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The design and optimization of many advanced engineering systems requires 

high-fidelity modeling and simulation to adequately capture the physical behavior 

and provide meaningful results.  Since high-fidelity simulations can be 

computationally costly, methods of design optimization that requ ire a minimal 

number of simulations are desirable for such applications.  Gradient -based 

optimization using objective sensitivities obtained using the adjoint method is an 

efficient approach for systems requiring high-fidelity simulations with a large number 

of design parameters.  For this reason, it has become a common approach in many 

disciplines including aerodynamic and aeroelastic design and optimization.  

An open-source, Fortran-based computational tool has been developed for 

finite element modeling of thermal and elastic response of structures, capable of 

obtaining adjoint-based sensitivities of solution-dependent objectives with respect to 

structural design parameters.  The package is designed with the goal of tight coupling 

with analysis codes of other disciplines such as computational fluid dynamics solvers 

in mind, yet functions independently as a purely structural solver.  Static and dynamic 

analysis can be performed, for either geometrically linear or nonlinear problems with 

a versatile library of three-dimensional elements for high-fidelity modeling.  Exact 

sensitivities are obtained through direct differentiation of the analysis code.  

Thermoelastic response is predicted for various test cases using the newly 

developed analysis tool and compared with analytical solutions and results from 

commercial finite element software for validation.  Case studies are performed using 

the analysis tool to investigate topics of interest in the field of structural 

optimization, including fatigue load minimization in wind turbine blades, and the 

application of constraints to prevent structural instability and buckling.  The tool is 

demonstrated to be effective and efficient in gradient -based optimization, and capable 

in multidisciplinary design and optimization.  
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    Chapter 1                            

Background and Motivation                                                                                

 

High-performance computing, simulations and sophisticated data processing are an increasingly 

integral part of modern science and technology.  Computational science has come to be considered 

a third major branch of scientific discovery, joining the ranks of theory and experimentation [1].  

Advanced computational tools for prediction and analysis are now prevalent in countless fields, 

including but not limited to meteorology, economics, business, medicine, physics, chemistry, 

mathematics and engineering.  The algorithms and methods employed for such applications are as 

diverse as the fields themselves, and an exhaustive look is beyond any single work. 

 In the context of engineering and design, one ultimate goal for predictive computational 

tools is to improve the performance of systems, and to obtain new designs that are optimal from 

the standpoint of certain objectives.  Some examples of common objectives are aerodynamic 

performance, energy efficiency, maximum ratio of structural strength and durability to 

weight/mass, and cost effectiveness.  These objectives are often at odds with one another, and there 

is an ever-present challenge to find the best balance of goals within an infinite domain of possible 

designs. 

 The ability to identify an optimal design is predicated on the ability to predict the behavior 

and performance of a system accurately.  In practice this is rarely possible by analytical means, 

and so numerical methods and computational tools must be relied upon.  Since computer resources 

are finite, the task of analyzing complex systems to a sufficient degree of accuracy at an affordable 

cost has challenged the field for decades.  Even now, with computer technology widely accessible, 

and orders of magnitude beyond what it was only thirty years ago in both speed and storage 

capacity, engineers and designers find themselves hard-pressed to obtain the fidelity desired in 

capturing physical phenomena.  It therefore remains a continuing goal to not only maximize the 
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capabilities of computing resources, but also find methods of running simulations and 

optimizations as efficiently as possible. 

 The present work documents the development of an open-source computational tool 

dedicated to the goal of high-fidelity structural finite element modeling and efficient gradient-

based optimization.  The primary intent is for tight coupling with other modeling packages for 

multidisciplinary analysis and optimization, but it runs independently as well.  The remainder of 

this chapter provides background and historical context regarding four specific topics relevant to 

the motivation for this work.  The first two topics are broad, pertaining to methods of modeling 

and optimization of physical systems in general.  The second two are more focused, relating to 

specific topics of interest for this particular work. 

 

1.1   High-Fidelity Multidisciplinary Optimization 

 

In a sense, optimization defines the work of an engineer or designer.  As long as humanity has 

employed technology in any capacity, there has been a constant process of modification and 

improvement of the tools and devices we use.  Designs are conceived, built and tested, 

shortcomings and potential for improvements are identified, and the designs are revised and 

modified in an endless cycle in the pursuit of excellence.  Modern computer technology was absent 

through most of the history of this process, and great achievements were made nevertheless.   To 

this day there remains no substitute for the ingenuity of the human mind. 

 Still, the classical approach to design has difficulties that can be greatly alleviated with the 

assistance of computer technology.  The behavior of complex systems involving multiple 

interacting phenomena is difficult to predict exactly on mere experience and intuition, and 

simplifications and estimates must be made, leading to a great deal of trial and error.  It is very 

expensive and time-consuming to physically build and test a large number of designs, so finding 

truly optimal solutions through testing alone is nearly impossible.  The designer must then settle 

for the best design tested within the range of time and resources allotted to development [2].  But 

with high-fidelity computer simulations and optimization, not only can designers capture the 

complex behavior of multidisciplinary systems, but numerous designs can be analyzed without the 

cost of fabrication, greatly increasing the potential for enhancing designs. 
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 In the field of aviation, it has always been a fundamental design challenge to balance the 

interests of aerodynamic performance and structural integrity.  Early airplane designs were driven 

largely by structural considerations [3].  The biplane configurations common in the early 20th 

century were motivated by an interest to reduce wing loads and promote structural stability with 

reinforcing cables between the two wings, much at the expense of aerodynamic performance.  

Later with advancements in materials and design analysis, the monoplane configuration emerged 

as an aerodynamically superior alternative. 

 But along with the single wing section and broader wing spans of the monoplane design 

came increased flexibility and higher wing deflections due to aerodynamic loads.  The coupled 

interdependence between structural displacements and aerodynamic loads became a significant 

consideration in design.  The standard approach to addressing aerodynamic wing deflection is to 

design the wing in a jig shape, so that when it deforms under the loads of normal operating 

conditions, the ideal aerodynamic shape is attained.  The advantage of this approach is that the 

aero-structural interdependence becomes effectively one-sided, in that the structural response 

depends entirely on the aerodynamic loads, but the aerodynamic analysis is affected only by 

structural weight.  This enables a two-level approach to optimization, with structural optimization 

“nested” within each cycle of aerodynamic optimization, avoiding the cost of accounting for the 

fully-coupled phenomena directly [4,5]. 

 The jig-shape approach has the limitation that it must be targeted to a single operating 

condition, usually the conditions at cruise, where the greatest amount of time and fuel is expended.  

But designs optimized for one specific condition can often perform poorly at other conditions.  For 

the most robust and well-rounded designs, fully coupled multipoint aeroelastic optimizations must 

be used. 

 Toward the latter half of the 20th century, the value of fully integrated multidisciplinary 

optimization began to be recognized.  In 1988, Grossman et al. [6] performed an investigation 

using a combination of lifting-line aerodynamics with finite element beam models in aero-

structural optimization.  Although their methods were low-fidelity and somewhat simplistic, they 

demonstrated that superior designs could be attained through multidisciplinary optimization than 

when examining the disciplines individually.  In a 1994 study, Dudley et al. [7] used a technique 

called variable complexity interlacing to streamline the coupled modeling process and perform a 

more sophisticated aero-structural optimization of a high-speed civil transport vehicle, with 26 
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aerodynamic design variables, and 40 structural design variables.  Still, their approach neglected 

the effect of aerodynamic shape variables on the actual structural weight, leaving some inaccuracy 

in the results. 

 Over the past three decades, the capability of computing technologies has advanced vastly, 

making high-fidelity modeling and optimization increasingly accessible to engineers and 

researchers.  Yet challenges continue to be faced in obtaining reliable results when complex 

physics are involved.  Lyu et al. [8] performed aerodynamic shape optimization of an ONERA M6 

wing, using both Reynolds-Averaged Navier Stokes (RANS) and Euler-based solvers.  They found 

that the optimized shape was significantly different between the two flow solvers, and that the 

shape obtained using the Euler equations in fact performed worse than the baseline shape when 

tested using the RANS solver.  They concluded that optimization results can be highly dependent 

on the assumptions used, and that any relevant physics excluded from an analysis tend to be 

exploited in the results.  This reinforces the importance of not only high-fidelity modeling, but also 

the consideration of all participating factors affecting a system in optimization analysis. 

 Current trends in aerodynamic design call for high-fidelity multidisciplinary optimization 

more than ever.  There is a constant push for improved fuel efficiency in aviation, and a number 

of advancements in design are emerging in an effort to address the issue.  One example is the 

pursuit of fixed-wing commercial aircraft designs with slender, high-aspect ratio wings enabled 

by high-performance materials to reduce drag [9-12].  As was the case with the original 

introduction of the monoplane, an increase in wingspan and aspect ratio is inevitably accompanied 

by stronger interdependence between aerodynamic load and wing deflections.  In a recent study, 

Brooks et al. [10] developed a modified version of the NASA Common Research Model (CRM), 

to represent the undeflected shape of the wing for the purposes of multidisciplinary aeroelastic 

optimization.  They developed two models, one with an aspect ratio of 9, and a second with a high 

aspect ratio of 13.5 to represent a more futuristic geometry.  They found that the high aspect ratio 

wing performed poorly when given an initial distribution of cross-sectional twist and structural 

sizing parameters similar to the model with aspect ratio 9, due to the increased flexibility of the 

wing, and that a fully coupled aeroelastic optimization was required to obtain a well-performing 

design. 

 Another example of current advancements toward high-efficiency aircraft is a NASA-

funded project presently underway to implement a slotted, natural-laminar-flow (SNLF) wing 
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design [13-20].  The airfoil design incorporates two elements, one fore and one aft, separated by a 

narrow slot so that the flow promotes a favorable pressure gradient, and ideally preserves laminar 

flow over the entire upper surface of the fore element.  The onset of turbulence is delayed until 

near the trailing edge of the aft element, thereby simultaneously reducing drag and enhancing lift.  

A conceptual illustration is given in Fig. 1.1.  The goal of the project is to reduce fuel burn in 

commercial aircraft by 70% compared to a 2005 baseline. 

 

 

Figure 1.1  Conceptual depiction of the slotted, natural-laminar-flow airfoil design (ref 18). 

 

 The SNLF airfoil is a novel design with a great deal of potential to impact the aviation 

industry, but there are many challenges involved in the effective simulation and optimization of 

this configuration.  The very nature of the design concept necessitates the accurate prediction of 

the onset of turbulence in the flow over the wing.  But RANS-based CFD simulation tools that 

have become the standard in high Reynolds number applications typically assume fully turbulent 

flow, and must be augmented with special transition models [19,20] to capture the physics and 

predict the flow behavior accurately. 

 From a structural standpoint, the unique geometry of the SNLF design may require 

unconventional topology in the internal wing box structure, and additional connectors/actuators 

governing the interaction between the fore and aft elements.  These features may affect both the 

flow between elements and the structural loads in ways that call for detailed resolution in the fluid 

and structural models. 

  These are just a few examples that highlight the need for high-fidelity and multidisciplinary 

analysis in the optimization of systems, especially in complex aerodynamics applications.  Some 

further implications regarding appropriate methods for such cases will be discussed in the next 

section. 

 

fore element 

aft element 

slot 
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1.2   The Adjoint Method in Gradient-Based Optimization 

 

Having established the importance of optimization in the field of engineering and design, the next 

question is how to go about the optimization process.  There are numerous methods and algorithms 

with which to perform automated optimization, owing to the wide variety of contexts and 

applications.  Genetic algorithms are popular for many structural applications, and any case in 

which it is desired to perform global-level optimization on a system with design variables of a 

discrete, rather than continuous nature, such as topology optimization [21,22].  Machine learning 

algorithms have had a great amount of interest lately, in which a set of sample data can be used to 

“train” an algorithm to recognize the difference between a favorable and unfavorable configuration 

based on some criteria.  A search through the design space of the system can then be performed to 

identify optimal solutions [23].  Machine learning is particularly useful for finding patterns and 

correlations in stochastic, nondeterministic sets of data. 

 While these methods are powerful in their proper contexts, they have limitations in 

applications requiring high-fidelity simulations.  Often, genetic and machine learning algorithms 

require hundreds or thousands of objective function evaluations to assess the favorability of 

numerous states within the design space.  But this can be very costly if a function evaluation 

requires expensive, high-fidelity simulations.  As discussed in the previous section, high-fidelity 

multi-disciplinary simulation is often required for the most meaningful results in the field of 

aerodynamics and aeroelastic analysis.  Plus, the design space for such problems often consists of 

continuous design variables, like shape and sizing parameters, making the aforementioned 

algorithms less suitable. 

 Gradient-based optimization is a well-suited alternative for high-fidelity applications, in 

that it usually requires relatively few objective function evaluations (typically between 10 and 50) 

to find an optimal solution [2].  Gradient-based algorithms are inherently local optimizers, seeking 

local optima in the neighborhood of the initial design configuration, and are not guaranteed to find 

the absolute optimum in an entire design space.  Nevertheless, if the objective and design space 

are well posed, with a reasonable initial configuration this is usually not of great concern, since 

absolutely optimal solutions are rarely guaranteed in practice with any type algorithm. 
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 There is, however, an important consideration in implementing gradient-based 

optimization, in that it requires obtaining the gradient, or sensitivities of the objective function at 

each design cycle.  Some of the most intuitive ways of doing this, such as using finite difference 

approximations, require the solution of governing equations for every design variable at each 

design cycle, which can be very costly for problems with a large number of design variables.  This 

was a substantial hurdle in the field of design for many years.  One of the earliest works 

implementing CFD analysis fully integrated with automatic optimization algorithms for 

aeronautical wing design was that of Hicks and Henne [24,25].  Although their work was 

pioneering, the cost of obtaining sensitivities in their analysis was a major obstacle.  Borland et al. 

[26] performed fully coupled aero-structural optimization on a commercial aircraft wing, but were 

limited in their design space to three aerodynamic design variables and 20 structural design 

variables, due to computational cost. 

 Eventually, the problem of design optimization came to be posed from the point of view 

of control theory [27], in which the objective sensitivity is found with an indirect order of 

operations, by first solving a single adjoint equation, derived from the governing equations of the 

system.  The objective sensitivities can subsequently be found for an arbitrary number of design 

variables with negligible additional cost.  Using this approach, a gradient-based optimization 

algorithm can be implemented for the cost of only two solutions of the governing equations at each 

design state, regardless of the number of design variables. 

 Needless to say, the benefits of using the adjoint approach in obtaining objective 

sensitivities in high-fidelity applications with numerous design variables is substantial.  The 

concept was first applied to problems governed by elliptic equations by Pironneau [28].  For Euler-

based compressible transonic flow applications in aerodynamic design, the pioneering work was 

by Jameson [29-32].  The adjoint method was proven very effective for the design of airfoils and 

three-dimensional wing design [33-37], and was eventually extended to RANS-based CFD 

applications [38], upon observing that viscous effects should not be ignored in transonic-flow wing 

design. 

 In the years following, the adjoint method has become commonplace in the field of 

aerodynamic design [39-42], and it is permeating into other applications as well.  Gradient-based 

optimization with adjoint-based sensitivities is a powerful tool for high-fidelity applications with 

smooth objective and continuous design variables.  For multidisciplinary applications, such as 
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aeroelastic optimization, the capability of obtaining sensitivities using the adjoint method must be 

present in all modeling disciplines involved.  For this reason, the structural modeling capability 

developed in this work was mandated to have support for obtaining adjoint-based sensitivities, as 

is described further in Chapter 4. 

 

1.3   Longevity Optimization of Wind Turbine Structures 

 

There are few objectives that have received more focus and attention in the global research 

community in recent years than the development of renewable energy technologies and 

infrastructure.  Though the importance of the problem is widely acknowledged, the challenges of 

shifting to a renewables-based system are equally vast in both difficulty and magnitude.  A critical 

factor in the viability of any renewable source is cost-effectiveness.  Whether a technology is 

competitive in the market mainly boils down to levelized cost of power and rate of return of 

investment on installation and maintenance of systems [43].  The factors determining this are 

complex and constantly changing, and highly dependent on the technology. 

 Wind energy is currently one of the most prominent forms of renewable energy, and has 

great potential to sustainably meet a large portion of global energy needs.  For wind technology, 

two important factors that determine the levelized cost of power are annual energy output, and 

operating lifespan of turbine structures.  The operating lifespan of a dynamic structure is largely 

determined by its resilience against breakdown and failure.  Wind turbines experience repeated, 

cyclic loads in a variety of forms including aerodynamic, gravitational and centrifugal forces.  

Minimizing the accumulation of damage from these loads, while maximizing power output would 

then serve to optimize the cost effectiveness of a wind power system. 

 A significant part of managing the loads and power output of a wind turbine is enabling 

them to adapt to various wind conditions.  Wind speed and direction varies in any location over 

time, and the optimal blade configuration in the interest of both power output and blade loading is 

dependent on these conditions.  Most large-scale wind turbines are built with active control 

systems that adjust the pitch of the blade mechanically as wind conditions change.  But designing 

control systems responsive enough to keep up with sudden gusts and the full range of wind 

velocities seen is difficult, especially with the increasingly large turbine sizes that the industry is 
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trending toward [44].  There can also be additional cost and maintenance problems associated with 

active control systems. 

 Numerous authors have approached the problem of optimization of wind blade loads and 

power output from the perspective of passive adaptation.  The idea is that if a turbine blade’s 

internal structure and material layup is designed so that the blade naturally twists about its 

longitudinal axis as it bends under aerodynamic loads, then favorable aerodynamic and structural 

conditions can be preserved through a range of wind conditions.  This phenomenon is known as 

bend-twist coupling. 

 Lobitz and Veers [45] employed finite element beams with analytical bend-twist 

formulations to minimize blade loads leading to fatigue.  They concluded that fatigue damage 

could be significantly reduced through bend-twist coupling, although their structural definition 

and fatigue model were relatively low-fidelity.  Vesel and McNamara [46] used a genetic algorithm 

to minimize levelized cost of energy through bend-twist coupling.  They defined 83 design 

variables, and used an analytical bend-twist coupling model, with a 2D panel code to predict 

aerodynamic loads.  The optimization results indicated a decrease in blade loads while preserving 

power performance.  Zhou et al. [47] examined the performance of wind blades with varying 

composite ply angles.  They found that an optimal choice of ply angle could reduce blade loads by 

10% while also improving power capture.  They also noted that analytical blade modeling based 

on laminate theory was more efficient but less accurate than finite element modeling. 

 The cost of high-fidelity multidisciplinary optimization loomed as a consistent theme over 

all these works, and some simplifying assumption is almost always made in the interest of 

computational savings.  Maheri et al. [48] used a combined finite element and analytical approach, 

where the results from a high-fidelity finite element analysis of baseline reference configuration 

was extrapolated to other similar cased using certain analytical assumptions.  They found that this 

technique reduced cost by 95%, with only 1% error in power output predictions within the scope 

of conditions they examined.  While acknowledging the cost of high-fidelity analysis, they also 

noted that closed form predictions of induced twist could be inadequate.  Another study by Murray 

et al. [49] performed experimental verification of finite element prediction of composite laminates.  

Results showed that the bend-twist behavior of composite structures was sensitive to the ply angle 

and thickness, and that high-fidelity modeling would likely be required for turbine structures 

outside of normal operating conditions. 
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 In recent years, structural optimization using the adjoint method has been surfacing in more 

and more studies as well.  Oest et al. [50] employ adjoint-based sensitivities in the optimization of 

the jacket structure at the base of an offshore wind turbine.  Their optimization reduced the mass 

of the structure by 40%, while maintaining constraints on the fatigue limit.  This study focused 

only on the jacket structure, however, and did not make any consideration of the structure of the 

turbine itself. 

 A review of the literature with regard to optimizing the lifespan of wind turbines seems to 

call for high-fidelity prediction of fatigue damage and associated metrics.  A challenge lies therein, 

since wind turbine structures are largely composed of fiber-reinforced composite materials, for 

which prediction of fatigue has long been notoriously difficult [51,52].  In order to maximize 

fatigue life, a means of quantifying the driving force behind fatigue damage must be identified.  

Previous researchers have shown that fatigue in fiber-reinforced composites is predominantly 

matrix-driven, and that the physics of bond-breaking and damage propagation in the polymer 

matrix can be appropriately modeled with the kinetic theory of fracture [53-57].  The off-fiber-axis 

stresses, or shear stresses and normal stresses perpendicular to the fiber direction, are mainly 

responsible for such damage propagation.  Fertig et al. [58-61] identified a scalar stress criterion 

representing the effective off-axis stress in the matrix of a unidirectional fiber composite, and 

demonstrated its utility as the driving stress in the kinetic theory of fracture.   

 Though many works as previously mentioned have examined the mitigation of loading on 

wind blades, there has never been a study posing the effective matrix stress derived by Fertig as 

an objective in gradient optimization.  Many (though not all) previous studies do not capitalize on 

the efficiency of adjoint-based sensitivities for problems with many design variables.  One study 

of this work employs the developed adjoint-based structural optimization capability to investigate 

the potential to alleviate fatigue damage in a wind turbine blade by tailoring composite fiber angles 

to minimize the Fertig off-axis matrix stress criterion.  The study is documented in Chapter 6, 

Section 6.1. 
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1.4   Buckling Constraints in Structural Optimization 

 

In the analysis and optimization of many structures, it can be important to consider the possibility 

of buckling.  Under some circumstances structural instability can cause a structure, or part of a 

structure, to excite an undesirable mode of deformation in an accelerated manner, potentially 

leading to failure.  This is particularly true with long, slender structures such as wings and wind 

turbine blades.  There is renewed interest in the accurate and efficient analysis of buckling in 

structural design, in part because of current trends in aeronautics toward more slender, high aspect 

ratio wing designs which capitalize on high-performance materials and novel configurations in the 

interest of reducing drag and minimizing fuel burn [9-12].  An inevitable goal of such designs is 

to minimize structural mass, while preserving stiffness and strength.  But optimizations focused 

solely on mass reduction and stress constraints have a tendency to produce designs with poor 

stability [22].  It therefore becomes more important than ever to consider buckling constraints in 

the optimization process. 

 A challenging aspect about incorporating buckling as an optimization constraint or 

objective is that it is an inherently structural-level phenomenon, which can occur either locally in 

individual members of an assembly, or globally in the structure as a whole.  It can occur long 

before the onset of any yielding or material-level failure, and cannot be detected by simply 

scanning through a finite element structure at a given state and examining some aspect like stress 

at each individual point.  The geometry and state of the entire structure must be considered, and 

some quantifiable criterion indicating the risk of buckling must be identified.  For gradient-based 

optimization, this criterion should preferably be smooth and differentiable.  The problem is 

particularly challenging in topology optimizations, in which prominent buckling modes are 

difficult to identify or estimate pre-analysis [22,62].   

 Two main approaches to incorporating buckling constraints into design and optimization 

are prevalent in the literature.  The first is to treat a given structure as a collection of simplified 

members, usually beams or plates, and apply some closed-form analytical solution for the critical 

buckling load to each member, assuming some geometry and boundary conditions.  The task then 

becomes to ensure that the critical load is not exceeded for each member. This is relatively 

straightforward for truss structures represented as assemblies of beams, and has been demonstrated 
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by a number of works [63-65].  The application to shell structures as assemblies of plates is 

somewhat more involved in derivation, but has been implemented as well.  Kennedy et al. [9] 

performed an aero-structural optimization and design of a NASA common research model (CRM) 

wing model to minimize fuel burn and structural weight.  They imposed buckling constraints by 

defining critical loads under the assumption that each panel of the wing was flat (with no curvature) 

and simply-supported on all edges.  A similar approach was used in the follow up work on 

establishing a benchmark for the undeflected CRM wing by Brooks et al. [10]. 

 Breaking the structure up into a collection of simplified members as described only directly 

addresses the buckling of the individual members.  If global buckling of the structure as a whole 

is to be considered, some method of accounting for this must be used on top of the local member 

constraints.  Several authors have put forth methods for this as well [66-68]. 

 Having buckling criteria defined as closed-form analytical functions of loading or strain 

has the advantage of low computational cost.  But it has several notable drawbacks as well.  First, 

it lacks accuracy for general structures with complex and arbitrary geometry.  Analytical solutions 

for critical buckling loads only exist for a limited domain of geometry and boundary conditions, 

so usually significant approximations and simplifications must be made to represent a structure in 

this fashion.  These simplifications can lead to considerable errors, and care must be taken to 

interpret the results conservatively.  The implementation can also be cumbersome from the point 

of view of the user, since each applicable section of the structure needs physical parameters like 

dimensions and second moment of area for cross sections, which aren’t always conveniently 

available.  It may also be difficult to accurately accommodate complex material behavior like that 

of anisotropic composite laminates. 

 The second major approach to applying buckling constraints in optimization is through 

eigenpair analysis of the structural system.  The buckling deformation modes of a discretized 

structural system and their corresponding critical loads can be represented by the eigenpairs of the 

tangent stiffness matrix of the structure, constructed evaluated at a given state of loading and 

including the nonlinear terms of the governing equations.  This concept is explained more 

thoroughly in Chapter 6.  The problem becomes much like modal analysis for dynamic structures 

in vibration, except that it does not require consideration of the structure’s mass properties (unless 

that is a significant factor in the loading conditions). 
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 Eigenpair analysis can be a very powerful tool, and unlike the simplified member approach 

it is generally applicable to any arbitrary finite element structure, yet it is also not without its 

difficulties.  First and foremost, eigenpair analysis is rather costly for large systems, and if the 

eigenpairs factor into an optimization objective, they must be re-solved on every optimization 

cycle.  Furthermore, in the context of gradient-based optimization, it is not just a question of 

finding the eigenpairs, but also posing them as an objective or constraint and finding their 

sensitivities with respect to design parameters.  This in itself represents a considerable cost and 

investment, and the implementation with the adjoint method is discussed further in Chapter 4, 

Section 4.3. 

 These costs can be reduced by finding only a select few of the most critical eigenpairs, but 

if too few are considered, it can lead to abrupt discontinuities in the objective function, causing the 

optimizer to “bounce” between a few of the lowest buckling modes.  This can slow convergence 

or even prevent convergence altogether, and the most appropriate number of eigenmodes to 

consider is not necessarily clear [69,62].  There can also be complications if eigenvalue 

multiplicity arises in the process [70]. 

  Both of the main approaches described above leave something to be desired, and it would 

be of value to identify a way of approaching the application of buckling constraints in optimization 

that is generally applicable, affordable, robust and effective.  The final study of this work 

investigates this issue and tests a novel solution that could potentially address the problem. 
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    Chapter 2                                                 

AStrO: Adjoint-Based Structural 

Optimizer 

 

Having established the importance of high-fidelity modeling and efficient optimization methods 

in advanced multidisciplinary physics applications, the fundamental motivation for the present 

work can be put into context.  Extensive computational work has been done in recent years at the 

University of Wyoming College of Engineering and Applied Sciences, including but not limited 

to the area of computational fluid dynamics.  Numerous studies have been performed on simulation 

and optimization for fixed wing, rotorcraft and wind energy applications [40,71-74].  These studies 

have been conducted largely by open-source tools developed in-house for a high degree of 

flexibility, specialization, and efficiency in tight coupling of multiple disciplines. 

 To obtain the most accurate results in CFD applications involving flexible structures, the 

coupled interaction between the dynamics of the fluid and the structure must be accounted for.  It 

has been common practice in the field for analysis focused on aerodynamic considerations, such 

as lift and drag performance, to account for aeroelastic behavior using low-fidelity structural 

models, often constructed out of beam elements or the like.  While even low-fidelity models can 

often give reasonably accurate solutions for overall displacement, this approach cannot account 

for the inevitable changes in structural properties due to aerodynamic shape changes in an 

optimization process.  Furthermore, beam element models cannot represent high-fidelity stress 

distributions throughout an actual structure, so if an objective or constraint is to be defined in terms 

of stress or some other advanced structural consideration, a higher fidelity approach is required. 

 Many commercial codes, such as Abaqus [75], have advanced capability for high-fidelity 

structural modeling.  These packages are well-documented and good for general use, but are not 

always optimal for specific advanced applications.  They are also not open-source, so flexibility 
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in modeling implementation is limited, and tight coupling with other packages is generally difficult 

or impossible.  Many of the aforementioned tools for CFD analysis have built-in capability for 

obtaining sensitivities using the adjoint method, for efficient gradient-based optimization.  To be 

a suitable companion for these tools, a structural modeling package would need to possess this 

capability as well. 

 Considering all these points, a need was identified to develop an open-source finite element 

structural modeling package, readily coupled with other codes and capable of high-fidelity 

simulation and obtaining objective sensitivities using the adjoint method.  The package has come 

to be known as Adjoint-Based Structural Optimizer (AStrO), and its functionality and 

implementation is presented in the remainder of this chapter. 

 

2.1   Functionality of AStrO 

 

AStrO is first a package for finite element modeling of thermoelastic behavior of structures.  It is 

ultimately intended for adjoint-based sensitivity analysis and coupling with solvers of other 

disciplines, but it also stands alone, running independently of other packages, and without any 

consideration of sensitivity analysis or optimization.  It internally simulates both the temperature 

response due to heat conduction in thermally loaded structures, and the elastic displacement 

response due to thermal and mechanical applied loads, all in three dimensions. 

 AStrO runs either static or dynamic analysis, modeling either of the two mentioned 

disciplines alone or both coupled together.  Dynamic time integration is implicit, using the 

Newmark Beta expansion with Hilber-Hughes-Taylor “alpha scheme” [76], discussed in further 

detail in Chapter 3.  Modeling of geometrically nonlinear structural problems is supported, 

enabling analysis of structures undergoing large displacements and rotations, but there is presently 

no internal support for material nonlinearity, which may arise from phenomena like large strains, 

plastic deformation or material failure.  Geometrically nonlinear problems may be solved with 

Newton-Raphson or modified Newton-Raphson iterations [77].  Two main types of linear solvers 

are built-in for the process of obtaining the finite element solutions and sensitivities: 𝐿𝐷𝐿𝑇 

factorization and conjugate gradient.  If desired, solution of linear systems can be outsourced to 

other packages. 
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 Model input files defined in the format of Abaqus commercial software can be processed 

directly by AStrO to define geometry, mesh, structural properties, loads, boundary conditions and 

constraints for an analysis.  In this way the models can be conveniently constructed in the user 

interface of Abaqus, or readily converted from other common formats.  The file processor does 

not, however, recognize the comprehensive set of all Abaqus commands, but only a fundamental 

subset for defining the essential characteristics of a structure.  Table 2.1 details the specific 

keywords/commands of the Abaqus input interface that are recognized by AStrO.  The specific 

element types supported by AStrO are listed in Table 2.2, by the identification codes of their 

approximate equivalents in Abaqus. 

 

Table 2.1  Abaqus keywords supported by AStrO’s input file processor. 

Keyword Description 

*Part 
Marks the beginning of a series of data inputs defining the characteristics 

of a single part in a structural assembly. 

*Node 

Marks the beginning of a list of nodes, where each entry defines the label 

(ID number), and 𝑥1, 𝑥2, 𝑥3 coordinates of a single node in the finite 

element mesh. 

*Element 

Marks the beginning of a list of elements of a certain specified type, where 

each entry defines the label, and a list of all the nodes belonging to an 

element by node label. 

*Nset 

Defines a set of nodes within the structure that usually share a common 

characteristic or association.  The set is given a name, followed by a list of 

elements that belong to it on subsequent lines. 

*Elset 

Defines a set of elements within the structure that usually share a common 

characteristic or association.  The set is given a name, followed by a list of 

elements that belong to it on subsequent lines. 

*Material 

Marks the beginning of a series of data entries that define the properties of 

a certain material in the structure.  Each material is identified with a user-

defined name. 

*Elastic 

Defines the elastic material properties of the current material.  AStrO 

recognizes only materials within the category of orthotropic, with elastic 

properties defined by three orthogonal elastic moduli, 𝐸1, 𝐸2, 𝐸3, three 

orthogonal measures of Poisson’s ratio, 𝜈12, 𝜈13, 𝜈23, and three orthogonal 

shear moduli, 𝐺12, 𝐺13, 𝐺23. 
*Density Defines the mass density of the current material. 

*Conductivity 
Defines the thermal conductivity of the current material, in three 

orthogonal directions. 

*Expansion 
Defines the coefficients of thermal expansion of the current material, 

corresponding to each component of strain. 
*Specific Defines the specific heat capacity of the current material. 
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Table 2.1 (continued) 

*Orientation 

Defines a local coordinate system for a section of a part.  The coordinate 

system is defined by a vector that represents the 1-direction of the local 

coordinate system, and a point that lies in the 1-2 plane of the local 

coordinate system. 

*Solid 

Defines a section of a part that is composed of solid continuum elements, 

and is associated with a set of elements defined by *Elset, a material 

defined by *Material, and optionally a local coordinate system defined by 

*Orientation. 

*Shell 

Defines a section of a part that is composed of shell elements, and is 

associated with a set of elements defined by *Elset, a material defined by 

*Material, a value representing the section thickness, and optionally a 

local coordinate system defined by *Orientation and a value representing 

the section offset. 

*Beam 

Defines a section of a part that is composed of beam elements, and is 

associated with a set of elements defined by *Elset, and a list of section 

properties.  The section properties are as follows: cross-sectional area 𝐴, 

second moments of area in the 2-3 plane 𝐼2, 𝐼23, 𝐼3, polar moment of area 

𝐽, three components of a unit vector defining the 2-direction 𝑛1, 𝑛2, 𝑛3, 
elastic modulus 𝐸, Poisson’s ratio 𝜈, shear modulus 𝐺, and mass density 

𝜌. 

*Assembly 
Marks the beginning of a set of commands defining the global assembly of 

a structure.  These commands include *Instance *Nset and *Equation. 

*Instance 

Defines an instance of a specific part in a structural assembly, with an 

optional translation and rotation vector to define its global position.  Each 

instance of a part is given a unique user-defined name. 

*Cload 
Defines a load in the form of a concentrated force on a set of nodes 

defined by *Nset. 

*Boundary 
Defines a boundary condition on the displacement or temperature of a set 

of nodes defined by *Nset. 

*Equation 

Defines a linear constraint or set of constraints placed on the relative 

displacement or temperature of sets of nodes defined by *Nset.  The 

constraints are defined by set names and coefficients of an equation of the 

form 𝑐1𝑢𝑖
𝑠𝑒𝑡1 + 𝑐2𝑢𝑗

𝑠𝑒𝑡2 + 𝑐3𝑢𝑘
𝑠𝑒𝑡3… = 0 
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Table 2.2  Abaqus element types with equivalent versions in AStrO. 

Abaqus 

Identification 

Code 

Graphic Depiction Description 

C3D4    

 

 
 

Four-node tetrahedral solid continuum element. 

C3D6 

 

 
 

Six-node triangular prism solid continuum 

element. 

C3D8 

 

 
 

Eight-node hexahedral solid continuum element. 

C3D8I 

 

 
 

Eight-node hexahedral solid continuum element 

with incompatible modes. 

S3 

 

 
 

Three-node shell element. 

S4 

 

 
 

Four-node shell element. 

B31 

 

 
 

Two-node beam element. 
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 In addition to performing thermoelastic analysis, AStrO is also capable of obtaining 

sensitivities of solution-dependent objectives with respect to design parameters of a structure using 

the adjoint method.  To accomplish this, both the objective function and the specific design 

variables must be defined by the user.  The objective function is typically hard-coded into a user-

defined subroutine directly, in order to provide flexibility for the limitless possible objectives that 

could be defined.  The design variable definition may be entered into a text input file according to 

a predetermined format and read in by a command from the main program, or alternatively hard-

coded directly like the objective function into user-defined routines.  More details about the design 

variable input format are given in Section 2.2. 

 AStrO offers a basic on-board optimizer, using a steepest-descent line search algorithm 

with backtracking [78].  This function is convenient for basic problems and quick troubleshooting, 

since it is self-contained and does not require linking with external packages.  It does not 

necessarily perform efficiently for problems with complex constraints, however.  Alternatively, 

more sophisticated optimizers can be implemented alongside AStrO from the main driver program. 

 AStrO is intended to be readily coupled with other packages for multi-disciplinary analysis.  

