mesh connectivity, from which all
other element information can be retrieved. For this reason, edge data-structures require
substantially less memory in order to describe the mesh, and achieve faster computational
throughputs than other data-structures, while simplifying the parallelization of the overall
solution strategy.
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Figure 35: Illustration of various element types and mesh
edge structure which can be used to represent all element
types

While edge-data-structures are well suited for the computation of convective terms on
arbitrary element types, consistent discretizations of the full Navier-Stokes viscous terms
using edge-based data-structures are only feasible on simplicial (i.e. tetrahedral) elements
[44, 66]. For non-simplicial elements, such as prisms, pyramids, and hexahedra, the cross-
di�usion terms of the Navier-Stokes equations require a stencil involving neighboring points
which are not directly connected by a mesh edge (such as diagonally opposed vertices in a
hexahedron). There are various approaches for resolving this di�culty. The NSU3D dis-
cretization neglects these cross-terms, which amounts to using a Laplacian operator for the
di�usion terms, similar to the terms found in the incompressible (constant viscosity) form
of the Navier-Stokes equations [32, 73]. This can also be viewed as equivalent to a thin
layer approximation in a compressible boundary layer (in all three coordinate directions).
An alternate approach consists of forming the full viscous terms, including all cross-di�usion
terms, in a two pass approach, by �rst computing gradients at all vertices, and then form-
ing the second derivatives as gradients of these gradients [58]. This approach results in
a non-nearest neighbor stencil, which may result in lower overall accuracy and may incur
instabilities due to odd-even decoupling. Nevertheless, this approach has been used suc-
cessfully by many authors, although a precise study of the e�ect on drag prediction of this
approach is not known. Hybrid approaches are also possible, where the principal terms are
computed by �nite di�erencing along mesh edges, and the cross terms are added in through
the double-pass gradient construction method, potentially achieving better accuracy while
consistently retaining all cross-derivative terms.
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4.2 Solution Methodologies

From the discussion on grid resolution issues, it should be apparent to the reader that one of
the main impediments to achieving a more reliable drag prediction capability is related to the
ability to employ su�ciently resolved meshes. Limitations on mesh resolution are determined
by the available computational resources and required turnaround time, which are directly
dependent on the computational e�ciency of the solver. E�cient solution algorithms are
central not only to reducing the computational the cost of a drag study, but also to improving
the accuracy and reliability of the study, by enabling the use of �ner meshes. In general,
the determination of aerodynamic forces on an aircraft con�guration at design conditions
constitutes the solution to a steady-state problem. If the spatially discretized equations can
be represented by the residual operator R(u), then the problem to be solved can be written
as:

du

dt
+R(u) = 0 (15)

These equations must be integrated in time until the steady-state is reached, i.e. when the
time derivative becomes vanishingly small. An explicit method for advancing these equations
in time can be written as:

un+1 = un ��t R(un) (16)

where n + 1 represents the new time level, n represents the old time level, and �t repre-
sents the time step. Explicit methods constitute the simplest techniques for advancing these
equations in time. However, because explicit methods rely exclusively on local informa-
tion to advance the solution in time (through the residual), these methods must obey the
Courant-Freidrichs-Lewy condition [74], which states that the maximum stable time step
is proportional to the local grid spacing. This results in an order O(N2) method, where
N represents the number of unknowns, since the number of time steps required to reach
steady-state increases as the mesh is re�ned. For highly resolved meshes, explicit methods
become extremely ine�cient, and more sophisticated solution techniques are required.

An implicit time integration method can be derived by evaluating the residual in equation
(16) at the new time step n+ 1, rather than at the old time step n. Since values at the new
time step are not known explicitly, a linearization of the residual is required, leading to the
form:

(
I

�t
+
@R

@u
) (un+1 � un) = ��t R(un) (17)

where @R
@u

represents the Jacobian matrix, and the �rst bracketed term on the left-hand
side represents a large sparse matrix which must be inverted at each time step. When the
time step �t becomes very large, the �rst term on the left hand-side vanishes, and the
above reduces to a Newton scheme, which can achieve convergence to steady-state in a small
number (O(10)) of iterations.

The principal challenges associated with implicit schemes relate to the storage and inver-
sion of the Jacobian matrix. For a second-order accurate discretization, the Jacobian matrix
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requires over an order of magnitude more storage than the evaluation of the spatial residual
in an explicit scheme. In order to alleviate this problem, it is common to use a simpli�ed
form of the Jacobian matrix, obtained by considering a �rst-order accurate discretization
in its construction, while full second-order accuracy is retained for the residual construction
on the right-hand-side, since this term determines the accuracy of the steady-state solution.
Implicit schemes based on �rst-order accurate Jacobian approximations have been used suc-
cessfully in many computational 
uid dynamics problems [75, 76, 77, 78]. However, these
methods still su�er from large memory requirements (3 to 4 times more than the equivalent
explicit algorithm), and the key to their e�cient implementation resides in the construction
of an e�cient linear solver for inverting the Jacobian matrix at each implicit time step, a
daunting task in itself.

Multigrid methods represent an alternative approach for devising an e�cient solution
procedure while incurring minimal memory overheads. A properly formulated multigrid
method is optimal in the sense that it achieves linear (O(N)) complexity, meaning that the
number of multigrid cycles required to converge to steady-state is independent of the level
of grid resolution.

Iterations

High Frequency
Error Reduction Region

Low Frequency
Error Reduction Region

Error

Figure 36: Typical convergence characteristics
of explicit schemes

The basic idea behind a multigrid algorithm is to accelerate the convergence of a set of
equations on a �ne grid by time-stepping on coarser grid levels. While explicit schemes are
ine�cient for solving �ne grid problems to completion, they are relatively e�cient at elim-
inating high frequency error modes in the solution (i.e. local error). Figure 36 illustrates
the typical convergence behavior of an explicit scheme on a relatively �ne mesh. Rapid
convergence is initially observed, as the scheme reduces the high frequency error compo-
nents. However, as the lower frequency errors begin to dominate, convergence slows down
dramatically. By transferring the discrete equations to a coarser grid level, once the �ne grid
high-frequency error modes have been eliminated, the lower frequency modes from the �ne
grid now appear as higher frequency modes in the multigrid scheme on the coarser grid level,
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and are e�ectively dealt with by the explicit scheme on this grid level. Multigrid methods
are applied recursively, on a complete sequence of �ne and coarse meshes, with each grid
level responsible for a particular bandwidth of error modes, using various inter-grid cycling
options as depicted in Figure 37.
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Figure 37: Illustration of typical multigrid cycling strategies going from �ne grid
level (top) to coarser levels (bottom): V-cycle (left), W-cycle (right)

Multigrid methods were originally developed for structured mesh solvers, where coarser
levels can be constructed by omitting every second grid line in each coordinate direction.
One of the main challenges for unstructured multigrid methods has been the construction of
suitable coarse levels. A survey of the various approaches to unstructured mesh multigrid
acceleration was given in a previous Von Karman Institute (VKI) lecture series [79]. Initial
attempts employed sequences of overlapping but potentially non-nested coarse and �ne levels,
which are generated independently using the same mesh generation software used to con-
struct the original �ne mesh level [12, 13, 80, 79]. While this approach results in an e�cient
solver, delivering rapid grid-independent convergence rates, the requirement of construct-
ing multiple �ne and coarse mesh levels for each geometrical con�guration is impractical
in a production environment. This requirement lead to the development of agglomeration
multigrid methods [81, 82, 83, 84, 35] where the coarse levels are generated in a completely
automatic fashion. Agglomeration multigrid methods can most easily be explained in terms
of the control volume formulation of an unstructured mesh solver, although they can also
be viewed as simpli�ed versions of algebraic multigrid algorithms [85]. In the control vol-
ume analogy, coarser levels are formed by fusing together or agglomerating neighboring �ne
grid control volumes to form a smaller number of larger and more complex control volumes.
A graph algorithm is used to partition the initial mesh into coarse level points (i.e. seed
points), and neighboring agglomerated points, as depicted in Figure 38, in such a fashion
that the coarse agglomerated level represents a maximum independent set of the �ne grid
graph. Discrete coarse level equations are then obtained by performing 
ux balances over
the agglomerated control volumes, as shown in Figure 39.
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Agglomerated

Seed Point

 Points

Figure 38: Illustration of seed point for coarse
level control volume and agglomerated points in the
agglomeration coarse grid construction strategy

Figure 39: Illustration of agglomerated coarse
level control volume 
ux balance. Internal 
uxes
cancel out while boundary 
uxes are summed alge-
braically.

In the algebraic interpretation, the coarse level equations can be derived by summing the
constituent �ne grid discrete equations of each coarse level agglomerated control volume [79].
Agglomeration multigrid produces rapid grid independent convergence rates, equivalent to
the rates obtained by the overset mesh approach, but with full automation of the coarse
level construction. This is demonstrated in the example depicted in Figures 40 and 41. The
inviscid 
ow over an aircraft con�guration is computed using the agglomeration multigrid
method on the �ne mesh shown in Figure 40, using the coarse agglomerated levels shown in
the same �gure. The observed convergence rate for this case is shown in Figure 41, where
the convergence history of the agglomeration multigrid method is compared with that of the
overset multigrid method described previously, and the explicit single grid approach. The
convergence plots indicate that the agglomeration strategy produces convergence rates which
are comparable to the overset multigrid method, and both multigrid approaches result in
over an order of magnitude increase in e�ciency over the single grid approach, (noting that
the cost of a multigrid cycle is less than twice the cost of a single grid cycle). For inviscid

ow problems of this type, converged solutions are generally obtained in under 100 multigrid
cycles, as seen from Figures 41.
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Figure 40: Illustration of �ne grid and coarse agglomerated levels for inviscid 
ow calculation over
aircraft con�guration
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Figure 41: Convergence rate of agglomeration multigrid algorithm com-
pared with overset-mesh multigrid algorithm and single-grid algorithm for
computation of 
ow over aircraft con�guration.