To that end, it contains a user-accessible module of data pertaining to the surface faces of the finite 

element structure.  The primary use of this feature to date is for tight-coupling with NSU3D [71-

73], a highly validated Reynolds-Averaged Navier Stokes (RANS) based CFD modeling package 

for aeroelastic analysis.  NSU3D and AStrO can be linked together by a fluid-structure interface, 

which enables information to be passed between the two disciplines.  To begin, the exterior surface 

faces and nodes of the structural finite element mesh and the interior surface nodes of the CFD 

grid are identified.  An associative mapping is then constructed between the two surfaces, so that 

aerodynamic forces due to pressure and skin friction produced by the flow solver can be transferred 

as equivalent loads to the structural mesh.  The resulting structural displacements due to those 

aerodynamic forces can be passed back to the CFD solver through the transpose of the same 

mapping, and the flow solution can be re-computed based on the updated displacement.  This 

process can be repeated until the fully coupled solution converges to a stable state, as summarized 

below. 
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1. Compute the aerodynamic forces on the interface surface 𝑭𝐶𝐹𝐷 from the CFD flow solution 

at the current surface deformation state 𝑼𝐶𝐹𝐷. 

2. Form the structural load vector 𝑭𝑆𝑇𝑅 = [𝑇𝐹𝑆𝐼]𝑭𝐶𝑆𝐷. 

3. Compute the structural displacement response 𝑼𝑆𝑇𝑅 due to the aerodynamic loads. 

4. Update the current displacement of the CFD surface 𝑼𝐶𝐹𝐷 = [𝑇𝐹𝑆𝐼]
𝑇𝑼𝑆𝑇𝑅 

5. Repeat steps 1-4 until solution reaches convergence. 

  

 This method of multidisciplinary modeling is essentially a disciplinary block Gauss-Seidel 

style solver, and is generally valid for applications with a high ratio of structural stiffness to 

dynamic pressure.  For problems with, for example, very high-density fluid or unusually flexible 

structures, it can be slow to converge or fail to converge entirely.  In those cases, a more robust 

approach would have to be employed.  Nevertheless, the presented approach has been sufficient 

for all cases in the context of the present work. 

 In aeroelastic analysis, the structural finite element model and the CFD grid representing 

the fluid flow domain are usually defined and discretized separately, due to different resolution 

requirements and other modeling considerations.  The fluid structure interface must therefore be 

able to tie together the boundaries of separate modeling domains that are mismatched in both 

resolution and surface topography, as illustrated in Fig. 2.1. 

 

 

Figure 2.1  Mismatching surface discretization between structural (red) and CFD (black) meshes. 
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Typically, the resolution of the CFD grid is finer than the structural finite element mesh.  The first 

step in the process of generating the fluid-structure mapping is to project each CFD grid point on 

the interface surface by its perpendicular distance to the nearest surface face of the structural mesh.  

An appropriate weight value is computed associating each projected CFD point to all of the 

structural nodes encompassing that face, based on the CFD point’s location on the face.  These 

weight values are then used to construct the mapping interface matrix [𝑇𝐹𝑆𝐼] as previously 

described. 

 

2.2   Implementation 

 

AStrO is coded entirely in Fortran, which was chosen primarily to be easily integrated with existing 

Fortran-based CFD applications.  The main package consists of a collection of modules, each 

containing data and/or functions pertaining to a certain aspect of AStrO’s function.  The modules 

are intended to be pre-compiled, and referenced from a separate main program driver provided 

along with any additional packages to be used in tandem for optimization or multidisciplinary 

analysis by the user.  Currently AStrO has no parallel implementation, though that is a long-term 

goal.  The linear solvers and the element-by-element construction of the global matrix equations 

and sensitivity vectors are two main aspects with potential for parallel implementation.  The best 

approach is a topic of future consideration, and outside the scope of the present work. 

 The basic procedure for setting up an analysis in AStrO can be summarized in the following 

steps: 

 

1. Write the main program driver, based on the type of analysis desired. 

2. Fill in user subroutines defining the objective function and constraints and construct the 

design variable input file within the working directory as necessary. 

3. Compile the modules of the package in order based on their dependence (see Table 2.5). 

4. Compile and run main program driver. 
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If only static or dynamic analysis is required for a simulation, with no need for sensitivity analysis 

or optimization, then step 2 is not required, and the user-defined subroutines can be left blank or 

in their default form. 

 The format of the design variable input file, if required, will now be described.  The design 

variable input file contains a series of entries, each defining a design variable or a group of design 

variables.  The heading for each entry takes the following format: 

 

*DesignVariable, <D0>, <LB>, <UB>, <ACT>, <VTYPE>, <LEN> 

 

with data entries defined in Table 2.3. 

 

Table 2.3  Data entries for a heading line in the design variable input format of AStrO. 

Data Entry Type Description 
D0 Real The initial value for the design variable(s). 
LB Real The lower bound of the design variable’s allowed range. 
UB Real The upper bound of the design variable’s allowed range. 

ACT Integer 
Whether the variable is to be considered active in the present 

simulation (1 if yes, 0 if no). 
VTYPE Integer A code specifying the exact type of design variable. 
LEN Integer The length of the list of nodes or elements that the variable applies to. 

 

As indicated by the final data entry of the heading, each variable definition is to be followed by a 

list of the labels of all elements or nodes to which the design variable(s) are meant to apply.  The 

second to last data entry of the heading, VTYPE, is a six-digit integer defining the type of design 

variable being declared, which breaks down as described in the following paragraphs. 

 The first two digits of VTYPE represent the general category of the design variable.  The 

numeric codes for the categories are given in Table 2.4. 
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Table 2.4  Category codes for design variable types supported by AStrO. 

Category Code Description 

01 Elastic properties 

02 Mass density  

03 Thermal conductivity 

04 Coefficients of thermal expansion 

05 Specific heat capacity 

06 Local material orientation/coordinate system 

07 Section properties for shell or beam sections 

08 Nodal coordinates in the undeformed configuration 

09 Applied mechanical load 

10 Applied thermal load 

 

The third and fourth digit of VTYPE represent the component of the category property that the 

design variable is to control.  Most of the design properties described in Table 2.4 have multiple 

components, and they can each be made independent design variables with this specification.  For 

a more detailed description of each design variable category and its components, see Chapter 4, 

Section 4.2.2. 

 The fifth digit of VTYPE is the grouping option.  It specifies whether the current entry is 

to define one single design variable that applies to all the elements or nodes listed, or a group of 

design variables, each of which applying to one of the elements or nodes.  A value of 0 indicates 

a single design variable, a value of 1 indicates a group of design variables.  The sixth and final 

digit of VTYPE indicates whether a list of coefficients is to be specified to indicate the “weight” 

of the design variable’s effect on each individual node or element.  To clarify, the input file 

processor declares any given property 𝑃 of a node or element as a linear combination of the 

applicable design variables, as indicated by Eq. (2.1). 

 

𝑃(𝐷𝑖) = 𝑃0 + ∑𝑐𝑖𝐷𝑖

𝑛

𝑖=1

 (2.1) 
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With the sixth digit set to 1, the coefficients 𝑐𝑖 can be provided in a list immediately following the 

list of elements or nodes in the input file.  If it is set to 0, all the coefficients are 1.0 by default.  

The coefficient option is often used when one design variable is being applied to a group of nodes, 

so that the coefficients represents some interpolation function that is being used as a mode of shape 

deformation. 

Several tables are provided in the remaining pages of this chapter detailing the internal 

structure and features of AStrO’s source code package.  Table 2.5 lists the name of each module, 

along with a brief description and other modules of the package that it depends on.  Table 2.6 

highlights the main commands of the global function interface, which are meant to be called from 

the main program driver by the user.  Tables 2.7 and 2.8 provide highlighted data members from 

the global data and surface data modules, which can be accessed for results, data, or to set modeling 

options and parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

Table 2.5  Descriptions of individual modules within AStrO. 

Module Name Description Uses Modules… 

AStrO_globalFunctions 

Contains a collection of high-level functions 

intended to be called by the user from the 

main program. 

(all other modules) 

AStrO_userObjective 

Contains the user-defined subroutines that 

define the objective function and its 

derivatives in terms of design variables and 

solution variables. 

AStrO_constantVals, 

AStrO_globalData 

AStrO_adjoint 

Contains a collection of functions that 

primarily calculate the exact design-variable 

sensitivities of various components of the 

governing equations, which ultimately 

factor into the total objective sensitivities. 

AStrO_constantVals, 

AStrO_globalData, 

AStrO_elementEqns, 

AStrO_userAdjointDesignVars 

AStrO_userAdjointDesignVars 

Contains functions that define the design 

space of a structure, by specifying each 

fundamental design property and its 

sensitivities with respect to all design 

variables.  These functions can be set by the 

design variable input file or overwritten 

directly, and are accessed by the internal 

routines to construct the governing 

equations and sensitivity vectors. 

AStrO_constantVals, 

AStrO_globalData 

AStrO_processAbaqusInput 

Contains upper-level routines that scan the 

Abaqus-format input file, and read the data 

into the structures in the AStrO_globalData 

module. 

AStrO_constantVals, 

AStrO_globalData, 

AStrO_abaqusRead, 

AStrO_elementEqns 

AStrO_abaqusRead 

Contains a collection of functions that scan 

and process individual keyword commands 

in the Abaqus input file. 

AStrO_constantVals, 

AStrO_elementEqns 

AStrO_elementEqns 

Contains a collection of functions that 

primarily construct and arrange the global 

governing equation matrices. 

AStrO_constantVals, 

AStrO_globalData, 

AStrO_solvers 

AStrO_userAdjointDesignVars 

AStrO_solvers 

Contains a collection of functions dedicated 

to the solution of linear systems of 

equations.  Various methods are 

implemented for both dense and sparse 

storage formats.  

AStrO_constantVals 

AStrO_surfaceData 

Contains a collection of data pertaining to 

the surface faces of the finite element 

structure, for use in interfacing with other 

disciplinary solvers. 

(none) 

AStrO_globalData 

Contains a collection of global data defining 

the geometric and material properties of the 

structure, as well as structures for 

generating the finite element solution. 

(none) 

AStrO_constantVals 
Contains a set of commonly used real 

values stored as global variables. 
(none) 
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Table 2.6  Descriptions of key interface commands in AStrO. 

Global Command Description 

AStrO_processInput() 
Reads model definition from the Abaqus-format input file with the name 

specified by the variable inFileName in the AStrO_globalData module. 

AStrO_getSurfaceFaces() 
Assembles the data defining the collection of element faces that make up 

the surface of a structure, stored in the AStrO_surfaceData module. 

AStrO_constructStiffnessMatrix() 
Builds the global finite element equation stiffness matrix for the 

equations of elasticity, based on specified modeling parameters. 

AStrO_constructThermalMatrix() 

Builds the global finite element equation stiffness matrix for the 

equations of thermal heat conduction, based on specified modeling 

parameters. 

AStrO_constructLoadFromInputFile() 

Constructs the global vectors representing the applied mechanical loads, 

and applied thermal loads on the nodes of the structure, based on the 

definitions given in the Abaqus model input file. 

AStrO_constructGravityLoad() 

Constructs the global applied mechanical load vector to simulate the 

force of gravity on a structure based on material mass density 

distribution, and lumped masses. 

AStrO_setNodeTemp() 
Sets a new boundary condition on the temperature of a node to a certain 

value, which may not be specified in the Abaqus input file 

AStrO_setSurfaceFlux() 
Applies a heat flux to a certain point of the surface of a structure, in the 

form of appropriate nodal thermal loads. 

AStrO_getSurfaceTemp() 
Calculates the temperature at some point on the surface of a structure, 

based on the nodal temperature solution. 

AStrO_factorStiffnessMartrix() 
Performs any necessary factorization on the global equation matrix for 

the equations of elasticity, based on the solver method. 

AStrO_factorThermalMatrix() 
Performs any necessary factorization on the global equation matrix for 

the equations of thermal heat conduction, based on the solver method. 

AStrO_solveForDisplacement() 

Solves for the displacement of the structure based on the equations of 

elasticity, either for the state of equilibrium for static analysis, or at the 

next time step for dynamic analysis.  Procedure determined by modeling 

options and result stored in nodeDisp, of the AStrO_globalData module. 

AStrO_solveForTemperature() 

Solves for the temperature of the structure based on the equations of 

elasticity, for the state of equilibrium or at the next time step for 

dynamic analysis.  Procedure determined by modeling options and result 

stored in nodeTemp, of the AStrO_globalData module. 

AStrO_updateVelAcc() 

Updates the time derivatives of the nodal degrees of freedom, nodeVel, 

nodeAcc, and nodeTdot, for the current time step based on the results 

just obtained for temperature and displacement in dynamic analysis. 

AStrO_calculatedLdDAdjoint() 
Calculates the sensitivities of the objective function at the current state 

using the adjoint method. 

AStrO_calculatedLdDForward() 
Calculates the sensitivities of the objective function at the current state 

using the tangent method. 

AStrO_optimizeObj() 
Runs a steepest-descent based optimization algorithm to minimize the 

objective function in the design space, using adjoint-based sensitivities. 

AStrO_writeDisplacement() 

Writes the nodal degrees of freedom and their time-derivatives at the 

current time step to disk in binary form, for use in sensitivity analysis for 

dynamic problems. 

AStrO_readDisplacement() 

Reads the nodal degrees of freedom and their time-derivatives at the 

current time step from disk in binary form, for use in sensitivity analysis 

for dynamic problems. 

AStrO_writeResults() 
Writes the results for nodal degrees of freedom, and stresses and strains 

at integration points to file in text format after analysis. 

AStrO_deallocateAll() 
Deallocates all applicable data members of the AStrO_globalData and 

AStrO_surfaceData modules, after the full analysis is complete. 
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Table 2.7  Descriptions of highlighted members of the global data module in AStrO. 

Variable Name Description 

numNodes Integer specifying the number of nodes in the finite element model’s mesh. 

nodeList 

3 X (numNodes) array of real numbers, specifying the spatial coordinates of each node of 

the finite element model’s mesh.  nodeList(i,j) is the i-direction coordinate of node number 

j. 

nodeOrder 

Integer array of length (numNodes) specifying the new order of the nodes in the model’s 

finite element mesh, after they have been re-ordered to minimize matrix bandwidth.  

nodeOrder(i) is the original rank of the node that is currently at rank i. 

currentRank 
Integer array of length (numNodes), which is the inverse list of nodeOrder.  Therefore 

currentRank(i) is the current rank of the node that was originally at rank i. 

nLastDof 

Integer array of length (numNodes) specifying the rank in nodeDisp, nodeVel, nodeAcc 

and Rapp corresponding to the last degree of freedom of each node.  nLastDof(i) is the 

rank of the last degree of freedom of node i, in the current nodal arrangement. 

numEls Integer specifying the total number of elements in the finite element mesh. 

elementList 

8 X (numEls) array of integers specifying the nodal connectivity of each element in the 

mesh.  elementList(i,j) is the original rank (label) of the ith node of the jth element.  

Together, elementList and nodeList define the finite element mesh. 

eTypes 
Integer array of length (numEls) specifying the type code of each individual element.  

eTypes(i) is the type code of element number i. 

Kdim 
Integer specifying the dimension of the global equation matrix for the structure, which is 

also the total number of degrees of freedom in the structural system. 

KNonZeroCt Integer specifying the total number of non-zero terms in the global equation matrix. 

Kglobal 

Real array of length KNonZeroCt storing the values of the non-zero terms in the global 

equation matrix.  Terms are stored row by row, with companion tags indicating the column 

of each term stored in Kcols. 

Kcols 
Array of integers of length KNonZeroCt labeling each term in Kglobal with its column in 

the global equation matrix.  Kcols(i) is the column of the term stored in Kglobal(i). 

KRange 
Integer array of length Kdim + 1 indicating the range of each row of the global matrix in 

Kglobal.  KRange(i) is the last term of Kglobal belonging to row i. 

nodeDisp 

Real array of length Kdim storing the current displacement degrees of freedom for every 

node in the finite element mesh.  The displacements are arranged node by node, 

[u11,u21,u31,u12,u22,u32,u13…] where uij is the i-direction displacement at node j according to 

the current node order. 

nodeVel 
Real array of length Kdim storing the current velocity degrees of freedom for every node in 

the finite element mesh.  The velocities are arranged in the same manner as nodeDisp. 

nodeAcc 

Real array of length Kdim storing the current acceleration degrees of freedom for every 

node in the finite element mesh.  The accelerations are arranged in the same manner as 

nodeDisp. 

nodeTemp 
Real array of length numNodes storing the current temperature degrees of freedom, 

according to the current node order. 

nodeTdot 
Real array of length numNodes storing the current 1st time derivative of the temperature 

degrees of freedom, according to the current node order. 

Rapp 
Real array of length Kdim storing the applied load vector for every node in the finite 

element mesh.  The loads are arranged in the same manner as nodeDisp. 

RtHG 
Real array of length numNodes storing the nodal thermal loads, representing heat flux and 

internal heat generation, according to the current node order. 

solverMethod 

String specifying which solver method to use to obtain solutions for displacements and 

sensitivities.  Possible values are ‘ldlfact’, ‘conjgrad’, ‘pcconjgrad1’, ‘pcconjgrad2’, 

‘pcconjgrad3’. 

dynOn 

Integer specifying whether dynamic (time-dependent) analysis is to be performed.  

dynOn=0 indicates that the problem is static, and no dynamic analysis is needed.  dynOn=1 

indicates that the problem is dynamic, and time integration is performed using the Hilber-

Hughes-Taylor implicit method [76]. 
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Table 2.7 (continued) 

thermOn 
Integer specifying whether thermal effects are to be considered in the analysis. A value of 1 

if thermal effects should be considered, a value of 0 if not. 

nLGeom 
Integer specifying whether nonlinear geometry is to be considered in the analysis. A value 

of 1 if nonlinear geometry should be considered, a value of 0 if not. 

delT Real number specifying the time step to be used in the dynamic time integration. 

numTSteps Integer specifying the total number of time steps to be taken in dynamic analysis 

NMal 
Real number specifying the ‘alpha’ parameter in the Hilber-Hughes-Taylor time integration 

scheme. 

NMbet 
Real number specifying the ‘beta’ parameter in the Hilber-Hughes-Taylor time integration 

scheme. 

NMgam 
Real number specifying the ‘gamma’ parameter in the Hilber-Hughes-Taylor time 

integration scheme. 

dampCK 
Real number specifying the coefficient of the stiffness matrix in defining Rayleigh 

damping on the structure. ([C] = dampCK[K] + dampCM[M]) 

dampCM 
Real number specifying the coefficient of the mass matrix in defining Rayleigh damping on 

the structure. ([C] = dampCK[K] + dampCM[M]) 

Dsize 
Integer defined by the user, specifying the number of design variables in the optimization 

design space. 

Dvec 
Real array of length (Dsize) specifying the current values of the design variables in the 

optimization design space.  These values are initialized by the user. 

objFunc Real number specifying the current value of the user-defined objective function. 

dLdD 

Real array of length (Dsize) specifying the gradient of the user-defined objective function 

in the design space.  dLdD(i) is the derivative of the objective function with respect to 

Dvec(i). 

sensOpt 

Integer specifying the method to be used for obtaining objective function sensitivities.  

sensOpt=1 indicates the adjoint method is to be used.  sensOpt=2 indicates the 

forward/tangent method is to be used. 

meshDef 
Integer specifying whether the adaptive mesh deformation option should be used in 

optimization.  A value of 1 if mesh deformation should be used, a value of 0 if not. 

 

Table 2.8  Descriptions of highlighted members of the surface module in AStrO. 

Variable Name Description 

numComp 
Integer specifying the number of components in the structural assembly (Abaqus 

documentation would refer to these as part instances). 

numBface3 Integer specifying the number of triangular element faces on the surface of the structure. 

numBface4 Integer specifying the number of quadrilateral element faces on the surface of the structure. 

nodeComp Integer array of length (numNodes) specifying which component each node belongs to 

Bface3 

Integer array of length 3 X (numBface3) specifying the nodal connectivity of each 

triangular face.  Connected nodes are given face by face, as [n11, n21, n31, n12, n22, n32, 

n13,…] where nij is the ith node of the jth face. 

Bface4 

Integer array of length 4 X (numBface3) specifying the nodal connectivity of each 

quadrilateral face.  Connected nodes are ordered in the same manner as in Bface3, 

following the right hand rule with a unit normal pointing in the outward direction from the 

structure surface. 

Bface3Comp 
Integer array of length numBface3, specifying which component each triangular face 

belongs to.  Bface3Comp(i) is the component of face number i 

Bface4Comp 
Integer array of length numBface4, specifying which component each quadrilateral face 

belongs to.  Bface4Comp(i) is the component of face number i. 
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    Chapter 3                                                 

Finite Element Formulation 

 

AStrO simulates the elastic and thermal behavior of deformable structures using the finite element 

method.  As is typical in structural finite element analysis, the discretized equations of motion for 

the elastic response are derived from the principle of virtual work.  Temperature distribution due 

to heat conduction through a structure is governed by the Poisson equation, which can be expressed 

in variational form and discretized in a manner similar to the equations of elasticity.  Both 

formulations are equivalent to applying the Galerkin method to their corresponding partial 

differential equations and integrating the gradient term by parts. 

 Analysis can be performed for static and dynamic cases with linear and nonlinear geometry 

for three-dimensional solid continuum elements, shell elements and beam elements.  In this chapter 

the details of the formulation of discretized governing equations are provided for all cases.  In the 

developments that follow, scalar quantities are denoted with normal script text, vectors are denoted 

in boldface font, and matrices are denoted in square brackets [ ]. 

 

3.1   Overall Formulation 

 

The fundamental governing equations of motion for the elastic and thermal response, and the 

common overall approach to discretizing the equations for all elements and cases is given in this 

section.  The formulation for the equations of elastic response are given first in Section 3.1.1, 

followed by that of the thermal response in Section 3.1.2, and for coupled thermoelastic response 

in 3.1.3.  Section 3.1.4 gives a discussion on numerical integration methods necessary to construct 

the equations. 
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3.1.1   Governing Equations of Elasticity 

 

Static and dynamic response of systems of rigid or flexible bodies is commonly analyzed using 

Newton’s second law or conservation of linear momentum as the governing equations.  But in 

some contexts, including finite element analysis, it can be convenient to express governing 

equations in terms of work or energy formulations.  In AStrO, the equations of elastic response for 

all types of elements begin with the principle of virtual work. 

To understand the principle of virtual work, one must first understand the concept of a 

virtual displacement.  Imagine a dynamic system of bodies in motion and subject to applied forces.  

Now imagine that system was frozen at some instant in time, and an arbitrary infinitesimal change, 

or variation was made to the displacement at all points throughout the structure.  That imaginary 

change in displacement is a virtual displacement.  According to Newton’s second law, the 

combined forces and acceleration must balance, or sum to zero, at every point in a structural system 

at every moment in time.  Consequently, the total work, or virtual work performed by all forces 

and acceleration throughout the system due to the virtual displacement must sum to zero.  This is 

the principle of virtual work. 

For a deformable elastic body subject to applied body forces and surface tractions, as well 

as damping force proportional to velocity, the principle of virtual work can be expressed 

mathematically as 

 

∫(𝝈 ∙ 𝛿𝝐)𝑑Ω
Ω

+∫𝜉(𝒖̇ ∙ 𝛿𝒖)𝑑Ω
Ω

+∫𝜌(𝒖̈ ∙ 𝛿𝒖)𝑑Ω
Ω

−∫(𝒇 ∙ 𝛿𝒖)𝑑Ω
Ω

−∫(𝒕 ∙ 𝛿𝒖)𝑑𝑆
𝑆

= 0 (3.1) 

 

where 𝛿𝒖 is a virtual displacement field, which is a function of space throughout the body and 𝛿𝝐 

is the variation of strain corresponding to that virtual displacement.  Ω represents the entire volume 

domain occupied by the elastic body and 𝑆 is the area domain of the surface of the body.  Each of 

the terms in Eq. (3.1) represents the virtual work done by one contributor of force in the system 

due to the virtual displacement.  The contributors are (from left to right): stress, damping, mass, 

body force, and surface traction.  This equation must hold for any arbitrary infinitesimal virtual 

displacement, to be consistent with Newton’s second law. 
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 The principle of virtual work is in fact an application of the fundamental lemma of 

variational calculus [79], which can be used to show equivalence with Newton’s second law.  

According to the fundamental lemma, if a functional given by 

 

Φ = ∫𝐹(𝒖(𝒙))𝑣(𝒙)𝑑Ω
Ω

 (3.2) 

 

evaluates to zero for any arbitrary function 𝑣 then the function 𝐹 must be zero at every point in the 

domain Ω.  In other words, the two conditions given in Eq. (3.3) are equivalent. 

 

Φ = ∫𝐹(𝒖(𝒙))𝑣(𝒙)𝑑Ω
Ω

= 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑣(𝒙)   ⟺   𝐹(𝒖(𝒙)) = 0 𝑓𝑜𝑟 𝒙 𝑖𝑛 Ω (3.3) 

 

Often the fundamental lemma is used in the process of deriving governing equations for the 

extremization of a functional, and in fact the equations of elasticity for a conservative system can 

be derived from the variational minimization of the total potential energy function.  For such cases 

the function 𝑣 generally represents a variation of the primary variable(s), or the virtual 

displacement 𝛿𝒖 in the present context.  However, the process can be taken in the other direction 

as well, that is to begin with a governing equation and put it back in variational form using the 

fundamental lemma. 

 Take the equations for Newton’s second law applied to a point in a continuous elastic body: 

 

𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

+
𝜕𝜎13
𝜕𝑥3

− 𝜉𝑢̇1 − 𝜌𝑢̈1 + 𝑓1 = 0 

𝜕𝜎21
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜎23
𝜕𝑥3

− 𝜉𝑢̇2 − 𝜌𝑢̈2 + 𝑓2 = 0 

𝜕𝜎31
𝜕𝑥1

+
𝜕𝜎32
𝜕𝑥2

+
𝜕𝜎33
𝜕𝑥3

− 𝜉𝑢̇3 − 𝜌𝑢̈3 + 𝑓3 = 0 

(3.4) 

 

Note that Eq. (3.4) includes velocity-dependent terms representing a damping effect, and is not 

limited in application to conservative systems.  The fundamental lemma applies to all three 

equations individually, for any three arbitrary weight functions 𝑣1, 𝑣2 and 𝑣3.  Without loss of 

generality, the state of Newton’s second law can be expressed in variational form in a single 

equation: 
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∫ (
𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

+
𝜕𝜎13
𝜕𝑥3

− 𝜉𝑢̇1 − 𝜌𝑢̈1 + 𝑓1) 𝑣1𝑑Ω
Ω

+ 

∫ (
𝜕𝜎21
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜎23
𝜕𝑥3

− 𝜉𝑢̇2 − 𝜌𝑢̈2 + 𝑓2)𝑣2𝑑Ω
Ω

+ 

∫ (
𝜕𝜎31
𝜕𝑥1

+
𝜕𝜎32
𝜕𝑥2

+
𝜕𝜎33
𝜕𝑥3

− 𝜉𝑢̇3 − 𝜌𝑢̈3 + 𝑓3) 𝑣3𝑑Ω
Ω

= 0 

(3.5) 

 

If, as previously discussed, 𝑣1, 𝑣2, and 𝑣3 are taken to represent a field of virtual displacements 

𝛿𝑢1, 𝛿𝑢2 and 𝛿𝑢3 then 

 

∫ (
𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

+
𝜕𝜎13
𝜕𝑥3

− 𝜉𝑢̇1 − 𝜌𝑢̈1 + 𝑓1) 𝛿𝑢1𝑑Ω
Ω

+ 

∫ (
𝜕𝜎21
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜎23
𝜕𝑥3

− 𝜉𝑢̇2 − 𝜌𝑢̈2 + 𝑓2) 𝛿𝑢2𝑑Ω
Ω

+ 

∫ (
𝜕𝜎31
𝜕𝑥1

+
𝜕𝜎32
𝜕𝑥2

+
𝜕𝜎33
𝜕𝑥3

− 𝜉𝑢̇3 − 𝜌𝑢̈3 + 𝑓3)𝛿𝑢3𝑑Ω
Ω

= 0 

(3.6) 

 

The units of all terms in Eq. (3.6) are force times displacement, or work, indicating the physical 

significance that the total work performed by all contributors of force due to a virtual displacement 

is zero. 

 Now consider the stress-gradient terms in Eq. (3.6).  These can each be integrated by parts, 

with respect to the variable of differentiation.  For a given term, corresponding to 𝜎𝑖𝑗, 

 

∫
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝛿𝑢𝑖𝑑Ω

Ω

= −∫ 𝜎𝑖𝑗𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

)𝑑Ω +∫𝜎𝑖𝑗𝑛𝑗𝛿𝑢𝑖𝑑𝑆
𝑆Ω

 (3.7) 

 

The integrand of the first term on the right-hand-side of Eq. (3.7) summed over all components of 

stress can be written 
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∑∑𝜎𝑖𝑗𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

)

3

𝑗=1

3

𝑖=1

 = 𝜎11𝛿 (
𝜕𝑢1
𝜕𝑥1

) + 𝜎12𝛿 (
𝜕𝑢1
𝜕𝑥2

) + 𝜎13𝛿 (
𝜕𝑢1
𝜕𝑥3

) 

+ 𝜎21𝛿 (
𝜕𝑢2
𝜕𝑥1

) + 𝜎22𝛿 (
𝜕𝑢2
𝜕𝑥2

) + 𝜎23𝛿 (
𝜕𝑢2
𝜕𝑥3

) 

+ 𝜎31𝛿 (
𝜕𝑢3
𝜕𝑥1

) + 𝜎32𝛿 (
𝜕𝑢3
𝜕𝑥2

) + 𝜎33𝛿 (
𝜕𝑢3
𝜕𝑥3

) 

(3.8) 

 

Because stress is symmetric when expressed as a second order tensor so that 𝜎𝑖𝑗 = 𝜎𝑗𝑖, Eq. (3.8) 

can be rearranged as 

 

∑∑𝜎𝑖𝑗𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

)

3

𝑗=1

3

𝑖=1

= 𝜎11𝛿 (
𝜕𝑢1
𝜕𝑥1

) + 𝜎22𝛿 (
𝜕𝑢2
𝜕𝑥2

) + 𝜎33𝛿 (
𝜕𝑢3
𝜕𝑥3

) 

+𝜎12 (𝛿 (
𝜕𝑢1
𝜕𝑥2

) + 𝛿 (
𝜕𝑢2
𝜕𝑥1

)) + 𝜎13 (𝛿 (
𝜕𝑢1
𝜕𝑥3

) + 𝛿 (
𝜕𝑢3
𝜕𝑥1

)) + 𝜎23 (𝛿 (
𝜕𝑢2
𝜕𝑥3

) + 𝛿 (
𝜕𝑢3
𝜕𝑥2

)) 

(3.9) 

 

Keep in mind that the virtual displacement field in Eqs. (3.6) and (3.7) is presumed to be 

infinitesimal, and therefore the corresponding variation in strain is also infinitesimal.  Under this 

condition the following definition for the variation of normal and shear strains can be used: 

     

𝛿𝜖𝑖𝑗 = 𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

) ,    𝑖 = 𝑗 

𝛿𝛾𝑖𝑗 = 𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

) + 𝛿 (
𝜕𝑢𝑗

𝜕𝑥𝑖
) ,   𝑖 ≠ 𝑗 

(3.10) 

 

This allows Eq. (3.9) to be written in terms of variations of strain: 

 

∑∑𝜎𝑖𝑗𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

)

3

𝑗=1

3

𝑖=1

= 𝜎11𝛿𝜖11 + 𝜎22𝛿𝜖22 + 𝜎33𝛿𝜖33 + 𝜎12𝛿𝛾12  + 𝜎13𝛿𝛾13 + 𝜎23𝛿𝛾23 (3.11) 

 

Given the result in Eq. (3.11) it becomes convenient to express stress and strain as one-dimensional 

vectors: 
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𝝈 = [𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎13, 𝜎23]
𝑇 

𝝐 = [𝜖11, 𝜖22, 𝜖33, 𝛾12, 𝛾13, 𝛾23]
𝑇 

(3.12) 

 

With this notation the following shorthand can be implemented for the virtual work due to a 

variation in strain: 

 

∑∑𝜎𝑖𝑗𝛿 (
𝜕𝑢𝑖
𝜕𝑥𝑗

)

3

𝑗=1

3

𝑖=1

= 𝝈 ∙ 𝛿𝝐 (3.13) 

 

Returning now to Eq. (3.7), integrand of the second term on the right-hand side summed 

over all components of stress is equal to the dot product of the surface traction 𝒕 and the virtual 

displacement: 

 

∑∑𝜎𝑖𝑗𝑛𝑗𝛿𝑢𝑖

3

𝑗=1

3

𝑖=1

= ([𝜎]𝒏) ∙ 𝛿𝒖 = 𝒕 ∙ 𝛿𝒖 (3.14) 

 

Using Eqs. (3.13), (3.14) and (3.7), the integral sum of the stress gradient terms in the variational 

governing equations can be expressed 

 

∫ (∑∑
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝛿𝑢𝑖

3

𝑗=1

3

𝑖=1

)𝑑Ω
Ω

= −∫ (𝝈 ∙ 𝛿𝒖)𝑑Ω
Ω

+∫(𝒕 ∙ 𝛿𝒖)𝑑𝑆
S

 (3.15) 

 

which can then be placed in Eq. (3.6), with all remaining terms expressed in vector form: 

 

−∫ (𝝈 ∙ 𝛿𝝐)𝑑Ω
Ω

−∫𝜉(𝒖̇ ∙ 𝛿𝒖)𝑑Ω
Ω

−∫𝜌(𝒖̈ ∙ 𝛿𝒖)𝑑Ω
Ω

+∫ (𝒇 ∙ 𝛿𝒖)𝑑Ω
Ω

+∫(𝒕 ∙ 𝛿𝒖)𝑑𝑆
𝑆

= 0 (3.16) 

 

For convention, the sign can be reversed in Eq. (3.16) to yield the original statement of the principle 

of virtual work, given in Eq. (3.1).  Using the principle of virtual work as a general governing 

equation of motion for dynamic elastic bodies is not only a versatile approach for applications 

requiring advanced considerations like nonlinear geometry and material behavior, but also 
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provides a convenient means of discretizing equations for numerical solution methods, as will now 

be demonstrated. 

 In the finite element method, the fundamental variable(s) are assumed to take a known 

form with a discrete set of solution parameters.  Typically, the solution is assumed to be a linear 

combination of pre-determined spatial basis functions, or interpolation functions, with the solution 

parameters representing the value of the variables at certain points or nodes.  This approach is 

known as Lagrange interpolation.  If the fundamental variable is displacement, as with the analysis 

of dynamic elastic bodies, then the assumed form of the displacement at any instant in time can be 

expressed 

 

𝒖 = [𝑁](𝒙)𝑼(𝑡) (3.17) 

 

where [𝑁] is a matrix of basis functions and 𝑼 is a vector of nodal solution parameters, or degrees 

of freedom.  Since the basis functions are known, finding the displacement solution is now a matter 

of determining the nodal degrees of freedom.  When it comes to implementing the principle of 

virtual work, the variations of displacement and strain must be expressed in terms of the discrete 

solution.  A variation of the displacement 𝒖 now corresponds to a variation in the nodal degrees 

of freedom 𝑼, and can be represented using chain-rule differentiation: 

 

𝛿𝒖 = [
𝜕𝒖

𝜕𝑼
]𝛿𝑼 = [𝑁]𝛿𝑼 (3.18) 

 

Similarly for a variation of strain, 

    

𝛿𝝐 = [
𝜕𝝐

𝜕𝑼
]𝛿𝑼 (3.19) 

 

For now, the variation of strain will be left in the form in Eq. (3.19), as the form of strain as a 

function of the solution degrees of freedom is a topic of later sections. 

Eqs. (3.18) and (3.19) can be substituted into the principle of virtual work in Eq. (3.1) as 

follows: 
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∫ (𝝈 ∙ ([
𝜕𝝐

𝜕𝑼
]𝛿𝑼))𝑑Ω

Ω

+∫𝜉(𝒖̇ ∙ ([𝑁]𝛿𝑼))𝑑Ω
Ω

+∫𝜌(𝒖̈ ∙ ([𝑁]𝛿𝑼))𝑑Ω
Ω

−∫(𝒇 ∙ ([𝑁]𝛿𝑼))𝑑Ω
Ω

−∫(𝒕 ∙ ([𝑁]𝛿𝑼))𝑑𝑆
𝑆

= 0 

(3.20) 

 

The variation of the nodal solution vector is not a function of space, and it appears in every term 

of the governing equation.  This means that it can be pulled out of both the integrals and the 

summation, allowing Eq. (3.20) to be re-written 

 

(∫ [
𝜕𝝐

𝜕𝑼
]

𝑇

𝝈𝑑Ω
Ω

+∫𝜉[𝑁]𝑇𝒖̇𝑑Ω
Ω

+∫𝜌[𝑁]𝑇𝒖̈𝑑Ω
Ω

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

) ∙ 𝛿𝑼 = 0 (3.21) 

 

The argument behind the fundamental lemma of variational calculus applies in discrete form as 

well.  Eq. (3.21) must hold for any arbitrary variation of the nodal solution parameters 𝛿𝑼, and it 

therefore follows that the vector in parentheses must be zero, 

 

∫ [
𝜕𝝐

𝜕𝑼
]
𝑇

𝝈𝑑Ω
Ω

+∫𝜉[𝑁]𝑇𝒖̇𝑑Ω
Ω

+∫𝜌[𝑁]𝑇𝒖̈𝑑Ω
Ω

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

= 0 (3.22) 

 

 Eq. (3.22) represents the discretized equations of motion for dynamic elastic bodies derived 

from the principle of virtual work, from which all element formulations in AStrO begin.  The 

residual vector on the left-hand side of these equations is henceforth denoted 𝑹𝑢, so that to satisfy 

the governing equations of motion is to ensure that 𝑹𝑢 = 0.  Further details of implementation for 

different cases and element types are given in the following sections of this chapter. 

 

3.1.2   Governing Equations of Heat Conduction 

 

 The finite element equations for temperature distribution due to heat conduction in a 

structure can be developed in a similar fashion as the equations of elasticity.  Heat conduction 

through a solid medium is generally governed by the Poisson equation: 

 

𝛁 ∙ 𝒒 + 𝜌𝐶𝑝𝑇̇ − 𝑄 = 0 (3.23) 
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where 𝑄 is the rate of internal heat generation per unit volume, and 𝒒 is the heat flux vector, 

governed by the temperature gradient and thermal conductivity 𝒌 as follows: 

 

𝒒 = − [𝑘1
𝜕𝑇

𝜕𝑥1
, 𝑘2

𝜕𝑇

𝜕𝑥2
, 𝑘3

𝜕𝑇

𝜕𝑥3
]
𝑇

 (3.24) 

 

The variational form of the Poisson equation, following the discussion of the elasticity equations 

in Section 3.1.1 is 

 

∫(𝛁 ∙ 𝒒 + 𝜌𝐶𝑝𝑇̇ − 𝑄)𝛿𝑇𝑑Ω
Ω

= 0 (3.25) 

 

Applying integration by parts on the first term as before, 

 

∫(𝛁 ∙ 𝒒)𝛿𝑇𝑑Ω
Ω

= −∫ (𝒒 ∙ 𝛿(𝛁𝑇))𝑑Ω
Ω

+∫(𝒒 ∙ 𝒏)𝛿𝑇𝑑𝑆
𝑆

 (3.26) 

 

Then the governing equation becomes 

 

−∫(𝒒 ∙ 𝛿(𝛁𝑇))𝑑Ω
Ω

+∫𝜌𝐶𝑝𝑇̇𝛿𝑇𝑑Ω
Ω

−∫𝑄𝛿𝑇𝑑Ω
Ω

+∫(𝒒 ∙ 𝒏)𝛿𝑇𝑑𝑆
𝑆

= 0 (3.27) 

 

Adopting the discretized solution for temperature, using 𝝓 to denote the nodal temperature solution 

parameters gives 

 

𝑇 = 𝑵 ∙ 𝝓 

𝛿𝑇 =
𝜕𝑇

𝝓
∙ 𝛿𝝓 = 𝑵 ∙ 𝛿𝝓 

𝛿(𝛁𝑇) = [
𝜕(𝛁𝑇)

𝝓
] 𝛿𝝓 = [∇𝑁]𝑇𝛿𝝓 

(3.28) 

 

Where the basis function gradient matrix is defined such that ∇𝑁𝑖𝑗 =
𝜕𝑁𝑖

𝜕𝑥𝑗
.  Substituting Eqs. (3.28) 

into Eq. (3.27), 
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−∫𝒒 ∙ ([∇𝑁]𝑇𝛿𝝓)𝑑Ω
Ω

+∫𝜌𝐶𝑝𝑇̇(𝑵 ∙ 𝛿𝝓)𝑑Ω
Ω

 

−∫𝑄(𝑵 ∙ 𝛿𝝓)𝑑Ω
Ω

+∫(𝒒 ∙ 𝒏)(𝑵 ∙ 𝛿𝝓)𝑑𝑆
𝑆

= 0 

(3.29) 

 

With Eq. (3.29) holding for any variation of the nodal temperature solution parameters, it follows 

that 

 

−∫ [∇𝑁]𝒒𝑑Ω
Ω

+∫𝑵𝜌𝐶𝑝𝑇̇𝑑Ω
Ω

−∫𝑵𝑄𝑑Ω
Ω

+∫𝑵(𝒒 ∙ 𝒏)𝑑𝑆
𝑆

= 0 (3.30) 

 

 Eq. (3.30) represents the discretized governing equations for heat conduction in structures 

derived from the Poisson equation in variational form.  The residual on the left-hand side will be 

denoted 𝑹𝜙 from now on, so that to solve for the temperature solution at any moment in time is to 

ensure that 𝑹𝜙 = 0. 

 

3.1.3   Modeling of Coupled Thermoelastic Response 

 

In general, the thermal and elastic response of a structure are interdependent, as changes in 

temperature affect strain through thermal expansion, and deformation energy can partially 

dissipate as heat.  AStrO is capable of modeling the coupled thermoelastic response of a structure 

but makes certain simplifying assumptions.  Specifically, thermal material properties such as 

conductivity and specific heat capacity are assumed to have no appreciable dependence on strain.  

Furthermore, the heat generated by deformation is assumed to be negligible.  In other words, the 

deformation of the structure is assumed to have a one-way dependence on the temperature 

distribution. 

 Although this assumption is not universally accurate, it is considered valid for the primary 

scope of aero-structural problems for which AStrO is intended.  In most cases, strain is expected 

to be small and within the elastic regime, selected materials will have low internal damping 

characteristics and deformation rates will not produce significant heat through phenomena like 

viscoelasticity.  Under these assumptions, in any given analysis the temperature distribution of a 

structure can be obtained first, followed by the deformation solution based on the temperature 
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results.  If there was known to be a slight dependence of the thermal response on the deformation 

of a structure, it could be accounted for by using corrective iterations as implemented by the fluid-

structure interface, described in Chapter 2. 

 To account for the dependence of deformation on the temperature distribution, an 

adjustment to the definition of total strain is instated.  Any point in a structure that is subject to a 

combination of applied stress and change in temperature will exhibit a measure of strain for each 

of those contributors.  The total resulting strain can be expressed as in Eq. (3.31). 

 

𝝐𝑡𝑜𝑡𝑎𝑙 = 𝝐𝑠𝑡𝑟𝑒𝑠𝑠 + 𝝐𝑡ℎ𝑒𝑟𝑚 (3.31) 

 

In the governing equations of elasticity based on the principle of virtual work, the stress at a point 

under the assumption of linear elasticity can be expressed 

 

𝝈 = [𝐶]𝝐 (3.32) 

 

where [𝐶] is the stiffness matrix of the local material.  But in Eq. (3.32) 𝝐 must be the strain due 

to the applied stress, so in the presence of thermal expansions, the definition from Eq. (3.31) must 

be implemented to give 

 

𝝈 = [𝐶]𝝐𝑠𝑡𝑟𝑒𝑠𝑠 = [𝐶](𝝐𝑡𝑜𝑡𝑎𝑙 − 𝝐𝑡ℎ𝑒𝑟𝑚) (3.33) 

 

The strain due to thermal expansion is assumed to be linearly related to temperature, such that the 

change in temperature from some reference 𝑇𝑟𝑒𝑓 multiplied by a vector of thermal expansion 

coefficients 𝜶𝑇𝐸 gives the resulting thermal strain: 

 

𝝐𝑡ℎ𝑒𝑟𝑚 = (𝑇 − 𝑇𝑟𝑒𝑓)𝜶𝑇𝐸 = Δ𝑇𝜶𝑇𝐸 (3.34) 

 

If the stress in Eq. (3.22) is re-expressed using Eq. (3.33) and (3.34), then the governing equations 

for the elastic response become 
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∫ [
𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶](𝝐𝑡𝑜𝑡𝑎𝑙 − Δ𝑇𝜶𝑇𝐸)𝑑Ω
Ω

+∫𝜉[𝑁]𝑇𝒖̇𝑑Ω
Ω

+∫𝜌[𝑁]𝑇𝒖̈𝑑Ω
Ω

 

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

= 0 

(3.35) 

 

Separating out the contribution of thermal expansion from the stress term gives 

 

∫ [
𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝝐𝑡𝑜𝑡𝑎𝑙𝑑Ω
Ω

+∫𝜉[𝑁]𝑇𝒖̇𝑑Ω
Ω

+∫𝜌[𝑁]𝑇𝒖̈𝑑Ω
Ω

 

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

−∫ Δ𝑇 [
𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶]𝜶𝑇𝐸𝑑Ω
Ω

= 0 

(3.36) 

 

Since the temperature solution is pre-computed, the effect of thermal expansion manifests as part 

of the load in the elasticity equations (or the final three terms in Eq. 3.36).  Eq. (3.36) is the 

augmented form of the governing equations for thermoelastic modeling. 

 

3.1.4   Numerical Integration with Gauss Quadrature 

 

As a final note before continuing to more specific element formulations, the governing equations 

using the finite element method are clearly expressed as integrals over the structural domain.  

Generally, however, these integrals cannot be evaluated analytically due to complex geometry and 

lack of closed form solution.  Therefore, numerical integration must be employed.  Since a 

structural domain is represented by a collection of elements, the integral over that domain is the 

summation of integrals over each individual element.  That is, for any field quantity 𝐹(𝒙) within 

the domain Ω, 

     

∫𝐹(𝒙)𝑑Ω
Ω

=∑∫ 𝐹(𝒙)𝑑Ω
Ω𝑗

𝑛𝑒𝑙

𝑗=1

 (3.37) 

 

where 𝑛𝑒𝑙 is the number of elements in the domain, and Ω𝑗 is the portion of the domain occupied 

by element 𝑗.  For each individual element, integrals are evaluated using Gauss quadrature [80].  

To accomplish this, the space occupied by each element is defined in terms of a natural element 

coordinate system, which lines up and scales conveniently with that element’s shape and 
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orientation.  The domain of the element in natural coordinates has the same upper and lower 

bounds for every element of a given type, regardless of shape and size.  This makes integration in 

natural element space convenient and straight-forward.  The evaluated integral can then be 

transformed from natural element space to real space using a mapping derived from the element’s 

nodal coordinates.  To illustrate, Fig. 3.1 graphically demonstrates the transformation between 

natural element space and real space for a quadrilateral element.  The figure depicts a two-

dimensional element for simplicity, even though all element types supported by AStrO are three-

dimensional. 

 

Figure 3.1  Mapping from natural element coordinates to arbitrary shapes in space. 

 

 The integral over an element’s domain in real space Ω𝑗 is transformed to the integral in 

natural element coordinate space Ω̂ as follows 

     

∫ 𝐹(𝒙)𝑑Ω
Ω𝑗

= ∫ 𝐹(𝜼) (
𝑑Ω

𝑑Ω̂
)𝑑Ω̂

Ω̂
 (3.38) 

 

The term (
𝑑Ω

𝑑Ω̂
) represents the scaling between a differential element’s volume in real space and its 

volume in natural element space, and its value is the determinant of the Jacobian matrix formed 

by the partial derivatives of real to natural coordinates, or 

 

(
𝑑Ω

𝑑Ω̂
) = |

𝜕𝒙

𝜕𝜼
| (3.39) 

 

The spatial coordinates 𝒙 within an element can be interpolated with the same basis as the solution 

variables, and can be expressed 
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𝒙 = [𝑋]𝑵 (3.40) 

 

where 𝑋𝑖𝑗 is the 𝑥𝑖 coordinate at node 𝑗 of the element, and 𝑁𝑗 is the basis function associated with 

node 𝑗 (for further explanation of basis function formulation for different element types, see 

Section 3.2).  Differentiating Eq. (3.40) gives 

 

𝜕𝒙

𝜕𝜼
= [𝑋] [

𝜕𝑵

𝜕𝜼
] (3.41) 

 

 In numerical integration using Gauss quadrature, the integral over a region is approximated 

as a weighted sum over a set of integration points throughout the domain, with each term evaluated 

as the integrand times a predetermined weight value 𝑤𝑖 for that point, or 

     

∫𝐺(𝜼)𝑑Ω̂
Ω̂

= ∑𝐺(𝜼𝑖)𝑤𝑖

𝑛𝑝𝑡𝑠

𝑖=1

 (3.42) 

 

where 𝑛𝑝𝑡𝑠 is the number integration points.  The integration points and their weights are chosen 

so that the summation will give the exact value of the integral for any function within a certain 

space.  In AStrO, the Gauss quadrature integration gives exact integrals for elements in which the 

Jacobian matrix [
𝜕𝒙

𝜕𝜼
] is constant throughout the element.  For linear-order tetrahedral shaped 

elements this is always the case, but for hexahedral elements it is contingent on the element having 

a parallelepiped shape with parallel opposing faces.  Numerical errors occur for highly distorted 

elements for which this is not the case.  When mapping from natural space to real space, the integral 

of Eq. (3.38) using Gauss quadrature, through combination of Eqs. (3.39) through (3.42) becomes 

 

∫ 𝐹(𝒙)𝑑Ω
Ω𝑗

= ∫ 𝐹(𝜼) (
𝑑Ω

𝑑Ω̂
)𝑑Ω̂

Ω̂

= ∑ 𝐹(𝜼𝑖) |[𝑋] [
𝜕𝑵

𝜕𝜼
] (𝜼𝑖)|𝑤𝑖

𝑛𝑝𝑡𝑠

𝑖=1

 (3.43) 

 

Integration of all governing equations in AStrO are performed in the manner shown by Eq. (3.43).  

The following sections give further details for specific element types. 
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3.2   Element Formulations for Static Analysis 

 

This section is dedicated to the detailed finite element formulation AStrO employs for static, or 

steady-state structural and thermal analysis.  For static cases, the governing equations for elastic 

and thermal behavior reduce to 

 

∫ [
𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶]𝝐𝑡𝑜𝑡𝑎𝑙𝑑Ω
Ω

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

−∫ Δ𝑇 [
𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶]𝜶𝑇𝐸𝑑Ω
Ω

= 0 

−∫ [∇𝑁]𝒒𝑑Ω
Ω

−∫𝑵𝑄𝑑Ω
Ω

+∫𝑵(𝒒 ∙ 𝒏)𝑑𝑆
𝑆

= 0 

(3.44) 

 

The static terms in the governing equations represent the most substantial part of the general 

formulation, and adding the relatively simple dynamic terms will be discussed in Section 3.3.  

Three main classes of elements are incorporated into the package: solid continuum elements, shell 

elements, and beam elements.  All three types are three-dimensional elements, but with differences 

in kinematic assumptions and the way that displacement variables are expressed, as detailed in the 

next three sections. 

 

3.2.1   Solid Continuum Elements 

 

Solid continuum elements, or simply solid elements, are the most general and versatile of element 

types.  They are capable of representing any arbitrary geometry and make no specific kinematic 

assumptions other than the conforming of the solution to the space of the basis functions.  Solid 

elements describe the state of a structure purely in terms of displacement or temperature from an 

undeformed reference state.  That is, the fundamental solution variables consist only of 

displacements and temperatures at the nodes of the discretized mesh.  Quantities like rotation, 

strain, stress, heat flux, etc. at a point in a structure are then derived from these fundamental 

variables and their gradients as defined by element basis functions.   

The basic assumption is that displacement and temperature fields throughout a given 

element take the form of a linear combination of a set of basis functions, as shown previously in 
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Eqs. (3.17) and (3.28).  Every element type has a primary set of nodal basis functions, each of 

which evaluates to one at a certain node, and zero at all other nodes.  This ensures that the degrees 

of freedom of the finite element solution correspond to the values of the fundamental field 

variables at the nodes, which is a highly desirable property for post-processing and interpretation 

of results. 

Some element types have additional basis functions beyond the primary nodal set.  These 

exist to allow the solution to take more natural distributions for certain modes of deformation than 

what is possible with just the nodal basis, often making the solution more accurate.  The degrees 

of freedom corresponding to these additional basis functions are not associated with nodes, and so 

are not shared between elements as are the nodal degrees of freedom.  As a result, deformation in 

these modes occurs only in response to the loading and deformation of the nodes of the particular 

element they belong to, without any direct constraint or interaction between degrees of freedom of 

neighboring elements.  One consequence of this is that the deformation response predicted by an 

element at its boundary can differ from that predicted by its neighboring element at the same 

boundary, essentially causing gaps and overlaps in the predicted displacement solution.  The 

solution does, however, remain continuous and consistent at nodes, in contrast with a 

discontinuous Galerkin formulation.  This concept is depicted in Fig. 3.2.  Such a solution violates 

the condition of kinematic compatibility.  For this reason, the modes of deformation represented 

by the additional basis are often called incompatible modes, and their degrees of freedom referred 

to as internal degrees of freedom. 

 

Figure 3.2  Deformation of incompatible modes under loading. 



45 

 

 

The concept of incompatible modes was first introduced by Bazely et al. [81], and was 

initially met with skepticism.  Understandably, the idea of elements that violate kinematic 

compatibility would strike most as questionable at first glance.  Yet since their introduction, 

elements with incompatible modes have proven to be high-performing and efficient, and are now 

a tried and true implementation in many commercial codes.  The enhanced basis in the assumed 

solution within an element, coupled with the freedom of deformation in the absence of constraints 

between internal modes of neighboring elements makes the structure more compliant, particularly 

under bending loads.  This counteracts the natural tendency for standard fully-integrated elements 

to behave stiffly due to effects like parasitic shear.  On top of that, since the incompatible degrees 

of freedom are internal, they can be condensed out of the final global equation matrix, so they add 

negligible cost to computing the solution.  More on this topic will be discussed in Section 3.4. 

Table 3.1 shows diagrams of each type of solid continuum element implemented by AStrO, 

with their basis functions and integration points and weights employed by Gauss quadrature. 

 

Table 3.1  Geometric and basis definition for solid continuum elements 

Element Type Basis Functions 
Integration Points 

[𝜼𝟏, 𝜼𝟐, 𝜼𝟑, 𝒘] 
four-node tetrahedral 

 

 

 

six-node wedge 
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Table 3.1 (continued) 

eight-node hexahedral 

 

 

 
 

 

eight-node hexahedral with 

incompatible modes 

 

 

 
 

Internal: 

 

 
 

 

 

Given the basis spaces in Table 3.1, there are two alternate ways to express the assumed solution 

for displacement within an element.  One way is to construct the displacement degrees of freedom 

as a one-dimensional vector, and distribute the basis functions as appropriate in a 3 X 𝑛𝑑𝑜𝑓 matrix, 

where 𝑛𝑑𝑜𝑓 is the number of degrees of freedom, to multiply from the left to give the displacement 

vector as done in Eq. (3.17): 
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𝒖 = [𝑁]𝑼 = [
𝑁1 0 0
0 𝑁1 0
0 0 𝑁1

𝑁2 0 0
0 𝑁2 0
0 0 𝑁2

𝑁3 0 0
0 𝑁3 0
0 0 𝑁3

 ⋯ ]

{
 
 
 

 
 
 
𝑈𝑥1,𝑛𝑜𝑑𝑒 1
𝑈𝑥2,𝑛𝑜𝑑𝑒 1
𝑈𝑥3,𝑛𝑜𝑑𝑒 1
𝑈𝑥1,𝑛𝑜𝑑𝑒 2
𝑈𝑥2,𝑛𝑜𝑑𝑒 2
𝑈𝑥3,𝑛𝑜𝑑𝑒 3

⋮ }
 
 
 

 
 
 

 (3.45) 

 

A second way is to assemble the nodal degrees of freedom in a two-dimensional matrix, and 

multiply the basis functions as a one-dimensional vector from the right, as shown below. 

 

𝒖 = [𝑈]𝑵 = [

𝑈𝑥1,𝑛𝑜𝑑𝑒 1 𝑈𝑥1,𝑛𝑜𝑑𝑒 2 𝑈𝑥1,𝑛𝑜𝑑𝑒 3
𝑈𝑥2,𝑛𝑜𝑑𝑒 1 𝑈𝑥2,𝑛𝑜𝑑𝑒 2 𝑈𝑥2,𝑛𝑜𝑑𝑒 3
𝑈𝑥3,𝑛𝑜𝑑𝑒 1 𝑈𝑥3,𝑛𝑜𝑑𝑒 2 𝑈𝑥3,𝑛𝑜𝑑𝑒 3

 ⋯ ] {
𝑁1
𝑁2
⋮
} (3.46) 

 

Both forms are equally correct, but are each well-suited to different contexts.  The form in Eq. 

(3.45) is more convenient for assembling the global matrix equations, while the form in Eq. (3.46) 

is more compact and efficient for evaluating certain quantities on the element level.  The two forms 

are equivalent for expressing temperature, since it is a scalar field.  The form in Eq. (3.46) will be 

used for the remainder of this section. 

 As mentioned previously, the nodal degrees of freedom defining the state of any structure 

represent the values of the field variables at the nodes.  Because these degrees of freedom are 

shared between elements, they are all expressed in a single global coordinate system for a given 

structure or assembly.  This makes it possible to add the individual element matrices to form the 

global equations as indicated in Eq. (3.37).  However, individual sections or elements of a structure 

may often have local coordinate systems in which material properties or geometric characteristics 

are most conveniently expressed.  For these cases the displacement field of a solid element can be 

transformed to local coordinates with a direction cosine matrix [𝛼𝐿] as follows 

 

𝒖𝐿 = [𝛼𝐿][𝑈]𝑵 = [𝛼𝐿] [

𝑼1
𝑇

𝑼2
𝑇

𝑼3
𝑇

]𝑵 (3.47) 
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 The matrix [𝛼𝐿] is constructed either from a local orientation definition supplied by the 

user in the model input file or from the nodal coordinates of an element if such an orientation is 

not specified.  It can be useful to refer to the individual rows of the matrix of displacement degrees 

of freedom [𝑈] as vectors denoted 𝑼𝑖 as shown in Eq. (3.47).  The strain field within an element 

can then be derived as a function of displacement variables, which is a critical ingredient in the 

governing equations of elasticity.  The form of strain employed by AStrO for solid elements is 

Green-Lagrange strain [80], defined in terms of displacement gradients ∇𝑢𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
 as a second-

order tensor as 

 

[𝜖] =
1

2
([∇𝑢] + [∇𝑢]𝑇 + [∇𝑢]𝑇[∇𝑢]), (3.48) 

 

For geometrically linear analysis, where displacements and rotations in the structure are assumed 

to be small, the final term in Eq. (3.48) is omitted.  Table 3.2 shows the form for the strain field 

under the assumed solution, as well as derivatives with respect to displacement variables for 

geometrically linear and nonlinear problems.  [𝐼] denotes the identity matrix. 

 

Table 3.2  Definition of Green-Lagrange strain for solid elements in terms of discrete solution. 

 Linear Geometry Nonlinear Geometry 

[𝜖] 
1

2
([𝛼𝐿][𝑈][∇𝑁] + [∇𝑁]

𝑇[𝑈]𝑇[𝛼𝐿]
𝑇) 

1

2
([𝛼𝐿][𝑈][∇𝑁] + [∇𝑁]

𝑇[𝑈]𝑇[𝛼𝐿]
𝑇 + [∇𝑁]𝑇[𝑈]𝑇[𝑈][∇𝑁]) 

𝜕𝜖𝑖𝑗

𝜕𝑈𝑘𝑙
 

1

2
(𝛼𝐿,𝑖𝑘

𝜕𝑁𝑙
𝜕𝑥𝑗

+ 𝛼𝐿,𝑗𝑘
𝜕𝑁𝑙
𝜕𝑥𝑖

 )  
1

2
(𝛼𝐿,𝑖𝑘

𝜕𝑁𝑙
𝜕𝑥𝑗

+ 𝛼𝐿,𝑗𝑘
𝜕𝑁𝑙
𝜕𝑥𝑖

 + (𝑼𝑘 ∙
𝜕𝑵

𝜕𝑥𝑖
)
𝜕𝑁𝑙
𝜕𝑥𝑗

+ (𝑼𝑘 ∙
𝜕𝑵

𝜕𝑥𝑗
)
𝜕𝑁𝑙
𝜕𝑥𝑖

) 

𝜕𝜖𝑖𝑗

𝜕𝑈𝑘𝑙𝜕𝑈𝑝𝑞
 0 

1

2
𝐼𝑘𝑝 (

𝜕𝑁𝑙
𝜕𝑥𝑖

𝜕𝑁𝑞

𝜕𝑥𝑗
+
𝜕𝑁𝑙
𝜕𝑥𝑗

𝜕𝑁𝑞

𝜕𝑥𝑖
) 

 

In Table 3.2 the gradients of the basis functions are evaluated using the mapping from natural 

element coordinate space.  The Jacobian matrix from Eq. (3.41) can be transformed to an element’s 

local coordinate system using [𝛼𝐿], then inverted to give the basis function gradients in the local 

coordinate system as follows: 

 

[∇𝑁] = [
𝜕𝑵

𝜕𝜼
] [
𝜕𝜼

𝜕𝒙
] = [

𝜕𝑵

𝜕𝜼
] ([𝛼𝐿][𝑋] [

𝜕𝑵

𝜕𝜼
])
−1

 (3.49) 
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When solving the Poisson equation for temperature distribution, the same form can be used to 

evaluate heat flux: 

 

𝒒 = − [𝑘1 (
𝜕𝑵

𝜕𝑥1
∙ 𝝓) , 𝑘2 (

𝜕𝑵

𝜕𝑥2
∙ 𝝓) , 𝑘3 (

𝜕𝑵

𝜕𝑥3
∙ 𝝓)]

𝑇

 

[
𝜕𝒒

𝜕𝝓
] = −[𝑘1

𝜕𝑵

𝜕𝑥1
, 𝑘2

𝜕𝑵

𝜕𝑥2
, 𝑘3

𝜕𝑵

𝜕𝑥3
]
𝑇

 

(3.50) 

  

 Finally, AStrO assumes linear elastic material behavior for all analysis, and that the 

material of any given section falls under the category of orthotropic materials, which have three 

mutually orthogonal planes of symmetry.  Note that fully isotropic and transversely isotropic 

materials fall under this category as well.  Such materials can be described with no more than nine 

independent material constants, which are usually expressed in the form of three orthogonal elastic 

moduli (𝐸1, 𝐸2, 𝐸3), three orthogonal measures of Poisson’s ratio (𝜈12, 𝜈13, 𝜈23), and three 

orthogonal shear moduli (𝐺12, 𝐺13, 𝐺23).  With these constants, the material stiffness matrix 

relating stress to strain can be constructed as follows: 

 

𝜎11  
1

𝐸1
 −

𝜈12
𝐸1

 −
𝜈13
𝐸1

 0 0 0  𝜖11 
 

𝜎22   
1

𝐸2
 −

𝜈23
𝐸2

 0 0 0  𝜖22 
 

𝜎33    
1

𝐸3
 0 0 0  𝜖33 

 

𝜎12     
1

𝐺12
 0 0  𝛾12 (3.51) 

𝜎13   (𝑠𝑦𝑚)   
1

𝐺13
 0  𝛾13 

 

𝜎23       
1

𝐺23
  𝛾23 

 

 

It is worth mentioning that strictly speaking, the appropriate work conjugate to Green-

Lagrange strain is second Piola-Kirchhoff stress [80], which would need to be derived 

experimentally for a given material undergoing large strains.  When strain in a structure is small, 

despite possibly large displacements, second Piola-Kirchhoff stress is nearly equivalent to Cauchy 

stress in a reference frame effectively aligning with a point in a structure, and the linear-elastic 

{
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definition of Eq. (3.51) only holds for such cases.  This is exactly the assumption currently made 

by AStrO, and the proper modifications would need to be made to consider large strains, or 

material nonlinearity. 

Using the definitions for strain in Table 3.2, elastic properties in Eq. (3.51), and heat flux 

in Eqs. (3.49) and (3.50), the discretized finite element equations for static thermoelastic analysis 

in Eq. (3.44) can be assembled.  The solution process is described further in Section 3.4. 

 

3.2.2   Shell Elements 

 

Another type of element implemented in AStrO is the shell element, a special purpose type of 

element that is meant to model structures that form a surface in three-dimensional space, and are 

relatively thin in the direction normal to that surface, such as hollow shells and flat plates.  Shell 

elements are often used for high aspect ratio structures such as aircraft wings and turbine blades.  

For such cases, certain kinematic assumptions can be made which can make structural analysis 

more efficient than it would be using solid continuum elements.  At the same time, shell elements 

are somewhat less versatile since these kinematic assumptions must be valid for them to be 

applicable. 

 The kinematic assumptions arise from the high aspect ratio geometry of shell structures.  

Under the majority of physically conceivable loading conditions, the out-of-plane stresses, or 

components of stress in the direction normal to the shell structure’s mid-plane surface, are 

negligible compared to the in-plane stresses.  The implications of this condition in terms of 

deformation are summed up in one of the most common forms of classical plate theory, Kirchhoff 

Plate Theory [82].  The Kirchhoff hypotheses state that for a plate or shell structure under loading, 

the following assumptions regarding deformation hold: 

 

1. Straight lines within the shell that are perpendicular to the midplane of the shell before 

deformation, or transverse normals, remain straight and perpendicular to the midplane after 

deformation. 

2. Transverse normals do not change in length due to deformation. 
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Under the above assumptions for structures under small deformations, the displacement field 

within a shell can be expressed in terms of displacements at the midplane: 

 

𝑢1 = 𝑢𝑚,1 − 𝑥3
𝜕𝑢𝑚,3
𝜕𝑥1

 

𝑢2 = 𝑢𝑚,2 − 𝑥3
𝜕𝑢𝑚,3
𝜕𝑥2

 

𝑢3 = 𝑢𝑚,3 

(3.52) 

 

In Eq. (3.52) 𝒖𝑚 represents the displacement at the midplane of the shell, the 3-direction is normal 

to the midplane and 𝑥3 is the perpendicular distance from the midplane projected to a point, as 

depicted in Fig. 3.3. 

 

Figure 3.3  Diagram of shell element for kinematic definitions. 

 

Numerous variations of plate and shell theory exist, as do numerous approaches to finite element 

formulation of shell structures.  When considering an approach to take for implementation in 

AStrO, it was decided that certain guidelines ought to be followed based on long-term goals for 

the work. 

 First, it was decided that for shell elements the governing equations based on the principle 

of virtual work should remain in terms of fundamental stresses and strains as defined in Eqs. (3.10) 

and (3.33).  Technically, the principle of virtual work in a deformable body can be expressed not 

only in terms of stress and strain, but also in terms of any alternate set of deformation modes and 

their corresponding work conjugates, and it can certainly be advantages to do so.  For example, in 

classical composite laminate theory, the behavior of a layered composite is generally described in 
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terms of midplane strains and curvatures, and the corresponding forces and moments per unit 

length.  This way the virtual work can be evaluated by integrating the forces/moments times strains 

and curvatures over the midplane area, making it a two-dimensional domain of integration.  

However, constructing the matrix which maps in-plane strains and curvatures to forces and 

moments requires pre-integrating the shell material properties through the thickness.  This creates 

an additional layer of complexity in sensitivity analysis when obtaining sensitivities of objectives 

with respect to material properties, orientations and shell thickness.  Keeping the formulation in 

terms of fundamental stress and strain is more direct and integrates naturally with the existing 

infrastructure for solid elements. 

 Second, it was decided that the shell formulation should include nodal rotations in all three 

global dimensions as fundamental degrees of freedom.  Equation (3.52) indicates that under 

Kirchhoff’s assumptions, the behavior of a shell can, in theory, be described purely in terms of 

midplane displacement and its derivatives.  However, a number of potential difficulties arise from 

implementing this form exactly as is.  In practice, it is often useful to apply loading to shell 

structures in the form of concentrated or distributed moments, as opposed to forces.  Also, the 

resulting rotations at points throughout a structure can be of interest when interpreting results and 

applying constraints.  In a purely displacement-based formulation, those moments and rotations 

would have to be transformed to and from equivalents in terms of displacement variables.  For 

geometrically linear analysis, this usually would not be a major issue, but with large displacements 

and rotations the process could become cumbersome and numerically unstable.  Rotations would 

also be discontinuous at nodes, leading to further complications.  Letting nodal rotations be 

fundamental degrees of freedom and incorporating them into the principle of virtual work is a more 

direct and robust approach. 

 With the above goals in mind, the shell element formulation implemented by AStrO begins 

with the definition of field displacement in Eq. (3.52), and replaces the derivatives of out-of-plane 

displacement with appropriate in-plane rotations: 

 

𝑢1 = 𝑢𝑚,1 + 𝑥3𝜃2 

𝑢2 = 𝑢𝑚,2 − 𝑥3𝜃1 

𝑢3 = 𝑢𝑚,3 

(3.53) 
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The out-of-plane component of rotation 𝜃3 does not appear in the above definition of field 

displacement alone.  To complete the full kinematic definition of the relationship between 

displacements and rotations, an additional constraint must be imposed.  Figure 3.4 illustrates the 

kinematic relationship between in-plane displacements 𝑢𝑚,1 and 𝑢𝑚,2 and the out-of-plane rotation 

𝜃3, using the two specific deformation cases of rigid-body rotation about the 3-axis and pure shear 

deformation in the 1-2 plane.  The net out-of-plane rotation at a point is found by averaging the 

apparent rotations of the in-plane axial directions due to deformation.  The assumption of small 

angle changes, and the appropriate approximation is used in this definition. 

 

Figure 3.4  Kinematic relationship between in-plane displacements and out-of-plane rotation at a 

point, illustrated for a) rigid-body rotation and b) pure shear deformation. 

 

The constraint illustrated in Fig. 3.4 and stated below in Eq. (3.54) is enforced in the formulation 

of shell elements in the form of an artificial strain component, as will be discussed further shortly.  

This completes the kinematic coupling relationship between all six nodal degrees of freedom 

describing the state of motion for this type of element. 

 

𝜃3 =
1

2
(
𝜕𝑢𝑚,2
𝜕𝑥1

−
𝜕𝑢𝑚,1
𝜕𝑥2

) (3.54) 

 

 As with solid continuum elements, the field variables take the assumed form of the basis 

functions of a given element, except that with shell elements these variables consist of both 

displacements and rotations in the midplane of the element.  The element nodes define the two-

dimensional domain of the midplane, and the thickness of the element is defined as a separate 
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physical parameter.  There are two types of shell elements implemented in AStrO, with schematics 

given in Table 3.3. 

 

Table 3.3  Geometric and basis definition for shell elements 

Element Type Basis Functions Integration pts 

[𝜼𝟏, 𝜼𝟐, 𝜼𝟑, 𝒘] 

four-node quadrilateral 

 

Nodal: 

 

Internal, 𝑢𝑚,3: 

 

 

three-node triangle 

 

Nodal: 

 

Internal, 𝑢𝑚,3: 

  

 

As indicated in Table 3.3, shell elements have internal modes/degrees of freedom that only apply 

to out-of-plane displacement.  This way the displacement can take on curvature as needed to model 

the behavior accurately without adding nodes to the global system. 

 Given the basis functions for each element, the midplane displacement field and midplane 

rotation field can be defined under the assumed solution as 

 

𝒖𝑚 = [𝑈]𝑵 

𝜽 = [𝜃]𝑵 
(3.55) 
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Due to the selective interpolation of 𝑢𝑚,3 as discussed, the matrices of degrees of freedom and the 

basis function vector above take the following structure: 

 

[𝑈] = [

𝑼𝑛𝑑,1
𝑇

𝑼𝑛𝑑,2
𝑇

0
0

𝑼𝑛𝑑,3
𝑇 𝑼𝑖𝑛𝑡,3

𝑇

] 

[𝜃] = [

𝜽1
𝑇 0

𝜽2
𝑇 0

𝜽3
𝑇 0

]  

𝑵 = {
𝑵𝑛𝑑
𝑵𝑖𝑛𝑡

} 

(3.56) 

 

Substituting Eq. (3.55) into Eq. (3.53), the displacement field in a shell element with the assumed 

form can be expressed 

 

𝒖 = [𝑈]𝑵 + {
𝑥3(𝜽2 ∙ 𝑵𝑛𝑑)
−𝑥3(𝜽1 ∙ 𝑵𝑛𝑑)

0

} (3.57) 

 

 At this point it is important to note that, because the above definition of displacement is 

only valid for small displacements and rotations in a coordinate system where the 3-direction is 

normal to the shell midplane, a somewhat different approach is warranted for formulating linear 

geometry vs. nonlinear geometry for shell elements than for solid elements.  Recall that for solid 

elements, the Green-Lagrange definition of strain in Eq. (3.48) contains nonlinear terms, which 

are simply omitted under the assumption of linear geometry.  But the displacement gradients in 

that form are always computed in the original coordinate system.  This works in part because the 

field displacement definition for solid elements is valid to any degree of deformation.  But for shell 

elements, if Eq. (3.57) is to be used as a definition for the displacement field, some adjustment 

must be made to make it generally applicable. 