For viscous 
ow calculations, which are more relevant for drag prediction studies, conver-
gence to steady-state is much slower than that achieved for inviscid 
ow problems, mainly
as a result of the high degree of grid stretching in the boundary layer regions near the wall.
Various strategies for alleviating this sti�ness are possible in the context of a multigrid al-
gorithm. These include directional coarsening strategies, and implicit directional solution
techniques. Directional coarsening involves constructing the coarse levels by selectively ag-
glomerating in the direction of tight coupling in anisotropic regions, for example normal to
the wall in boundary layer regions. Implicit directional solution techniques involve using a
stronger implicit-type solver applied in the direction of tight coupling in anisotropic regions.
An example of a directional solver is a line solver applied in the normal direction through
the boundary layer. This technique has been well known in the context of structured grid
methods, where grid lines occur naturally. Although normal coordinate lines do not exist
in an unstructured mesh, lines can be formed using a graph algorithm by grouping together
mesh edges which represent strong coupling between neighboring vertices in regions of strong
mesh anisotropy [86, 87, 64, 88, 89], as illustrated in Figure 42
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Figure 42: Two-dimensional unstructured mesh about three-element airfoil con�guration and line set con-
structed using graph algorithm for directional implicit solver

By retaining the local Jacobian entries associated with these constituent line mesh edges,
a locally implicit system is formed, which can be easily inverted using a block tridiagonal
algorithm [90]. The combination of directional solution techniques and directional coars-
ening multigrid has been shown to produce rapid convergence rates which are insensitive
to the degree of grid anisotropy [91]. However, in three dimensions, the widespread use of
directional coarsening has been plagued by robustness issues, and for production runs the
combined approach has been discarded in favor of a more robust but less optimal strategy
which makes use of isotropic coarsening coupled with an implicit line solution algorithm on
all grid levels [61]. Figure 43 illustrates the convergence rates achieved by this approach
for the DLR-F4 con�guration mentioned previously, as compared to the unmodi�ed point-
wise algorithm previously used for inviscid 
ows. The �gure illustrates well the superior
convergence of the directional algorithm, indicating that converged lift and drag values are
obtained in under 500 multigrid cycles using the directional line implicit algorithm. Figure
44 depicts the convergence rate obtained by the directional line implicit multigrid algorithm
for a three dimensional transport aircraft high-lift 
ow, using two grids of di�erent resolution,
demonstrating the grid independent convergence property of the multigrid algorithm.
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ow on two di�erent grids

4.3 E�cient Hardware Utilization

In addition to algorithmic e�ciency, a practical simulation capability must deliver compu-
tational e�ciency on current day computer architectures. This involves optimization at the
local processor level, as well as e�cient strategies for running on massively parallel systems
involving large numbers of processors. At the individual processor level, cache-based scalar
micro-processors and vector-processors represent the two principal architectures which are
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used for numerical computations. For scalar micro-processors, e�cient cache-utilization is
paramount for obtaining good overall performance. Mesh vertex renumbering strategies
using bandwidth minimization techniques are often used to produce more cache-local data-
access patterns, and judicious numbering of edges in the edge-based data-structure can also
be used to improve cache-e�ciency, generally resulting in an increase in computational rates
by a factor of 2 to 3 [92, 93]. Although cache-based commodity micro-processors have gained
popularity over the last decade due to their lower cost and rapid increase in clock-speeds,
high-end custom vector processors such as those supplied by NEC, Fujitsu, and the recently
announced CRAY X-1, remain serious contenders for cost-e�ective large-scale numerical sim-
ulations. The requirements for e�ective vectorization are often at odds with those required
for e�cient cache-optimization (i.e. reversing loop indices, avoiding branching statements
within loops, avoiding recurrences) and good vectorization for unstructured mesh solvers
generally will not occur with automated compiler 
ags alone. Thus alternate sorting and
loop processing strategies must be incorporated into the code with the option to toggle back
and forth between cache and vector optimization strategies, in the event both types of ar-
chitectures are to be employed. For vectorization of edge loops, the edges must be sorted
into groups within which no recurrences occur (i.e. no two edges access the same vertex),
and then vectorization can proceed within each group [93]. Vectorization of the implicit
line solver is achieved by grouping together sets of lines and initiating a vector loop over all
lines within a group for each phase of the tridiagonal line solution algorithm, thus solving
all decoupled tridiagonal systems within a group simultaneously [64].

For parallel computations, in order to scale well on large numbers of processors, a domain
decomposition approach must be adopted, where the �ne mesh is split into multiple parti-
tions, one for each processor, and the edges crossing partition boundaries are redirected to
newly created ghost vertices, as shown in Figure 45. After a 
ux balance has been performed
locally on each processor, the ghost vertices are required to add their residual contributions
to their vertex image in neighboring processors. This inter-processor communication is han-
dled via MPI [94] on distributed memory machines such as clusters of workstations, or by
OpenMP [95] on shared memory machines such as the SGI Origin, or by both techniques on
networked clusters of shared memory multi-processors [96]. Mesh partitioning is performed
using available graph-based partitioners such as Metis [97] or Chaco [98]. Graph partitioners
require only a set of vertices and edges (possibly weighted sets) as input. These methods
attempt to generate balanced partitions of sets of vertices, and to minimize the total number
of edges which are intersected by the partition boundaries, thus minimizing overall commu-
nication. It is important during the partitioning process that the line structures employed
in regions of high mesh stretching be con�ned to individual partitions in order to obviate
the need to parallelize the tridiagonal line solution algorithm, which is inherently sequential
in nature. This is achieved by contracting the original unweighted graph, which de�nes the
unstructured mesh along the implicit lines, to produce a weighted graph as shown in Figure
46. Unity weights are assigned to the original graph, and any two vertices which are joined
by an edge which is part of an implicit line are then merged together to form a new ver-
tex. Merging vertices also produces merged edges, as shown in Figure 46, and the weights
associated with the merged vertices and edges are taken as the sum of the weights of the
constituent components. The contracted weighted graph is then partitioned using one of

42



the graph partitioners described in references [97, 98], and the resulting partitioned graph is
then decontracted, i.e. all constituent vertices of a merged vertex are assigned the partition
number of that vertex. Since the implicit lines reduce to a single point in the contracted
graph, they can never be broken by the partitioning process. The weighting associated with
the contracted graph ensures load balancing and communication optimization of the �nal
partitioned result.

Communication Path

Partition 
Boundary

Ghost
Vertex

Created Internal Edges

Figure 45: Illustration of partitioning of un-
structured mesh and creation of ghost points with
resulting inter-processor communication

V=3

E=3E=2

E=2

Figure 46: Illustration of contraction of lines
into weighted graph for partitioning process

For the multigrid algorithm, each agglomerated level must also be partitioned across the
processors of the machine. Since the mesh levels of the agglomeration multigrid algorithm
are fully nested, a partition of the �ne grid could be used to infer a partition of all coarser grid
levels. While this would minimize the communication of the inter-grid transfer routines, the
amount of intra-grid computation on each level is much more important than the inter-grid
computation between each level, and it is essential to optimize the partitions on each grid
level rather than between grid levels. Furthermore, inferring coarse level partitions from the
�ne level would not guarantee the containment of all implicit lines on individual processors
for the coarser levels. For these reasons, each grid level is partitioned independently, resulting
in unrelated coarse and �ne level partitions. In order to minimize inter-grid communication,
coarse level partitions are reordered in such a manner that they are assigned to the same
processor as the �ne grid partition with which they share the most overlap.

The parallel e�ciency of the above described implementation is illustrated by the scal-
ability curve of Figure 47, for a small test case of 177,000 points running on a cluster of
commodity PCs, and in Figure 48, and a larger 24.7 million point case on a massively par-
allel CRAY T3E machine. Good speedups are observed in all these cases, with only slight
drop-o� occurring at the higher numbers of processors. In these cases, the scalability of the
single grid algorithm is plotted alongside the scalability of the multigrid algorithm. The
moderate deterioration in scalability in going from the single grid algorithm to the multigrid
algorithm is a measure of the increased communication generated by the coarser grid lev-
els, which contain fewer vertices, but are distributed across the same number of processors.
However, the single grid algorithm is non-competitive in terms of overall cpu time, since
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it requires over an order of magnitude more computational e�ort to achieve steady-state
convergence compared with the multigrid algorithm, and is simply shown to quantify the
communication penalty of the multigrid method. Figure 49 illustrates the speedups achieved
on an SGI Origin 2000 machine using up to 128 processors, for the multigrid algorithm op-
erating on a 3 million point grid, using either MPI or OpenMP for communication, on this
shared memory machine. Good speedups are observed, and both communication strategies
are seen to o�er comparable e�ciency.

Figure 47: Observed speedup of multigrid and
baseline algorithm for small 177,000 point case on
PC cluster
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Figure 48: Observed speedup of multigrid and
baseline algorithm for large 24.7 million point case
on CRAY-T3E 1200E machine
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Figure 49: Observed speedup of multigrid algorithm for 3 million
point case on SGI Origin 2000 using MPI and OpenMP communi-
cation strategies
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This section has outlined the various considerations which must be taken into account
to achieve an e�cient solution capability. In summary, it is the combination of e�cient
discretizations, data-structures, coupled with rapid multigrid convergence and good parallel
scalability which enables drag calculations on reasonably �ne meshes of the order of several
million points to be obtained in several hours on clusters of commodity PCs [33], or for very
large cases to be computed on large supercomputers with similar turnaround times [61].
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5 Drag Prediction using Unstructured Mesh Solvers

The previous sections have emphasized the various aspects which can a�ect the drag predic-
tion capability of unstructured mesh solvers. In this section an objective description of the
state-of-the-art in drag prediction using unstructured mesh solvers is now given, using sev-
eral concrete examples, including grid resolution e�ects, and e�ciency considerations, while
providing a comparative assessment of unstructured mesh methods with structured mesh
methods when possible. Drag prediction is examined for three types of problems: determi-
nation of absolute values in the transonic cruise regime, determination of incremental e�ects,
such as nacelle installation drag in the cruise regime, and high lift problems. These examples
represent typical areas of study which arise during a transport aircraft design exercise.

5.1 Wing-Body Cruise Drag

The capabilities of unstructured mesh solvers at predicting drag in the transonic cruise regime
can only be assessed from the results of careful validation studies. As an example, the AIAA
1st Drag Prediction workshop, held in June 2001, featured the computation and comparison
with experiment of the transonic 
ow over a DLR-F4 wing-body con�guration over a range
of 
ow conditions. This particular con�guration was chosen because it is representative of a
modern supercritical swept-wing transport aircraft, and has been extensively tested in three
di�erent wind tunnels. Participants included Reynolds-averaged Navier-Stokes formulations
based on block-structured grids, overset grids, and unstructured grids, thus a�ording an
opportunity to compare these methods on an equal basis in terms of accuracy and e�ciency.
A standard mesh was supplied for each type of methodology, with participants encouraged to
produce results on additionally re�ned meshes, in order to assess the e�ects of grid resolution.
A Mach number versus lift coe�cient (CL) matrix of test cases was de�ned, including the
calculation of drag polars over a range of Mach numbers, and constant CL drag rise curves,
as are typically used in airplane design by industry.