 The key in making such an adjustment lies in realizing that the primary source of error in 

Eq. (3.57) for large displacements is rigid body rotation.  As a structure undergoes large rotations, 

the direction normal to the shell changes, and the projection from the midplane to a given point in 

the shell becomes a complex trigonometric function of 𝜽.  But, for any state of deformation of a 
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given element, there exists a corresponding state that produces the same strain field, but with no 

rigid body rotation.  The approach implemented by AStrO is to transform the nodal degrees of 

freedom of each element from global coordinates to a coordinate system that follows the element 

dynamically as the structure deforms, effectively removing rigid body rotation.  This is referred to 

as the instantaneous coordinate system. 

 The distinction between linear geometry and nonlinear geometry is how to make the 

transformation from global to instantaneous degrees of freedom.  Under the assumption of linear 

geometry, the orientation of any given element can be assumed constant, and the instantaneous 

coordinate system is one that lines up appropriately with the element in the undeformed state, or 

the local coordinate system.  In this case a simple vector transformation using the direction cosine 

matrix for the local coordinate system is all that is needed.  Under the assumption of nonlinear 

geometry, the instantaneous coordinate system for a given element is derived from the overall 

rotation of the element, or specifically the average nodal rotation.  It begins as the local coordinate 

system in the undeformed state, then as the structure undergoes displacement the instantaneous 

coordinate system is updated by rotating the principal directions of the local coordinate system by 

the overall element rotation.  The instantaneous displacement degrees of freedom are then found 

from the overall position vector of each node before and after deformation.  Figure 3.5 illustrates 

this transformation graphically. 

 

Figure 3.5  Transformation of displacements and rotations of a shell structure from a static, local 

coordinate system to the updated, instantaneous coordinate system after deformation. 
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 Table 3.4 describes the relationships between global and instantaneous displacements and 

rotations mathematically.  In the table, [𝑋𝐺], [𝑈𝐺] and [𝜃𝐺] are the nodal initial positions, 

displacements and rotations in global coordinates.  [𝜃𝐺,𝑎𝑣𝑔] is a matrix which contains the average 

nodal rotation in global coordinates in each column. [𝑈𝐼] and [𝜃𝐼] are nodal displacements and 

rotations in instantaneous coordinates.  [𝛼𝐿] and [𝛼𝐼] are the direction cosine matrices transforming 

from global coordinates to local, and instantaneous coordinates respectively.  𝑛𝑛𝑑 is the number 

of nodes in the element, [𝐼] is the identity matrix and [𝐼] is used to denote a matrix whose values 

are all one. 

 

Table 3.4  Definition of instantaneous nodal degrees of freedom in a shell element. 

Quantity Linear Geometry Nonlinear Geometry 

[𝑈𝐼] [𝛼𝐿][𝑈𝐺] [𝛼𝐼]([𝑋𝐺] + [𝑈𝐺]) − [𝛼𝐿][𝑋𝐺] 

𝜕𝑈𝐼,𝑖𝑗

𝜕𝑈𝐺,𝑘𝑙
 𝛼𝐿,𝑖𝑘𝐼𝑗𝑙  𝛼𝐼,𝑖𝑘𝐼𝑗𝑙  

𝜕[𝑈𝐼]

𝜕𝜃𝐺,𝑖𝑗
 0 

𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑖𝑗
([𝑋𝐺] + [𝑈𝐺]) 

𝜕𝑈𝐼,𝑖𝑗

𝜕𝑈𝐺,𝑘𝑙𝜕𝜃𝐺,𝑝𝑞
 0 

𝜕𝛼𝐼,𝑖𝑘
𝜕𝜃𝐺,𝑝𝑞

𝐼𝑗𝑙  

𝜕[𝑈𝐼]

𝜕𝜃𝐺,𝑖𝑗𝜕𝜃𝐺,𝑘𝑙
 0 

𝜕2[𝛼𝐼]

𝜕𝜃𝐺,𝑖𝑗𝜕𝜃𝐺,𝑘𝑙
([𝑋𝐺] + [𝑈𝐺]) 

[𝜃𝐼] [𝛼𝐿][𝜃𝐺] [𝛼𝐼]([𝜃𝐺] − [𝜃𝐺,𝑎𝑣𝑔]) 

𝜕𝜃𝐼,𝑖𝑗

𝜕𝜃𝐺,𝑘𝑙
 𝛼𝐿,𝑖𝑘𝐼𝑗𝑙  (

𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑘𝑙
([𝜃𝐺] − [𝜃𝐺,𝑎𝑣𝑔]))

𝑖𝑗

+ 𝛼𝐼,𝑖𝑘 (𝐼𝑗𝑙 −
1

𝑛𝑛𝑑
𝐼𝑗𝑙) 

𝜕2𝜃𝐼,𝑖𝑗

𝜕𝜃𝐺,𝑘𝑙𝜕𝜃𝐺,𝑝𝑞
 0 

(
𝜕2[𝛼𝐼]

𝜕𝜃𝐺,𝑘𝑙𝜕𝜃𝐺,𝑝𝑞
([𝜃𝐺] − [𝜃𝐺,𝑎𝑣𝑔]))

𝑖𝑗

+
𝜕𝛼𝐼,𝑖𝑝

𝜃𝐺,𝑘𝑙
(𝐼𝑗𝑞 −

1

𝑛𝑛𝑑
𝐼𝑗𝑞)

+
𝜕𝛼𝐼,𝑖𝑘
𝜃𝐺,𝑝𝑞

(𝐼𝑗𝑙 −
1

𝑛𝑛𝑑
𝐼𝑗𝑙) 

 

Using the instantaneous nodal degrees of freedom from Table 3.4, a generally applicable 

definition of the displacement field in instantaneous coordinates can be formed: 
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𝒖 = [𝑈𝐼]𝑵 + {

𝑥3(𝜽𝐼,2 ∙ 𝑵𝑛𝑑)

−𝑥3(𝜽𝐼,1 ∙ 𝑵𝑛𝑑)

0

} (3.58) 

 

From Eq. (3.58) the strain field can be defined.  The assumptions of the Kirchhoff hypotheses 

imply that out-of-plane strains are zero.  But here the out-of-plane shear strains are still included 

in the formulation in order to enforce the constraint between rotations and out-of-plane 

displacements. 

 

𝜖11 =
𝜕𝑢1
𝜕𝑥1

= (𝑼𝐼,1 + 𝑥3𝜽𝐼,2) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

 

𝜖22 =
𝜕𝑢2
𝜕𝑥2

= (𝑼𝐼,2 − 𝑥3𝜽𝐼,1) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

 

𝛾12 =
∂𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1

= (𝑼𝐼,1 + 𝑥3𝜽𝐼,2) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

+ (𝑼𝐼,2 − 𝑥3𝜽𝐼,1) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

 

γ13 =
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1

= (𝜽𝐼,2 ∙ 𝑵𝑛𝑑) + (𝑼𝐼,𝑛𝑑,3 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

) + (𝑼𝐼,𝑖𝑛𝑡,3 ∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

) 

γ23 =
𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

= −(𝜽𝐼,1 ∙ 𝑵𝑛𝑑) + (𝑼𝐼,𝑛𝑑,3 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

) + (𝑼𝐼,𝑖𝑛𝑡,3 ∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥2

) 

(3.59) 

 

To enforce the previously mentioned constraint on the out-of-plane rotation in Eq. (3.54), the 

following “artificial strain” is defined: 

 

𝛾𝑎 = 2𝜃3 +
𝜕𝑢𝑚,1
𝜕𝑥2

−
𝜕𝑢𝑚,2
𝜕𝑥1

= 2(𝜽𝐼,3 ∙ 𝑵𝑛𝑑) + (𝑼𝐼,1 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

) − (𝑼𝐼,2 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

) (3.60) 

 

The logic behind this artificial strain is that, since the governing equations of elastic bodies seek 

to minimize the total strain energy in a structure, the system’s behavior will drive down all strains, 

with priority gauged by their associated stiffnesses.  The artificial strain represents the residual of 

the kinematic constraint on 𝜃3 in Eq. (3.54), so driving it down by extension satisfies the constraint.  

A stiffness is assigned to the artificial strain with a value equal to 𝐺12, to make it comparable to 

the other participating strains, and it is put in place of out-of-plane normal strain, since that 

component is inapplicable to shells.  Since rigid body rotation is eliminated in the definition of 

instantaneous degrees of freedom, Eq. (3.60) is valid for both linear and nonlinear geometry.  All 
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the derivatives of strain with respect to global degrees of freedom are straight-forward with the 

usage of Table 3.4. 

With the modifications for shell kinematic assumption and the introduction of the artificial 

strain, the orthotropic material stiffness matrix for shell elements can be expressed as shown in 

Eq. (3.61). 

 

𝜎11 
 1

𝐸1
 −

𝜈12
𝐸1

 0 0 0 0  𝜖11 
 

𝜎22   
1

𝐸2
 0 0 0 0  𝜖22 

 

𝜎𝑎    
1

𝐺12
 0 0 0  𝛾𝑎 

 

𝜎12     
1

𝐺12
 0 0  𝛾12 (3.61) 

𝜎13   (𝑠𝑦𝑚)   
1

𝐺13
 0  𝛾13 

 

𝜎23       
1

𝐺23
  𝛾23 

 

 

These modified stresses and strains can be implemented in the governing equation based on the 

principle of virtual work.  A final note is that with the introduction of rotations as separate nodal 

degrees of freedom in addition to displacements, the governing equation takes an extra load term, 

representing the virtual work due to applied distributed moments on the structure, 𝒎.  The 

augmented form then becomes 

 

∫ [
𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶]𝝐𝑡𝑜𝑡𝑎𝑙𝑑Ω
Ω

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫ [𝑁]𝑇𝒎𝑑Ω
Ω

 

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

−∫ Δ𝑇 [
𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝜶𝑇𝐸𝑑Ω
Ω

= 0 

(3.62) 

 

The Poisson equation for the temperature distribution in shells is the same as it is for solid 

elements, using the nodal basis functions of Table 3.3 and the definition of heat flux in Eq. (3.50).  

These, along with Eqs. (3.59), (3.60), (3.61) and Table 3.4 for elasticity can be implemented in the 

governing equations Eq. (3.44) for static thermoelastic analysis of shells. 
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}
 
 
 
 
 
 

 
 
 
 
 
 

= 
{
 
 
 
 
 
 

 
 
 
 
 
 

      
  
  
  
  
  
  
  
  
 
 

 

}
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]
 
 
 
 
 
 
 
 
 
 
 
 
−1
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3.2.3   Beam Elements 

 

Beam elements, like shell elements are formulated for structures with certain characteristics and  

kinematic assumptions.  They are intended to model long, slender members that are relatively thin 

in both transverse normal directions, compared to the length in the longitudinal direction.  The 

most common classical beam theory is Bernoulli beam theory [79].  The basic kinematic 

assumptions for beam structures are similar to those for shells, in fact Kirchhoff plate theory is 

often thought of as an extension of Bernoulli beam theory.  These basic assumptions are: 

 

1. Any cross-sectional plane normal to the longitudinal direction of a beam will remain 

planar and normal to the longitudinal tangent direction after deformation. 

2. Any normal cross-sectional plane will not warp or change shape within its plane after 

deformation. 

 

Under these assumptions, the displacement field for small deformations in a coordinate system 

with the 1-direction aligned in the longitudinal direction can be expressed: 

 

𝑢1 = 𝑢𝑚,1 − 𝑥3
𝜕𝑢𝑚,3
𝜕𝑥1

− 𝑥2
𝜕𝑢𝑚,2
𝜕𝑥1

 

𝑢2 = 𝑢𝑚,2 

𝑢3 = 𝑢𝑚,3 

(3.63) 

 

Replacing the displacement derivatives with transverse rotations, 

 

𝑢1 = 𝑢𝑚,1 + 𝑥3𝜃2 − 𝑥2𝜃3 

𝑢2 = 𝑢𝑚,2 

𝑢3 = 𝑢𝑚,3 

(3.64) 

 

As is the case with shell elements, beam elements define both displacements and rotations in all 

three dimensions as nodal degrees of freedom, with internal degrees of freedom to represent 
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curvature in transverse directions.  Unlike shell elements, however, the internal modes of curvature 

exist in both principal directions normal to the longitudinal axis of the beam instead of just one 

direction normal to a midplane.  The assumed form for displacement and rotation at the 

longitudinal axis of the beam can be expressed as 

 

𝒖𝑚 = [𝑈]𝑵 

𝜽 = [𝜃]𝑵 
(3.65) 

 

where 

 

[𝑈] = [

𝑼𝑛𝑑,1
𝑇

𝑼𝑛𝑑,2
𝑇

0
𝑼𝑖𝑛𝑡,2
𝑇

𝑼𝑛𝑑,3
𝑇 𝑼𝑖𝑛𝑡,3

𝑇

] 

[𝜃] = [

𝜽1
𝑇 0

𝜽2
𝑇 0

𝜽3
𝑇 0

]  

𝑵 = {
𝑵𝑛𝑑
𝑵𝑖𝑛𝑡

} 

(3.66) 

 

Only one type of beam element is implemented in AStrO, a two-node version with schematic 

details given in Table 3.5.  The same nodal degrees of freedom and method for modeling linear 

vs. nonlinear geometry developed for shells in Section 3.2.2 apply to beam elements as well.  The 

critical difference is in the set of deformation modes used in the principle of virtual work.  Recall 

that the virtual work due to elastic strain can be defined in terms of any set of deformation modes 

and their corresponding work conjugates.  Beam elements use an alternate set, other than 

fundamental strains and stresses due to geometric considerations. 

 Most importantly, beam structures in the context of finite element modeling are typically 

defined not in terms of an exact geometric shape, but in terms of length and a set of cross-sectional 

properties, namely area 𝐴, second moment of area in each transverse direction 𝐼2 and 𝐼3, and polar 

moment of area about the longitudinal axis 𝐽.  These parameters alone cannot define the exact 

geometry of a beam, and therefore high-fidelity resolution of strain and stress distribution is not 

possible.  In this case there is little to be gained from trying to keep the formulation in terms of 

fundamental stress and strain. 
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 Instead, the set of deformation modes used in the principle of virtual work are longitudinal 

strain 𝜖1, curvature about the transverse axes 𝜅2 and 𝜅3, transverse shear strains 𝛾12 and 𝛾13, and 

longitudinal twist 𝜃1
′  as defined in Eq. (3.67).  The transverse strains are included for the same 

reason as described for shells in the previous section. 

 

𝜖1  
𝜕𝑢1
𝜕𝑥1

  𝑼𝐼,𝑛𝑑,1 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

 
 

𝜅2  
𝜕𝜃2
𝜕𝑥1

  𝜽𝐼,2 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

 
 

𝜅3  
𝜕𝜃3
𝜕𝑥1

  𝜽𝐼,3 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

 
 

𝛾12  
𝜕𝑢2
𝜕𝑥1

− 𝜃3  𝑼𝐼,𝑛𝑑,2 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝑼𝐼,𝑖𝑛𝑡,2 ∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

− 𝜽𝐼,3 ∙ 𝑵𝑛𝑑 (3.67) 

𝛾13  
𝜕𝑢3
𝜕𝑥1

+ 𝜃2  𝑼𝐼,𝑛𝑑,3 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝑼𝐼,𝑖𝑛𝑡,3 ∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

+ 𝜽𝐼,2 ∙ 𝑵𝑛𝑑 
 

𝜃1
′   

𝜕𝜃1
𝜕𝑥1

  𝜽𝐼,1 ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

 
 

 

The definitions for instantaneous nodal degrees of freedom are the same as those given in Table 

3.4.  The integration of total virtual work for beams is performed in one dimension along the 

longitudinal direction, so the effective stiffness matrix is composed of the coefficients that form 

the corresponding conjugates of work per unit length, shown in Eq. (3.68).  The work conjugates 

by name are longitudinal force 𝐹1, bending moments about transverse axes 𝑀2 and 𝑀3, transverse 

shear forces 𝐹12 and 𝐹13, and torsion about the longitudinal axis 𝑇1. 

 

{
 
 

 
 
𝐹1
𝑀2
𝑀3
𝐹12
𝐹13
𝑇1 }
 
 

 
 

=

[
 
 
 
 
 
𝐸1𝐴   
 𝐸1𝐼2  
  𝐸1𝐼3

(0)

   
 (0)  
   

𝐺12𝐴   
 𝐺13𝐴  
  𝐺12 𝐽]

 
 
 
 
 
 

{
 
 

 
 
𝜖1
𝜅2
𝜅3
𝛾12
𝛾13
𝜃′1}
 
 

 
 

 (3.68) 

 

 The forces and moments in Eq. (3.68) can be put in place of stresses, and the strains and 

curvatures in place of strains in the principle of virtual work to form the governing equations of 

static elasticity.  Again, the temperature distribution can be solved for the same way as before via 

the Poisson equation, except with fluxes and gradients only applicable in the 1-direction.  These 

considerations lead to the modified variational governing equations for thermoelastic response: 

{
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∫(𝝈 ∙ 𝛿𝝐)𝑑𝑥1
𝐿

+∫𝜉(𝒖̇𝑚 ∙ 𝛿𝒖𝑚)𝑑𝑥1
𝐿

+∫𝜌(𝒖̈𝑚 ∙ 𝛿𝒖𝑚)𝑑𝑥1
𝐿

 

−∫(𝒇 ∙ 𝛿𝒖𝑚)𝑑𝑥1
𝐿

−∫(𝒎 ∙ 𝛿𝜽)𝑑𝑥1
𝐿

− (𝑭 ∙ 𝛿𝒖𝑚)
 
 |0
𝐿
− (𝑴 ∙ 𝛿𝜽)

 
 |0
𝐿
= 0 

−∫ 𝑞1𝛿 (
𝑑𝑇

𝑑𝑥1
)𝑑𝑥1

𝐿

+∫𝜌𝐶𝑝𝑇̇𝛿𝑇𝑑𝑥1
𝐿

−∫𝑄𝛿𝑇𝑑𝑥1
𝐿

+ (𝑞1𝛿𝑇)
 
 |0
𝐿
= 0 

(3.69) 

 

In Eq. (3.69), 𝝈 and 𝝐 represent the force and strain/deformation vectors shown in Eq. (3.68), and 

𝜉, 𝜌, 𝒇, 𝒎, and 𝑄, are damping force, mass, applied force, applied moment, and heat generation 

per unit length, instead of per unit volume as with the solid/shell element formulations.  In this 

one-dimensional case, integration by parts produces terms for concentrated force, moment and flux 

on the ends of a beam structure, analogous to the surface flux and tractions in previous cases.  

Using the assumed forms given in Eqs. (3.65) and (3.66), along with the basis function definitions 

given in Table 3.5, the discretized equations for beam elements can be derived as was done 

previously, with Eq. (3.69) as the starting point. 

 

Table 3.5  Geometry and basis definition for beam element. 

Element Type Basis Functions Integration Points 

[𝜼𝟏, 𝒘] 

two-node beam 

 

Nodal: 

 

Internal, 𝑢𝑚,2, 𝑢𝑚,3: 

 

 

 

 

3.3   Dynamic Analysis 

 

In dynamic thermoelastic analysis, all terms of the governing equations, Eq. (3.30) and Eq. (3.36) 

participate, including the time-dependent terms.  The solution is spatially discretized using the 

same element basis functions as for static analysis, but the nodal degrees of freedom become time-
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dependent.  The time-derivatives of the fundamental field variables of displacement and 

temperature can then be expressed 

 

𝒖̇ = [𝑁](𝒙)𝑼̇(𝑡) 

𝒖̈ = [𝑁](𝒙)𝑼̈(𝑡) 

𝑇̇ = 𝑵(𝒙) ∙ 𝝓̇(𝑡) 

(3.70) 

 

AStrO is intended for general-purpose implicit time integration, so the time-evolution of variables 

is found by marching through a series of time steps, separated by a finite time interval Δ𝑡, and 

solving for the state at each step based on the instantaneous loading and the state at the previous 

step.  The state of variables at a given time step relates to the state at the previous time step through 

Taylor-series-based expansions.  Specifically, AStrO uses the Newmark Beta expansion [83], 

 

𝑼 
𝑛+1 = 𝑼 

𝑛 + Δ𝑡𝑼̇ 
𝑛 +

1

2
Δ𝑡2 ((1 − 2𝛽)𝑼̈ 

𝑛 + 2𝛽𝑼̈ 
𝑛+1)      0 < 𝛽 ≤

1

2
 

𝑼̇ 
𝑛+1 = 𝑼̇ 

𝑛 + Δ𝑡 ((1 − 𝛾)𝑼̈ 
𝑛 + 𝛾𝑼̈ 

𝑛+1)      0 < 𝛾 ≤ 1  

𝝓 
𝑛+1 = 𝝓 

𝑛 + Δ𝑡 ((1 − 𝛾)𝝓̇ 
𝑛 + 𝛾𝝓̇ 

𝑛+1)      0 < 𝛾 ≤ 1 

(3.71) 

 

Equation (3.71) is a scheme for implicit time integration, and is well-established for structural 

problems.  The superscript 𝑛 denotes the time step of each vector.  The parameters 𝛽 and 𝛾 can 

be user-defined within the ranges shown, and are typically between 
1

4
≤ 𝛽 ≤

1

2
, and 

1

2
≤ 𝛾 ≤ 1.  

With the parameters in the high range the scheme is more stable, but less accurate, while in the 

mid-range the scheme is most accurate but less stable (first-order accurate at 𝛽 =
1

2
, 𝛾 = 1, 

second-order accurate at 𝛽 =
1

4
, 𝛾 =

1

2
), [76, 83].  

 Now adopt the following shorthand notation for the terms in the full dynamic governing 

equations: 
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𝑹𝑢,𝑘
𝑛 = ∫ [

𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶]𝝐𝑑Ω
Ω

 (𝑼 = 𝑼𝑛) 

𝑹𝑢,𝑐
𝑛 = ∫ 𝜉[𝑁]𝑇𝒖̇𝑛𝑑Ω

Ω

= ∫𝜉[𝑁]𝑇[𝑁]𝑼̇𝑛𝑑Ω 
Ω

= [𝐶𝑢]𝑼̇
𝑛 

𝑹𝑢,𝑚
𝑛 = ∫ 𝜌[𝑁]𝑇𝒖̈𝑛𝑑Ω

Ω

= ∫𝜌[𝑁]𝑇[𝑁]𝑼̈𝑛𝑑Ω 
Ω

= [𝑀𝑢]𝑼̈
𝑛 

𝑹𝑢,𝑎𝑝𝑝
𝑛 = −∫ [𝑁]𝑇𝒇𝑛𝑑Ω

Ω

−∫[𝑁]𝑇𝒕𝑛𝑑𝑆
𝑆

 

𝑹𝑢,𝑡ℎ
𝑛 = −∫ Δ𝑇 [

𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝜶𝑇𝐸𝑑Ω
Ω

 (𝑼 = 𝑼𝑛) 

𝑹𝜙,𝑘
𝑛 = −∫ [∇𝑁]𝒒𝑛𝑑Ω

Ω

= [𝐾𝜙]𝝓
𝑛 

𝑹𝜙,𝑚
𝑛 = ∫𝑵𝜌𝐶𝑝𝑇̇

𝑛𝑑Ω
Ω

= ∫𝜌𝐶𝑝𝑵𝑵
𝑇𝝓̇𝑛𝑑Ω

Ω

= [𝑀𝜙]𝝓̇
𝑛 

𝑹𝜙,ℎ𝑔
𝑛 = −∫𝑵𝑄𝑛𝑑Ω

Ω

+∫𝑵(𝒒𝑛 ∙ 𝒏)𝑑𝑆
𝑆

 

(3.72) 

 

Using this notation, the governing equations for the solution at time step 𝑛 + 1 can be expressed 

 

𝑹𝑢
𝑛+1 = 𝑹𝑢,𝑘

𝑛+1 +𝑹𝑢,𝑐
𝑛+1 + 𝑹𝑢,𝑚

𝑛+1 + 𝑹𝑢,𝑎𝑝𝑝
𝑛+1 + 𝑹𝑢,𝑡ℎ

𝑛+1 = 0 

𝑹𝜙
𝑛+1 = 𝑹𝜙,𝑘

𝑛+1 + 𝑹𝜙,𝑚
𝑛+1 + 𝑹𝜙,ℎ𝑔

𝑛+1 = 0 
(3.73) 

 

One further modification is made to the equations of elasticity, known as the Hilber-Hughes-

Taylor alpha method [76].  In this method, an additional scalar parameter 𝛼 is introduced, set in 

the range −1 < 𝛼 ≤ 0, and the governing equation for the 𝑛 + 1 time step is modified to 

 

𝑹𝑢
𝑛+1 = (1 + 𝛼)(𝑹𝑢,𝑘

𝑛+1 + 𝑹𝑢,𝑐
𝑛+1 + 𝑹𝑢,𝑎𝑝𝑝

𝑛+1 ) − 𝛼(𝑹𝑢,𝑘
𝑛 + 𝑹𝑢,𝑐

𝑛 +𝑹𝑢,𝑎𝑝𝑝
𝑛 ) + 𝑹𝑢,𝑚

𝑛+1 +𝑹𝑢,𝑡ℎ
𝑛+1 = 0 (3.74) 

 

If 𝛼 is set to a value of zero, Eq, (3.74) becomes equivalent to the original Newmark Beta scheme.  

By adjusting the parameters 𝛽, 𝛾, and 𝛼, within the correct range, the scheme can be made both 

second-order accurate and unconditionally stable.  This makes it a robust and versatile method. 

 Using the Newmark Beta expansions of Eq. (3.71), the governing equations can be 

expressed entirely in terms of displacement and temperature at the new time step, 𝑼𝑛+1 and 𝝓𝑛+1, 
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and all variables at the previous time step.  The initial state of the system at time 𝑡 = 0 must be 

known, and the state at every subsequent time step can be found with the following process: 

 

𝑓𝑜𝑟 𝑛 = 0 𝑡𝑜 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠):                                                        

(1) 𝑠𝑜𝑙𝑣𝑒 𝑹𝜙
𝑛+1(𝝓𝑛+1, 𝝓𝑛, 𝝓̇𝑛) = 0  𝑓𝑜𝑟 𝝓𝑛+1                   

(2) 𝑠𝑜𝑙𝑣𝑒 𝑹𝑢
𝑛+1(𝑼𝑛+1, 𝑼𝑛, 𝑼̇𝑛, 𝑼̈𝑛, 𝝓𝑛+1) = 0  𝑓𝑜𝑟 𝑼𝑛+1 

(3) 𝑢𝑝𝑑𝑎𝑡𝑒 𝝓̇𝑛+1, 𝑼̇𝑛+1 𝑎𝑛𝑑 𝑼̈𝑛+1 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (3.71)         

𝑒𝑛𝑑 𝑓𝑜𝑟                                                                                                                  

(3.75) 

 

This overall approach is valid regardless of element type or the presence of nonlinear geometry.  

The difference between those cases lie mainly in the construction of the static terms as described 

in Section 3.2, and the details of the solution process on each time step described in Section 3.4. 

 

3.4   Solution of Finite Element Equations 

 

With the theoretical formulation of the finite element equations for thermoelastic modeling 

established, the process of obtaining the solutions can now be examined.  A number of 

considerations exist regarding how to approach the solution process, each with several possible 

ways of addressing them.  Certain methods chosen for implementation in AStrO, and the reasons 

for choosing them will now be described. 

 

3.4.1   Overall Approach 

 

In any finite element analysis, the task of obtaining the solution for fundamental field variables 

consists of determining the discrete set of degrees of freedom that define the solution.  Since the 

degrees of freedom are invariably interdependent, this involves simultaneously solving the coupled 

discretized governing equations defining the interaction degrees of freedom.  These equations may 

be linear or nonlinear, and they may apply to a single static state or to each of a series of time steps 

in a dynamic analysis.  However, in all cases the core process to obtain solutions can be summed 

up succinctly. 
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 For analyses assuming linear geometry (and all other forms of linearity), the solution for 

static equilibrium or for the state at a given time step can be found by solving the following linear 

system: 

 

[
 
 
 
 [
𝜕𝑹𝜙

𝜕𝝓
] [

𝜕𝑹𝜙

𝜕𝑼
]

[
𝜕𝑹𝑢
𝜕𝝓

] [
𝜕𝑹𝑢
𝜕𝑼

]
]
 
 
 
 

{
 
 

 
 

 
 
𝝓
 
𝑼 
 }
 
 

 
 

=

{
 
 

 
 

 
 

−𝑹𝜙(𝝓 = 0,𝑼 = 0)
 

−𝑹𝑢(𝝓 = 0,𝑼 = 0)
 
 }

 
 

 
 

 (3.76) 

 

For cases with nonlinearity, the system can be solved with the Newton/Newton-Raphson method, 

in which the following iterative process is performed: 

 

(1) 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝝓 = 𝝓0, 𝑼 = 𝑼0                                                          

(2) 𝑤ℎ𝑖𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑:   

        (𝑎) 𝑠𝑜𝑙𝑣𝑒 

[
 
 
 
 [
𝜕𝑹𝜙

𝜕𝝓
] [

𝜕𝑹𝜙

𝜕𝑼
]

[
𝜕𝑹𝑢
𝜕𝝓

] [
𝜕𝑹𝑢
𝜕𝑼

]
]
 
 
 
 

{
 
 

 
 

 
 
Δ𝝓
 
Δ𝑼 
 }
 
 

 
 

=

{
 
 

 
 

 
 

−𝑹𝜙(𝝓,𝑼)
 

−𝑹𝑢(𝝓,𝑼) 
 }

 
 

 
 

 

(𝑏) 𝑢𝑝𝑑𝑎𝑡𝑒  
𝝓 = 𝝓 + Δ𝝓
𝑼 = 𝑼+ Δ𝑼

                                          

(𝑐) 𝑐ℎ𝑒𝑐𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎          

(3.77) 

 

Linear analysis is in fact a special case of the iterative Newton-Raphson process, in which 

the solution is initialized at zero, and only a single iteration of the process is required to bring the 

residual of the equations to zero and obtain the final solution.  As described in Section 3.1.3, AStrO 

assumes a one-way dependence of displacement on temperature.  Thermal material properties are 

also assumed constant with respect to temperature.  These assumptions simplify the solution 

process in two ways.  First, the term [
𝜕𝑹𝜙

𝜕𝑼
] is zero, meaning the temperature solution alone can be 

found first, followed by the displacement solution from the temperature result.  Second, the 

equations for thermal distributions are always linear, whether or not linear geometry is assumed in 

the elastic response.  Therefore, the temperature can be solved from the linear system 
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[
𝜕𝑹𝜙

𝜕𝝓
]𝝓 = −𝑹𝜙(𝝓 = 0) (3.78) 

 

Then, using the resulting distribution of Δ𝑇 in 𝑹𝑢,𝑡ℎ, the displacement can be found either from 

linear solution or Newton-Raphson iterations on 𝑹𝑢 = 0: 

 

𝐿𝑖𝑛𝑒𝑎𝑟:  [
𝜕𝑹𝑢
𝜕𝑼

]𝑼 = −𝑹𝑢(𝑼 = 0)  

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟:  
(1)   [

𝜕𝑹𝑢
𝜕𝑼

]Δ𝑼 = −𝑹𝑢(𝑼)

 (2)    𝑼 = 𝑼 + Δ𝑼                 
 

(3.79) 

 

When performing dynamic analysis, the time-derivatives of the variables need to be 

updated after each solution or incrementation of 𝑼 and 𝝓, according to Eq. (3.71).  Also, when 

forming the Jacobian matrix [
𝜕𝑹 

𝜕𝑼
], all terms must account for the dependence of the time-

derivatives at the new time step on the fundamental variable at the new time step.  With that in 

mind, the following differentiation of terms holds, given the Newmark Beta expansions: 

 

[
𝜕𝑹𝑢,𝑘

𝑛+1

𝜕𝑼𝑛+1
] =  ∫ ([

𝜕𝝐

𝜕𝑼𝑛+1
]
𝑇

[𝐶] [
𝜕𝝐

𝜕𝑼𝑛+1
] +∑𝜎𝑖 [

𝜕

𝜕𝑼𝑛+1
(
𝜕𝜖𝑖

𝜕𝑼𝑛+1
)]

6

𝑖=1

  )  𝑑Ω
Ω

= [𝐾𝑢] (𝑼
𝑛+1) 

[
𝜕𝑹𝑢,𝑐

𝑛+1

𝜕𝑼𝑛+1
] = [

𝜕𝑹𝑢,𝑐
𝑛+1

𝜕𝑼̇𝑛+1
] [
𝜕𝑼̇𝑛+1

𝜕𝑼̈𝑛+1
] [
𝜕𝑼̈𝑛+1

𝜕𝑼𝑛+1
] = [𝐶𝑢](𝛾Δ𝑡[𝐼]) (

1

𝛽Δ𝑡2
[𝐼]) =

𝛾

𝛽Δ𝑡
[𝐶𝑢] 

[
𝜕𝑹𝑢,𝑚

𝑛+1

𝜕𝑼𝑛+1
] = [

𝜕𝑹𝑢,𝑚
𝑛+1

𝜕𝑼̈𝑛+1
] [
𝜕𝑼̈𝑛+1

𝜕𝑼𝑛+1
] + [𝑀𝑢] (

1

𝛽Δ𝑡2
 [𝐼]) =

1

𝛽Δ𝑡2
 [𝑀𝑢] 

[
𝜕𝑹𝜙,𝑘

𝑛+1

𝜕𝝓𝑛+1
] = −∫ [∇𝑁] [

𝜕𝒒𝑛+1

𝜕𝝓𝑛+1
] 𝑑Ω

Ω

= [𝐾𝜙] 

[
𝜕𝑹𝜙,𝑚

𝑛+1

𝜕𝝓𝑛+1
] = [

𝜕𝑹𝜙,𝑚
𝑛+1

𝜕𝝓̇𝑛+1
] [
𝜕𝝓̇𝑛+1

𝜕𝝓𝑛+1
] = [𝑀𝜙] (

1

𝛾Δ𝑡
[𝐼]) =

1

𝛾Δ𝑡
[𝑀𝜙] 

(3.80) 

 

By differentiating Eqs. (3.73) and (3.74) using the appropriate substitutions from Eq. (3.80), the 

global equation matrices for a dynamic time step can be written: 
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[
𝜕𝑹𝑢

𝑛+1

𝜕𝑼𝑛+1
] = (1 + 𝛼) ([𝐾𝑢] +

𝛾

𝛽Δ𝑡
[𝐶𝑢]) +

1

𝛽Δ𝑡2
[𝑀𝑢]  

[
𝜕𝑹𝜙

𝑛+1

𝜕𝝓𝑛+1
] = [𝐾𝜙] +

1

𝛾Δ𝑡
[𝑀𝜙] 

(3.81) 

 

 As a final note, the damping properties of a structure are often not obtainable by any 

analytical means, and it is typical to represent the damping matrix as a linear combination of the 

mass matrix and the stiffness matrix: 

                               

[𝐶𝑢] = 𝑎𝑅𝐷[𝐾𝑢] + 𝑏𝑅𝐷[𝑀𝑢]  (3.82) 

 

The coefficients 𝑎𝑅𝐷 and 𝑏𝑅𝐷 are estimated or determined empirically from experiment.  This 

technique is known as Rayleigh damping [84], and AStrO contains optional parameters that can 

be used to define the damping coefficients. 

 

3.4.2   Boundary Conditions and Multi-Point Constraints 

 

Most of the time, finite element structures have certain boundary conditions and constraints placed 

on the degrees of freedom of the solution.  In fact, in static analysis some constraints must be 

present in order for a unique solution to exist, and the governing equations will be unsolvable 

without them.  There are several ways to modify the governing equations to enforce boundary 

conditions and constraints, and the method for AStrO was chosen based on certain desired criteria. 

 Using the formulations implemented and described in the previous sections, the governing 

equation matrices for both the thermal and elastic equations are symmetric.  This is a convenient 

and desirable property from the point of view of solving linear systems, and applying constraints 

in a way that preserves matrix symmetry is preferred.  It is also advantageous to use a method that 

does not increase the dimension of the equation matrix or produce problematic characteristics like 

blocks of zeros on the diagonal.  Furthermore, since the ultimate goal is to perform sensitivity 

analysis, a method of applying constraints that allows straightforward differentiation of the 

governing equations is desirable. 
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 Considering these factors, the method chosen for applying constraints is known as the 

penalty method.  If a vector 𝑼 is governed by the linear system: 

 

[𝐾]𝑼 = 𝑭 (3.83) 

 

where [𝐾] is a symmetric matrix, then 𝑼 corresponds to the minimum of a scalar function given 

by 

 

𝜓 =
1

2
𝑼𝑇[𝐾]𝑼 − 𝑼𝑇𝑭 (3.84) 

 

 If it is then desired to apply a set of linear constraints to 𝑼 of the form 

 

𝒓𝑏𝑐 = [𝐶𝑏𝑐]𝑼 − 𝒒𝑏𝑐 = 0 (3.85) 

 

for a constant matrix [𝐶𝑏𝑐] and a constant vector 𝒒𝑏𝑐, then one approach to satisfying both the 

linear system and the constraints is to simultaneously minimize the scalar function 𝜓 and the 2-

norm of the constraint residual 𝒓𝑏𝑐 as a single scalar function given by 

 

𝜓𝑏𝑐 =
1

2
𝑼𝑇[𝐾]𝑼 − 𝑼𝑇𝑭 +

1

2
𝜇(𝒓𝑏𝑐

𝑇 𝒓𝑏𝑐) (3.86) 

 

where 𝜇 is a scalar parameter set by the user.  Setting the gradient of the scalar function 𝜓𝑏𝑐 to 

zero gives a new composite linear system: 

 

𝜕𝜓𝑏𝑐
𝜕𝑼

= [𝐾]𝑼 − 𝑭 + 𝜇 [
𝜕𝒓𝑏𝑐
𝜕𝑼

]

𝑇

𝒓𝑏𝑐 = [𝐾]𝑼 − 𝑭 + 𝜇[𝐶𝑏𝑐]
𝑇([𝐶𝑏𝑐]𝑼 − 𝒒𝑏𝑐) = 0 

⟹ [[𝐾] + 𝜇[𝐶𝑏𝑐]
𝑇[𝐶𝑏𝑐]]𝑼 = 𝑭 + 𝜇[𝐶𝑏𝑐]

𝑇𝒒𝑏𝑐 

(3.87) 

 

The composite system after applying constraints remains symmetric, and the modification involves 

simply adding the constraint penalty term to the original residual of the equations.  The governing 
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equations for the temperature and displacement solutions are each augmented with a penalty term 

of this form to satisfy constraints and boundary conditions, so that the new residual vectors become 

 

𝑹𝑢 → 𝑹𝑢 + 𝜇[𝐶𝑢,𝑏𝑐]
𝑇
([𝐶𝑢,𝑏𝑐]𝑼 − 𝒒𝑢,𝑏𝑐) = 𝑹𝑢 +𝑹𝑢,𝑏𝑐 

𝑹𝜙 → 𝑹𝜙 + 𝜇[𝐶𝜙,𝑏𝑐]
𝑇
([𝐶𝜙,𝑏𝑐]𝑼 − 𝒒𝜙,𝑏𝑐) = 𝑹𝜙 + 𝑹𝜙,𝑏𝑐 

(3.88) 

 

 The penalty method has two significant drawbacks despite its advantages.  It does not 

satisfy the constraint equations exactly and it results in an ill-conditioned system.  The 

minimization of 𝜓𝑏𝑐 could be thought of as a compromise between satisfaction of the original 

system and satisfaction of the constraints.  The parameter 𝜇 represents the priority placed on 

minimization of the constraint residual, so it must be set sufficiently high to enforce the constraints 

strongly.  But setting it too high gives the system a high condition number, possibly leading to 

errors or poor solution convergence. 

 Nevertheless, both of these drawbacks can generally be compensated for easily.  Although 

the constraints are technically not exactly satisfied, with a value of 𝜇 around 104 to 105 times the 

average value of the matrix [𝐾], they are generally satisfied to a degree more than adequate for the 

majority of applications.  If, however, it is required to satisfy constraints to a further degree of 

precision, it is possible to refine accuracy with a corrective iteration in which the applied load is 

updated to simulate the reaction forces on degrees of freedom due to constraints.  This can be done 

inexpensively with most common linear solution methods.  The degradation of the condition 

number can also generally be compensated for with proper pre-conditioning, if it creates a problem 

in the solution process.  For these reasons, the benefits the penalty constraint method were decided 

to be worth the drawbacks for implementation in AStrO. 

  

3.4.3   Condensation of Internal Degrees of Freedom 

 

As explained in Section 3.2, several element types implemented in AStrO have internal degrees of 

freedom, which are not node-associated and do not interact directly with other elements.  These 

include hexahedral solid elements with incompatible bending modes, as well as shell and beam 

elements with internal displacement modes representing out-of-plane and off-axis curvatures.  Part 
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of the power of these internal modes is that they can be condensed out of the global equation 

matrices, so they add compliance and richness of solution space without adding to the effective 

global matrix dimension.  The details of this process will now be explained. 

 The stiffness matrix for a given element in a structure can be constructed as 

 

[𝐾𝑢,𝑒𝑙] = [
𝜕𝑹𝑢,𝑒𝑙
𝜕𝑼𝑒𝑙

] (3.89) 

 

with 𝑹𝑢,𝑒𝑙 as defined in Eq. (3.72), integrated over the domain of that element.  The displacement 

degrees of freedom of that element are governed by the linear system: 

 

[𝐾𝑢,𝑒𝑙]𝑼𝑒𝑙 = −𝑹𝑢,𝑒𝑙 (3.90) 

 

If the displacement vector contains internal degrees of freedom, they can be segregated from the 

nodal degrees of freedom and the matrix system can be partitioned as follows: 

 

[
[𝐾11] [𝐾12]
[𝐾21] [𝐾22]

] {
𝑼𝑛𝑜𝑑𝑎𝑙
𝑼𝑖𝑛𝑡

} = {
−𝑹𝑛𝑜𝑑𝑎𝑙

0
} (3.91) 

 

The load vector −𝑹𝑛𝑜𝑑𝑎𝑙 represents all the loads applied to the nodal degrees of freedom of the 

element, which includes forces due to elastic stress in neighboring elements, and cannot be known 

without resolving the global response for the entire structure.  The internal degrees of freedom, 

however, do not have any directly applied loads, and their only interactions are with the degrees 

of freedom of the present element.  This means the solution for the internal degrees of freedom 

can be completely represented from the second row block of Eq. (3.91) as 

 

𝑼𝑖𝑛𝑡 = −[𝐾22]
−1[𝐾21]𝑼𝑛𝑜𝑑𝑎𝑙     (3.92) 

 

Substituting the above into the first row block of the matrix gives 

 

[[𝐾11] − [𝐾12][𝐾22]
−1[𝐾21]]𝑼𝑛𝑜𝑑𝑎𝑙 = −𝑹𝑛𝑜𝑑𝑎𝑙 (3.93) 
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 The matrix multiplying 𝑼𝑛𝑜𝑑𝑎𝑙 in Eq. (3.93) is a condensed matrix with the effect of the 

internal degrees of freedom absorbed within.  The condensed matrices can be assembled for each 

element, to give a global system containing only the nodal degrees of freedom.  After the nodal 

degrees of freedom are obtained from solution of the global system, the internal degrees of freedom 

can then be evaluated from Eq. (3.92) if need be.  For geometrically linear analysis this is usually 

not necessary, but with nonlinear geometry and sensitivity analysis the internal degrees of freedom 

factor into the iterative re-evaluation of the stiffness matrix.  AStrO stores the internal degrees of 

freedom and the internal range of each element matrix in separate data structures for this purpose. 

 

3.4.4   Methods of Solution to Linear Systems 

 

A finite element result is obtained through the solution of the discretized governing equations.  

Whether the equations are linear or nonlinear, the critical operation is the solution of linear 

systems.  There are many ways to solve linear systems, each with strengths and weaknesses, and 

it is prudent to have some selection for different situations.  There are two main methods for 

solution of linear systems built into AStrO: 𝐿𝐷𝐿𝑇 factorization and conjugate gradient. 

 The default solver method is 𝐿𝐷𝐿𝑇 factorization, a special case of 𝐿𝑈 factorization for 

symmetric matrices.  The process involves constructing the matrices [𝐿] and [𝐷], such that 

 

[𝐿][𝐷][𝐿]𝑇 = [𝐾] (3.94) 

 

where [𝐿] is a lower-triangular matrix with all diagonal terms having a value of one, [𝐷] is a matrix 

of all zeros except on the diagonal terms, and [𝐾] is the original equation matrix in the linear 

system [𝐾]𝑼 = 𝑭.  The general algorithm for obtaining the matrices [𝐿] and [𝐷] can be described 

as follows: 
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𝐺𝑖𝑣𝑒𝑛: 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 [𝐾] 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑛                                                           

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛:                                                                         

𝐷𝑖𝑖 = 𝐾𝑖𝑖 − ∑ 𝐿𝑖𝑘
2 𝐷𝑘𝑘

𝑖−1

𝑘=(𝑚𝑖𝑛𝐶𝑜𝑙)

                           

𝑓𝑜𝑟 𝑗 = (𝑖 + 1) 𝑡𝑜 (𝑚𝑎𝑥𝑅𝑜𝑤):                         

𝐿𝑗𝑖 =
𝐾𝑗𝑖 − ∑ 𝐿𝑖𝑘𝐷𝑘𝑘𝐿𝑗𝑘

𝑖−1
𝑘=(𝑚𝑖𝑛𝐶𝑜𝑙)

𝐷𝑖𝑖
 

𝑒𝑛𝑑 𝑓𝑜𝑟                                                                  

𝑒𝑛𝑑 𝑓𝑜𝑟                                                                                       

(3.95) 

 

The factorization is performed in place, so that the diagonal terms of [𝐷] and non-diagonal terms 

of [𝐿] overwrite the corresponding original values in [𝐾].  The matrix [𝐾] is stored row by row, in 

the range from the first nonzero column in the row (𝑚𝑖𝑛𝐶𝑜𝑙) to the diagonal column.  This format 

is also known as skyline storage, and takes advantage of the sparseness of a matrix when the 

rows/columns are ordered so as to minimize the bandwidth of nonzero terms about the diagonal 

band.  The function is built into AStrO, without accessing an external library.  Following 

factorization, the solution to a linear system can be found using forward and backward substitution.  

This method is used as opposed to Cholesky factorization because it is valid for indefinite matrices 

as well as positive definite, while still taking advantage of matrix symmetry.  This property also 

proved very useful for a later study (see Chapter 6). 

 𝐿𝐷𝐿𝑇 is the default solver method because it is reliable and robust, and its effectiveness is 

relatively insensitive to ill-conditioning.  This is desirable not only because of the use of the penalty 

constraint method, as explained in Section 3.4.2, but also because many structures produce 

inherently ill-conditioned equation matrices due to geometry and boundary conditions.  Another 

advantage is that matrix factorization allows for the quick solution for multiple different linear 

systems with the same matrix but different right-hand-side vectors 𝑭, since the factorization step 

need only be performed once.  This can be very useful for dynamic analysis assuming linear 

geometry.   For these reasons, it is common in the structural analysis community to tend toward 

direct solver methods such as this. 

 The second solver method, conjugate gradient, is an iterative Krylov method designed for 

the minimization of the scalar function 𝜓, previously shown in Eq. (3.84), which is equivalent to 
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the solution for symmetric linear systems.  The conjugate gradient algorithm possesses a unique 

property among iterative methods in that it is, in mathematical theory, guaranteed to converge in 

a number of iterations no greater than the dimension of the matrix.  It does so by storing only one 

search direction at a time, and using a recursive formula for each new direction to effectively 

increase the search-space dimension on every iteration.  This is in contrast to the similar GMRES 

method, which is applicable to any matrix, symmetric or not, but must store a series of search 

directions and usually has no guaranteed maximum number of iterations to convergence.  The  

conjugate gradient method is a powerful tool that lends itself well to solutions of symmetric 

systems such as those typically seen in structural finite element analysis. 

 One consideration regarding the conjugate gradient method is that its convergence rate is 

sensitive to the condition number of the matrix, and performance is degraded for ill-conditioned 

systems.  In extreme cases, it can fail to converge altogether due to numerical issues.  For structural 

problems, this means that adequate preconditioning is essential for effective application of the 

method. 

 Preconditioning a system involves applying some matrix or operator to the original linear 

system to produce an improved condition number.  AStrO uses what is known as left-

preconditioning, where the alternate system is constructed of the form 

 

[𝑃]−1[𝐾]𝑼 = [𝑃]−1𝑭 (3.96) 

 

where [𝑃] is a symmetric matrix intended to approximate the matrix [𝐾].  Three basic options for 

defining the preconditioning matrix are available in AStrO.  The first is partial 𝐿𝐷𝐿𝑇 factorization, 

where [𝑃] is defined as [𝐾] in the region within a certain bandwidth around the diagonal, and zero 

outside that bandwidth.  The inverse operator is applied by performing full factorization on [𝑃], 

and using forward and back substitution on a given vector.  The second option is incomplete 𝐿𝐷𝐿𝑇 

factorization, where [𝑃] is defined as [𝐾] but the factorization is only performed on the nonzero 

entries, and zeros are assumed to remain zero.  The third option is block-Jacobi factorization, where 

[𝑃] is taken to be [𝐾] within square block regions of a certain dimension around the diagonal, and 

zero outside of the block regions.  Full factorization is performed on [𝑃] to apply the inverse 

operator. 
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 Most analyses can be performed with either of the two main solver methods, and the choice 

comes down to the user’s judgement.  Although 𝐿𝐷𝐿𝑇 factorization is the default, there are certain 

conditions in which conjugate gradient performs particularly well, and does not have all the 

memory requirements of a full matrix factorization.  Currently, AStrO does not have a parallel 

implementation, but if that advancement were to be made it would be an additional consideration 

into the most appropriate solver method. 

 Regardless of the solver method used, the global equation matrices of finite element 

analysis are generally very sparse, and it is beneficial to arrange the degrees of freedom in a way 

to make the solution process as efficient as possible.  As part of the input processing phase, AStrO 

re-orders the nodes of the finite element mesh according to their interactive connectivity in the 

equations and constraints.  Exactly how this is done depends on the solver options chosen.  If the 

default full 𝐿𝐷𝐿𝑇 or partial factorization with the conjugate gradient solver is used, it attempts to 

minimize the overall bandwidth of the global matrix around the diagonal by doing breadth-first 

level sort.  If the conjugate gradient solver with block-Jacobi preconditioning is chosen, it attempts 

to form blocks around the diagonals of the appropriate dimension with the highest density of 

nonzero entries as possible, to maximize the effectiveness of the preconditioner.  Much more 

discussion could be given about different alternatives and options for linear solvers, but it is a topic 

outside the focus of this thesis.  All analysis performed and documented in the present work 

employ the methods and options discussed in this section. 
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    Chapter 4                                                 

Sensitivity Analysis and the Adjoint 

Method for Thermoelastic Modeling 

 

For sensitivity analysis and optimization involving high-fidelity modeling, it is essential to use a 

method that minimizes the number of simulation runs required.  Methods like genetic algorithms 

and machine learning are powerful tools for global optimization, and applications with discrete 

design parameters or stochastic, non-deterministic behavior.  But typically, these methods require 

numerous evaluations of the objective function, sometimes multiple thousands or even millions.  

In high-fidelity computing applications that may take hundreds of core hours per simulation, this 

is generally not feasible, and alternative approaches must be used. 

 Gradient-based optimization is an efficient means of finding local extrema of objectives 

that are smooth, differentiable functions of a set of continuous variables.  For such problems, the 

gradient, or the sensitivity of the objective with respect to each variable, can serve as a guide for 

seeking the local extrema.  The concept is illustrated graphically in Fig. 4.1. 

 

 

Figure 4.1  Conceptual depiction of the gradient as a guiding direction to local extrema. 
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A gradient-based optimization algorithm begins with an initial guess for the function variables, 

and goes through an iterative process in which each cycle the variables are updated in an attempt 

to bring the objective closer to the desired extremum.  The direction and step length by which to 

increment the variables at each cycle are determined by some combined consideration of the 

objective gradient (and sometimes higher-order derivatives), and any applicable constraints.  Many 

variations of gradient methods exist, and efficient algorithms can often seek out local extrema in 

only a few iterations, though this is very case-dependent. 

 Even with a good gradient-based optimizer, however, if computational savings is the goal, 

an equally important consideration is the method of obtaining the objective sensitivities.  Many 

methods, such as finite difference, require function evaluations for every variable at every 

optimization cycle.  For a large number of variables this can become prohibitively costly.  The 

adjoint method provides a way to obtain objective sensitivities at a cost that is independent of the 

number of design variables, and is very efficient for large, high-fidelity gradient-based 

optimization problems.  This chapter outlines the overall approach of the adjoint method, as well 

as its application to thermoelastic structural modeling. 

 

4.1   General Formulation for the Discrete Adjoint Method 

 

In this section the general approach to applying the discrete adjoint method in an optimization 

problem is presented.  The adjoint method can be applied to any gradient-based optimization 

problem involving an objective function that is determined by the behavior of a physical or 

mathematical system, and ultimately by the solution to a deterministic set of governing equations.  

The adjoint can be applied to an equation in analytical form, termed the continuous adjoint, or to 

a set of discretized equations derived from the analytical form, the discrete adjoint.  The present 

work focuses exclusively on the discrete adjoint, and the remainder of this chapter is dedicated to 

the application of the adjoint to the discretized governing equations developed for thermoelastic 

modeling in Chapter 3. 

In gradient-based design optimization of dynamic systems, there exists some objective 

quantity 𝐿 to be optimized (either minimized or maximized) with respect to a set of design 

variables 𝑫, which define some set of physical characteristics or specifications of the system.  The 
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objective function can be posed as dependent on the design variables themselves, as well as on the 

system response, defined by the degrees of freedom of the discretized solution variables 𝑼, which 

in turn depends on the design variables.  This definition is expressed in Eq. (4.1). 

 

𝐿 = 𝐿(𝑫,𝑼(𝑫)) (4.1) 

 

From differentiation of Eq. (4.1), the total sensitivity of 𝐿 with respect to a given design variable, 

𝐷𝑖 is 

 

𝑑𝐿

𝑑𝐷𝑖
=
𝜕𝐿

𝜕𝐷𝑖
+ (

𝜕𝐿

𝜕𝑼
) ∙ (

𝜕𝑼

𝜕𝐷𝑖
) (4.2) 

 

Generally, the terms 
𝜕𝐿

𝜕𝑫
 and 

𝜕𝐿

𝜕𝑼
 are relatively inexpensive to calculate directly from the 

definition of the objective function.  The remaining term 
𝜕𝑼

𝜕𝐷𝑖
, however, tends to be more involved 

and challenging to evaluate.  The first step is understanding that the solution variables 𝑼 must 

always satisfy the appropriate set of governing equations, with the equation residual vector denoted 

𝑹, which is also dependent on the design variables.  

 

𝑹(𝑫,𝑼(𝑫)) = 0 (4.3) 

 

Differentiating Eq. (4.3) gives an expression for the sensitivity of 𝑼 with respect to a given design 

variable 𝐷𝑖, 

 

𝑑𝑹

𝑑𝐷𝑖
=
𝜕𝑹

𝜕𝐷𝑖
+ [
𝜕𝑹

𝜕𝑼
]
𝜕𝑼

𝜕𝐷𝑖
= 0⟹

𝜕𝑼

𝜕𝐷𝑖
= −[

𝜕𝑹

𝜕𝑼
]
−1 𝜕𝑹

𝜕𝐷𝑖
 (4.4) 

 

Substituting the expression for 
𝜕𝑼

𝜕𝐷𝑖
 into Eq. (4.2), the objective sensitivity can be expanded out as: 

 

𝑑𝐿

𝑑𝐷𝑖
=
𝜕𝐿

𝜕𝐷𝑖
− (

𝜕𝐿

𝜕𝑼
) ∙ ([

𝜕𝑹

𝜕𝑼
]

−1 𝜕𝑹

𝜕𝐷𝑖
) =

𝜕𝐿

𝜕𝐷𝑖
− (([

𝜕𝑹

𝜕𝑼
]

𝑇

)

−1
𝜕𝐿

𝜕𝑼
) ∙ (

𝜕𝑹

𝜕𝐷𝑖
) (4.5) 
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From Eq. (4.5), there are two main ways to go about evaluating the objective sensitivity.  

One way is to solve what is called the forward, or tangent problem, in which the following steps 

are performed for each design variable individually: 

 

(1) 𝑠𝑜𝑙𝑣𝑒 [
𝜕𝑹

𝜕𝑼
]
𝜕𝑼

𝜕𝐷𝑖
= −

𝜕𝑹

𝜕𝐷𝑖
 

(2) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒
𝑑𝐿

𝑑𝐷𝑖
=
𝜕𝐿

𝜕𝐷𝑖
+ (

𝜕𝐿

𝜕𝑼
) ∙ (

𝜕𝑼

𝜕𝐷𝑖
)  

(4.6) 

 

In a sense the tangent method is straightforward in implementation, as it closely parallels the 

process of running the original simulation for the system.  But notice that it requires the solution 

of a linear system for every design variable at a given design state.  This can be very costly if the 

number of design variables is large, and there can be hundreds or thousands in some cases. 

An alternate way of evaluating the objective sensitivity is to implement the adjoint.  The 

critical observation is that the terms 
𝜕𝐿

𝜕𝑼
 and [

𝜕𝑹

𝜕𝑼
] are invariant at a given design state, and do not 

take different values for each design variable.  Therefore, the product of these terms can be 

evaluated a single time at each design state, and used repeatedly for each design variable. The 

process then becomes to first evaluate the adjoint, 𝚲, by solving 

 

[
𝜕𝑹

𝜕𝑼
]

𝑇

𝚲 =
𝜕𝐿

𝜕𝑼
 (4.7) 

 

Then, for each design variable, obtain the sensitivity by evaluating 

 

𝑑𝐿

𝑑𝐷𝑖
=
𝜕𝐿

𝜕𝐷𝑖
− 𝚲 ∙ (

𝜕𝑹

𝜕𝐷𝑖
) (4.8) 

 

This way only one linear system must be solved at a given design state to get the objective 

sensitivity, regardless of the number of design variables.  The sensitivity of the governing 

equations, 
𝜕𝑹

𝜕𝐷𝑖
, is also generally inexpensive to evaluate, so the process for each design variable is 
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little more than a dot product of two vectors with the dimension of the system.  The use of the 

adjoint makes sensitivity analysis possible for problems that may be infeasible otherwise. 

 The only real drawback is from an implementation point of view, in that the application of 

the adjoint can be somewhat less intuitive than other methods.  This stems from the fact that the 

adjoint is obtained from the transpose system of the governing equations, as indicated in Eq. (4.7).  

For problems involving static analysis, where all solution variables are solved for simultaneously, 

this is usually not a difficult adjustment to make, especially in disciplines that produce symmetric 

governing equation matrices, like structural elastic and thermal equations.  For such cases, Eq. 

(4.7) can be implemented directly as-is, using the Jacobian matrix of the static governing 

equations. But in dynamic problems, or problems solved in a sequential manner, it requires a 

significantly different arrangement and order of operations, as will shortly be seen. 

 Consider the process of implicit time integration, such as is described in Chapter 3, Section 

3.3.  The state of a system is known at some initial point in time, and the state at a series of time 

steps are obtained in order, using the governing equations and the state of variables at the previous 

time step.  Although the state at each time step is solved for individually and sequentially, the 

solution history obtained throughout the entire time interval can be thought of as a single long 

vector of solution variables, governed by a single global system of equations, as represented in Eq. 

(4.9). 

 

𝑼 =

{
 
 

 
 
𝑼0

𝑼1

𝑼2

𝑼3

⋮ }
 
 

 
 

    𝑹 =

{
 
 

 
 

𝑹0(𝑼0)

𝑹1(𝑼0, 𝑼1)

𝑹2(𝑼1, 𝑼2)

𝑹3(𝑼2, 𝑼3)
⋮ }

 
 

 
 

   (4.9) 

 

If the complete Jacobian matrix was formed for this global space-time system, it would have the 

following structure: 

 

 

 

 

 



82 

 

[
𝜕𝑹

𝜕𝑼
] = 

[
𝜕𝑹0

𝜕𝑼0
] 0 0 0 ⋯  

[
𝜕𝑹1

𝜕𝑼0
] [

𝜕𝑹1

𝜕𝑼1
] 0 0 ⋯  

0 [
𝜕𝑹2

𝜕𝑼1
] [

𝜕𝑹2

𝜕𝑼2
] 0 ⋯ (4.10) 

0 0 [
𝜕𝑹3

𝜕𝑼2
] [

𝜕𝑹3

𝜕𝑼𝟑
] ⋯  

⋮ ⋮ ⋮ ⋱ ⋱  

 

Examining the structure of this global matrix, it is clear that obtaining the solution sensitivity in 

the tangent problem entails beginning at the initial time step and marching sequentially through all 

subsequent time steps, in a process that is essentially forward substitution.  The two-step task on 

each time step when performing step 1 of Eq. (4.6) is 

 

(1) 𝑠𝑒𝑡 𝑹̃𝑖 = −
𝜕𝑹𝑛+1

𝜕𝐷𝑖
− [
𝜕𝑹𝑛+1

𝜕𝑼𝑛
]
𝜕𝑼𝑛

𝜕𝐷𝑖
   

(2) 𝑠𝑜𝑙𝑣𝑒 [
𝜕𝑹𝑛+1

𝜕𝑼𝑛+1
]
𝜕𝑼𝑛+1

𝜕𝐷𝑖
= 𝑹̃𝑖 

(4.11) 

 

In contrast, following Eq. (4.7) the global adjoint would be found with the transpose of the 

global system: 

 

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

⋯ [
𝜕𝑹𝑚−3

𝜕𝑼𝑚−3
]

𝑇

 [
𝜕𝑹𝑚−2

𝜕𝑼𝑚−3
]

𝑇

 0 0 𝚲𝑚−3 
𝜕𝐿

𝜕𝑼𝑚−3
 

 

⋯ 0 [
𝜕𝑹𝑚−2

𝜕𝑼𝑚−2
]

𝑇

 [
𝜕𝑹𝑚−1

𝜕𝑼𝑚−2
]

𝑇

 0 𝚲𝑚−2 
𝜕𝐿

𝜕𝑼𝑚−2
 

(4.12) 

⋯ 0 0 [
𝜕𝑹𝑚−1

𝜕𝑼𝑚−1
]

𝑇

 [ 
𝜕𝑹𝑚

𝜕𝑼𝑚−1
 ]

𝑇

 𝚲𝑚−1 
𝜕𝐿

𝜕𝑼𝑚−1
 

 

⋯ 0 0 0 [  
𝜕𝑹𝑚

 𝜕𝑼𝑚 
  ]

𝑇

 𝚲𝑚 
𝜕𝐿

𝜕𝑼𝑚
 

 

 

 

[
 
 
 
 
 
 
 
 
 
 

                                                                 
  
  
  
  
  
  
  
 
 ]

 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 

                                                                         
  
  
  
  
  
  
  
 
 ]

 
 
 
 
 
 
 
 
 
 

 

{
 
 
 
 
 

 
 
 
 
 

       
  
  
  
  
  
  
  
 
 }
 
 
 
 
 

 
 
 
 
 

= 

{
 
 
 
 
 

 
 
 
 
 

           
  
  
  
  
  
  
  
 
 }
 
 
 
 
 

 
 
 
 
 

 



83 

 

The transpose of the global system is upper-triangular in terms of time step blocks, instead 

of lower triangular.  This means that the adjoint must be computed starting with the last time step 

and marching back, using the following two-step back-substitution for each time step: 

 

(1) 𝑖𝑓 𝑛 < 𝑚 𝑠𝑒𝑡 𝑳̃ =
𝜕𝐿

𝜕𝑼𝑛
− [
𝜕𝑹𝑛+1

𝜕𝑼𝑛
]

𝑇

𝚲𝑛+1   

(2) 𝑠𝑜𝑙𝑣𝑒 [
𝜕𝑹𝑛

𝜕𝑼𝑛
]

𝑇

𝚲𝑛 = 𝑳̃ 

(4.13) 

 

An important implication that follows is that the entire solution history must be computed before 

beginning the adjoint computation process.  The solution must be saved (written to disk) for every 

time step so that it is available for evaluation of 
𝜕𝐿

𝜕𝑼
 and the Jacobian matrix upon returning in the 

back-substitution process.  This is in contrast to the tangent problem, in which the sensitivity of 

the solution 
𝜕𝑼

𝜕𝐷𝑖
 can be computed alongside the solution itself on each time step, factored into the 

objective sensitivity and then discarded all in one sweep, since it has the same order of operations 

as the solution process.  Because of this, more disk storage is required when applying the adjoint 

to dynamic problems. 

 Based on this development, the key to applying the adjoint in any given discipline of 

analysis is to identify and define the global Jacobian matrix [
𝜕𝑹

𝜕𝑼
] of the governing equations, and 

the sensitivity of the governing equations 
𝜕𝑹

𝜕𝑫
.  The following sections give the derivation of this 

for the finite element thermoelastic analysis implementation in AStrO. 

 

4.2   Application to Thermoelastic Structural Analysis 

 

This section is dedicated to the application of sensitivity analysis using the adjoint covered in 

Section 4.1 to the finite element formulation for thermoelastic analysis developed in Chapter 3.  

Two main ingredients are necessary to apply the adjoint: the Jacobian matrix of the governing 

equations and the sensitivity of the governing equations with respect to design variables.  Section 

4.2.1 is dedicated to the derivation of the former, and Section 4.2.2 to the latter. 
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4.2.1   Global Jacobian Matrix of Governing Equations 

 

To obtain the adjoint for a system governed by a set of global equations requires solving 

Eq. (4.7), with the transpose of the Jacobian matrix of the governing equations [
𝜕𝑹

𝜕𝑼
].  The Jacobian 

matrix represents the sensitivities of the governing equations with respect to the degrees of 

freedom of the discretized solution.  Forming the matrix therefore entails partial differentiation of 

each component of the governing equations by each applicable variable. 

Let us first review the governing equations developed in Chapter 3, and then show the 

necessary differentiation to form the global Jacobian matrix.  The comprehensive equations for 

dynamic analysis will be examined first, followed by the appropriate simplifications for static 

analysis.  The discretized governing equations for dynamic thermoelastic modeling implemented 

by AStrO are given in Table 4.1: 

 

Table 4.1  Summary of governing finite element equations for thermoelastic analysis. 

𝐻𝑒𝑎𝑡 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 
 

𝑹𝜙
𝑛+1 = 𝑹𝜙,𝑘

𝑛+1 + 𝑹𝜙,𝑚
𝑛+1 + 𝑹𝜙,ℎ𝑔

𝑛+1 = 0 

 

𝑹𝜙̇
𝑛+1 = 𝝓 

𝑛+1 − 𝝓 
𝑛 − Δ𝑡 ((1 − 𝛾)𝝓̇ 

𝑛 + 𝛾𝝓̇ 
𝑛+1) = 0 

 
0 < 𝛾 ≤ 1 

 

𝑹𝜙,𝑘 = −∫ [∇𝑁]𝒒𝑑Ω
Ω

= [𝐾𝜙]𝝓 

𝑹𝜙,𝑚 = ∫𝜌𝐶𝑝𝑵𝑵
𝑇𝝓̇𝑑Ω

Ω

= [𝑀𝜙]𝝓̇ 

𝑹𝜙,ℎ𝑔 = −∫𝑵𝑄𝑑Ω
Ω

+∫𝑵(𝒒 ∙ 𝒏)𝑑𝑆
𝑆

 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦, 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑜𝑓 𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑊𝑜𝑟𝑘: 
 

𝑹𝑢
𝑛+1 = (1 + 𝛼)(𝑹𝑢,𝑘

𝑛+1 + 𝑹𝑢,𝑐
𝑛+1 + 𝑹𝑢,𝑎𝑝𝑝

𝑛+1 ) − 𝛼(𝑹𝑢,𝑘
𝑛 + 𝑹𝑢,𝑐

𝑛 + 𝑹𝑢,𝑎𝑝𝑝
𝑛 ) 

+𝑹𝑢,𝑚
𝑛+1 + 𝑹𝑢,𝑡ℎ

𝑛+1 = 0 

 

𝑹𝑢̈
𝑛+1 = 𝑼 

𝑛+1 − 𝑼 
𝑛 − Δ𝑡𝑼̇ 

𝑛 −
1

2
Δ𝑡2 ((1 − 2𝛽)𝑼̈ 

𝑛 + 2𝛽𝑼̈ 
𝑛+1) = 0 

𝑹𝑢̇
𝑛+1 = 𝑼̇  

𝑛+1 − 𝑼̇ 
𝑛 − Δ𝑡 ((1 − 𝛾)𝑼̈ 

𝑛 + 𝛾𝑼̈ 
𝑛+1) = 0  

 

  0 < 𝛽 ≤
1

2
 

   0 < 𝛾 ≤ 1 

−1 < 𝛼 ≤ 0 

 

𝑹𝑢,𝑘 = ∫ [
𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝝐𝑑Ω
Ω

 

𝑹𝑢,𝑐 = ∫𝜉[𝑁]𝑇[𝑁]𝑼̇𝑑Ω 
Ω

= [𝐶𝑢]𝑼̇ 

𝑹𝑢,𝑚 = ∫𝜌[𝑁]𝑇[𝑁]𝑼̈𝑑Ω 
Ω

= [𝑀𝑢]𝑼̈ 

𝑹𝑢,𝑎𝑝𝑝 = −∫ [𝑁]
𝑇𝒇𝑑Ω

Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

 

𝑹𝑢,𝑡ℎ = −∫ Δ𝑇 [
𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝜶𝑇𝐸𝑑Ω
Ω
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For full thermoelastic dynamic analysis, there are two sets of fundamental governing equations for 

the thermal and elastic responses, each accompanied by the equations defining the Newmark Beta 

expansions for time derivatives, for a total of five sets of governing equations applying at each 

time step.  Each of the governing equations for dynamic analysis can be differentiated with respect 

to the solution variables at the current time step 𝑛 and the next time step 𝑛 + 1, as shown in Tables 

4.2 and 4.3. 

 

Table 4.2  Differentiation of governing equations for thermal heat conduction. 

 𝑹𝜙
𝑛+1 𝑹𝜙̇

𝑛+1 

𝜕

𝜕𝝓 
𝑛

 −
1

𝛾Δ𝑡
[𝑀𝜙] −[𝐼] 

𝜕

𝜕𝝓̇ 
𝑛

 −
(1 − 𝛾)

𝛾
[𝑀𝜙] −Δ𝑡(1 − 𝛾)[𝐼] 

𝜕

𝜕𝑼 
𝑛

 0 0 

𝜕

𝜕𝑼̈ 
𝑛

 0 0 

𝜕

𝜕𝑼̇ 
𝑛

 0 0 

𝜕

𝜕𝝓 
𝑛+1

 [𝐾𝜙] +
1

𝛾Δ𝑡
[𝑀𝜙] [𝐼] 

𝜕

𝜕𝝓̇ 
𝑛+1

 0 −𝛾Δ𝑡[𝐼] 

𝜕

𝜕𝑼 
𝑛+1

 0 0 

𝜕

𝜕𝑼̈ 
𝑛+1

 0 0 

𝜕

𝜕𝑼̇ 
𝑛+1

 0 0 
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Table 4.3   Differentiation of governing equations of elasticity. 

 𝑹𝑢
𝑛+1 𝑹𝑢̈

𝑛+1 𝑹𝑢̇
𝑛+1 

𝜕

𝜕𝝓 
𝑛

 −𝛼 [
𝜕𝑹𝑢,𝑡ℎ

𝑛+1

𝜕𝝓𝑛
]  0 0 

𝜕

𝜕𝝓̇ 
𝑛

 0 0 0 

𝜕

𝜕𝑼 
𝑛

 −𝛼[𝐾𝑢
𝑛] −

(1 + 𝛼)𝛾

𝛽Δ𝑡
[𝐶𝑢] + [𝑀𝑢] −[𝐼] 0 

𝜕

𝜕𝑼̈ 
𝑛

 (1 + 𝛼)((1 − 𝛾) − 𝛾 (
1

2𝛽
− 1))Δ𝑡[𝐶𝑢] − (

1

2𝛽
− 1) [𝑀𝑢] −

1

2
Δ𝑡2(1 − 2𝛽)[𝐼] −(1 − 𝛾)Δ𝑡[𝐼] 

𝜕

𝜕𝑼̇ 
𝑛

 ((1 + 𝛼) (1 −
𝛾

𝛽
) − 𝛼) [𝐶𝑢] − (

1

𝛽Δ𝑡
) [𝑀𝑢] −Δ𝑡[𝐼] −[𝐼] 

𝜕

𝜕𝝓 
𝑛+1

 (1 + 𝛼) [
𝜕𝑹𝑢,𝑡ℎ

𝑛+1

𝜕𝝓𝑛+1
] 0 0 

𝜕

𝜕𝝓̇ 
𝑛+1

 0 0 0 

𝜕

𝜕𝑼 
𝑛+1

 (1 + 𝛼) ([𝐾𝑢
𝑛+1] +

𝛾

𝛽Δ𝑡
[𝐶𝑢]) +

1

𝛽Δ𝑡2
[𝑀𝑢] [𝐼] 0 

𝜕

𝜕𝑼̈ 
𝑛+1

 0 −𝛽Δ𝑡2[𝐼] −𝛾Δ𝑡[𝐼] 

𝜕

𝜕𝑼̇ 
𝑛+1

 0 0 [𝐼] 

 

With the differentiated governing equations defined, the two essential blocks of the global 

Jacobian matrix at each time step can be assembled, shown in Eqs. (4.14) and (4.15).  The transpose 

of the matrix in Eq. (4.15) is upper-triangular in terms of the five main sets of variables, and so the 

adjoint for each block can be found with back-substitution, after augmenting 
𝜕𝐿

𝜕𝑼𝑛
 with the matrix 

in Eq. (4.14), as described in Eq. (4.13).  This procedure is repeated for every time step in reverse 

order after obtaining the solution at a given design state. 