The baseline grid supplied for the workshop was generated using the VGRIDns package
[54]. This approach produces fully tetrahedral meshes, although it is capable of generating
highly stretched semi-structured tetrahedral elements near the wall in the boundary-layer
region, and employs moderate spanwise stretching in order to reduce the total number of
points. A semi-span geometry was modeled, with the far-�eld boundary located 50 chords
away from the origin, resulting in a total of 1.65 million grid points, 9.7 million tetrahedra,
and 36,000 wing-body surface points. The chordwise grid spacing at the leading edge was
prescribed as 0.250 mm and 0.500 mm at the trailing edge, using a dimensional mean chord
of 142.1 mm. The trailing edge is blunt, with a base thickness of 0.5% chord, and the baseline
mesh contained 5 grid points across the trailing edge. The normal spacing at the wall is 0.001
mm, which is designed to produce a grid spacing corresponding to y+ = 1 for a Reynolds
number of 3 million. A stretching rate of 1.2 was prescribed for the growth of cells in the
normal direction near the wall, in order to obtain a minimum of 20 points in the boundary
layer. The characteristics of this grid are detailed in Table 2 in section 3.

The fully tetrahedral VGRIDns meshes were then merged into hybrid prismatic-tetrahedral
meshes as described in section 3. The merging operation results in a total of 2 million cre-
ated prismatic elements, while the number of tetrahedral cells is reduced to 3.6 million, and
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a total of 10090 pyramidal elements are created for the merging of prismatic elements into
tetrahedral elements in regions where quadrilateral faces from prismatic elements are adja-
cent to tetrahedral elements. A higher resolution mesh was also generated using VGRIDns
with smaller spacings in the vicinity of the wing root, tip, and trailing edge, resulting in
a total of 3 million grid points, and 73,000 wing-body surface points. One of the features
of this re�ned grid is the use of a total of 17 points across the wing trailing edge versus 5
for the baseline grid. After the merging operation, this grid contained a total of 3.7 million
prisms and 6.6 million tetrahedra.

An additional �ne mesh was obtained through global re�nement of the baseline work-
shop mesh. This strategy operates directly on the mixed prismatic-tetrahedral mesh, and
consists of subdividing each element into 8 smaller self-similar elements, thus producing an
8:1 re�nement of the original mesh [57]. The �nal mesh obtained in this manner contained
a total of 13.1 million points with 16 million prismatic elements and 28.8 million tetrahedral
elements, and 9 points across the blunt trailing edge of the wing. This approach can rapidly
generate very large meshes which would otherwise be very time consuming to construct using
the original mesh generation software. One drawback of the current approach is that newly
generated surface points do not lie exactly on the original surface description of the model
geometry, but rather along a linear interpolation between previously existing surface coarse
grid points. For a single level of re�nement, this drawback is not expected to have a notice-
able e�ect on the results. However, a capability for re-projecting new surface points onto
the original surface geometry is ultimately required and is currently under development.

The baseline grid was found to be su�cient to resolve all major 
ow features. The com-
puted surface pressure coe�cient on the baseline grid for a Mach number of 0.75, Reynolds
number of 3 million, and CL= 0.6 is shown in Figure 50, illustrating good resolution of the
upper surface shock. A small region of separation is also resolved in the wing root area,
as shown by the surface streamlines for the same 
ow conditions, in Figure 51. Figure 52
depicts the computed y+ values at the break section for the same 
ow conditions, indicating
values well below unity over the entire lower surface and a majority of the upper surface.
The convergence history for this case is shown in Figure 53. The 
ow is initialized as a uni-
form 
ow at freestream conditions, and ten single grid cycles (no multigrid) are employed to
smooth the initialization prior to the initiation of the multigrid iteration procedure. A total
residual reduction of approximately 5 orders of magnitude is achieved over 500 multigrid
cycles. Convergence in the lift coe�cient is obtained in as little as 200 multigrid cycles for
this case, although all cases are run a minimum of 500 multigrid cycles as a conservative
convergence criterion.
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Figure 50: Baseline grid and computed pressure contours at Mach=0.75, CL = 0.6 , Re = 3 million

Figure 51: Computed surface oil 
ow pattern in
wing root area on baseline grid for Mach=0.75, CL
= 0.6, Re=3 million
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Table 5: Grids and corresponding run times

Grid No. Points No. Tets No. Prisms Memory Run Time Hardware
Grid 1 1:65� 106 2� 106 3:6� 106 2.8 Gbytes 2.6 hours 16 Pentium IV 1.7GHz
Grid 1 1:65� 106 2� 106 3:6� 106 2.4 Gbytes 8 hours 4 DEC Alpha 21264 (667MHZ)
Grid 1 1:65� 106 2� 106 3:6� 106 3.0 Gbytes 45 min. 64 SGI Origin 2000 (400MHz)
Grid 2 3:0� 106 3:7� 106 6:6� 106 4.2 Gbyte s 8 hours 8 DEC Alpha 21264 (667MHZ)
Grid 3 13� 106 16� 106 28:8� 106 27 Gbytes 4 hours 128 SGI O2000 (400MHz)

Table 6 compares the computed values at Mach=0.75 and CL = 0.5, on the three di�erent
meshes versus experimental data. The drag is seen to be computed relatively accurately
by all three grids, although there is a 10.6 count variation between the 3 grids. However,
the incidence at which the prescribed CL = 0.5 is achieved is up to 0.6 degrees lower than
that observed experimentally. This e�ect is more evident in the CL versus incidence plot
of Figure 54, where the computed lift values are consistently higher than the experimental
values. Since this discrepancy increases with the higher resolution grids, it is most likely not
the result of a lack of grid resolution. The slope of the computed lift curve is about 5% higher
than the experimentally determined slope, and is largely una�ected by grid resolution.

Figure 55 provides a comparison of computed surface pressure coe�cients with experi-
mental values at the experimentally prescribed CL of 0.6 (where the e�ects are more dramatic
than at CL = 0.5) as well as at the experimentally prescribed incidence of 0.93 degrees, at
the 40.9 % span location. When the experimental incidence value is matched, the computed
shock location is aft of the experimental values, and the computed lift is higher than the
experimental value, while at the prescribed lift condition, the shock is further forward and
the suction peak is lower than the experimental values.

This bias in lift versus incidence was observed for a majority of the numerical solutions
submitted to the workshop [1], and thus might be attributed to a model geometry e�ect,
a wind tunnel correction e�ect, or to turbulence modeling e�ects, although an exact cause
has not been determined. When plotted as a drag polar, CL versus CD as shown in Figure
56, the results compare favorably with experimental data. The computational results on the
baseline grid compare very well with experiment in the mid-range (near CL = 0:5), while
a slight overprediction of drag is observed for low lift values, which decreases as the grid is
re�ned.

This behavior suggests an under-prediction of induced drag, possibly due to inadequate
grid resolution in the tip region or elsewhere. The absolute drag levels have been found to
be sensitive to the degree of grid re�nement at the blunt trailing edge of the wing. The
drag level is reduced by 4 counts when going from the 1.6 million point grid, which has 5
points on the trailing edge, to the 3 million point grid, which has 17 points on the trailing
edge. Additional studies have shown that up to 33 points on the blunt trailing edge are
required before the drag does not decrease any further [33]. In the current grid generation
environment, and without the aid of adaptive meshing techniques, the generation of highly
re�ned trailing edge unstructured meshes has been found to be problematic, thus limiting
the study in this area.
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Table 6: Results for Case 1; Experimental Values 1:ONERA,
2:NLR, 3:DRA, Experimental data and 3 M point grid results are
interpolated to speci�ed CL condition along drag polar.

Case CL � CD CM

Experiment1 0.5000 +:192o 0.02896 -.1301
Experiment2 0.5000 +:153o 0.02889 -.1260
Experiment3 0.5000 +:179o 0.02793 -.1371
Grid1(1:6Mpts) 0.5004 �:241o 0.02921 -.1549
Grid2(3:0Mpts) 0.5000 �:417o 0.02857 -.1643
Grid3(13Mpts) 0.5003 �:367o 0.02815 -.1657
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Figure 54: Comparison of computed lift as a
function of incidence for three di�erent grids ver-
sus experimental results
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Figure 56: Comparison of computed versus ex-
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Figure 57: Comparison of computed versus ex-
perimental induced drag factor for Mach=0.75 us-
ing three di�erent grids
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Figure 57 provides an estimate of the induced drag factor, determined experimentally
and computationally on the three meshes. For CL

2 up to about 0.36, when the 
ow is
mostly attached, induced drag is underpredicted by approximately 10%, as determined by
comparing the slopes of the computational and experimental curves (using a linear curve �t)
in this region. Grid re�nement appears to have little e�ect on the induced drag in this region.
At the higher lift values, the 3 million point grid yields higher CL and lower CD values, which
is attributed to a slight delay in the amount of predicted 
ow separation. Results for the 13
million point grid are not shown at the highest incidence, since a fully converged solution
could not be obtained at this condition. It should be noted that the wind tunnel experiments
used a boundary layer trip at 15% and 25% chord on the upper and lower surfaces, while all
calculations were performed in a fully turbulent mode. Examination of the generated eddy
viscosity levels in the calculations reveals appreciable levels beginning between 5% to 7%
chord. The exact in
uence of transition location on overall computed force coe�cients has
not been quanti�ed and requires further study.

The pitching moment is plotted as a function of CL in Figure 58 for all three grids
versus experimental values. The pitching moment is substantially underpredicted with larger
discrepancies observed for the re�ned grids. This is likely a result of the over-prediction of
lift as a function of incidence, as mentioned earlier and illustrated in Figure 54. Because
the computed shock location and suction peaks do not line up with experimental values, the
predicted pitching moments can not be expected to be in good agreement with experimental
values.

Figure 59 depicts the drag rise curves obtained on the baseline grid and the �rst re�ned
grid (3 million points). Drag values are obtained at four di�erent constant CL values for a
range of Mach numbers. Drag values are predicted reasonably well except at the highest
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lift and Mach number conditions. There appears to be no improvement in this area with
increased grid resolution, which suggests issues such as transition and turbulence modeling
may account for these discrepancies. However, since the two grids have comparable resolution
in various areas of the domain, grid resolution issues still cannot be ruled out at this stage.

These results can also be plotted at constant Mach number, as shown in the drag polar
plots of Figure 60. The plots show similar trends, with the drag being slightly overpredicted
at low lift values on the coarser grid and with the re�ned grid achieving better agreement
in these regions. For the higher Mach numbers, the drag is substantially underpredicted at
the higher lift values. These discrepancies at the higher Mach numbers and lift conditions
point to an under-prediction of the extent of the separated regions of 
ow in the numerical
simulations. However, the character of the curves also suggest that the error may be due as
well to the CL o�set (shown in Figure 54). Additional information concerning the regions of

ow separation found in the wind tunnel would be needed to more accurately quantify the
nature of the error.

The above results indicate that the NSU3D unstructured mesh Navier-Stokes solver
achieves a reasonably good predictive ability for the force coe�cients on the baseline grid
over the majority of the 
ow conditions considered. The overall agreement, particularly at
the low lift values, is improved with added grid resolution, while the more extreme 
ow con-
ditions which incur larger amounts of separation are more di�cult to predict accurately. On
the other hand, the observed bias between computation and experiment in the lift versus in-
cidence values has an adverse a�ect on the prediction of pitching moment. While the source
of this bias is not fully understood, it was observed for a majority of independent numerical
simulations undertaken as part of the subject workshop [1] and can likely be attributed to
geometrical di�erences, wind tunnel corrections, or turbulence modeling e�ects.

Mach

C
D

0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.020

0.024

0.028

0.032

0.036

0.040

0.044

0.048

0.052

0.056

CL = .50

CL = .60

CL = .40

CL = .30

CL 3M Grid Exp

0.30
0.40
0.50
0.60

Notes:
1) Wind tunnel data use prescribed BL trip pattern.
2) CFD data are fully turbulent.
3) On fine grid, even C L data interpolated from

α-sweep data using cubic spline.

1.6M Grid

Figure 59: Comparison of computed versus ex-
perimental drag rise curves for three di�erent CL
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Figure 60: Comparison of computed ver-
sus experimental drag polars for Mach=0.6 and
Mach=0.8 on two di�erent grids

A general assessment of the relative merits of unstructured versus block structured and
overset methods can be surmised by a compilation of all the workshop results involving the
various di�erent methodologies. The workshop results include submissions from 13 di�erent
individual RANS codes, of which six were based on unstructured meshes, six on block-
structured meshes, and one on overset meshes. Figure 61 shows plots of idealized pro�le
drag for each of the major code types. Idealized pro�le drag is de�ned by the formula [99]:

CDP = CD � CL
2=(�AR) (18)

where AR is the wing aspect ratio. Plotting CDP generally results in a more compact rep-
resentation of the data, allowing more expanded scales. It also highlights the characteristics
at higher CL, where the drag polar becomes non-parabolic due to wave drag and separa-
tion. The two methods with the most results (block-structured and unstructured) both have
considerable scatter, overpredict basic drag levels, and have one or two outliers. The block-
structured results contain slightly more scatter than the unstructured results, but represent
a wider variety of di�erent codes and turbulence models. Overall, the results from this work-
shop indicate that well formulated structured grid and unstructured grid methodologies can
achieve equivalent predictive ability for drag on cases of practical interest.

Direct e�ciency comparisons are complicated by the multitude of di�erent solvers and
hardware used for the given test cases. The NSU3D study involved 72 steady-state baseline
grid cases which were processed in about one week on a 16 cpu Pentium cluster. For the
largest grid, fewer cases were run using a larger SGI Origin 2000 machine with 128 processors.
The required resources reported in Table 5 are well inline and in some cases superior to the
costs reported for the various structured grid solvers.
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Figure 61: Comparison of drag prediction performance for DLR-F4 wing-body test case based on
methodology (reproduced from Ref [15])

5.2 Incremental E�ects: Engine Installation Drag

While the consistent prediction of absolute cruise drag to within 1 drag count may currently
be beyond the practical capabilities of most structured and unstructured meshes solvers, the
determination of incremental e�ects represents a less stringent problem which is of great
importance in the design exercise of any aircraft program. The ability to accurately pre-
dict changes in drag due to design variations is crucial to guide the selection of competing
design con�gurations, and is a prerequisite for the successful use of any numerical design-
optimization procedure.

Prediction of engine airframe interference e�ects is of particular importance for trans-
port aircraft. With the trend towards higher-bypass ratio power-plants, minimization of
installation drag becomes a more di�cult task, and optimal nacelle-pylon integration strate-
gies require robust and accurate installation drag prediction capabilities. While extensive
validation of block-structured and overset-structured mesh methods has been performed in
this area over the last decade, these methods are often plagued by extensive setup time for
modeling the complex geometries associated with nacelle-pylon-wing con�gurations in close
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proximity to each other. Unstructured meshes provide a de�nite advantage in this area,
although the predictive ability of these methods is still in question and the necessary valida-
tion required to certify unstructured mesh methods for the design process is only beginning
to be addressed.

A recent study at the German Aerospace Center (DLR) [52] has demonstrated the po-
tential of an unstructured mesh solver in predicting installation drag. In this work, the
installation drag and its variation with nacelle position and shape were studied both com-
putationally and experimentally in the transonic cruise regime on a DLR-F6 con�guration.
The DLR-F6 is a twin engine con�guration derived from the previously mentioned DLR-F4
geometry. It contains a wing aspect ratio of 9.5 and a leading edge sweep angle of 27.1
degrees, and the engines are modeled as 
ow-through nacelles. For a Mach number of 0.75,
and a Reynolds number of 3 million, the study was con�ned to the range of lift conditions
from CL=0.1 to CL=0.6. The various geometric con�gurations are de�ned in Table 7, with
the de�nition of the nacelle positioning coordinates illustrated in Figure 62.

Figure 62: De�nition of parameters describing nacelle position for engine instal-
lation drag study. (Reproduced with permission from Ref [52])

Table 7: Nacelle Locations (from Ref [52])

Nacelle XHK=L ZHK=L
CFM56-long, position 1 0:49 -0.189
CFM56-long, position 2 0:30 -0.189
CFM56-long, position 3 0:30 -0.250

The DLR tau unstructured mesh solver [35, 100, 101] consists of a vertex-based dis-
cretization with added arti�cial dissipation operating on hybrid prismatic-tetrahedral ele-
ment meshes, and employs an agglomeration multigrid method for accelerating convergence
to steady-state. The Spalart-Allmaras turbulence model [69] is used exclusively in this study,
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and transition is set to correspond to the speci�ed trip locations in the wind tunnel experi-
ments. This solver is similar in many respects to the aforementioned NSU3D solver [32, 61],
although it makes use of a modi�ed form of scalar arti�cial dissipation as opposed to the
matrix form used by NSU3D. A limited adaptive meshing capability is also incorporated, and
three levels of adaptive re�nement are used for all steady-state solutions, resulting in a near
doubling of the number of grid points between the initial and �nal adapted meshes. Initial
mesh resolutions are of the order of 4.5 million points and the �nal adapted meshes contain
of the order of 7.5 million points for the wing-body-pylon-nacelle cases, with the wing-body
alone cases comprising 2.9 million and 5.5 million points for initial and �nal adapted grids
respectively.

Figure 63 shows a plot of lift versus incidence for the three nacelle positions and the
wing-body alone con�guration as reported by the numerical simulations and the wind-tunnel
experiments. As in the previous cases, lift as a function of incidence is overpredicted, resulting
in a near constant angle shift between the numerical and experimental results. When plotted
in drag polar format, as shown in Figure 64, the numerical results are seen to underpredict
the drag by approximately 16 counts for all con�gurations. However, since this o�set is
reasonably uniform for all cases, the small di�erences between varying engine positions can
be predicted to within an accuracy of less than 2 counts for these lift conditions. Figure
65 shows the comparison of numerically predicted and experimentally observed installation
drag, which is de�ned as:

CDinstall = CDwith engine � CDclean � CDinternal (19)

where all quantities are obtained both experimentally and numerically. The internal nacelle
drag values were measured from calibration tests to be CDinternal = 0:00116 and calculated
numerically to be CDinternal = 0:00115. The comparison in Figure 65 demonstrates that
the values of CDinstall and their variations with lift conditions and nacelle positions can
be predicted accurately by the unstructured mesh approach. The numerically predicted
installation drag values are within 1 to 4 counts of the experimental values, which is within
the range of experimental deviations between various wind-tunnel experiments, and the small
changes between con�gurations which are of the order of several drag counts are accurately
reproduced, in spite of the fact that the absolute drag numbers are underpredicted for all
cases (c.f. Figure 64). The e�ect of grid convergence on this predictive ability is illustrated in
Figures 66 and 67, where the experimental data at CL=0.5 is compared with numerical drag
for three di�erent levels of adaptive meshing re�nement. While the o�set between numerical
and experimental absolute drag values actually increases with additional grid re�nement, as
seen in Figure 66, the prediction of the installation drag numbers improves with increasing
grid resolution, as seen from Figure 67.
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These results indicate that installation drag can be predicted to within 1% accuracy
compared with wind tunnel data, although total drag is only predicted to within 6% to
8% accuracy. Hence, although a systematic deviation between overall experimental and
computational results remains, even with increasing grid resolution, di�erences of 1 to 2
drag counts in the installation drag for varying engine locations and sizes can clearly be
analyzed.

While these results demonstrate the e�ectiveness of a particular unstructured mesh
methodology for an important and demanding aerodynamic problem, this level of �delity
can only be obtained through a concentrated and sustained validation e�ort involving both
experimental data and numerical method development. The AIAA 2nd Drag Prediction
Workshop, to be held in June 2003, will be based on the DLR-F6 con�guration, and will
a�ord a broader comparison of various CFD solvers and methodologies for predicting instal-
lation drag, including grid resolution e�ects.

CD

C
L

0.025 0.03 0.035
0.3

0.4

0.5

0.6

0.7

0.8 Wing-Body, Exp.
CFM-L-1, Exp.
CFM-L-2, Exp.
Wing-Body, CFD, 1st Adapt
Wing-Body, CFD, 2nd Adapt
Wing-Body, CFD, 3rd Adapt
CFM-L-1, CFD, 1st Adapt
CFM-L-1, CFD, 2nd Adapt
CFM-L-1, CFD, 3rd Adapt
CFM-L-2, CFD, 1st Adapt
CFM-L-2, CFD, 2nd Adapt
CFM-L-2, CFD, 3rd Adapt

Variation
between campaigns
Variation
between campaigns

Figure 66: E�ect of grid resolution through se-
quential levels of mesh adaptation on absolute drag
polars for unpowered con�guration and three na-
celle positions. (Reproduced with permission from
Ref [52])

CD-install

C
L

0 0.005

0.3

0.4

0.5

CFM-L-1, Exp.

CFM-L-2, Exp.

CFM-L-1, CFD, 1st Adapt

CFM-L-1, CFD, 2nd Adapt

CFM-L-1, CFD, 3rd Adapt

CFM-L-2, CFD, 1st Adapt

CFM-L-2, CFD, 2nd Adapt

CFM-L-2, CFD, 3rd Adapt

Variation between
campaigns
Variation between
campaigns

Figure 67: E�ect of grid resolution through se-
quential levels of mesh adaptation on installation
drag polars for unpowered con�guration and three
nacelle positions. (Reproduced with permission
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5.3 High Lift Flows

Accurate numerical simulation of high-lift 
ows represents perhaps the most challenging
area of steady-state computational aerodynamics. The multiple slats, 
aps, and fairings
associated with high-lift con�gurations constitute an additional level of geometric complexity
over cruise con�gurations for transport aircraft. In fact, it is the complexity of high-lift
con�gurations that has been one of the principal motivating factors in the development of
unstructured mesh approaches for aerodynamic problems [47, 102, 65]. At the same time,
the physics of 
ows over high-lift con�gurations are considerably more complicated than
transonic cruise 
ow physics.