 

 

 

 

 

 



87 

 

[
𝜕𝑹𝑛+1

𝜕𝑼𝑛
] = 

[
𝜕𝑹𝜙 

𝑛+1

𝜕𝝓 
𝑛 ] [

𝜕𝑹𝜙
𝑛+1

𝜕𝝓̇ 
𝑛
] 0 0 0 

 

[
𝜕𝑹𝜙̇

𝑛+1

𝜕𝝓 
𝑛 ] [

𝜕𝑹𝜙̇
𝑛+1

𝜕𝝓̇ 
𝑛
] 0 0 0 

 

[
𝜕𝑹𝑢

𝑛+1

𝜕𝝓 
𝑛 ] 0 [

𝜕𝑹𝑢
𝑛+1

𝜕𝑼 
𝑛 ] [

𝜕𝑹𝑢
𝑛+1

𝜕𝑼̈𝑛
] [

𝜕𝑹𝑢
𝑛+1

𝜕𝑼̇ 
𝑛
] 

(4.14) 

0 0 [
𝜕𝑹𝑢̈

𝑛+1

𝜕𝑼 
𝑛 ] [

𝜕𝑹𝑢̈
𝑛+1

𝜕𝑼̈ 
𝑛
] [

𝜕𝑹𝑢̈
𝑛+1

𝜕𝑼̇ 
𝑛
] 

 

0 0 0 [
𝜕𝑹𝑢̇

𝑛+1

𝜕𝑼̈𝑛
] [

𝜕𝑹𝑢̇
𝑛+1

𝜕𝑼̇ 
𝑛
] 

 

 

 

[
𝜕𝑹𝑛+1

𝜕𝑼𝑛+1
] = 

[
𝜕𝑹𝜙

𝑛+1

𝜕𝝓 
𝑛+1

] 0 0 0 0 
 

[
𝜕𝑹

𝜙̇
𝑛+1

𝜕𝝓 
𝑛+1] [

𝜕𝑹
𝜙̇
𝑛+1

𝜕𝝓̇ 
𝑛+1

] 0 0 0 
 

[
𝜕𝑹𝑢

𝑛+1

𝜕𝝓 
𝑛+1] 0 [

𝜕𝑹𝑢
𝑛+1

𝜕𝑼 
𝑛+1] 0 0 

(4.15) 

0 0 [
𝜕𝑹𝑢̈

𝑛+1

𝜕𝑼 
𝑛+1

] [
𝜕𝑹𝑢̈

𝑛+1

𝜕𝑼̈ 
𝑛+1

] 0 
 

0 0 0 [
𝜕𝑹𝑢̇

𝑛+1

𝜕𝑼̈𝑛+1
] [

𝜕𝑹𝑢̇
𝑛+1

𝜕𝑼̇ 
𝑛+1

] 
 

   

For static analysis, the governing equations reduce to 

 

𝑹𝜙 = 𝑹𝜙,𝑘 + 𝑹𝜙,ℎ𝑔 = 0 

𝑹𝑢 = 𝑹𝑢,𝑘 + 𝑹𝑢,𝑎𝑝𝑝 + 𝑹𝑢,𝑡ℎ = 0 
(4.16) 

 

with the same definitions for terms as given in Table 4.1.  As mentioned in Chapter 3, AStrO 

assumes one-way dependence of elastic displacement on temperature distribution for thermoelastic 

analysis, so that the temperature and displacement are solved for sequentially in a two-step process.  

This means that even in static problems, when both disciplines are considered, the basic procedure 

just described for dynamic problems holds but within the confines of a single steady-state system.  

The global Jacobian for this static problem takes the form 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                   
  
  
  
  
  
  
  
  
  
 
 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                    
  
  
  
  
  
  
  
  
  
 
 ]
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[
𝜕𝑹

𝜕𝑼
] =

[
 
 
 
 [
𝜕𝑹𝜙

𝜕𝝓
] 0

[
𝜕𝑹𝑢
𝜕𝝓

] [
𝜕𝑹𝑢
𝜕𝑼

]
]
 
 
 
 

=  [

[𝐾𝜙] 0

[
𝜕𝑹𝑢
𝜕𝝓

] [𝐾𝑢]
] (4.17) 

 

So that finding the adjoint of the system can be broken down into three steps: 

 

(1) 𝑠𝑜𝑙𝑣𝑒 [𝐾𝑢]
𝑇𝚲𝑢 =

𝜕𝐿

𝜕𝑼
 

(2) 𝑠𝑒𝑡 𝑳̃ =
𝜕𝐿

𝜕𝝓
− [
𝜕𝑹𝑢
𝜕𝝓

]
𝑇

𝚲𝑢  

(3) 𝑠𝑜𝑙𝑣𝑒 [𝐾𝜙]
𝑇
𝚲𝜙 = 𝑳̃ 

(4.18) 

 

Both [𝐾𝑢] and [𝐾𝜙] are symmetric, so in this case the transposes on those two matrices in Eq. 

(4.18) are meaningless, but still written for completeness.  In static analysis where only one of the 

thermal and elastic disciplines applies, the system reduces to only the corresponding stiffness 

matrix for that discipline, and Eq. (4.7) applies directly. 

 

4.2.2   Sensitivity of Governing Equations to Design Variables 

 

The last major component in applying the adjoint to thermoelastic analysis is the sensitivity of the 

governing equations with respect to design variables, to complete the objective sensitivity defined 

in Eq. (4.8).  A natural first step is to identify what the design variables might be for systems like 

this.  AStrO has built-in support for ten main categories of design variables, as listed below.  The 

first seven categories are material or section-based properties, that are associated with elements or 

sets of elements in the mesh.  The last three types are properties associated with nodes and sets of 

nodes. 

1. Elastic Properties – The elastic material properties used to form the material stiffness 

matrix for orthotropic materials as defined in Chapter 3, Section 3.2.  This consists of three 

elastic moduli, three values of Poisson’s ratio and three shear moduli corresponding to the 
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material’s local principle directions.  The ordering convention is 𝐸1, 𝐸2, 𝐸3, 𝜈12, 𝜈13, 𝜈23, 

 𝐺12, 𝐺13, 𝐺23. 

2.  Mass Density – The mass density 𝜌 of a material used to form the mass matrices [𝑀𝑢] and 

[𝑀𝜙] for the thermal and elastic equations. 

3. Thermal Conductivity – The thermal conductivity 𝒌 in the principle directions of the local 

material orientation, used to form the stiffness matrix for the thermal equations [𝐾𝜙]. 

4. Coefficient of Thermal Expansion – The vector of coefficients of thermal expansion 𝜶𝑇𝐸, 

which factors into the thermal load term in the elasticity equations, 𝑹𝑢,𝑡ℎ.  

5. Specific Heat Capacity – The specific heat capacity 𝐶𝑝 of a material, which factors into 

the thermal mass matrix [𝑀𝜙] in the thermal equations.  

6. Local Material Orientation – The local coordinate system of an element or section, 

defining the orientation in which material properties are to be defined and denoted with the 

direction cosine matrix [𝛼𝐿].  

7. Section Properties – Parameters defining cross-sectional properties of an element or 

section, only applicable to sections composed of shell or beam elements.  For shell sections, 

there are only two section properties, defining the thickness of the shell, and the offset from 

the shell midplane that is to serve as the reference plane for that shell.  For beams, there 

are 12 properties defined in order as follows: cross-sectional area 𝐴, second moments of 

area in the 2-3 plane 𝐼2, 𝐼23, 𝐼3, polar moment of area 𝐽, three components of a unit vector 

defining the 2-direction 𝑛1, 𝑛2, 𝑛3, elastic modulus 𝐸, Poisson’s ratio 𝜈, shear modulus 𝐺, 

and mass density 𝜌.  The final four properties for beams are material properties that are 

redundant of those previously listed.  For beams, these material properties are given in the 

section definition in the model input file instead of a separate material definition, and their 

values are placed appropriately into the fields for elastic and mass properties. 

8.  Nodal Coordinates – The initial 𝑥1, 𝑥2, and 𝑥3 coordinates of the nodes defining the mesh 

of the structure before deformation. 

9. Applied Structural Load – The nodal loads applied on the structure in the equations of 

elasticity, denoted 𝑹𝑢,𝑎𝑝𝑝. 

10. Applied Thermal Load – The nodal thermal loads representing surface flux and internal 

heat generation in the thermal equations, denoted 𝑹𝜙,ℎ𝑔. 
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Categories nine and ten in the list are not what most would consider design parameters, but for 

some problems it can be useful to treat them as such, so they can be tailored to achieve an objective.  

These ten quantities can be defined by the user as functions of 𝑫, so that their values and 

sensitivities can be accessed directly at any given design state from user subroutines. 

 What is ultimately needed is the sensitivity of the residual of governing equations, 
𝜕𝑹

𝜕𝑫
.  The 

next step, then, is to go through each component of the governing equations and perform 

differentiation considering any factor that can possibly depend on the above design variables.   

Table 4.4 shows the form of 
𝜕𝑹

𝜕𝑫
 for every main component of the thermoelastic governing 

equations.  All terms are expressed in natural coordinate integrals, to include all the relevant 

factors. 

 

Table 4.4  Design variable sensitivities of thermoelastic governing equations. 

Term 𝜕

𝜕𝐷𝑖
 

𝑹𝜙,𝑘 
−∫ (

𝜕[∇𝑁]

𝜕𝐷𝑖
𝒒|[ 𝐽]| + [∇𝑁]

𝜕𝒒

𝜕𝐷𝑖
|[ 𝐽]| + [∇𝑁]𝒒

𝜕|[ 𝐽]|

𝜕𝐷𝑖
 ) 𝑑Ω̂

Ω̂

 

𝑹𝜙,𝑚 
∫ (

𝜕𝜌

𝜕𝐷𝑖
𝐶𝑝|[ 𝐽]| + 𝜌

𝜕𝐶𝑝

𝜕𝐷𝑖
|[ 𝐽]| + 𝜌𝐶𝑝

𝜕|[ 𝐽]|

𝜕𝐷𝑖
)𝑵𝑵𝑇𝝓̇𝑑Ω̂

Ω̂

 

𝑹𝑢,𝑘 
∫ (

𝜕

𝜕𝐷𝑖
([
𝜕𝝐

𝜕𝑼
]
𝑇

) [𝐶]𝝐|[ 𝐽]| + [
𝜕𝝐

𝜕𝑼
]
𝑇 𝜕[𝐶]

𝜕𝐷𝑖
𝝐|[ 𝐽]| + [

𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]
𝜕𝝐

𝜕𝐷𝑖
|[ 𝐽]| + [

𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝝐
𝜕|[ 𝐽]|

𝜕𝐷𝑖
)𝑑Ω̂

Ω̂

 

𝑹𝑢,𝑐 ∫ (
𝜕𝜉

𝜕𝐷𝑖
|[ 𝐽]| + 𝜉

𝜕|[ 𝐽]|

𝜕𝐷𝑖
) [𝑁]𝑇[𝑁]𝑼̇𝑑Ω̂ 

Ω̂

 

𝑹𝑢,𝑚 
∫ (

𝜕𝜌

𝜕𝐷𝑖
|[ 𝐽]| + 𝜌

𝜕|[ 𝐽]|

𝜕𝐷𝑖
) [𝑁]𝑇[𝑁]𝑼̈𝑑Ω̂ 

Ω̂

 

𝑹𝑢,𝑡ℎ 
∫ (

𝜕

𝜕𝐷𝑖
([
𝜕𝝐

𝜕𝑼
]
𝑇

) [𝐶]𝜶𝑇𝐸|[ 𝐽]| + [
𝜕𝝐

𝜕𝑼
]
𝑇 𝜕[𝐶]

𝜕𝐷𝑖
𝜶𝑇𝐸|[ 𝐽]| + [

𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]
𝜕𝜶𝑇𝐸
𝜕𝐷𝑖

|[ 𝐽]|
Ω̂

+ [
𝜕𝝐

𝜕𝑼
]
𝑇

[𝐶]𝜶𝑇𝐸
𝜕|[ 𝐽]|

𝜕𝐷𝑖
) (𝑵 ∙ 𝝓)𝑑Ω̂ 

 

Several terms show up frequently in the sensitivity expressions of Table 4.4.  To get the 

full definitions these must be broken down individually.  Beginning with the most fundamental, 
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the term |[ 𝐽]|, the determinant of the natural element space Jacobian matrix and equal to (
𝜕Ω

𝜕Ω̂
), 

appears in every integral as explained in Chapter 3, Section 3.1.  The Jacobian matrix is given by 

 

[ 𝐽] = [
𝜕𝒙

𝜕𝜼
] = [𝛼𝐿][𝑋] [

𝜕𝑵

𝜕𝜼
] (4.19) 

  

Since it depends on the nodal coordinates of the element [𝑋] (where 𝑋𝑖𝑗 = the 𝑥𝑖 coordinate of 

node 𝑗) and the local material orientation [𝛼𝐿] which can depend on design variables, the sensitivity 

of the Jacobian is 

 

𝜕[ 𝐽]

𝜕𝐷𝑖
= (

𝜕[𝛼𝐿]

𝜕𝐷𝑖
[𝑋] + [𝛼𝐿]

𝜕[𝑋]

𝜕𝐷𝑖
) [
𝜕𝑵

𝜕𝜼
] (4.20) 

 

With Eqs. (4.19) and (4.20), the determinant and its sensitivity can be defined as 

 

|[ 𝐽]| = | 

𝐽11 𝐽12 𝐽13
𝐽21 𝐽22 𝐽23
𝐽31 𝐽32 𝐽33

 | = 𝐽11( 𝐽22𝐽33 − 𝐽23𝐽32) + 𝐽12( 𝐽23𝐽31 − 𝐽21𝐽33) + 𝐽13( 𝐽21𝐽32 − 𝐽22𝐽31) 

⟹
𝜕|[ 𝐽]|

𝜕𝐷𝑖
=
𝜕𝐽11
𝜕𝐷𝑖

( 𝐽22𝐽33 − 𝐽23𝐽32) + 𝐽11 (
𝜕𝐽22
𝜕𝐷𝑖

𝐽33 + 𝐽22
𝜕𝐽33
𝜕𝐷𝑖

−
𝜕𝐽23
𝜕𝐷𝑖

𝐽32 − 𝐽23
𝜕𝐽32
𝜕𝐷𝑖

) 

+
𝜕𝐽12
𝜕𝐷𝑖

( 𝐽23𝐽31 − 𝐽21𝐽23) +  𝐽12 (
𝜕𝐽23
𝜕𝐷𝑖

𝐽31 + 𝐽23
𝜕𝐽31
𝜕𝐷𝑖

−
𝜕𝐽21
𝜕𝐷𝑖

𝐽33 − 𝐽21
𝜕𝐽33
𝜕𝐷𝑖

) 

+
𝜕𝐽13
𝜕𝐷𝑖

( 𝐽21𝐽32 − 𝐽22𝐽31) +  𝐽13 (
𝜕𝐽21
𝜕𝐷𝑖

𝐽32 + 𝐽21
𝜕𝐽32
𝜕𝐷𝑖

−
𝜕𝐽22
𝜕𝐷𝑖

𝐽31 − 𝐽22
𝜕𝐽31
𝜕𝐷𝑖

) 

(4.21) 

 

The inverse of the natural element space Jacobian is also of importance in the construction of the 

equations and sensitivities.  Once [ 𝐽]−1 and 
𝜕[ 𝐽]

𝜕𝐷
 are computed, the simplest way to obtain the 

sensitivity of [ 𝐽]−1 is to realize that, by definition, the inverse relationship 

 

[ 𝐽][ 𝐽]−1 = [𝐼] (4.22) 

 

must always hold, regardless of the state of 𝑫.  Therefore, it must follow by differentiation of Eq. 

(4.22) that 
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𝜕[ 𝐽]

𝜕𝐷𝑖
[ 𝐽]−1 + [ 𝐽]

𝜕[ 𝐽]−1

𝜕𝐷𝑖
= 0 

⟹ 
𝜕[ 𝐽]−1

𝜕𝐷𝑖
= −[ 𝐽]−1 (

𝜕[ 𝐽]

𝜕𝐷𝑖
) [ 𝐽]−1 

 

(4.23) 

This technique is used in several places throughout the formulation within AStrO for the 

differentiation of inverse matrices. 

 Another critical component in the governing equations is the gradient of the basis 

functions, [∇𝑁].  As shown in Chapter 3, this matrix is can be constructed as 

 

[∇𝑁] = [
𝜕𝑵

𝜕𝜼
] [
𝜕𝜼

𝜕𝒙
] = [

𝜕𝑵

𝜕𝜼
] [ 𝐽]−1 (4.24) 

 

Using the sensitivity of the inverse Jacobian defined in Eq. (4.23) the sensitivity of the basis 

function gradient is 

 

𝜕[∇𝑁]

𝜕𝐷𝑖
= [

𝜕𝑵

𝜕𝜼
]
𝜕[ 𝐽]−1

𝜕𝐷𝑖
 (4.25) 

 

The sensitivity of the heat flux 𝒒 in the governing equations for heat conduction easily follows, as 

 

𝒒 = − [𝑘1 (
𝜕𝑵

𝜕𝑥1
∙ 𝝓) , 𝑘2 (

𝜕𝑵

𝜕𝑥2
∙ 𝝓) , 𝑘3 (

𝜕𝑵

𝜕𝑥3
∙ 𝝓)]

𝑇

 

𝜕𝒒

𝜕𝐷𝑖
= − [(

𝜕𝑘1
𝜕𝐷𝑖

𝜕𝑵

𝜕𝑥1
+ 𝑘1

𝜕

𝜕𝐷𝑖
(
𝜕𝑵

𝜕𝑥1
)) ∙ 𝝓, (

𝜕𝑘2
𝜕𝐷𝑖

𝜕𝑵

𝜕𝑥2
+ 𝑘2

𝜕

𝜕𝐷𝑖
(
𝜕𝑵

𝜕𝑥2
)) ∙ 𝝓, (

𝜕𝑘3
𝜕𝐷𝑖

𝜕𝑵

𝜕𝑥3
+ 𝑘3

𝜕

𝜕𝐷𝑖
(
𝜕𝑵

𝜕𝑥3
)) ∙ 𝝓]

𝑇

 

(4.26) 

 

 The remaining non-trivial terms in Table 4.4 for the governing equation sensitivities are 

strain 𝝐 and material elastic stiffness matrix [𝐶].  Since the forms of these differ between element 

types, they will be presented separately for solid, shell and beam elements. 
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Sensitivities of Strain and Stiffness for Solid Continuum Elements 

 

For solid continuum elements, the definition of strain in terms of displacement degrees of freedom 

is given in Table 3.2 of Chapter 3, Section 3.2.1.  Differentiation of those expressions by design 

variables gives the sensitivities of strain, as needed for the evaluation of terms in Table 4.4.  The 

sensitivities are shown in Table 4.5. 

 

Table 4.5  Sensitivities of strain for solid continuum elements.  The second row of terms only apply 

to analysis with nonlinear geometry. 

 
𝜕

𝜕𝐷𝑖
 

[𝜖] 
1

2

(

 
 

𝜕[𝛼𝐿]

𝜕𝐷𝑖
[𝑈][∇𝑁] + [𝛼𝐿][𝑈]

𝜕[∇𝑁]

𝜕𝐷𝑖
+
𝜕[∇𝑁]𝑇

𝜕𝐷𝑖
[𝑈]𝑇[𝛼𝐿]

𝑇 + [∇𝑁]𝑇[𝑈]𝑇
𝜕[𝛼𝐿]

𝑇

𝜕𝐷𝑖

+
𝜕[∇𝑁]𝑇

𝜕𝐷𝑖
[𝑈]𝑇[𝑈][∇𝑁]+ [∇𝑁]𝑇[𝑈]𝑇[𝑈]

𝜕[∇𝑁]

𝜕𝐷𝑖
 

)

 
 

 

𝜕𝜖𝑗𝑘

𝜕𝑈𝑙𝑚
 

1

2

(

 
 

𝜕𝛼𝐿,𝑗𝑙

𝜕𝐷𝑖

𝜕𝑁𝑚
𝜕𝑥𝑘

+ 𝛼𝐿,𝑗𝑙
𝜕

𝜕𝐷𝑖
(
𝜕𝑁𝑚
𝜕𝑥𝑘

) +
𝜕𝛼𝐿,𝑘𝑙
𝜕𝐷𝑖

𝜕𝑁𝑚
𝜕𝑥𝑗

 + 𝛼𝐿,𝑘𝑙
𝜕

𝜕𝐷𝑖
(
𝜕𝑁𝑚
𝜕𝑥𝑗

) 

+(𝑼𝑙 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵

𝜕𝑥𝑗
))
𝜕𝑁𝑚
𝜕𝑥𝑘

+ (𝑼𝑙 ∙
𝜕𝑵

𝜕𝑥𝑗
)
𝜕

𝜕𝐷𝑖
(
𝜕𝑁𝑚
𝜕𝑥𝑘

) + (𝑼𝑙 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵

𝜕𝑥𝑘
))
𝜕𝑁𝑚
𝜕𝑥𝑗

+ (𝑼𝑙 ∙
𝜕𝑵

𝜕𝑥𝑘
)
𝜕

𝜕𝐷𝑖
(
𝜕𝑁𝑚
𝜕𝑥𝑗

)
)

 
 

 

 

The orthotropic elastic stiffness matrix [𝐶] is formed for solid elements as shown in Eq. 

(3.52) of Chapter 3.  This is another situation where the sensitivities of the inverse matrix [𝑆], 

known as the compliance matrix, are simpler to construct and evaluate directly than for [𝐶] itself.  

Therefore, the sensitivity of the material stiffness matrix is evaluated as 

   

𝜕[𝐶]

𝜕𝐷𝑖
= −[𝐶]

𝜕[𝑆]

𝜕𝐷𝑖
[𝐶] (4.27) 

 

where the sensitivity of [𝑆] takes the following form: 
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𝜕[𝑆]

𝜕𝐷𝑖
= 

−
1

𝐸1
2

𝜕𝐸1
𝜕𝐷𝑖

 (−
𝜕𝜈12
𝜕𝐷𝑖

1

𝐸1
+
𝜈12
𝐸1
2

𝜕𝐸1
𝜕𝐷𝑖

) (−
𝜕𝜈13
𝜕𝐷𝑖

1

𝐸1
+
𝜈13
𝐸1
2

𝜕𝐸1
𝜕𝐷𝑖

) 0 0 0 
 

 −
1

𝐸2
2

𝜕𝐸2
𝜕𝐷𝑖

 (−
𝜕𝜈23
𝜕𝐷𝑖

1

𝐸2
+
𝜈23
𝐸2
2

𝜕𝐸2
𝜕𝐷𝑖

) 0 0 0 
 

  −
1

𝐸3
2

𝜕𝐸3
𝜕𝐷𝑖

 0 0 0 (4.28) 

   −
1

𝐺12
2

𝜕𝐺12
𝜕𝐷𝑖

 0 0 
 

 (𝑠𝑦𝑚)   −
1

𝐺13
2

𝜕𝐺13
𝜕𝐷𝑖

 0 
 

     −
1

𝐺23
2

𝜕𝐺23
𝜕𝐷𝑖

 
 

 

Using Eqs. (4.27) and (4.28) to form the sensitivity of the elastic stiffness matrix, along with Table 

4.5 for sensitivities of strain completes the definition of all terms required for the governing 

equation sensitivities for solid continuum elements. 

 

Sensitivities of Strain and Stiffness for Shell Elements 

 

As explained in Chapter 3, Section 3.2.2, the strain in shell elements is defined by computing a set 

of transformed nodal degrees of freedom at a given deformation state to remove rigid body 

rotation, termed instantaneous degrees of freedom.  To find the sensitivities of strain then requires 

first finding the sensitivities of the instantaneous degrees of freedom.  Table 4.6 shows the relevant 

expressions for instantaneous degrees of freedom from Chapter 3 differentiated by 𝐷𝑖. 

 

 

 

 

 

 

 

 

 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                    
  
  
  
  
  
  
  
  
  
 
 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 



95 

 

Table 4.6  Sensitivities of instantaneous nodal degrees of freedom for shell elements. 

Quantity 
𝜕

𝜕𝐷𝑖
, Linear Geometry 

𝜕

𝜕𝐷𝑖
, Nonlinear Geometry 

[𝑈𝐼] 
𝜕[𝛼𝐿]

𝜕𝐷𝑖
[𝑈𝐺] 

𝜕[𝛼𝐼]

𝜕𝐷𝑖
([𝑋𝐺] + [𝑈𝐺]) + [𝛼𝐼]

𝜕[𝑋𝐺]

𝜕𝐷𝑖
−
𝜕[𝛼𝐿]

𝜕𝐷𝑖
[𝑋𝐺] − [𝛼𝐿]

𝜕[𝑋𝐺]

𝜕𝐷𝑖
 

𝜕𝑈𝐼,𝑗𝑘

𝜕𝑈𝐺,𝑙𝑚
 

𝜕𝛼𝐿,𝑗𝑙

𝜕𝐷𝑖
𝐼𝑘𝑚 

𝜕𝛼𝐼,𝑗𝑙

𝜕𝐷𝑖
𝐼𝑘𝑚 

𝜕[𝑈𝐼]

𝜕𝜃𝐺,𝑗𝑘
 0 

𝜕

𝜕𝐷𝑖
(
𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑗𝑘
) ([𝑋𝐺] + [𝑈𝐺]) +

𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑗𝑘

𝜕[𝑋𝐺]

𝜕𝐷𝑖
 

[𝜃𝐼] 
𝜕[𝛼𝐿]

𝐷𝑖
[𝜃𝐺] 

𝜕[𝛼𝐼]

𝜕𝐷𝑖
([𝜃𝐺] − [𝜃𝐺,𝑎𝑣𝑔]) 

𝜕𝜃𝐼,𝑗𝑘

𝜕𝜃𝐺,𝑙𝑚
 

𝜕𝛼𝐿,𝑗𝑙

𝐷𝑖
𝐼𝑘𝑚 (

𝜕

𝜕𝐷𝑖
(
𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑙𝑚
) ([𝜃𝐺] − [𝜃𝐺,𝑎𝑣𝑔]))

𝑗𝑘

+
𝜕𝛼𝐼,𝑗𝑙

𝜕𝐷𝑖
(𝐼𝑘𝑚 −

1

𝑛𝑛𝑑
𝐼𝑘𝑚) 

 

The instantaneous direction cosine matrix [𝛼𝐼] is formed by rotating the principle directions of the 

local coordinate system of an element by its overall nodal rotation vector.  This means it can be 

expressed as a product of the local direction cosine matrix [𝛼𝐿], and a direction cosine matrix 

derived from the overall rotation, [𝛼𝜃] as shown: 

 

[𝛼𝐼] = [𝛼𝐿][𝛼𝜃] (4.29) 

 

which means its differentiation with respect to design variables and nodal rotations can be 

expressed as: 

          

𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑗𝑘
= [𝛼𝐿]

𝜕[𝛼𝜃]

𝜕𝜃𝐺,𝑗𝑘
 

𝜕[𝛼𝐼]

𝜕𝐷𝑖
=
𝜕[𝛼𝐿]

𝜕𝐷𝑖
[𝛼𝜃] 

𝜕

𝐷𝑖
(
𝜕[𝛼𝐼]

𝜕𝜃𝐺,𝑗𝑘
) =

𝜕[𝛼𝐿]

𝜕𝐷𝑖

𝜕[𝛼𝜃]

𝜕𝜃𝐺,𝑗𝑘
 

(4.30) 

 

Now, with the definitions in Table 4.6 and Eqs. (4.29) and (4.30), the sensitivities of strains for 

shells can be constructed by differentiating Eqs. (3.60) and (3.61) of Chapter 3: 
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𝜕𝜖11
𝜕𝐷𝑖

= (
𝜕𝑼𝐼,1
𝜕𝐷𝑖

+ 𝑥3
𝜕𝜽𝐼,2
𝜕𝐷𝑖

) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ (𝑼𝐼,1 + 𝑥3𝜽𝐼,2) ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

)   

𝜕𝜖22
𝜕𝐷𝑖

= (
𝜕𝑼𝐼,2
𝜕𝐷𝑖

− 𝑥3
𝜕𝜽𝐼,1
𝜕𝐷𝑖

) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

+ (𝑼𝐼,2 − 𝑥3𝜽𝐼,1) ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥2

) 

𝜕𝛾𝑎
𝜕𝐷𝑖

= 2(
𝜕𝜽𝐼,3
𝜕𝐷𝑖

 ∙ 𝑵𝑛𝑑) + (
𝜕𝑼𝐼,1
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

) + (𝑼𝐼,1 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥2

)) 

−(
𝜕𝑼𝐼,2
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

) − (𝑼𝐼,2 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

)) 

𝜕𝛾12
𝜕𝐷𝑖

= (
𝜕𝑼𝐼,1
𝜕𝐷𝑖

 + 𝑥3
𝜕𝜽𝐼,2
𝜕𝐷𝑖

) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

+ (𝑼𝐼,1 + 𝑥3𝜽𝐼,2) ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥2

) 

+ (
𝜕𝑼𝐼,2
𝜕𝐷𝑖

− 𝑥3
𝜕𝜽𝐼,1
𝜕𝐷𝑖

) ∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ (𝑼𝐼,2 − 𝑥3𝜽𝐼,1) ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) 

𝜕𝛾13
𝜕𝐷𝑖

= (
𝜕𝜽𝐼,2
𝜕𝐷𝑖

∙ 𝑵𝑛𝑑) + (
𝜕𝑼𝐼,𝑛𝑑,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

) + (𝑼𝐼,𝑛𝑑,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

)) 

+(
𝜕𝑼𝐼,𝑖𝑛𝑡,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

) + (𝑼𝐼,𝑖𝑛𝑡,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

)) 

𝜕𝛾23
𝜕𝐷𝑖

= −(
𝜕𝜽𝐼,1
𝜕𝐷𝑖

∙ 𝑵𝑛𝑑) + (
𝜕𝑼𝐼,𝑛𝑑,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥2

) + (𝑼𝐼,𝑛𝑑,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥2

)) 

+(
𝜕𝑼𝐼,𝑖𝑛𝑡,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥2

) + (𝑼𝐼,𝑖𝑛𝑡,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥2

)) 

(4.31) 

 

The 𝑥3 coordinate at a given integration point can be derived from the thickness of the shell ℎ and 

the offset parameter 𝑛𝑧, defining the offset of the reference plane from the shell midplane as 

follows: 

 

𝑥3 = ℎ (
1

2
𝜂3 − 𝑛𝑧) (4.32) 

 

The sensitivity of 𝑥3 can then be defined 

 

𝜕𝑥3
𝜕𝐷𝑖

=
𝜕ℎ

𝜕𝐷𝑖
(
1

2
𝜂3 − 𝑛𝑧) − ℎ

𝜕𝑛𝑧
𝜕𝐷𝑖

 (4.33) 

 

 The material compliance matrix for shell elements is defined in Eq. (3.62) of Chapter 3.  

Differentiation by design variables yields the sensitivities: 
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𝜕[𝑆]

𝜕𝐷𝑖
= 

−
1

𝐸1
2

𝜕𝐸1
𝜕𝐷𝑖

 (−
𝜕𝜈12
𝜕𝐷𝑖

1

𝐸1
+
𝜈12

𝐸1
2

𝜕𝐸1
𝜕𝐷𝑖

) 0 0 0 0 
 

 −
1

𝐸2
2

𝜕𝐸2
𝜕𝐷𝑖

 0 0 0 0 
 

  −
1

𝐺12
2

𝜕𝐺12
𝜕𝐷𝑖

 0 0 0 (4.34) 

   −
1

𝐺12
2

𝜕𝐺12
𝜕𝐷𝑖

 0 0 
 

 (𝑠𝑦𝑚)   −
1

𝐺13
2

𝜕𝐺13
𝜕𝐷𝑖

 0 
 

     −
1

𝐺23
2

𝜕𝐺23
𝜕𝐷𝑖

 
 

 

With Eqs. (4.27) and (4.34), the sensitivity of the material stiffness matrix can be obtained.  This 

completes the definition of sensitivities for all terms in the governing equations for shell elements. 

 

Sensitivities of Strain and Stiffness for Beam Elements 

 

For beam elements, the sensitivities of instantaneous degrees of freedom given for shell elements 

in Table 4.6 also apply.  Using these, the sensitivities of strain, or rather the modes of deformation 

employed in the principle of virtual work for beams, can be found by differentiation of Eq. (3.66) 

of Chapter 3: 

 

𝜕𝜖1
𝜕𝐷𝑖

=
𝜕𝑼𝐼,1
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝑼𝐼,1 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) 
 

𝜕𝜅2
𝜕𝐷𝑖

=
𝜕𝜽𝐼,2
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝜽𝐼,2 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) 
 

𝜕𝜅3
𝜕𝐷𝑖

=
𝜕𝜽𝐼,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝜽𝐼,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) 
 

𝜕𝛾12
𝜕𝐷𝑖

=
𝜕𝑼𝐼,𝑛𝑑,2
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝑼𝐼,𝑛𝑑,2 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) +
𝜕𝑼𝐼,𝑖𝑛𝑡,2
𝜕𝐷𝑖

∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

+𝑼𝐼,𝑖𝑛𝑡,2 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

) −
𝜕𝜽𝐼,3
𝜕𝐷𝑖

∙ 𝑵𝑛𝑑 (4.35) 

𝜕𝛾13
𝜕𝐷𝑖

=
𝜕𝑼𝐼,𝑛𝑑,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝑼𝐼,𝑛𝑑,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) +
𝜕𝑼𝐼,𝑖𝑛𝑡,3
𝜕𝐷𝑖

∙
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

+𝑼𝐼,𝑖𝑛𝑡,3 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑖𝑛𝑡
𝜕𝑥1

) +
𝜕𝜽𝐼,2
𝜕𝐷𝑖

∙ 𝑵𝑛𝑑 
 

𝜕𝜃′

𝜕𝐷𝑖
=
𝜕𝜽𝐼,1
𝜕𝐷𝑖

∙
𝜕𝑵𝑛𝑑
𝜕𝑥1

+ 𝜽𝐼,1 ∙
𝜕

𝜕𝐷𝑖
(
𝜕𝑵𝑛𝑑
𝜕𝑥1

) 
 

 

 The stiffness matrix mapping to the work conjugates for beams is straightforward to 

express and differentiate directly, using Eq. (3.67) of Chapter 3: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                 
  
  
  
  
  
  
  
  
  
 
 ]
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𝜕[𝐶]

𝜕𝐷𝑖
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝐸1
𝜕𝐷𝑖

𝐴 + 𝐸1
𝜕𝐴

𝜕𝐷𝑖
  

 
𝜕𝐸1
𝜕𝐷𝑖

𝐼2 + 𝐸1
𝜕𝐼2
𝜕𝐷𝑖

 

  
𝜕𝐸1
𝜕𝐷𝑖

𝐼3 + 𝐸1
𝜕𝐼3
𝜕𝐷𝑖

(0)

   
 (0)  
   

𝜕𝐴

𝜕𝐷𝑖
𝐺12 + 𝐴

𝜕𝐺12
𝜕𝐷𝑖

  

 
𝜕𝐴

𝜕𝐷𝑖
𝐺13 + 𝐴

𝜕𝐺13
𝜕𝐷𝑖

 

  
𝜕𝐺12
𝜕𝐷𝑖

 𝐽 + 𝐺12
𝜕𝐽

𝜕𝐷𝑖]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.36) 

 

Using the tables and equations presented in this section, the complete sensitivities of all governing 

equations for thermoelastic modeling in AStrO can be constructed, and used to obtain objective 

sensitivities.  