60



possible boundary layer separation

wake in pressure gradient
wake / boundary layer merging

streamline curvature

transition region

possible boundary layer separation

separated cove flow
possible unsteady flow
possible shear layer transition

transition region

transition
region

possible laminar bubble

possible shock/
boundary layer
interaction

Figure 68: Illustration of important high-lift 
ow physics phenomena.
(Reproduced from Ref [67])

Figure 68, reproduced from reference [67], illustrates some important high-lift 
ow physics
characteristics. These include 
ow separation in the cove regions of the slat and main
airfoils, with possible unsteady e�ects, compressible e�ects with possible shock boundary-
layer interaction on the slat, con
uent boundary-layers and wakes on the upper surface of
the main and 
ap elements, transition e�ects, and adverse pressure gradient separation on
the 
ap and aft portion of the main airfoil.

Contrary to most cruise con�gurations, many high-lift landing con�gurations are designed
to operate with signi�cant regions of on-body or o�-body separated 
ow. These character-
istics represent formidable challenges for accurate numerical simulations of any type. The
complicated physics associated with high-lift 
ows means more sophisticated transition and
turbulence models will likely be required for the accurate simulation of such 
ows. The
ability to adequately resolve all important 
ow features through proper local grid resolu-
tion is also a key requirement for successfully predicting high-lift 
ows. Unstructured mesh
methods are well suited for handling the complex geometries associated with high-lift de-
vices, and o�er the possibility of using adaptive meshing techniques for addressing the grid
resolution issue. On the other hand, unstructured mesh approaches have generally lagged
structured mesh methods in the implementation of new turbulence models, and the potential
of adaptive meshing has yet to be fully exploited.

Figures 69 through 73 illustrate a highly resolved numerical three-dimensional high-lift
study performed using the NSU3D solver [61]. The con�guration consists of a twin-engine
transport known as the energy e�cient transport (EET), which has been tested both as a
full span and semi-span model in the NASA Langley 14� 22ft subsonic wind-tunnel [103].
The geometry studied in this work contains no pylon or nacelle. The wing has an aspect
ratio of 10, a leading edge sweep of 28.8 degrees, and consists of a super-critical airfoil
section with a slat and double slotted 
ap. This case consists of a take-o� con�guration,
with a slat de
ection of -50 degrees, a vane de
ection of 15 degrees, and a 
ap de
ection of
30 degrees, with respect to the main airfoil. The freestream Mach number is 0.2, and the
Reynolds number is 1.6 million based on the wing reference chord, and the experimental 
ow
incidence varies over a range of -4 degrees up to 24 degrees.
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Figure 69: Illustration of 3.1 million point mesh for three-dimensional high-lift con�guration

Experimental results are available in the form of force and moment coe�cients as a func-
tion of angle of attack, and chordwise pressure distributions at three spanwise locations.
While reference [103] describes the experiments on a semi-span model with pylon and na-
celle, the full-span \nacelle-o�" results used for comparison herein have not been published
separately.

The computations are all performed at zero yaw angle, and therefore only include one
half of the symmetric aircraft geometry, delimited by a symmetry plane. The baseline
unstructured grid for this geometry was generated using the VGRIDns software package [54]
developed at NASA Langley. Figure 69 illustrates the baseline mesh, which contains a total
of 3.1 million vertices and 6.6 million tetrahedra, 3.9 million prisms, and 46,899 pyramids,
after merging of the boundary layer tetrahedra into prismatic elements. A �ner grid of 24.7
million points was also generated, by uniform subdivision of each cell in the baseline mesh
into 8 smaller self-similar cells, using a global mesh re�nement technique [57]. The position
of the additional surface points in the re�ned mesh were obtained from linear interpolation
of the surrounding baseline mesh surface-point coordinates, and therefore do not match the
original surface geometry description exactly. A capability for reprojecting these points to
the original surface de�nition is currently under development.

Figure 70 illustrates the convergence history obtained for a typical high-lift calculation.
The residuals are reduced by approximately four orders of magnitude over 500 multigrid
cycles, for both the baseline and the �ne meshes, as shown in the �gure, illustrating the grid
independence property of the multigrid algorithm. The baseline mesh cases were run on 128
processors of an SGI Origin 2000 which required 80 minutes of will clock time, while the �ne
grid cases were run on a large CRAY T3E using up to 1450 processors, which required one
hour of wall clock time.

Figure 71 provides a comparison of the computed surface pressures on the coarse and �ne
grids with experimental values at one of the three spanwise locations at which experimental
data is available, for an incidence of 10 degrees. The di�erences between the coarse and �ne
grid values are rather small, with the �ne grid computations providing slightly higher suction
peaks at the main and 
ap leading edges. Both computational results compare favorably
with experimental values at all three stations.
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Figure 70: Observed convergence rates for
coarse and �ne grids for three-dimensional high-
lift case demonstrating grid independence property
of multigrid

A comparison between computed and experimental lift coe�cients as a function of angle
of attack is given in Figure 72 for both grids. As expected, the �ne grid produces slightly
higher lift coe�cients than the coarse grid. The experimental lift values are over-predicted
by both �ne and coarse grid results. However the slope of the lift curve is reproduced very
accurately by both computations. The maximum lift point, which experimentally occurs at
16 degrees incidence, is well predicted by the coarse grid. The �ne grid over-predicts the
maximum lift incidence by 1 degree, giving a value of 17 degrees. In both cases the value of
CLmax is over-predicted.

After stall, the computations fail to converge adequately, producing large variations in the
lift coe�cients. The average, as well as the minimum and maximum of these computed lift
coe�cients are plotted in the �gure. The post-stall computed values averaged in this manner
follow the experimental values fairly closely, although the range of computed min-max values
is rather large.

The drag results are presented in polar format in Figure 73. The baseline grid results
overpredict the drag by approximately 10 counts, whereas the �ne grid values are within
several counts of the experimental values. While this level of absolute drag prediction is
encouraging, it must be considered at least partly fortuitous, in view of the transonic cruise
drag prediction capabilities discussed earlier, and from the documented capabilities of two-
dimensional high-lift numerical experiments discussed below. Furthermore, this high-lift
take-o� con�guration represents a simpler test case than landing con�gurations which involve
higher 
ap de
ections and more potential for 
ow separation. Results of this type must be
considered as a feasibility study for unstructured meshes in three-dimensional high-lift, and
as a �rst step towards a comprehensive development and validation e�ort required for the
establishment of a reliable high-lift numerical predictive ability.
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Considerably more experience has been developed in the two-dimensional setting for
assessing the predictive ability of unstructured mesh high-lift computations. In two dimen-
sions, more elaborate experimental data has been obtained, including surface pressure and
skin friction measurements, as well as o�-body velocity pro�les and even Reynolds stress
measurements in boundary layer and wake regions [104]. The computational aspects of two-
dimensional high-lift problems can also be studied in more detail, for example by using very
�ne grid resolution which is currently una�ordable in three dimensions, and rapidly testing
out various turbulence and transition models. On the other hand, two dimensional experi-
ments have limitations, since at high-lift conditions near stall, even the best two-dimensional
experimental setups have been shown to contain appreciable three dimensional e�ects [105].

An excellent review of the state-of-the-art in numerical high-lift prediction is given by
Rumsey and Ying [67], including structured and unstructured grid methods, in both two
dimensions, and three dimensions. No particular accuracy bene�t between structured or
unstructured grid methods is reported in the survey. For two-dimensional problems, grid
resolutions of the order of 50,000 points for three-element airfoils were found in many cases
to be su�cient to produce good surface pressure and skin friction predictions, but �ner
grids of up to 200,000 points are required for accurate force calculations, especially near the
maximum lift point. The requirement of adequately resolving all wakes with o�-body grid
re�nement has also been demonstrated in various two-dimensional numerical studies [106].
This level of overall resolution in general, and wake resolution in particular, is most often
not achieved in reported three-dimensional calculations, and will require future advances in
grid generation/adaptivity, and solver/hardware e�ciency in order to become commonplace
in three dimensions.

Well resolved two-dimensional unstructured mesh simulations have generally been found
to predict overall force coe�cients reasonably well for high-lift con�gurations without large
areas of separated 
ows. Good prediction of incremental e�ects, such as Reynolds number
e�ects and 
ap positioning has also been demonstrated. Figure 74 illustrates the surface
pressure comparison for a two-dimensional high-lift study reproduced from reference [107].
In Figure 75, experimental lift values for a three-element airfoil con�guration are compared
with numerical values computed using the NSU2D unstructured mesh solver [68]. In this
comparison, which is reproduced from reference [107], the lift is slightly overpredicted, al-
though the slope of the lift curve is well reproduced. The location of the maximum lift point
is also slightly overpredicted, although this may be due to three-dimensional e�ects in the
experiment, as has subsequently been investigated [105]. Comparisons of o�-body velocity
pro�les are given in Figure 76 for a similar con�guration, reproduced from [65]. These results
illustrate the potential for predicting important 
ow physics details, provided adequate grid
resolution, accurate discretizations, and suitable turbulence modeling are employed. The ex-
ception is the slat wake de�cit, which is consistently over-predicted by many computational
methods [67], the causes of which are still not well understood.
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The ability of two-dimensional unstructured mesh high-lift simulations in predicting
variations with respect to Reynolds number has generally been found to be acceptable
[67, 108, 107], in the absence of important transitional e�ects. Figure 77 illustrates a typical
level of agreement obtained between computed and experimentally measured lift increments
produced by increasing the Reynolds number from 5 million to 9 million, for a similar three-
element airfoil, reproduced from [65]. In these cases, no transition model or speci�cation is
employed, and the calculations are performed as fully turbulent. Transitional e�ects are well
known to have the potential for in
uencing overall high-lift performance. The successful
incorporation of various transitional models and speci�cation methods has been reported
in the literature [67], and this practice can be expected to become more commonplace as
increased simulation �delity levels are sought.