 

4.3   Special Cases 

 

There are a few special situations where, because of a unique definition of design variables or 

objective function, some extension or modification to the standard adjoint approach is warranted.  

Part of the assumption of the general development presented in Section 4.1 is that the terms 
𝜕𝐿

𝜕𝑫
 and 

𝜕𝐿

𝜕𝑼
, as well as the design properties listed in Section 4.2.2, are inexpensively obtainable from some 

direct closed-form definition.  If this is not the case, appropriate adjustments to the process must 

be made. 

Two specific examples of such cases are discussed in this section.  The first case occurs 

when it is desired to let the initial coordinates a certain set of nodes within the finite element mesh 

(usually those located on the boundary of the structure) be defined directly as design variables, 

and to let the remaining nodes deform smoothly in response to the resulting shape changes, without 

being directly associated with design variables themselves.  This allows for the preservation of 

mesh quality throughout a process of changing design without defining complex interpolation 

functions or repeatedly re-generating the mesh. 

The second case is when an objective function or constraint is a function of the eigenpairs 

of a matrix derived from the governing equations.  Common objectives, derived from quantities 
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like displacement, strain and stress can be evaluated directly throughout a structure from the finite 

element solution at a state, using the formulas developed in Chapter 3 and earlier sections of this 

chapter.  But if the objective is derived from the eigenpairs of a solution-dependent matrix, there 

is no direct closed-form way of evaluating 
𝜕𝐿

𝜕𝑫
 and 

𝜕𝐿

𝜕𝑼
.  An extension to the process is needed to 

generate the necessary terms in this case.  The following sections explain the revised approach for 

these two cases. 

 

4.3.1   Adaptive Mesh Deformation 

 

When it is desired for the initial mesh of a finite element structure to morph in adaptation to the 

shifting of a set of control nodes, which are directly controlled by design variables, it becomes 

appropriate to pose the objective function in a slightly different manner.  The idea is, as the 

coordinates of the control nodes change with design variables, the remaining nodes will reposition 

according to linear elastic analogy, and move as if the structure was being deformed under 

prescribed displacements on the control nodes.  Generally, however, the deformation is not taken 

as governed by the structure’s actual stiffness properties, but by a stiffness matrix constructed to 

produce smoothness and minimal distortion.  Here, this matrix will be referred to as [𝐾𝑀𝐷], so the 

dependence of the undeformed nodal coordinates of the structure 𝑿 on the design variables can be 

expressed as 

         

[𝐾𝑀𝐷](𝑿 − 𝑿0) = 𝑿𝑐(𝑫) 

⟹𝑿 = [𝐾𝑀𝐷]
−1𝑿𝑐(𝑫) + 𝑿0 

⟹
𝜕𝑿

𝜕𝐷𝑖
= [𝐾𝑀𝐷] 

−1
𝜕𝑿𝑐
𝜕𝐷𝑖

 

(4.37) 

 

where 𝑿0 are the initial undeformed nodal coordinates of the structure, and 𝑿𝑐 is a vector defining 

the coordinates of the control nodes as a function of 𝑫.  Now, if the objective function is defined 

as 

 

𝐿 = 𝐿 (𝑿(𝑫), 𝑼(𝑿(𝑫))) (4.38) 
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then the objective sensitivities can be expressed 

 

𝑑𝐿

𝑑𝐷𝑖
= (

𝜕𝐿

𝜕𝑿
) ∙ (

𝜕𝑿

𝜕𝐷𝑖
) + (

𝜕𝐿

𝜕𝑼
) ∙ ([

𝜕𝑹

𝜕𝑼
]
−1

[
𝜕𝑹

𝜕𝑿
]
𝜕𝑿

𝜕𝐷𝑖
) = (

𝜕𝐿

𝜕𝑿
+ [
𝜕𝑹

𝜕𝑿
]
𝑇

([
𝜕𝑹

𝜕𝑼
]
𝑇

)

−1
𝜕𝐿

𝜕𝑼
) ∙ ([𝐾𝑀𝐷] 

−1
𝜕𝑿𝑐
𝜕𝐷𝑖

) (4.39) 

 

The procedure for evaluating the objective sensitivities in this case can then be outlined in four 

steps: 

   

(1)  𝑠𝑜𝑙𝑣𝑒  [
𝜕𝑹

𝜕𝑼
]
𝑇

𝚲 =
𝜕𝐿

𝜕𝑼
 

(2)  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑳̃ =
𝜕𝐿

𝜕𝑿
+ [
𝜕𝑹

𝜕𝑿
]
𝑇

𝚲 

(3) 𝑠𝑜𝑙𝑣𝑒 [𝐾𝑀𝐷]
𝑇𝚲𝑀𝐷 = 𝑳̃ 

(4) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐷𝑖 , 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 
𝑑𝐿

𝑑𝐷𝑖
= 𝚲𝑀𝐷 ∙ (

𝜕𝑿𝑐
𝜕𝐷𝑖

) 

(4.40) 

 

 With these modifications, the process requires two linear system solutions and two adjoint 

vectors, but is still independent of the number of design variables.  Generally, the mesh 

deformation matrix [𝐾𝑀𝐷] can be considered independent of design variables, and only needs to 

be constructed once for any number of design states.  How exactly to define [𝐾𝑀𝐷] is somewhat 

open-ended, but a typical way is to assume isotropic elements with stiffness inversely proportional 

to their volume.  This is to prevent small elements from becoming excessively distorted and taking 

negative volume during deformation.  The sensitivity of governing equations with respect to nodal 

coordinates [
𝜕𝑹

𝜕𝑿
] can be evaluated as described in section 4.2.2, taking the design variable to be the 

appropriate nodal coordinate.  With this method, adaptive mesh deformation can be implemented 

while still preserving the efficiency of the adjoint method. 

 

4.3.2   Eigenpair-Based Objectives and Constraints 

 

It can be useful to define objective functions and/or constraints involving the eigenpairs of a matrix 

derived from the governing equations.  The most prominent example in the present context is in 

structural buckling analysis, as will be discussed further in Chapter 6.  Another potential 
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application would be in vibrations and modal analysis, in the tailoring of natural frequencies of a 

structure to resist phenomena like aerodynamic flutter. 

For now, let us just assume there is a matrix [𝐾], which is a function of the design variables 

𝑫, and the solution variables 𝑼 of a structural system.  Let the objective be some function of the 

eigenvalues 𝝀 and eigenvectors [𝑉] of [𝐾]: 

 

𝐿 = 𝐿([𝑉], 𝝀) (4.41) 

 

Often, the objective may only be dependent on a certain set of the eigenpairs, not necessarily the 

entire set.  The objective sensitivities can be expressed 

 

𝑑𝐿

𝑑𝐷𝑖
= ∑ (

𝜕𝐿

𝜕𝒗𝑗
) ∙ (

𝑑𝒗𝑗

𝑑𝐷𝑖
) +

𝜕𝐿

𝜕𝜆𝑗

𝑑𝜆𝑗

𝑑𝐷𝑖

𝑛𝑝𝑎𝑖𝑟𝑠

𝑗=1

 (4.42) 

 

To construct the sensitivities with respect to a given eigenpair, begin with the fundamental 

eigenproblem statement, 

 

[𝐾]𝒗𝑗 = 𝜆𝑗𝒗𝑗 (4.43) 

 

Remembering that [𝐾] is dependent on 𝑫, and by extension so are the eigenpairs, differentiation 

of Eq. (4.43) gives 

 

𝑑[𝐾]

𝑑𝐷𝑖
𝒗𝑗 + [𝐾]

𝑑𝒗𝑗

𝑑𝐷𝑖
=
𝑑𝜆𝑗

𝑑𝐷𝑖
𝒗𝑗 + 𝜆𝑗

𝑑𝒗𝑗

𝑑𝐷𝑖
 (4.44) 

 

If a magnitude of one is enforced on all eigenvectors, the following constraint also applies: 

 

𝒗𝑗 ∙ 𝒗𝑗 = 1 

⟹ 𝒗𝑗 ∙ (
𝑑𝒗𝑗

𝑑𝐷𝑖
) = 0 

(4.45) 
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Rearranging Eq. (4.44) and combining with Eq. (4.45) gives 

 

[𝐾]
𝑑𝒗𝑗

𝑑𝐷𝑖
− 𝜆𝑗

𝑑𝒗𝑗

𝑑𝐷𝑖
− 
𝑑𝜆𝑗

𝑑𝐷𝑖
𝒗𝑗 = −

𝑑[𝐾]

𝑑𝐷𝑖
𝒗𝑗   

𝒗𝑗 ∙ (
𝑑𝒗𝑗

𝑑𝐷𝑖
) = 0 

(4.46) 

 

Or in matrix form, after a sign reversal of the eigenvector constraint, Eq. (4.46) can be expressed 

 

[

[𝐾] − 𝜆𝑗[𝐼]  −𝒗𝑗
   

−𝒗𝑗
𝑇  0

]

{
 
 

 
 𝑑𝒗𝑗

𝑑𝐷𝑖
𝑑𝜆𝑗

𝑑𝐷𝑖}
 
 

 
 

= {
−
𝑑[𝐾]

𝑑𝐷𝑖
𝒗𝑗

 
0

} (4.47) 

 

With this relationship, the objective sensitivities can now be written as 

 

𝑑𝐿

𝑑𝐷𝑖
= ∑ [(

𝜕𝐿

𝜕𝒗𝑗
)

𝑇
𝜕𝐿

𝜕𝜆𝑗
]

{
 
 

 
 𝑑𝒗𝑗

𝑑𝐷𝑖
𝑑𝜆𝑗

𝑑𝐷𝑖}
 
 

 
 𝑛𝑝𝑎𝑖𝑟𝑠

𝑗=1

 

= ∑ [(
𝜕𝐿

𝜕𝒗𝑗
)

𝑇
𝜕𝐿

𝜕𝜆𝑗
] [

[𝐾] − 𝜆𝑗[𝐼]  −𝒗𝑗
   

−𝒗𝑗
𝑇  0

]

−1

{
−
𝑑[𝐾]

𝑑𝐷𝑖
𝒗𝑗

 
0

}

𝑛𝑝𝑎𝑖𝑟𝑠

𝑗=1

 

(4.48) 

 

The total sensitivity of the matrix [𝐾], assuming dependence on both 𝑫 and 𝑼, is 

 

𝑑[𝐾]

𝑑𝐷𝑖
=
𝜕[𝐾]

𝜕𝐷𝑖
+ ∑

𝜕[𝐾]

𝜕𝑈𝑘
([
𝜕𝑹

𝜕𝑼
]
−1 𝜕𝑹

𝜕𝐷𝑖
)
𝑘

𝑛𝑑𝑜𝑓

𝑘=1

 (4.49) 

 

Putting it all together, the process of obtaining the objective sensitivities using and adjoint 

approach in this case can be broken down into the following steps: 
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(1) 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑒𝑖𝑔𝑒𝑛𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 [𝐾]: 𝝀, [𝑉]                                                 

(2) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑒𝑖𝑔𝑒𝑛𝑝𝑎𝑖𝑟:                                                                                              

(𝑎) 𝑠𝑜𝑙𝑣𝑒 [

[𝐾] − 𝜆𝑗[𝐼]  −𝒗𝑗
   

−𝒗𝑗
𝑇  0

] {
𝚲𝑣
 
𝚲𝜆

} =

{
 
 

 
 
𝜕𝐿

𝜕𝒗𝑗
𝜕𝐿

𝜕𝝀𝑗}
 
 

 
 

                                

(𝑏) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝒚, 𝑦𝑘 = (𝚲𝑣)
𝑇
𝜕[𝐾]

𝜕𝑈𝑘
𝒗𝑖   , 𝑘 = 1…𝑛𝑑𝑜𝑓                           

(𝑐) 𝑠𝑜𝑙𝑣𝑒 [
𝜕𝑹

𝜕𝑼
]
𝑇

𝚲 =  𝒚                                                                               

(𝑑) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐷𝑖 𝑢𝑝𝑑𝑎𝑡𝑒
𝑑𝐿

𝑑𝐷𝑖
=
𝑑𝐿

𝑑𝐷𝑖
− (𝚲𝑣)

𝑇
𝜕[𝐾]

𝜕𝐷𝑖
𝒗𝑗 − 𝚲

𝑇
𝜕𝑹

𝜕𝐷𝑖
  

(4.50) 

 

 The modified adjoint process in this case is still independent of the number of design 

variables, but requires an eigen-solve, and two solutions of linear systems for each of the resulting 

eigenpairs.  Clearly, this implementation could still become costly if a large number of eigenpairs 

are needed, despite the use of the adjoint.  For large systems, it is usually only a small subset of 

eigenpairs that are needed for the analysis, but finding potential alternative approaches to the 

analysis may be worthwhile nonetheless.  This is a topic of study in Chapter 6. 
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    Chapter 5                                         

Demonstrations and Validations 

 

With the methods and formulations of AStrO established, a series of tests and demonstrations will 

be presented to validate and confirm the reliability of its results.  Each section of this chapter 

focuses on a particular aspect of AStrO’s capability, comparing results with analytical solutions, 

experimental data and other numerical tools.  The accurate and reliable computation of objective 

sensitivities using the adjoint method will also be verified.  The specific topics of focus for each 

section are 1) static coupled thermoelastic modeling, 2) problems involving nonlinear geometry 3) 

structural dynamic modeling and 4) coupled aeroelastic modeling. 

 

5.1   Static Thermoelastic Response 

 

This section provides a general demonstration of the coupled thermoelastic modeling capability of 

AStrO.  To begin, recall the governing partial differential equations for the thermal and elastic 

response of solid bodies in static equilibrium, as originally given in Chapter 3: 

 

(𝛁 ∙ 𝒒) − 𝑄 = 0 

𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

+
𝜕𝜎13
𝜕𝑥3

+ 𝑓1 = 0 

𝜕𝜎21
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜎23
𝜕𝑥3

+ 𝑓2 = 0 

𝜕𝜎31
𝜕𝑥1

+
𝜕𝜎32
𝜕𝑥2

+
𝜕𝜎33
𝜕𝑥3

+ 𝑓3 = 0 

(5.1) 
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Now suppose an elastic body is subject to thermal loads in the form of internal heat generation, 

represented by 𝑄, surface traction 𝒕 and heat flux 𝒒 in the absence of any volumetric body force.  

In that case, the governing equations for elastic response simplifies to 

                

𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

+
𝜕𝜎13
𝜕𝑥3

= 0 

𝜕𝜎21
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

+
𝜕𝜎23
𝜕𝑥3

= 0 

𝜕𝜎31
𝜕𝑥1

+
𝜕𝜎32
𝜕𝑥2

+
𝜕𝜎33
𝜕𝑥3

= 0 

(5.2) 

 

With stress computed from the combination of total strain and strain due to thermal expansion: 

 

𝜎𝑖𝑗 =∑∑𝐶𝑖𝑗𝑘𝑙(𝜖𝑡𝑜𝑡𝑎𝑙,𝑘𝑙 − 𝛼𝑇𝐸,𝑘𝑙𝑇)

3

𝑙=1

3

𝑘=1

 (5.3) 

 

If the elastic stiffness tensor and the thermal expansion coefficients are constant throughout the 

elastic body, then Eq. (5.2) becomes 

 

∑∑∑𝐶1𝑗𝑘𝑙 (
𝜕𝜖𝑡𝑜𝑡𝑎𝑙,𝑘𝑙
𝜕𝑥𝑗

− 𝛼𝑇𝐸,𝑘𝑙
𝜕𝑇

𝜕𝑥𝑗
)

3

𝑙=1

3

𝑘=1

3

𝑗=1

= 0 

∑∑∑𝐶2𝑗𝑘𝑙 (
𝜕𝜖𝑡𝑜𝑡𝑎𝑙,𝑘𝑙
𝜕𝑥𝑗

− 𝛼𝑇𝐸,𝑘𝑙
𝜕𝑇

𝜕𝑥𝑗
)

3

𝑙=1

3

𝑘=1

3

𝑗=1

= 0 

∑∑∑𝐶3𝑗𝑘𝑙 (
𝜕𝜖𝑡𝑜𝑡𝑎𝑙,𝑘𝑙
𝜕𝑥𝑗

− 𝛼𝑇𝐸,𝑘𝑙
𝜕𝑇

𝜕𝑥𝑗
)

3

𝑙=1

3

𝑘=1

3

𝑗=1

= 0 

(5.4) 

 

Equation (5.4) provides a relationship between strain and temperature in the absence of applied 

volumetric body forces.  The strategy of this test is to choose an analytical displacement/strain 

field within an arbitrary elastic body, and derive the corresponding temperature distribution based 

on Eq. (5.4).  Then the internal heat generation field can be found from Eq. (5.1), and the derived 

loading and boundary conditions can be applied to a finite element model to compare the results 

for temperature and displacement generated by AStrO to the analytical solutions. 
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 Consider a solid cube of dimension 1 with its lower corner at the origin of a global 

coordinate system, as shown in Fig. 5.1. 

 

Figure 5.1  Geometric definition of thermally loaded solid block. 

 

Let the analytical displacement field within the cube be given as follows: 

 

𝑢1 = (
1

3
𝑥1
3 + 𝑥2

2 + 𝑥3
2) 10−3 

𝑢2 = (𝑥1
2 +

1

3
𝑥2
3 + 𝑥3

2) 10−3 

𝑢3 = (𝑥1
2 + 𝑥2

2 +
1

3
𝑥3
3) 10−3 

(5.5) 

 

In this exercise, linear geometry is assumed so that the total strain field can be expressed 

 

𝜖1 =
𝜕𝑢1
𝜕𝑥1

= 𝑥1
210−3 

𝜖2 =
𝜕𝑢2
𝜕𝑥2

= 𝑥2
210−3 

𝜖3 =
𝜕𝑢3
𝜕𝑥3

= 𝑥3
210−3 

𝛾12 =
𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1

= 2(𝑥1 + 𝑥2)10
−3 

𝛾13 =
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1

= 2(𝑥1 + 𝑥3)10
−3 

𝛾23 =
𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

= 2(𝑥2 + 𝑥3)10
−3 

(5.6) 
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 A further assumption is that the cube’s material has orthotropic elastic properties, with its 

orthogonal planes of symmetry aligned with the global coordinate directions.  Its thermal 

conductivity 𝑘 is isotropic, as is the coefficient of thermal expansion 𝛼𝑇𝐸, with no expansions 

directly associated with shear strains.  Under these assumptions, Eq. (5.4) can be expanded out for 

each of the global coordinate directions, considering only non-zero terms of the summation.  For 

the equilibrium in the 1-direction, 

 

𝐶1111 (
𝜕𝜖11

 

𝜕𝑥1
− 𝛼 

𝑇𝐸
𝜕𝑇

𝜕𝑥1
) + 𝐶1122 (

𝜕𝜖22
 

𝜕𝑥1
− 𝛼 

𝑇𝐸
𝜕𝑇

𝜕𝑥1
) + 𝐶1133 (

𝜕𝜖33
 

𝜕𝑥1
− 𝛼 

𝑇𝐸
𝜕𝑇

𝜕𝑥1
) 

+ 𝐶1212 (
𝜕𝜖12

 

𝜕𝑥2
) + 𝐶1221 (

𝜕𝜖21
 

𝜕𝑥2
) + 𝐶1313 (

𝜕𝜖13
 

𝜕𝑥3
) + 𝐶1331 (

𝜕𝜖31
 

𝜕𝑥3
) = 0 

(5.7) 

 

Rewriting Eq. (5.7) in terms of strain in one-dimensional vector form, 

 

𝐶11 (
𝜕𝜖1

 

𝜕𝑥1
− 𝛼𝑇𝐸

𝜕𝑇

𝜕𝑥1
) + 𝐶12 (

𝜕𝜖2
 

𝜕𝑥1
− 𝛼𝑇𝐸

𝜕𝑇

𝜕𝑥1
) + 𝐶13 (

𝜕𝜖3
 

𝜕𝑥1
− 𝛼𝑇𝐸

𝜕𝑇

𝜕𝑥1
) 

+𝐶44
𝜕𝛾12
𝜕𝑥2

 + 𝐶55
𝜕𝛾13
𝜕𝑥3

= 0 

(5.8) 

 

Substituting the analytical solution for total strain into Eq. (5.8), the equation simplifies to 

 

𝐶11 (2𝑥110
−3 − 𝛼𝑇𝐸

𝜕𝑇

𝜕𝑥1
) + 𝐶12 (−𝛼𝑇𝐸

𝜕𝑇

𝜕𝑥1
) + 𝐶13 (−𝛼𝑇𝐸

𝜕𝑇

𝜕𝑥1
) 

+2𝐶4410
−3 + 2𝐶5510

−3 = 0 

(5.9) 

 

The partial derivative of temperature with respect to 𝑥1 can now be solved for as follows: 

           

𝜕𝑇

𝜕𝑥1
=
2(𝐶11𝑥1 + 𝐶44 + 𝐶55)10

−3

𝛼𝑇𝐸(𝐶11 + 𝐶12 + 𝐶13)
 (5.10) 

 

Equation (5.10) can be integrated in 𝑥1 to give a partial representation of the temperature field: 
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𝑇 =  
2 (
1
2
𝐶11𝑥1

 + 𝐶44 + 𝐶55)𝑥110
−3

𝛼𝑇𝐸(𝐶11 + 𝐶12 + 𝐶13)
+ 𝐹1(𝑥2, 𝑥3) 

(5.11) 

 

The same process can be followed for the equations of elastic equilibrium in the 2 and 3 directions, 

leading to the following supplemental representations of the temperature field: 

 

𝑇 =  
2 (
1
2𝐶22𝑥2

 + 𝐶44 + 𝐶66)𝑥210
−3

𝛼𝑇𝐸(𝐶21 + 𝐶22 + 𝐶23)
+ 𝐹2(𝑥1, 𝑥3) 

𝑇 =  
2 (
1
2
𝐶33𝑥3

 + 𝐶55 + 𝐶66)𝑥310
−3

𝛼𝑇𝐸(𝐶31 + 𝐶32 + 𝐶33)
+ 𝐹3(𝑥1, 𝑥2) 

(5.12) 

 

Combining Eqs. (5.11) and (5.12), the complete definition of the temperature field can be 

expressed 

 

𝑇 =
2

𝛼𝑇𝐸
(
(
1
2
𝐶11𝑥1

 + 𝐶44 + 𝐶55) 𝑥1

(𝐶11 + 𝐶12 + 𝐶13)
+ 
(
1
2
𝐶22𝑥2

 + 𝐶44 + 𝐶66) 𝑥2

(𝐶21 + 𝐶22 + 𝐶23)
+
(
1
2
𝐶33𝑥3

 + 𝐶55 + 𝐶66) 𝑥3

(𝐶31 + 𝐶32 + 𝐶33)
) 10−3 (5.13) 

 

With isotropic thermal conductivity, the heat flux field can be written 

 

𝒒 = −𝑘𝛁𝑇 =  −
2𝑘

𝛼𝑇𝐸
[
(𝐶11𝑥1

 + 𝐶44 + 𝐶55)

(𝐶11 + 𝐶12 + 𝐶13)
,
(𝐶22𝑥2

 + 𝐶44 + 𝐶66)

(𝐶21 + 𝐶22 + 𝐶23)
,
(𝐶33𝑥3

 + 𝐶55 + 𝐶66)

(𝐶31 + 𝐶32 + 𝐶33)
]

𝑇

10−3 (5.14) 

 

and the internal heat generation field is 

 

𝑄 = (𝛁 ∙ 𝒒) = −
2𝑘

𝛼𝑇𝐸
(

𝐶11
(𝐶11 + 𝐶12 + 𝐶13)

+ 
𝐶22

(𝐶21 + 𝐶22 + 𝐶23)
+

𝐶33
(𝐶31 + 𝐶32 + 𝐶33)

) 10−3 (5.15) 

 

By applying Eqs. (5.14) and (5.15) as thermal surface flux and heat generation loads to a finite 

element model of the solid cube, the analytical temperature distribution of Eq. (5.13), and 

subsequently the original displacement and strain fields of Eqs. (5.5) and (5.6) should be 

recovered. 
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 Models of the solid cube were constructed using four-node tetrahedral elements and eight-

node hexahedral elements with and without incompatible modes at four levels of mesh refinement.  

The nominal element size 𝑑𝑋 at each progressive refinement level was set to 1/4, 1/8, 1/16, and 

1/32.  The elastic material properties of the cube were set to be fully isotropic, with Young’s 

modulus 106 and Poisson’s ratio 0.3.  Thermal conductivity and coefficient of thermal expansion 

were set to 1.0 and 10−4 respectively.  Figures 5.2 and 5.3 show plots of the resulting temperature 

and displacement distribution under the specified loading computed by AStrO, for refinement level 

three.  

 

Figure 5.2  Temperature distribution in solid block for (a) hexahedral elements and (b) tetrahedral 

elements. 

 

Figure 5.3  Distribution of displacement magnitude in deformed solid block for (a) hexahedral 

elements and (b) tetrahedral elements. 
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 The convergence of the solution with mesh refinement is demonstrated in Figs. 5.4 through 

5.6.  For each element type, the error norm and the root mean square of error in temperature, 

displacement and strain are plotted for increasing mesh refinement, computed as follows 

 

𝑒𝑟𝑟𝑜𝑟 =
∑ |𝑢𝐹𝐸,𝑖 − 𝑢𝑒𝑥𝑎𝑐𝑡,𝑖|(𝑉𝑜𝑙𝑖)
𝑛𝑒𝑙𝑠
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
 

𝑅𝑀𝑆(𝑒𝑟𝑟𝑜𝑟) = √
∑ (𝑢𝐹𝐸,𝑖 − 𝑢𝑒𝑥𝑎𝑐𝑡,𝑖)

2
(𝑉𝑜𝑙𝑖)

𝑛𝑒𝑙𝑠
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
 

(5.16) 

 

with all quantities computed at the centroid of each element.  All solutions asymptotically converge 

to the exact solution with increasing mesh refinement at a logarithmic slope of roughly two, which 

is to be expected for linear order elements.  Eight-node hexahedral elements generally perform 

better than four-node tetrahedral elements at a given level of refinement, particularly for the elastic 

response.  This is known to be true in general, since four-node linear interpolation results in 

unconditionally constant solution gradients within an element, meaning constant strain or constant 

heat flux.  Yet the difference tends to be less pronounced for the thermal solution.  Hex elements 

with incompatible modes tend to show improved performance compared to those without for 

displacement and strain results, due to their improved compliance and enriched basis.   

 

 

Figure 5.4  Error convergence of temperature solution in solid block. 
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Figure 5.5  Error convergence of displacement solution in solid block. 

 

 

Figure 5.6  Error convergence of strain solution in solid block. 

 

 To test the adjoint-based sensitivities in this case, the elastic modulus, thermal conductivity 

and coefficient of thermal expansion of the block material were defined as design variables.  The 

sensitivity of each property was scaled to the original value, resulting in the following design-

dependent definitions: 

 

𝐸 = 𝐸0 + 10
6𝐷1 

𝑘 = 𝑘0 + 𝐷2 

𝛼𝑇𝐸 = 𝛼𝑇𝐸0 + 10
−4𝐷3 

(5.17) 
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The normal stress in the 1-direction at the center of the block was chosen as a sample objective 

function.  The sensitivities of the objective were computed using both the adjoint and tangent 

methods, as well as with complex differentiation for comparison.  Tables 5.1 through 5.3 show 

the results for the models of each element type, at the second level of refinement.  The adjoint 

and tangent formulations are mathematically equivalent, using exact differentiation of the 

governing equations as described in Chapter 4, and they agree nearly to machine precision.  

Complex differentiation does not use the linearization of the governing equations, but works 

much like a high-precision finite difference, and should be numerically equal to the other two 

results, as seen in the tables.  The results indicate that the adjoint implementation correctly 

differentiates the finite element solution in this case. 

 

Table 5.1  Comparison of objective sensitivities for hex elements. 

 Adjoint Tangent Complex 

𝐸 1.01623163821754E+02 1.01623163821740E+02 1.01623163821749E+02 

𝑘 -3.19733746691863E+01 -3.19733746691863E+01 -3.19733746691863E+01 

𝛼𝑇𝐸 4.59152345854606E+01 4.59152345854610E+01 4.59152345854607E+01 

 

 

Table 5.2  Comparison of objective sensitivities for hex elements with incompatible modes. 

 Adjoint Tangent Complex 

𝐸 1.02004059071704E+02 1.02004059071715E+02 1.02004059071740E+02 

𝑘 -3.23030013695860E+01 -3.23030013695860E+01 -3.23030013695860E+01 

𝛼𝑇𝐸 4.39648564442760E+01 4.39648564442794E+01 4.39648564442769E+01 

 

 

Table 5.3  Comparison of objective sensitivities for tet elements. 

 Adjoint Tangent Complex 

𝐸 4.42118570600518E+02 4.42118570600508E+02 4.42118570600573E+02 

𝑘 -4.02439378627728E+01 -4.02439378627727E+01 -4.02439378627740E+01 

𝛼𝑇𝐸 2.62013585770984E+02 2.62013585770987E+02 2.62013585770988E+02 
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5.2   Nonlinear Geometry 

 

This section provides a demonstration of AStrO’s capability for modeling geometrically nonlinear 

structural problems.  The test model is a straight wing of length 𝐿 = 10 and chord 𝑐 = 1, with a 

NACA 0012 cross section, constructed from both solid continuum elements and shell elements, as 

shown in Figure 5.7.   

 

Figure 5.7  NACA 0012 wing section models constructed from (a) solid elements and (b) shell 

elements. 

 

The solid element model was constructed to be solid through the thickness, dominated by eight-

node hex elements with sparing use of six-node wedge elements.  The shell model’s cross section 

was made hollow with a shell thickness of 0.025.  The wing material was given a thermal 

expansion coefficient of 𝛼𝑇𝐸 = 10−4,  and a temperature gradient was applied through the cross 

section of the wing in the 2-direction, such that 

 

𝑇 = −
𝜋

𝛼𝑇𝐸𝐿
𝑥2 (5.18) 

 

This condition results in a normal strain proportional to the distance from the neutral axis of the 

wing, making the wing curl into an arc about the chord direction.  The exact analytical response 

would form a 180o arc in the 𝑥2-𝑥3 plane. 

 The displacement solution for both models was found with the 𝑥3 = 0 end of the wing 

clamped with displacements and rotations set to zero.  Analysis was performed using full Newton-
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Raphson iterations, with the thermal load applied in successive increasing increments to ensure 

convergence, at four increasing levels of mesh refinement for both models.  Nominal element sizes 

for each refinement level were 1/4, 1/8, 1/16, and 1/32.  Figure 5.8 graphically shows the response 

for both the solid and shell models, for an element size of 1/16.  Figure 5.9 plots the mesh 

convergence of both models, with error and root mean square as defined previously in Eq. (5.16). 

  

 

 

Figure 5.8  Deformed configuration of NACA 0012 wing under thermal loading for (a) solid model 

and (b) shell model. 

 

 These two models, although identical in outer mold line and length, are fundamentally 

different not only in element type, but also in cross sectional properties, one being solid and one 
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being a hollow shell.  As a result, some key differences are seen in the mesh convergence behavior.  

For the solid model, the mesh is three dimensional throughout the volume, with elements 

conforming to the curved shape of the airfoil.  Consequently, there is a measure of error due to 

element distortion in the 1-2 plane.  This is not a consideration for the shell model, since only a 

single layer of elements forming the outer surface is required, which can be structured in a very 

regular arrangement.  On a related note, refinement of the solid mesh entails refining element size 

in all three dimensions, while shell structures are inherently one element thick, and so refinement 

is effectively in only two dimensions.  Yet shell elements are somewhat more ideally formulated 

for slender structures such as this in general.   

 One consequence of these differences is that the solution for the solid model shows greater 

error from the exact solution than does the shell model, particularly for coarse levels of refinement.  

Figure 5.9 shows the mesh convergence for both models, with error computed as shown in Eq. 

(5.16).  From the coarsest mesh to the next level up, both models seem to exhibit first order error 

convergence.  But toward high levels of mesh refinement, the solid model approaches second order 

error convergence while the shell model remains steadily at first order convergence.  This can be 

explained by the fact that second order convergence is predicated on the assumption of mesh 

refinement in all three dimensions.  This cannot apply to the shell model at all as previously 

mentioned.  For the solid model, because the thickness in the 2-direction is so small and the first 

mesh is so coarse, almost no refinement takes place in the 2-direction between the first two levels 

of mesh refinement, leading to the apparent first order convergence on that step. 

 

 

Figure 5.9  Error convergence of displacement for NACA 0012 wing models under thermal 

loading. 
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 To examine sensitivities, the thermal expansion coefficient and the 𝑥3 nodal coordinates of 

the models were set as design variables, given by 

 

𝛼𝑇𝐸 = 𝛼𝑇𝐸,0(1 + 𝐷1) 

𝑋3 = 𝑋3,0(1 + 𝐷2) 
(5.19) 

 

The magnitude of the tip deflection of the wing was chosen to be a test objective function, and the 

sensitivities were obtained using the adjoint, the tangent method and complex differentiation.  

Table 5.4 and Table 5.5 give the sensitivities for the solid model and the shell model, respectively.  

Again, the three measures of sensitivity should be exactly equivalent, but this time a bit more 

discrepancy is seen in the last few digits compared to the previous study.  It is typical for structures 

that are inherently unstable, and sensitive to small perturbations in loading to produce more 

uncertainty in the solution, and by extension in the adjoint as well.  The long, slender geometry 

and clamped boundary condition of these models make them an example of such cases.  All in all, 

the results show accuracy in the geometrically nonlinear formulation and the adjoint-based 

sensitivities. 

 

Table 5.4  Comparison of objective sensitivities for solid element model. 

 Adjoint Tangent Complex 

𝛼𝑇𝐸 4.90118414963794E+00 4.90118414963837E+00 4.90118414963117E+00 

𝑋3 9.78884552153048E+00 9.78884552153156E+00 9.78884552153689E+00 

 

 

Table 5.5  Comparison of objective sensitivities for shell model. 

 Adjoint Tangent Complex 

𝛼𝑇𝐸 4.77792761702088E+00 4.77792761700899E+00 4.77792761706767E+00 

𝑋3 9.67722373498791E+00 9.67722373497570E+00 9.67722373491387E+00 
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5.5   Dynamic Modeling 

 

To demonstrate AStrO’s capability for implicit dynamic time integration, consider again the 

NACA 0012 wing section models introduced in the previous section.  With their constant 

symmetric cross sections and material properties, these models are essentially uniform beams, for 

which there are analytical solutions for the modes of free vibration subject to various boundary 

conditions.  In this demonstration, the NACA models are clamped (constrained to zero 

displacements and rotations) at the end where 𝑥3 = 0, and free at the opposite end where 𝑥3 =

−𝐿.  For such conditions, the first mode response of transverse free vibration can be represented 

as 

 

𝑢2 = 𝜓(𝑥3)𝜑(𝑡) 

𝜓(𝑥3) = cosh(𝑏𝑥3) − cos(𝑏𝑥3) − 𝑎(sinh(𝑏𝑥3) − sin(𝑏𝑥3)) 
(5.20) 

 

Where 𝜑(𝑡) is a periodic harmonic function of time, determined from the initial conditions and 

loading, as well as the material and geometric properties of the beam.  The constants 𝑎  and 𝑏 are 

determined from the particular mode of vibration.  In this case, for the first mode of vibration of a 

clamped-free beam extruded in the negative 3-direction, 𝑎 = 0.7340955, and 𝑏 = −0.18751041.  

The NACA 0012 wing models were subjected to a transverse load distribution proportional to the 

mode shape 𝜓 from rest, as illustrated in Fig. 5.10.  Under these conditions, the periodic function 

𝜑 becomes 

 

𝜑(𝑡) = 1 − cos (𝜔𝑡) 

𝜔 = 𝑏2√
𝐸𝐼

𝜌𝐴
 

(5.21) 

 

The natural frequency 𝜔 can be determined as shown in Eq. (5.21) from the Young’s modulus of 

the beam 𝐸, the second moment of area of the cross section 𝐼, the mass density 𝜌 and the cross-

sectional area 𝐴, along with the constant 𝑏 for the given mode shape.  The response for one full 

period of vibration was predicted by AStrO through implicit time integration for both the solid 
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model and the shell model at the highest level of mesh refinement, and compared with the 

analytical solution for progressively increasing time resolution.  The dynamic integration 

parameters were set to 𝛼 = 0, 𝛽 =
1

4
, 𝛾 =

1

2
, for which second-order convergence in time is 

expected.  Figure 5.11 shows the time resolution convergence for both models, again with the 

metrics of error defined as shown in Eq. (5.16).  Second-order convergence is confirmed with both 

models, evident by the logarithmic slope of two. 

 
Figure 5.10  NACA 0012 wing model in first mode free vibration. 