Sensitivity due to geometry changes, such as 
ap de
ection and gap and overlap studies,
has been mixed, with good predictions reported in some studies, while de�ciencies have been
reported elsewhere [67]. Figure 78 illustrates the change in lift predicted by the NSU2D
solver compared with experiment for a small change in gap of 0.25% chord. The comparison
shows the trends are well captured at the low and high lift conditions, but the loss of lift
in the region in between these two extremes is not captured numerically. In this case, the
lift degradation is due to a small separation region which only appears on the 
ap at these
intermediate lift conditions, at the larger gap setting. The discrepancy is due to the failure
of the numerical method to predict separation in this range, either due to grid resolution
issues, or turbulence modeling.
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The experience from two-dimensional studies indicates that with current unstructured
mesh solvers, when adequate grid resolution is employed, and the basic 
ow physics phenom-
ena are captured by the transition and turbulence modeling of the simulation approach, good
absolute and incremental predictive ability can be achieved. E�ort must now be devoted to
transferring the experience gained in two-dimensional studies into the three-dimensional
setting, as well as continued investment in basic 
ow physics modeling e�orts. Three-
dimensional numerical results of the type shown in this section (c.f. Figures 71 through
73) must be considered as a feasibility study for unstructured meshes in three-dimensional
high-lift, and as a �rst step towards a comprehensive development and validation e�ort re-
quired for the establishment of a reliable high-lift numerical predictive ability, drawing on
the two-dimensional experience base.
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6 Conclusions and Future Work

Throughout the course of these notes, three areas have been emphasized as pacing items
in the development and improvement of drag prediction capabilities: grid resolution, 
ow
physics, and validation. While the issues surrounding 
ow physics and validation require-
ments apply generally to all numerical methodologies, particular aspects of grid resolution
issues are speci�c to unstructured mesh approaches.

As stated earlier, grid resolution issues are perhaps the most important consideration
in achieving an accurate drag prediction capability. However, grid converged solutions are
almost never achieved, and considerable user expertise is required in tailoring meshes with
adequate resolution in all important regions of the domain. Unstructured mesh approaches
are well suited for the use of adaptive meshing techniques, which can ensure adequate resolu-
tion in all regions of the domain, by re�ning and coarsening the mesh locally as the solution
evolves. However, successful application of adaptive meshing requires techniques for estimat-
ing local discretization error, in order to guide the re�nement process. While the mechanics
of re�ning and coarsening unstructured meshes are reasonably well understood today, it is
the lack of reliable re�nement criteria or error estimators which has held back the potential
of adaptive meshing. Most error estimates assume that the solution is asymptotically close
to the converged result, an assumption which may not be valid for non-linear problems such
as 
uid 
ow, where entire 
ow patterns(i.e. a separation region) may not be present until
su�cient grid resolution is achieved. Because of these di�culties, adaptive meshing strate-
gies have seldom been exploited for demanding problems such as drag predictions. Notable
exceptions include the TRANAIR code developed at Boeing [9], and the DLR tau unstruc-
tured mesh solver [35, 52] in which an adaptive meshing capability has been incorporated as
part of the production process. However, even these cases rely largely on heuristic re�nement
criteria, which are supported by extensive validation and calibration for the speci�c types of
problems at hand.

The �eld of drag prediction could bene�t enormously from the development of a robust
adaptive meshing capability, based on precise discretization error estimates capable of au-
tomatically delivering grid converged solutions to a prescribed error tolerance. Rather than
attempting to quantify the discretization error at every point in the mesh for adaptive re-
�nement criteria, an alternative approach involving adjoint-based error prediction methods
has been gaining popularity recently [109, 110, 111]. In this approach, solution of the adjoint
of the governing 
ow equations is used to quantify the sensitivity of an objective function
with respect to local grid resolution throughout the domain. Adjoint sensitivity techniques
have been well developed in the context of design-optimization problems [112, 113]. This ap-
proach to mesh re�nement is non-local, in the respect that it provides for the global e�ect of
local resolution changes. Objective functions representing engineering quantities of interest
such as lift, drag, of L/D can be constructed, thus enabling the mesh re�nement process to
target quantities of interest. Since vastly di�erent grid resolution distributions are required
for di�erent enginnering applications of the same problem (i.e. drag prediction versus sonic
boom prediction), this approach should enable accurate and e�cient drag prediction results
by avoiding excessive resolution in areas of little in
uence on overall drag.
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tions. (Reproduced with permission from Ref [114])
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An example of adjoint-based error prediction is given in Figures 79 and 80, reproduced
from reference [114]. The �rst part of Figure 79 depicts a mesh produced by prescribing an
objective function de�ned as the left element airfoil drag alone, while the second part depicts
the mesh produced for an objective function based on the right airfoil element drag. The third
grid was obtained considering the drag on both airfoils in the adjoint-based approach and
the fourth grid was obtained using Hessian-based adaptation which looks at local gradients
in the solution. In the �rst case, the wake of the upstream element is not fully resolved, since
it has little in
uence on the drag of the upstream element, while in the second case, it must
be well captured due to its in
uence on the drag of the downstream element. In all cases,
the computed drag is more accurate and achieved at lower cost than in the Hessian-based
adaptation strategy. Figure 80 illustrates the resulting mesh for a high-lift con�guration,
and convergence of the lift as the grid is re�ned both using the adjoint-based approach, and
the Hessian-based approach. Using a globally re�ned mesh solution as the accuracy baseline,
the adjoint-based re�nement approach is seen to approach the grid converged value much
more rapidly than the Hessian-based approach, which may converge to an incorrect solution
due to inadequate grid resolution in critical areas undetected by the Hessian re�nement
criterion. The potential of this type of approach for drag prediction studies is evident, and
their implementation and validation in three-dimensional Reynolds-averaged Navier-Stokes
unstructured mesh solvers is currently under development [111].

While increasing grid resolution represents one approach to improving solution accuracy,
the implementation and use of higher-order discretizations represent an alternative strategy
for improving accuracy. Higher-order accuracy discretizations provide more rapid asymptotic
convergence of the discrete solution with increasing levels of grid re�nement. This is partic-
ularly important for precise three-dimensional simulations, where increasing grid resolution
can become prohibitively expensive. For the current situation involving second-order accu-
rate discretizations in three-dimensions, a doubling of the grid resolution in all coordinate
directions results in an eight-fold increase in overall work, but only delivers a four-fold in-
crease in solution accuracy. By contrast, a fourth-order accurate discretization would result
in a 16-fold increase in solution accuracy when doubling the grid resolution. The drawbacks
of higher-order discretizations are that they are considerably more expensive to evaluate
than lower order discretizations on equivalent grids, and result in more dense discrete equa-
tion systems which are more challenging to solve e�ciently. Hence, for moderate accuracy
levels, high-order accurate discretizations have often been found to be non-competitive. How-
ever, due to their superior asymptotic behavior, as illustrated in Figure 81, as the accuracy
requirements are increased, these methods become increasingly competitive. The high accu-
racy requirements of drag prediction studies, coupled with the high level of grid resolution
required for suitable accuracy, should be seen as an indication that higher-order discretiza-
tions may have a role to play in increasing the e�ciency and accuracy of such simulations
in the future. The development of Streamwise Upwind Petrov Galerkin (SUPG) methods
[42, 115] and Discontinuous Galerkin methods [116, 117] has demonstrated the potential of
these techniques for 
uid dynamics problems, although applications to aerodynamics has
been generally lacking.
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Higher-order methods are best suited for problems were the solutions are smooth, and
the treatment of discontinuities, either as 
ow phenomena (i.e. shocks) or geometrical char-
acteristics such as sharp trailing edges represent additional di�culties for such methods
[118]. These di�culties may be overcome by reducing the order of the discretization in the
vicinity of discontinuous features, and resorting to traditional mesh re�nement for greater
local accuracy in these regions. This leads to the h-p re�nement concept, where higher-
order methods are combined with mesh adaptivity in a complementary fashion, choosing to
increase mesh resolution (h re�nement) near non-smooth features, while resorting to higher-
order discretizations (p-re�nement) in smooth regions of the solution. The ultimate success
of these approaches rests on the development of reliable h and p re�nement criteria, which
must include an assessment of solution smoothness.

The capturing of important 
ow physics has been shown to be essential for accurate drag
prediction. For cruise conditions with minimal regions of 
ow separation, gradual improve-
ments will likely be delivered through the development of more sophisticated turbulence and
transition modeling. However, for high-lift and o�-design cases involving potentially large
regions of separated 
ow, there is a growing consensus that large eddy-simulation techniques
may o�er the best hope for improved predictive capabilities. Large-eddy simulations are
currently several orders of magnitude more expensive than Reynolds-averaged Navier-Stokes
calculations, making them impractical for aerodynamic applications. Nevertheless, accurate
LES simulations of aerodynamic 
ows such as an airfoil near stall have recently been demon-
strated [23]. The large amount of grid resolution required by these calculations is also an
indication that higher-order methods may be used for e�ectively reducing the cost of LES
calculations in future work [115]. Hybrid methods, such as the Detached Eddy Simulation
(DES) technique, which employ RANS methods in boundary layer regions and LES methods
in o�-body regions, have also been proposed, in order to reduce the overall numerical costs of
these problems. These methods have shown superior �delity for simulating 
ows with large
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amounts of separation [119, 25], although they are not currently mature enough to be used
for accurate drag prediction tasks. However, these methods may bene�t as well from the
inclusion of higher-order discretization techniques, h-p re�nement strategies, and improved
physics modeling in the transition region between the boundary layer and outer regions.

These notes have provided an overview of the current capabilities of aerodynamic drag
prediction using unstructured mesh solvers. The pacing items of grid resolution, discretiza-
tion accuracy, solution e�ciency, and 
ow physics have been identi�ed, and strategies for
dealing with these items in their current state, as well as strategies for improving these items
through future research have been discussed. However, while improvements will be enabled
through continued research in these areas, the ultimate delivery of more accurate, e�cient,
and reliable drag prediction tools for the aircraft designer will only occur with continued and
sustained e�ort in the incorporation and validation of these techniques into the existing de-
sign framework as they become available. Continued long term investment in the validation
and veri�cation of these methods, both computationally and experimentally, is essential for
the bene�ts of advances in research to be exploited by the aerodynamics community.

74



References

[1] M. Hemsch. Statistical analysis of CFD solutions from the Drag Prediction Workshop.
AIAA Paper 2002-0842, January 2002.

[2] E. C. Carter and K. C. Pallister. Development of testing techniques in a large transonic
wind tunnel to achieve a required drag accuracy and 
ow standards for modern civil
transports. In Aerodynamic Data Accuracy and Quality: Requirements and Capabilities
in Wind-Tunnel Testing. AGARD-CP-429, July 1988.

[3] J. B. Vos, A. Rizzi, D. Darracq, and E. H. Hirschel. Navier-Stokes solvers in European
aircraft design. Progress in Aerospace Sciences, 38:601{697, 2002.

[4] J. C. Vassberg, P. G. Buning, and C. L. Rumsey. Drag prediction for the DLR-F4
wing/body using OVERFLOW and CFL3D on an overset mesh. AIAA Paper 2002-
0840, January 2002.

[5] L. M. Gea, N. D. Hasley, G. A. Intemann, and P. G. Buning. Applications of the
3D Navier-Stokes code for analyzing propulsion airframe integration related issues on
subsonic transports. In Proc. of the 19th Congress of the International Council of the
Aeronautical Sciences (ICAS'94), Anaheim, CA, pages 2420{2435, September 1994.
Paper ICAS-94-3.7.4.

[6] D. Om, M. Curtin, D. Bogue, D. Witkowski, and D. Ball. Reynolds number e�ects on
a subsonic transport at transonic conditions. AIAA Paper 2001-0909, January 2001.

[7] S. Rolston and E. Elsholz. Initial achievements of the European high Reynolds number
aerodynamic research project "HiReTT". AIAA Paper 2002-0421, January 2002.

[8] S. Murman, M. Aftosmis, and M. Berger. Numerical simulation of rolling airframes
using a multi-level cartesian method. AIAA Paper 2002-2798, June 2002.

[9] M. F. Smith. User friendly CFD - Application to TRANAIR for analysis of transport
aircraft. AIAA Paper 98-5574, SAE Paper 985574, September 1998.

[10] M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, P. Perrier, and G. Poirier.
On the numerical solution of non-linear problems in 
uid dynamics by least squares
and �nite-element methods (II), applications to transonic 
ow simulations. Comput.
Methods Appl. Mech. Engrg, 51:363{394, 1985.

[11] A. Jameson, T. J. Baker, and N. P. Weatherill. Calculation of inviscid transonic 
ow
over a complete aircraft. AIAA Paper 86-0103, January 1986.

[12] D. J. Mavriplis. Three-dimensional multigrid for the Euler equations. AIAA Journal,
30(7):1753{1761, July 1992.

[13] J. Peraire, J. Peir�o, and K. Morgan. A 3D �nite-element multigrid solver for the Euler
equations. AIAA Paper 92-0449, January 1992.

75



[14] 11th international meshing roundtable. In Proc. of the 11th International Meshing
Roundtable, pages 29{43, September 2002. Prepared by Sandia National Laboratory.

[15] D. W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R. A. Wahls, S. Pirzadeh, and M. J.
Hemsch. Summary of data from the �rst AIAA CFD drag prediction workshop. AIAA
Paper 2002-0841, January 2002.

[16] M. Potsdam. An unstrucutred mesh Euler and interactive boundary layer method
for complex geometries. In Proceedings of the 12th AIAA Aerodynamics Conference,
Colorado Springs, CO, June 1994. AIAA Paper 94-1844.

[17] J. Szmelter and A. Pagano. Viscous inviscid interaction techniques using unstructured
meshes. In Numerical Methods for Fluid Dynamics V, pages 599{604, Oxford, UK,
1995. Oxford Science Publications. eds. K. W. Morton and M. J. Baines.

[18] A. G. McDonald and J. F. Nash. A turbulent skin-friction law for use at subsonic and
transonic speeds. Aeronatical Research Council Report No. ARC-CP-948, January
1967.

[19] T. Cebeci and J. Cousteaux. Modeling and Computation of Boundary Layer Flows.
Springer, Horizon Publishing Inc., Long Beach, CA, 2001.

[20] P. R. Spalart, W-H. Jou, M. Strelets, and S. R. Allmaras. Comments on the feasibility
of LES for wings and on a hybrid RANS/LES approach. Paper presented at the
First AFOSR International Conference on DNS and LES, Louisiana Tech University,
Ruston, Louisiana, August 1997.

[21] K. Jansen. Unstructured grid large eddy simulation of 
ow over an airfoil. Annual
Research Briefs, Center for Turbulence Research, Stanford University, 1994.

[22] C. P. Mellen, J. Frohlich, and W. Rodi. Lessons from the European LESFOIL project
on LES of 
ow around an airfoil. AIAA Paper 2002-0111, January 2002.

[23] I. Mary and P. Sagaut. Large eddy simulation of 
ow around an airfoil. AIAA Paper
2001-2559, June 2001.

[24] G. S. Constantinescu and K. D. Squires. LES and DES investigations of turbulent 
ow
over a sphere. AIAA Paper 2000-0540, January 2000.

[25] J. Forsythe, K. Squires, K. Wurtzler, and P. Spalart. Detached eddy simulation of
�ghter aircraft at high alpha. AIAA Paper 2002-0591, January 2002.

[26] D. J. Mavriplis, J. Pelaez, and O. Kandil. Large eddy and detached eddy simulations
using an unstructured multigrid solver. In DNS/LES - Progress and Challenges. Proc.
of the Third AFOSR Int. Conf. on DNS/LES, eds. C.L. Liu, L. Sakell, T. Beutner,
pages 461{470, October 2001.

[27] D. J. Mavriplis. Solution of the Two-Dimensional Euler Equations on Unstructured
Triangular Meshes. PhD thesis, Princeton University, MAE Department, 1987.

76



[28] T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on
unstructured meshes. AIAA Paper 89-0366, January 1989.

[29] S. Z. Pirzadeh and N. T. Frink. Assessment of the unstructured grid software TetrUSS
for drag prediction of the DLR-F4 con�guration. AIAA Paper 2002-0839, January
2002.

[30] D. W. Levy and M. D. Thacker. Comparison of unstructured cell- and node-based
schemes for the Euler equations. AIAA Paper 99-3185, June 1999.

[31] N. T. Frink. Recent progress toward a three-dimensional unstructured 
ow solver.
AIAA Paper 94-0061, January 1994.

[32] D. J. Mavriplis and V. Venkatakrishnan. A uni�ed multigrid solver for the Navier-
Stokes equations on mixed element meshes. International Journal for Computational
Fluid Dynamics, 8:247{263, 1997.

[33] D. J. Mavriplis and D. W. Levy. Transonic drag prediction using an unstructured
multigrid solver. AIAA-Paper 2002-838, January 2002.

[34] A. Jameson and D. J. Mavriplis. Finite volume solution of the two-dimensional Euler
equations on a regular triangular mesh. AIAA J., 24(4):611{618, 1986.

[35] T. Gerhold, M. Galle, O. Friedrich, and J. Evans. Calculation of complex three-
dimensional con�gurations employing the DLR-Tau code. AIAA Paper 97-0167, Jan-
uary 1997.

[36] W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithm for computing
turbulent 
ows on unstructured grids. Computers Fluids, 23(1):1{21, 1994.

[37] A. Haselbacher, J. McGuirk, and G. Page. Finite-volume discretization aspects for vis-
cous 
ows on unstructured meshes. In Proceedings of the 13th AIAA CFD Conference,
Snowmass, CO, pages 599{609, June 1997. AIAA Paper 97-1946-CP.

[38] H. Deconinck, H. Paillere, R. Struijs, and P. L. Roe. Multidimensional upwind schemes
based on 
uctuation-splitting of conservation laws. Comp. Mechanics, 11(5/6):323{340,
1993.

[39] W. A. Wood and W. L. Kleb. Di�usion characteristics of upwind schemes on unstruc-
tured triangulations. AIAA Paper 98-2443, June 1998.

[40] C. Johnson, A. Szepessy, and P. Hansbo. On the convergence of shock-capturing
streamline-di�usion �nite element methods for hyperbolic conservation laws. Math.
Comp., 54(189):107{130, 1990.

[41] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert. A new �nite element formulation for
computational 
uid dynamics: VIII The Galerkin/least-squares method for advective-
di�usive systems. Comput. Methods Appl. Mech. Engrg, 73:173{189, 1989.

77



[42] T. J. R. Hughes. Recent progress in the development and understanding of SUPG
methods with special reference to the compressible Euler and Navier-Stokes equations.
Intl. J. for Numer. Meth. in Fluids, 7:1261{1275, 1987.

[43] P. L. Roe. Approximate Riemann solvers, parameter vectors and di�erence schemes.
J. Comp. Phys., 43(2):357{372, 1981.

[44] T. J. Barth. Numerical aspects of computing viscous high Reynolds number 
ows on
unstructured meshes. AIAA Paper 91-0721, January 1991.

[45] W. K. Anderson. A grid generation and 
ow solution method for the Euler equations
on unstructured grids. Journal of Computational Physics, 110(1):23{38, January 1994.

[46] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the Euler equations
by �nite volume methods using Runge-Kutta time stepping schemes. AIAA Paper
81-1259, 1981.

[47] D. J. Mavriplis. Accurate multigrid solution of the Euler equations on unstructured
and adaptive meshes. AIAA J., 28(2):213{221, 1990.

[48] S. D. Connell and D. G. Holmes. A 3D unstructured adaptive multigrid scheme for
the Euler equations. AIAA J., 32(8):1626{1632, 1994.

[49] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comp. Phys.,
135(2):260{278, 1997.

[50] D. J. Mavriplis. Multigrid solution of the two-dimensional Euler equations on unstruc-
tured triangular meshes. AIAA Journal, 26(7):824{831, July 1988.

[51] D. J. Mavriplis, A. Jameson, and L. Martinelli. Multigrid solution of the Navier-Stokes
equations on triangular meshes. AIAA Paper 89-0120, January 1989.

[52] O. Brodersen and A. Sturmer. Drag prediction of engine-airframe interference e�ects
using unstructured Navier-Stokes calculations. AIAA Paper 2001-2414, June 2001.

[53] W. K. Anderson. A grid generation and 
ow solution method for the Euler equations
on unstructured grids. J. Comp. Phys., 110(1):23{38, 1994.

[54] S. Pirzadeh. Three-dimensional unstructured viscous grids by the advancing-layers
method. AIAA Journal, 34(1):43{49, 1996.

[55] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state
solutions. J. Comp. Phys., 118:120{130, 1995.

[56] D. J. Mavriplis. Adaptive mesh generation for viscous 
ows using Delaunay triangu-
lation. J. Comp. Phys., 90(2):271{291, 1990.

[57] D. J. Mavriplis. Adaptive meshing techniques for viscous 
ow calculations on mixed-
element unstructured meshes. AIAA paper 97-0857, January 1997.

78



[58] H. Luo, J. D. Baum, R. L�ohner, and J. Cabello. Adaptive edge-based �nite element
schemes for the Euler and Navier-Stokes equations on unstructured grids. AIAA Paper
93-0336, January 1993.

[59] I. Babushka and A. K. Aziz. On the angle condition in the �nite-element method.
SIAM Journal of Numerical Analysis, 13(6), 1976.

[60] J. R. Shewchuk. What is a good linear element ?, Interpolation, conditioning, and
quality measures. In Proc. of the 11th Int. Meshing Roundtable. Sandia National Lab-
oratories, September 2002.

[61] D. J. Mavriplis and S. Pirzadeh. Large-scale parallel unstructured mesh computations
for 3D high-lift analysis. AIAA Journal of Aircraft, 36(6):987{998, December 1999.

[62] R. Lohner. Matching semi-structured and unstructured grids for Navier-Stokes calcu-
lations. AIAA paper 93-3348, July 1993.

[63] M. Aftosmis, D. Gaitonde, and T. S. Tavares. On the accuracy, stability and mono-
tonicity of various reconstruction algorithms for unstructured meshes. AIAA Paper
94-0415, January 1994.

[64] D. J. Mavriplis. Multigrid strategies for viscous 
ow solvers on anisotrpic unstructured
meshes. In Proceedings of the 13th AIAA CFD Conference, Snowmass, CO, pages 659{
675, June 1997. AIAA Paper 97-1952-CP.

[65] W. O. Valarezo and D. J. Mavriplis. Navier-Stokes applications to high-lift airfoil
analysis. AIAA J. of Aircraft, 23(3):457{688, 1995.

[66] D. J. Mavriplis. A three-dimensional multigrid Reynolds-averaged Navier-Stokes solver
for unstructured meshes. AIAA Journal, 33(3):445{4531, March 1995.

[67] C. L. Rumsey and S. X. Ying. Prediction of high-lift: Review of present CFD capability.
Progress in Aerospace Sciences, 38:145{180, 2002.

[68] D. J. Mavriplis. A CFD package for multi-element airfoil high-lift analysis. NSU2D
User's Manual (Revision 4.0), December 1996.

[69] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic

ows. La Recherche A�erospatiale, 1:5{21, 1994.

[70] F. M. White. Viscous Fluid Flow. McGraw-Hill, New York, NY, 1991.

[71] W. K. Anderson, D. L. Bonhaus, R. J. McGhee, and B. S. Walker. Navier-Stokes
computations and experimental comparisons for multielement airfoil con�gurations.
AIAA J. of Aircraft, 32(6):1246{1253, 1995.

[72] P. J. Roache. Veri�cation of codes and calculations. AIAA Journal, 36(5):696{702,
1998.

[73] I. G. Currie. Fundamentals of Fluid Mechanics. McGraw-Hill, New York, NY, 1974.

79



[74] R. D. Richtmyer and K. W. Morton. Di�erence Methods for Initial-Value Problems.
Interscience Tracts in Pure and Applied Mathematics. John Wiley and Sons, New
York, NY, 1967.

[75] J. T. Batina. Implicit upwind solution algorithms for three-dimensional unstructured
meshes. AIAA J., 31(5):801{805, May 1993.

[76] W. K. Anderson R. Rausch and D. Bonhaus. Implicit multigrid algorithms for incom-
pressible turbulent 
ows on unstructured grids. In Proceedings of the 12th AIAA CFD
Conference, San Diego CA, June 1995. AIAA Paper 95-1740-CP.

[77] V. Venkatakrishnan and D. J. Mavriplis. Implicit solvers for unstructured meshes.
Journal of Computational Physics, 105(1):83{91, June 1993.

[78] D. Zingg and A. Pueyo. An e�cient Newton-GMRES solver for aerodynamic com-
putations. In Proceedings of the 13th AIAA CFD Conference, Snowmass, CO, pages
712{721, June 1997. AIAA Paper 97-1955-CP.

[79] D. J. Mavriplis. Multigrid techniques for unstructured meshes. In VKI Lecture Series
VKI-LS 1995-02, March 1995.

[80] M. P. Leclercq. Resolution des Equations d'Euler par des Methods Multigrilles Con-
ditions aux Limites en Regime Hypersonique. PhD thesis, Univerite de Saint-Etienne,
Applied Math, April 1990.

[81] M. Lallemand, H. Steve, and A. Dervieux. Unstructured multigridding by volume
agglomeration: Current status. Computers and Fluids, 21(3):397{433, 1992.

[82] W. A. Smith. Multigrid solution of transonic 
ow on unstructured grids. In Recent
Advances and Applications in Computational Fluid Dynamics, November 1990. Pro-
ceedings of the ASME Winter Annual Meeting, Ed. O. Baysal.

[83] V. Venkatakrishnan and D. J. Mavriplis. Agglomeration multigrid for the three-
dimensional Euler equations. AIAA Journal, 33(4):633{640, April 1995.

[84] D. J. Mavriplis and V. Venkatakrishnan. A 3D agglomeration multigrid solver for
the Reynolds-averaged Navier-Stokes equations on unstructured meshes. International
Journal for Numerical Methods in Fluids, 23(6):527{544, 1996.

[85] J. W. Ruge and K. St�uben. Algebraic multigrid. In S. F. McCormick, editor, Multigrid
Methods, SIAM Frontiers in Applied Mathematics, pages 73{131, Philadelphia, 1987.
SIAM.

[86] O. Hassan, K. Morgan, and J. Peraire. An adaptive implicit/explicit �nite element
scheme for compressible high speed 
ows. AIAA Paper 89-0363, January 1989.

[87] D. Martin and L�ohner. An implicit linelet-based solver for incompressible 
ows. AIAA
Paper 92-0668, January 1992.

80



[88] D. J. Mavriplis. Directional agglomeration multigrid techniques for high-Reynolds
number viscous 
ows. AIAA paper 98-0612, January 1998.

[89] D. J. Mavriplis. On convergence acceleration techniques for unstructured meshes.
AIAA paper 98-2966, presented at the 29th AIAA Fluid Dynamics Conference, Albu-
querque, NM, June 1998.

[90] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley and Sons,
New York, NY, 1966.

[91] D. J. Mavriplis. Directional coarsening and smoothing multigrid strategies for
anisotropic Navier-Stokes problems. In 8th Copper Mountain Conf. on Multigrid Meth-
ods, 1997.

[92] D. E. Keyes, D. K. Kaushik, and B. F. Smith. Prospects for CFD on peta
ops systems.
In CFD Review M. Hafez, et. al., eds., Wiley, New York, 1997.

[93] D. J. Mavriplis, R. Das, J. Saltz, and R. E. Vermeland. Implementation of a parallel
unstructured Euler solver on shared and distributed memory machines. The J. of
Supercomputing, 8(4):329{344, 1995.

[94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message Passing Interface. MIT Press, Cambridge, MA, 1994.

[95] OpenMP: Simple, portable,scalable SMP programming. http://www.openmp.org,
1999.

[96] D. J. Mavriplis. Parallel performance investigations of an unstructured mesh Navier-
Stokes solver. ICASE Report No. 2000-13, NASA CR 2000-210088, March 2000.

[97] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. Technical Report 95-035, University of Minnesota, 1995. A short
version appears in Intl. Conf. on Parallel Processing 1995.

[98] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
Proceedings Supercomputing '95, ACM, December 1995.

[99] E. N. Tinoco. An assessment of CFD prediction of drag and other longitudinal char-
acteristics. AIAA Paper 2001-1002, January 2001.

[100] T. Gerhold and J. Evans. E�cient computation of 3D 
ows for complex con�gurations
with the DLR-Tau code using automatic adaptation. In Notes on Numerical Fluid
Mechanics, Ed. W. Nitsche et, al., volume 72, pages 178{185. Vieweg Braunschweig,
1998.

[101] N. Kroll, C. C. Rossow, D. Schwamborn, K. Becker, and G. Heller. MEGAFLOW - A
numerical 
ow simulation tool for transport aircraft design. In Proceedings of the 23rd
ICAS Congress, Toronto, Canada, September 2002. Paper ICAS-2002-1.10.5.

81



[102] D. J. Mavriplis. Algebraic turbulence modeling for unstructured and adaptive meshes.
AIAA J., 29(12):2086{2093, 1991.

[103] G. M. Gatlin and R. J. McGhee. Experimental investigation of semispan model testing
techniques. AIAA Journal of Aircraft, 34(4):500{505, 1997.

[104] C. L. Rumsey and T. B. Gatski. Recent turbulence model advances applied to multi-
element airfoil computations. AIAA J. of Aircraft, 38(5):904{910, 2001.

[105] C. L. Rumsey, E. M. Lee-Rausch, and R. D. Watson. Three-dimensional e�ects on
multi-element high-lift computations. AIAA Paper 2002-0845, January 2002.

[106] I. Fejtek. Summary of code validation results for a multiple element airfoil test case.
AIAA Paper 97-1932, June 1997.

[107] F. T. Lynch R. C. Potter and F. W. Spaid. Requirements for e�ective high lift CFD. In
Proceedings of the 20th ICAS Congress, Sorrento, Italy, pages 1479{1492, September
1996. paper ICAS-96-2.7.1.

[108] A. Moitra. Automated CFD analysis of two-dimensional high-lift 
ows. AIAA J. of
Aircraft, 39(4):662{667, 2002.

[109] J. D. Mueller and M. B. Giles. Solution adaptive mesh re�nement using adjoint error
analysis. AIAA Paper 2001-2550, June 2001.

[110] D. A. Venditti and D. L. Darmofal. A grid adaptive methodology for functional outputs
of compressible 
ow simulations. AIAA Paper 2001-2659, June 2001.

[111] M. Park. Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA
Paper 2002-3286, June 2002.

[112] A. Jameson, J. J. Alonso, J. J. Reuther, L. Martinelli, and J. C. Vassberg. Aerodynamic
shape optimization techniques based on control theory. AIAA Paper 98-2538, June
1998.

[113] W. K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on un-
structured grids with a continuous adjoint formulation. AIAA paper 97-0643, January
1997.

[114] D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for functional out-
puts: Application to two-dimensional viscous 
ows. submitted to J. of Comp. Physics,
September 2002.

[115] C. H. Whiting and K. E. Jansen. A stabilized �nite-element method for the incom-
pressible Navier-Stokes equations using a hierarchical basis. International Journal of
Numerical Methods in Fluids, 35(1):93{116, 2001.

[116] B. Cockburn and C. W. Shu. The Runge-Kutta discontinuous Galerkin method for
conservation laws V: Multidimensional systems. Journal of Computational Physics,
141(2):199{2241, 1998.

82



[117] F. Bassi and S. Rebay. A high-order accurate discontinuous �nite element method
for the numerical solution of the compressible Navier-Stokes equations. Journal of
Computational Physics, 131:267{279, 1997.

[118] J. H. Casper and M. H. Carpenter. Computational considerations for the simulation
of shock-induced sound. SIAM J. Sci. Comp., 19(3):813{828, 1998.

[119] M. Strelets. Detached eddy simulation of massively separated 
ows. AIAA Paper
2001-0879, January 2001.

83