 

 

Figure 5.11  Time resolution convergence of error for NACA 0012 wing model in first mode free 

vibration. 

 

 As was done in previous demonstrations, the solution convergence test was followed up 

with a sensitivity test for selected design variables.  In this case, the objective was set to be the tip 

deflection of the wing integrated over one period of vibration.  Design variables were defined to 

be Young’s modulus 𝐸, mass density 𝜌, nodal coordinates in the 3-direction 𝑋3, and shell thickness 
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ℎ, if applicable.  Tables 5.6 and 5.7 show the objective sensitivities as obtained by the adjoint, 

tangent and complex step methods. 

 

Table 5.6  Sensitivity results for solid NACA 0012 model in free vibration. 

 Adjoint Tangent Complex 

𝐸 -2.34316797685626E+01 -2.34316797685609E+01 -2.34316797685665E+01 

𝜌 6.93622330325826E+00 6.93622330325728E+00 6.93622330325849E+00 

𝑋3 7.69163259198577E+01 7.69163259198956E+01 7.69163259198118E+01 

 

 

Table 5.7  Sensitivity results for shell NACA 0012 model in free vibration. 

 Adjoint Tangent Complex 

𝐸 -2.28662547511174E+01 -2.28662547511176E+01 -2.28662547511172E+01 

𝜌 6.80909337379652E+00 6.80909337379656E+00 6.80909337379659E+00 

ℎ -6.87938499499907E-02 -6.87938499499919E-02 -6.87938499499910E-02 

𝑋3 7.11201895842075E+01 7.11201895843516E+01 7.11201895847536E+01 

 

  

As a further demonstration, consider a model of a wing section that was the subject of the 

High Reynolds Number Aero-Structural Dynamics (HIRENASD) aeroelastic test case [85].  For 

this wing geometry, numerous meshes for both CFD and structural finite element modeling, as 

well as experimental wind tunnel test data is readily available.  In this section, the focus is on the 

pure structural dynamic analysis of a certain finite element model of the HIRENASD wing, and 

the prediction of its motion in first-mode free vibration. 

 The particular finite element model chosen is composed of approximately 42,000 eight-

node hexahedral elements with incompatible modes, obtained from the website of the Aeroelastic 

Prediction Workshop (AePW) [86].  As a first step, a modal analysis was performed on the finite 

element model using Abaqus to obtain the first free-vibration mode shape of the structure.  The 

results reported the natural frequency of the first mode to be 26.55 Hz, which was very consistent 

with the experimental value of 26.53 Hz reported on the AePW website.  Taking this natural 

frequency with the first mode shape function 𝝍(𝒙), the dynamic solution for the displacement of 

the wing in free vibration, with zero initial displacement should be 
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𝒖(𝒙, 𝑡) = 𝑎𝝍(𝒙)𝑠𝑖𝑛(26.55𝜋𝑡) (5.22) 

 

for some constant 𝑎.  If a structural dynamic solver is working properly, given the appropriate 

initial velocity distribution based on Eq. (5.22), it should preserve the simple harmonic motion of 

the structure at the determined frequency and mode shape. 

 This test was performed on AStrO, scaling the velocity distribution to have an initial 

magnitude of 1.0 at the tip.  The time step was set to the period of vibration times 10−2.  The 

results for the tip displacement of the dynamic solution predicted by AStrO are plotted along with 

the Abaqus solution in Fig. 5.12.  The two solutions are nearly indistinguishable, indicating 

AStrO’s predicted dynamic solution to be comparable to that of Abaqus and consistent with known 

experimental data.  

 

 

Figure 5.12  (a) Displacement distribution of HIRENASD wing in first mode free vibration.  (b)  

Dynamic response of tip displacement HIRENASD wing in free vibration with Abaqus solution. 

 

5.4   Coupled Aero-Structural Analysis 

 

To validate the combined aero-structural modeling capability of AStrO and NSU3D, the static 

aeroelastic response of the HIRENASD wing described in the previous section was computed.  

The flow conditions were Mach=0.8, Incidence = 1.5 degrees, Re=7 million and a dynamic 

pressure of 40,055.4 Pa.  The CFD mesh used was a coarse, node-centered, unstructured mesh 

available at the AePW web site, which contains a mixture of prismatic and tetrahedral elements 
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with approximately 6.5 million points.  The flow solver was run a total of 3 fluid-structure coupling 

cycles.  Within each coupling cycle, the flow solver was run 200 multigrid cycles, the CFD forces 

were transferred to AStrO, which solved for the static displacements and returned them to the 

surface CFD mesh.  NSU3D’s mesh deformation solver was then run for 50 multigrid cycles, and 

the process was repeated.  Figure 5.13 illustrates the convergence of the CFD solver for this case, 

showing diminishing jumps in convergence at each fluid-structure update. The flexible wing lift 

coefficient is computed as 0.3304, which compares well with the values reported in the AePW 

workshop for the static aeroelastic case using modal analysis [86].  The computed surface pressure 

profile and the distribution of static deflection vertical displacements are shown in Fig. 5.14. 

 

 

Figure 5.13  Convergence history of static aeroelastic HIRENASD case. 
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Figure 5.14  (a) Computed surface pressure coefficient contours on final flexible wing solution, 

(b) Computed displacement field on wing structure. 

 

 A time-dependent aeroelastic case was run using the same HIRENASD structural model 

and CFD mesh.  Using the same flow conditions, the flow was first computed with the wing 

structure held fixed (i.e. rigid wing with no allowed displacements).  At time t=0, the wing was 

suddenly released and responded to the aerodynamic loads with a periodic motion with decreasing 

amplitude which eventually converged to the previously computed steady-state aeroelastic 

solution.  A time step size corresponding to 0.01 of the period of the natural frequency of the first 

bending mode of the wing is used in this calculation.  Figure 5.15 (a) depicts the time response of 

the wing, as a plot of the displacement of a point near the wing tip.  Figure 5.15 (b) illustrates the 

convergence of the coupled dynamic aeroelastic system, while Figure 5.15 (c) depicts the 

convergence history of the mesh deformation equations.  A total of 3 coupling cycles were used at 

each time step, with 10 multigrid cycles employed for the CFD solver within each coupling cycle, 

resulting in a total of 30 flow cycles per time step.  The jumps in residual and lift at the start of 

each coupling cycle were seen to decrease monotonically and the lift values at the end of each time 

step are well converged.  The mesh deformation equations of NSU3D were converged 10 orders 

of magnitude at each coupling iteration.  Since these equations were initialized with the 

displacements obtained from the previous coupling cycle, the initial residuals at each coupling 

iteration decrease monotonically, indicating that the deflections of the structural model were 

(a) (b) 
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converging as the fully coupled aeroelastic problem was solved to tighter tolerances.  This problem 

was run on 128 processors and required approximately 1 minute for each physical time step. 

 

 

 

 

 

Figure 5.15  (a) Time history of tip displacement for dynamic aeroelastic HIRENASD test case, 

(b) Convergence history over selected time steps for flow solver, (c) Convergence history of mesh 

deformation problem at selected time steps. 

  

(a) 

(b) (c) 
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    Chapter 6                                                  

Case Studies and Results 

 

In this chapter, two case studies are presented in which AStrO was used to perform investigations 

of interest in the field of aero-structural dynamics.  The first case study is an attempt to minimize 

a measure of stress that has been correlated to the propagation of fatigue stress in fiber-reinforced 

composites, in a wind turbine blade subject to various loading conditions.  The second case study 

investigates a novel way of applying buckling constraints in gradient-based optimization, which 

stands to cut computational costs compared to conventional methods.  The results provide insight 

into what can potentially be achieved with adjoint-based structural optimization, and with the new 

methods and approaches considered. 

 

6.1   Fatigue Stress Minimization of a Wind Turbine Blade 

 

As discussed in Chapter 1, the economic viability of wind energy is strongly influenced by the 

ratio of operating lifespan of turbines to levelized power output.  It therefore has always been of 

great interest to maximize turbine lifespan while maintaining performance and power output.  

Damage due to fatigue is a major contributor to the breakdown of wind turbine structures, and the 

reduction of such damage is a critical part of maximizing lifespan.  The scalar off-axis matrix stress 

criterion developed by Fertig [61] has been shown to effectively correlate with the propagation of 

fatigue damage in fiber-reinforced polymer composites, but it has not previously been posed as an 

objective in an applied gradient-based optimization problem.  In the present study, AStrO was 

employed to minimize the Fertig stress criterion throughout the structure of a wind turbine blade 

under several loading conditions, intended to simulate the effective loading on a blade in operation. 
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6.1.1   Structural Model of Sandia SWiFT 13 Meter Wind Turbine Blade 

 

The wind turbine blade model used as the subject for this work is a 13 meter blade with a 0.6 meter 

cylindrical section diameter from Sandia National Laboratories used for the SWiFT project [87].  

For this model detailed geometric and material composition data is readily available, and previous 

work has been done by Bhuiyan et al. [88] in generating the model in Abaqus for conducting 

fatigue studies.  The blade’s outer skin geometry was constructed by lofting together a series of 

airfoil cross sections defined at each of 34 stations along the spanwise length.  The cross section 

at outboard stations consists of leading edge and trailing edge panels, and a central box beam with 

thick reinforced spar caps on the upper and lower sides and shear webs connecting the spar caps 

running normal to the chord.  Figure 6.1 illustrates the general blade geometry.   

 

 

 

Figure 6.1   Cross-sectional design and spanwise geometry of SWiFT wind turbine blade (Ref. 

88). 

 

 The finite element mesh for the model was generated in Abaqus out of 16,310 four-node 

shell elements, following the definition of each spanwise station cross section from the SWiFT 

report [87].  The blade structure is divided into 388 sections, each originally with a composite 

layup definition made from an assortment of materials, as illustrated in Fig. 6.2.  For the present 

studies, all sections of the blade structure were considered to be a single ply of UD1200 glass fiber 

reinforced polyester resin laminate. 
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Figure 6.2   Section divisions of the SWiFT wind turbine blade originally defined by the structural 

finite element model. 

 

   In their previous work, Bhuiyan et al. [88] used the kinetic theory of fracture (KTF) applied 

to volume-averaged matrix constituent stresses to predict fatigue damage evolution in the blade. 

KTF treats polymer fatigue as a thermally activated process, quantifying damage with a scalar 

parameter 𝑛 which ranges from zero in an undamaged state to unity at a state of failure.  The 

damage accumulation rate is given by 

 

𝑑𝑛

𝑑𝑡
= (𝑛0 − 𝑛)

𝜆
𝑘𝑇

ℎ
exp (

𝛾𝜎𝑒𝑓𝑓 − 𝑈

𝑘𝑇
) (6.1) 

 

where 𝜆 is a damage accumulation exponent, 𝑈 is an activation energy associated with 

microcracking, and 𝛾 is an activation volume associated with stress dependence on microcracking, 

all material-dependent.  𝑇 is absolute temperature, ℎ is Planck’s constant and 𝑘 is Boltzmann’s 

constant.  The parameter 𝑛0 is a constant that forces the solution of Eq. (6.1) to reproduce 

Zhurkov’s durability equation [89].  KTF has been shown to accurately predict time-dependent 

failure in polymers [54,90-91] and has been shown to accurately predict composite fatigue damage 

and failure when applied to the matrix constituent [55, 58-61]. 

 A scalar effective off-axis volume-averaged matrix stress is required in Eq. (6.1).  Using 

the strength-life equal rank assumption the following effective stress is defined [61]: 

 

𝜎𝑒𝑓𝑓 = √𝐴𝑡{𝐼𝑚,𝑡}
2
+ 𝐼𝑚,𝑠1 +𝐴𝑠𝐼𝑚,𝑠2 (6.2) 
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where 

 

𝐼𝑚,𝑡 =
1

2
(𝜎𝑚,22 + 𝜎𝑚,33 +√(𝜎𝑚,22 + 𝜎𝑚,33)

2
− 4(𝜎𝑚,22𝜎𝑚,33 − 𝜎𝑚,23)) 

𝐼𝑚,𝑠1 = 𝜎𝑚,12
2 + 𝜎𝑚,13

2  

𝐼𝑚,𝑠2 = (
1

4
(𝜎𝑚,22 − 𝜎𝑚,33)

2
+ 𝜎𝑚,23

2 ) 

(6.3) 

 

𝐴𝑡 and 𝐴𝑠 are material parameters obtained from three static failure tests: transverse tension (S22+), 

transverse compression (S22-), and transverse shear (S12) of a unidirectional laminate.  For this 

study, the static failure strengths were taken from Bhuiyan et al. [88] to be S22+ = 63 MPa, S22- = 

-180 MPa, and S12 = 72 MPa.  This gave the calculated values 𝐴𝑡 = 0.35 and 𝐴𝑠 = 1.3.  𝐼𝑚,𝑡 is a 

transversely isotropic invariant giving the maximum matrix stress normal to the fiber direction. 

Macaulay brackets {} indicate that the term becomes zero if the quantity inside is negative.  𝐼𝑚,𝑠1 

and 𝐼𝑚,𝑠2 are transversely isotropic invariants corresponding to maximum longitudinal and 

transverse shear, respectively. 

Localization of composite-level stresses to volume-averaged matrix stresses was 

accomplished via multi-continuum theory [92, 93].  This approach yields a unique mapping for 

the volume-averaged matrix stress 𝝈𝑚 given by 

 

𝝈𝑚 =
1

(1 − 𝑣𝑓)
([𝐼] − [𝐶𝑓][𝑆𝑚])

−1
([𝐼] − [𝐶𝑓][𝑆𝑐])𝝈𝑐 (6.4) 

 

where 𝑣𝑓 is the fiber volume fraction, 𝝈𝑐 is the composite stress, [𝑆𝑚] and [𝑆𝑐] are the matrix and 

composite compliance tensors respectively, [𝐼] is the 6 X 6 identity matrix, and [𝐶𝑓] is the material 

stiffness tensor for the fiber.  

 The composite stress in a structure was calculated using the finite element displacement 

and strain solution.  From this the necessary matrix stresses in Eq. (6.3) were computed, followed 

by the effective off-axis stress in Eq. (6.1).  Examining the form of Eq. (6.1) reveals that the driving 
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force for fatigue damage and failure is the effective matrix stress. Thus, the minimization of this 

quantity will be discussed in subsequent sections. 

 

6.1.2   Optimization Objective and Methodology 

 

 Based on the established model from the kinetic theory of fracture in Eq. (6.1), 

minimization of the effective off-axis stress in Eq. (6.2) will slow the accumulation of fatigue 

damage, and maximize the lifespan of the structure.  It would therefore be natural to define the 

maximum effective off-axis stress in the structure as the objective function in optimization.  

However, in gradient-based optimization it is ideal to have objectives that are smooth and 

differentiable in the design space.  The maximum stress in a structure itself does not possess this 

characteristic, and smooth aggregation functions are typically employed instead.  One such 

aggregation function is the p-norm, which approximates the maximum value of a field variable in 

a domain, and is known to be well-suited for objectives that are confined to non-negative real 

values [94-96].  In this work a type of p-norm was employed as the objective function, specifically 

 

𝐿 = ∫ ∫𝜎𝑒𝑓𝑓
4 𝑑Ω

Ω

𝑑𝑡
𝑡

0

 (6.5) 

 

The exponent in a p-norm function should be chosen to be high enough to correlate strongly with 

the maximum value of the field variable, yet low enough not to produce excessively sharp 

curvature in the objective that could impede convergence in optimization.  Duysinx and Sigmund 

[94] found an exponent of 4 to be a well-balanced choice. 

 The integral in Eq. (6.5) was evaluated numerically element-by-element after solving for 

the displacement.  Effective stress was computed from displacement gradients at the centroid of 

each element, the optimal location to minimize effects such as parasitic shear in linear elements.   

 The objective was minimized by tailoring the composite fiber angles throughout the 

structure.  Two different design spaces were considered, one in which each design variable defined 

the fiber angle for a section of the blade, as laid out in Fig. 6.2, and another in which each design 

variable defined the fiber angle for an individual element of the blade model.  The former is far 
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more realistic from a fabrication point of view, while the latter allows more freedom in the design, 

and potentially a more optimal result. 

 To be specific, the angle represented by each design variable is that of the fiber orientation 

in the local 1-2 plane of the corresponding section or element, with respect to the blade’s 

longitudinal direction.  The local 3-axis of each shell element is always defined normal to the 

element’s midplane, so the fiber direction always stays within the midplane of the shell.  A given 

design variable 𝐷𝑖 defined the material local coordinate system for the 𝑖𝑡ℎ section or element as 

follows 

 

[𝛼𝑖] = [
cos (𝐷𝑖) sin (𝐷𝑖) 0
−sin (𝐷𝑖) cos (𝐷𝑖) 0

0 0 1

] [𝛼𝑖,0] (6.6) 

 

where [𝛼𝑖,0] is the initial coordinate system transformation matrix for section or element 𝑖.  The 

initial coordinate system was defined such that the fiber direction aligned with the blade’s 

longitudinal direction projected onto the element midplane (see Fig. 6.3).  Eq. (6.6) was used to 

obtain the displacement solution, as well as the objective gradient by incorporating [𝛼𝑖] and 
𝜕[𝛼𝑖]

𝜕𝐷𝑖
 

into the sensitivity definitions given in Chapter 4. 

 

Figure 6.3  Global and local element coordinate systems for SWiFT blade model. 

 

 Aside from testing the capabilities of AStrO in sensitivity analysis and optimization, one 

goal of this investigation was to estimate the potential theoretical gain of composite design 

optimization with regard to fatigue life.  Specific manufacturing and fabrication constraints were 

not of great concern.  Consequently, the only design constraints imposed on how the fiber angles 

could be modified by the optimization are that they remained in plane with the section/element, 
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and that each section maintained a uniform angle in cases where applicable.  But these conditions 

were both satisfied implicitly in the way the design variables were defined, so that no external 

constraints needed to be imposed. 

The optimization algorithm used was a steepest descent backtracking line search [78], 

using the gradient of the objective function obtained using the adjoint method as the search 

direction at each design cycle.  Although not always the optimal choice, this method is 

straightforward to implement without interfacing with external codes, and in the absence of 

nonlinear design constraints has proven effective.  Each design cycle involves first solving for the 

structural displacements at the current values of the design variables, then solving for the adjoint 

and calculating the gradient of the objective function with respect to the design variables.  

Solutions of linear systems were performed with the direct [𝐿][𝐷][𝐿𝑇] solver built into AStrO.  For 

all the present studies, the optimizer was run through ten design cycles for each design problem. 

An important consideration is that the optimum fiber angle distribution for the structure is 

inevitably dependent on loading.  Wind turbines are routinely subject to three main types of applied 

loads: 1) centrifugal loads 2) gravitational loads and 3) aerodynamic loads.  In this work the 

optimization analysis was performed with each type of loading individually before examining the 

total combined loading, and the optimal designs for all cases were compared.  A total of five load 

cases were investigated, detailed in the following sections. 

 

Static Analysis Under Centrifugal Loading Only 

 

The first load case subjected the turbine blade to centrifugal loads only.  The structural response 

of the blade was analyzed by AStrO in a coordinate system rotating with the blade with its 2-axis 

as the axis of rotation.  The 1-axis runs in the blade’s general chord direction and the 3-axis runs 

parallel with the longitudinal axis of the blade, as shown in Fig. 6.3.  Under such conditions the 

centrifugal loads can be modeled as a static body force distributed throughout the structure.  The 

body force per unit volume due to centrifugal loading was considered constant in time at any point 

in the structure, since the angular velocity is assumed constant, and is calculated by 

 

𝒇𝑐 = 𝜌𝜔
2𝒓(𝒙) (6.7) 
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where 𝜌 is the mass density of the material at a point in the structure, 𝜔 is the angular velocity of 

the rotating blade, and 𝒓 is the normal position vector projected from the axis of rotation (2-axis) 

to the point, or 

 

𝒓(𝒙) = [𝑥1, 0, 𝑥3]
𝑇 (6.8) 

 

The angular velocity was set to correspond with the optimal rate for power production for this 

particular turbine, or 43 rpm. 

 

Dynamic Analysis Under Gravitational Loads Only 

 

The second load case subjected the blade to gravitational loads only.  In the local rotating frame 

of motion, the gravitational component of the body force is constant in magnitude at a given point 

on the structure, but its direction varies cyclically with a frequency matching the angular velocity 

of the blade.  For this component, 

 

𝒇𝑔 = 𝜌𝑔𝒏(𝑡) (6.9) 

 

where 𝑔 is the acceleration due to gravity, and the unit vector 𝒏 varies in time as follows: 

 

𝒏(𝑡) = [sin(𝜔𝑡) , 0,− cos(𝜔𝑡)]𝑇 (6.10) 

 

Because of the load’s dependence on time, this case was analyzed dynamically.  The structure was 

started from rest, with both displacement and velocity at zero.  Under such conditions there can be 

an initial transient period before the structure settles into its periodic response.  Therefore, the 

blade was rotated through three full revolutions under the load field defined in Eq. (6.9) to more 

thoroughly capture the range of motion.  The optimization was performed based on the stress 

response integrated over all three revolutions. 
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Static Analysis Under Aerodynamic Loads Only 

 

The third load case subjected the blade to aerodynamic loads only.  Aerodynamic loads on the 

blade structure were pre-generated by the NSU3D flow solver, by solving for the pressure 

distribution and skin friction over the blade surface and mapping the resulting forces onto the blade 

structural mesh as described in Chapter 2.  Flow conditions were set for an inflow velocity of 12 

m/s, with the blade rotation at 43 rpm, to match those in the reference work of Bhuiyan et al. [88].  

In reality, these aerodynamic loads are time-varying, and to perform the most rigorous fatigue 

analysis would require fully coupled dynamic aeroelastic optimization accounting for wind gusts 

and other variations to capture an accurate time history of the aerodynamic loads.  But for the 

present study, the aerodynamic loads were taken to be constant throughout the optimization 

process, corresponding to the steady-state solution under these conditions.  The optimization was 

then performed based on the static response under these loads. 

 

Static Analysis Under Combined Loading 

 

The fourth load case subjected the blade to centrifugal, gravitational and aerodynamic loads 

combined, with the gravitational load in Eq. (6.9) evaluated at 𝜔𝑡 = 𝜋/2.  That is, with the 

gravitational load purely in the direction normal to the blade axis, corresponding to the blade in 

the horizontal position.  In this position the bending loads due to gravity are maximized, as are the 

maximum stresses in the structure.  The optimization was then performed based on the static 

response under these loads. 

 

Dynamic Analysis Under Combined Loading 

 

In the fifth and final load case, all three types of loads were again applied simultaneously, but the 

full dynamic response of the structure was simulated.  The time-dependence of the gravitational 

loads was accounted for, but the aerodynamic loads were still considered to be constant, 

corresponding to the steady-state solution.  Again, the analysis was run through 3 full revolutions. 
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The centrifugal and aerodynamic loads were considered constant in time for this analysis as 

described above.  As such these load cases on their own would not provide a basis to estimate 

fatigue life directly, as fatigue is an inherently time-dependent phenomenon.  However, the present 

optimization objective was not fatigue life itself but the effective off-axis matrix stress that has 

been correlated with the propagation of fatigue damage.  Static components of a combined 

dynamic loading would still contribute to the mean values of effective off-axis stress under all 

combined loads, and thus indirectly affect the rate of damage propagation.  For this reason, it may 

still be of value to know the fiber angle distributions optimized for these loads individually and 

compare them with the results for all combined dynamic loads in an attempt to see what factors 

may be most dominantly driving the results.  If, for example, it was consistently found that the 

optimal design under a static loading representing a high wind gust closely matched the optimal 

design under the realistic dynamic loading, then it may save computational expense to use that 

assumption and avoid the cost of time-dependent simulations.  Addressing this comprehensively 

is far beyond the scope of the present work, but load cases were examined and compared 

individually with that mindset. 

 

6.1.2   Optimization Results 

 

For all of the load cases and design spaces described in the previous section, the optimization 

analysis was performed, and three key quantities were recorded at each design cycle: 1) the value 

of the objective function, 2) the root-mean-square of the objective gradient, and 3) the maximum 

value of the effective off-axis matrix stress encountered by any point in the structure at any moment 

in the time history.  The progression of all these quantities, non-dimensionalized by their initial 

values can be seen in Fig. 6.4 through 6.8. 

Table 6.1 shows the change in the maximum effective off-axis matrix stress and the change 

in maximum deflection of the blade after optimization for each load case and design space.  The 

effectiveness of the optimization varied from case to case, and the maximum effective off-axis 

matrix stress was reduced by 18-60%.  Cases with fiber angles defined for all elements individually 

consistently reduced the objective stress further than cases with fiber angles defined for all 

sections.  However, the change in maximum deflection tended to be significantly greater for cases 

with design variables for all elements, which could have negative implications on the overall 
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turbine design.  There may well be a trade-off between lowering objective stress and preserving 

desired stiffness properties of the blade.  The observation also further confirms the need to 

ultimately perform fully coupled aeroelastic analysis to capture interdependence between 

structural deformation and aerodynamic loading. 

 

Table 6.1  Change in maximum off-axis matrix stress and maximum deflection in SWiFT blade 

structure due to optimization. 

 Section Design Variables Element Design Variables 

Load Case Change in 

Max Stress 

Change in 

Max Deflection 

Change in 

Max Stress 

Change in 

Max Deflection 

Centrifugal -37.67% -0.64% -59.41% -7.43% 

Gravitational -45.69% -0.50% -55.49% 0.12% 

Aerodynamic -18.63% -0.40% -42.30% -2.82% 

Combined, Static -19.24% 0.24% -54.08% -6.71% 

Combined, Dynamic -21.72% 0.13% -51.11% -9.05% 

 

 

To understand the potential implications on fatigue life, data for stress amplitude vs. cycles 

to failure in fatigue was consulted for E-glass/epoxy published by Hashin and Rotem [51].  Figure 

6.9 shows a logarithmic plot of stress versus number of cycles to failure for the published data 

points, along with a trendline fit to the data.  The experimental composite stresses were converted 

to effective off-axis matrix stresses based on the 60o angle of uniaxial loading. 

For the present purposes, the trend in Fig. 6.9 is qualitative since the state of stress 

represented by the data does not match that in every point throughout the SWiFT blade structure.  

Nevertheless, it is clearly evident that the amount of off-axis stress reduction shown in Fig. 6.4 

through 6.8 could have great potential to impact the number of cycles to failure.  Based on this 

data, even a reduction in stress amplitude of 10% could increase the number of cycles to failure by 

a factor of 10, and even the least effective optimization performed here shows reduction of over 

18%. 
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Figure 6.4  Optimization history for centrifugal loading on the SWiFT turbine blade for (a) design 

variables defining the fiber angle for each section, and (b) design variables defining the fiber angle 

for each element. 

 

 

Figure 6.5  Optimization history for gravitational loading on the SWiFT turbine blade for (a) design 

variables defining the fiber angle for each section, and (b) design variables defining the fiber angle 

for each element. 

 

(a) (b) 

(a) (b) 
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Figure 6.6  Optimization history for aerodynamic loading on the SWiFT turbine blade for (a) 

design variables defining the fiber angle for each section, and (b) design variables defining the 

fiber angle for each element. 

 

 

Figure 6.7  Optimization history for combined static loading on the SWiFT turbine blade for (a) 

design variables defining the fiber angle for each section, and (b) design variables defining the 

fiber angle for each element. 

 

(a) (b) 

(a) (b) 
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Figure 6.8  Optimization history for combined dynamic loading on the SWiFT turbine blade for 

(a) design variables defining the fiber angle for each section, and (b) design variables defining the 

fiber angle for each element. 

 

 

Figure 6.9  Published S-N data for E-glass epoxy composite (Ref. 51), loaded at 60o from fiber 

direction with corresponding trendline.  Composite stresses converted to effective off-axis matrix 

stresses. 

 

To investigate the dependence of the optimization on loading conditions, the final 

optimized fiber angles for each element between the different cases were compared.  The final 

load case, incorporating all loads in the dynamic simulation, was used as a benchmark of 

comparison for the others, as it is presumably the most realistic simulation of what a turbine blade 

experiences.  The difference in the optimized fiber angles between the final case and each of the 

first four cases was first computed, denoted Δ𝐷𝑖.  The average absolute value and RMS value of 

Δ𝐷𝑖 were then computed for comparison, the results shown in Table 6.2. 

(a) (b) 
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Table 6.2  Comparison of final optimized ply angles between final load case (case 5), and all 

previous load cases.  Δ𝐷𝑖 represents the difference in the optimized ply angles from final load case, 

Δ𝐷𝑖 = (𝐷𝑖 − 𝐷𝑖,𝑓𝑖𝑛𝑎𝑙 𝑐𝑎𝑠𝑒). 

 Section Design Variables Element Design Variables 

Load Case Average |𝚫𝑫𝒊| RMS (𝚫𝑫𝒊) Average |𝚫𝑫𝒊| RMS (𝚫𝑫𝒊) 
Centrifugal Only 1.861o 4.863o 1.606o 6.054o 

Gravitational Only 2.578o 6.945o 2.032o 7.620o 

Aerodynamic Only 0.886o 2.527o 0.905o 4.189o 

All Loads (static) 0.568o 1.511o 0.623o 3.120o 

 

 

These metrics suggest that under the conditions assumed in this case, aerodynamic loading 

has the strongest influence on the optimum fiber angle distribution of the three main types of 

loading.  The distribution for the static analysis under combined loading shows close agreement 

with the dynamically loaded case, but the difference is still significant.  Figures 6.10 through 6.14 

show the distribution of angle changes after optimization for each case, and Fig. 6.15 through 6.19 

show the distribution of effective off-axis matrix stress before and after optimization.  Even though 

the results in each case were generally favorable, it is apparent that the optimal design is indeed 

highly dependent on loading, and in practice many more simulations would need to be run to 

identify the best overall design for the range of real loading conditions. 

As previously mentioned, it is not practical from a fabrication point of view to allow each 

structural finite element on the blade to have its own unique fiber angle.  However, there may still 

be useful information to be learned from the results of these cases.  Two key observations can be 

taken from Fig. 6.10 through 6.19.  First, the vast majority of elements in the structure had very 

little change in their fiber angle due to optimization, less than 1o change.  The most affected areas 

are concentrated near the root of the blade, which is intuitive since these are the areas of highest 

stress for a structure under primarily bending loads.  Second, the most affected areas tend to be 

clustered together in certain key regions. 

The implication from these observations is that if a blade were to be fabricated to 

accommodate optimizations such as these, it is likely only a few regions would need special 

customization.  Even though it would not be feasible to give each point on the blade its own fiber 

direction, it may be possible to re-define the section divisions of the blade so that the most affected 
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areas would be isolated as separate sections, and each section given a homogenized composite 

design appropriate for its local loading conditions.  The main challenge would lie in identifying 

the best overall design for the range of loading. 

 

 

 

 

(a) 

 

 

 

(b) 

 

Figure 6.10  Spatial distribution of fiber angle change due to optimization subject to centrifugal 

loads for (a) design variables defined for each section, and (b) design variables defined for each 

element. 
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(a) 

 

 

(b) 

Figure 6.11  Spatial distribution of fiber angle change due to optimization subject to gravitational 

loads for (a) design variables defined for each section, and (b) design variables defined for each 

element. 

 

 

 

(a) 

 

 

(b) 

Figure 6.12  Spatial distribution of fiber angle change due to optimization subject to aerodynamic 

loads for (a) design variables defined for each section, and (b) design variables defined for each 

element. 
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(a) 

 

 

 

(b) 

Figure 6.13  Spatial distribution of fiber angle change due to optimization subject to combined 

static loads for (a) design variables defined for each section, and (b) design variables defined for 

each element. 

 

 

(a) 

 

 

(b) 

Figure 6.14  Spatial distribution of fiber angle change due to optimization subject to combined 

dynamic loads for (a) design variables defined for each section, and (b) design variables defined 

for each element. 
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(a) 

 

 

(b) 

 

 

(c)  

Figure 6.15  Spatial distribution of effective off-axis matrix stress, non-dimensionalized by the 

original maximum value for centrifugal loading (a) before optimization, (b) after optimization with 

section design variables and (c) after optimization with element design variables. 
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(a) 

 

 

(b) 

 

 

(c)  

Figure 6.16  Spatial distribution of effective off-axis matrix stress, non-dimensionalized by the 

original maximum value for gravitational loading (a) before optimization, (b) after optimization 

with section design variables and (c) after optimization with element design variables. 
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(a) 

 

 

(b) 

 

 

(c)  

Figure 6.17  Spatial distribution of effective off-axis matrix stress, non-dimensionalized by the 

original maximum value for aerodynamic loading (a) before optimization, (b) after optimization 

with section design variables and (c) after optimization with element design variables. 
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(a) 

 

 

(b) 

 

 

(c)  

Figure 6.18  Spatial distribution of effective off-axis matrix stress, non-dimensionalized by the 

original maximum value for combined static loading (a) before optimization, (b) after optimization 

with section design variables and (c) after optimization with element design variables. 
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(a) 

 

 

(b) 

 

 

(c)  

Figure 6.19  Spatial distribution of effective off-axis matrix stress, non-dimensionalized by the 

original maximum value for combined dynamic loading (a) before optimization, (b) after 

optimization with section design variables and (c) after optimization with element design variables. 
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6.2   Truss-Braced Wing: Methods of Buckling Constraints 

 

Structural buckling is an important consideration when designing structures with high aspect ratio.  

This is especially true since buckling can occur in a structure without any maximum stress limits 

exceeded, and designs intended to minimize mass and stress tend to be prone to instability.  The 

discussion in Chapter 1 reviewed two main approaches to buckling analysis common in the 

literature: analytical approximation of members and eigenmode analysis.  The former is 

computationally cheap but lacks accuracy and generality, while the latter is expensive and can be 

prone to convergence problems in gradient-based optimization.  In the present study, an alternative 

method is proposed which is generally applicable and less costly than eigenmode analysis, yet may 

also have drawbacks.  The proposed method was tested and compared with conventional 

eigenmode analysis using a structural wing box model with a truss-braced design, which is 

currently of interest for next-generation aircraft, as a test case. 

 

6.2.1   An Alternative Method for Buckling Constraints 

 

In this section an alternative method for applying buckling constraints or objectives in gradient-

based optimization is proposed which is both cost effective and generally applicable.  It is 

appropriate to begin by returning to the theory of buckling and structural instability.  The general 

condition for the critical state of buckling in a structure derives from the total potential energy of 

the system.  When a system is in equilibrium, yet there exists a mode of deformation such that 

continued displacement in that mode would result in a decrease of total potential energy, it is said 

to be in unstable equilibrium.  Buckling of an elastic structure is one example of this phenomenon.   

For a continuous elastic body subject to conservative loads in the form of body forces and 

surface tractions, the total potential energy of the system can be expressed: 

 

Π = ∫𝑉𝑑Ω
Ω

−∫ (𝒇 ∙ 𝒖)𝑑Ω
Ω

−∫(𝒕 ∙ 𝒖)𝑑𝑆
𝑆

 (6.11) 
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where 𝑉 is the elastic strain energy density, 𝒇 is body force per unit volume and 𝒕 is the traction 

on the surface.  Ω and 𝑆 are the domains representing the volume and surface of the elastic body 

respectively.  A fundamental principle of dynamics for conservative systems is that equilibrium 

occurs when the gradient of total potential energy with respect to displacement degrees of freedom 

is zero.  If the displacement field is represented as a function of a discrete set of variables 𝑼 

multiplied by a matrix of basis functions [𝑁] such that 

 

𝒖 = [𝑁]𝑼 (6.12) 

 

as in a finite element analysis, then the state of equilibrium is characterized by 

 

∂Π

𝜕𝑼
= ∫ [

𝜕𝝐

𝜕𝑼
]
𝑇 𝜕𝑉

𝜕𝝐
𝑑Ω

Ω

−∫ [𝑁]𝑇𝒇𝑑Ω
Ω

−∫[𝑁]𝑇𝒕𝑑𝑆
𝑆

= 0 (6.13) 

 

 The condition represented by Eq. (6.13) will be satisfied in any state of equilibrium, stable 

or unstable.  But if the vector of displacement variables is perturbed by some finite vector 

represented by 𝛿𝑼, the resulting change in total potential energy 𝛿Π can be approximated by the 

second-order Taylor series expansion 

 

δΠ =∑
𝜕Π

𝜕𝑈𝑖
𝛿𝑈𝑖

𝑛

𝑖=1

+
1

2
∑∑

𝜕

𝜕𝑈𝑖
(
𝜕Π

𝜕𝑈𝑗
)𝛿𝑈𝑖𝛿𝑈𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= (
𝜕Π

𝜕𝑼
) ∙ 𝛿𝑼 +

1

2
𝛿𝑼𝑇 [

𝜕

𝜕𝑼
(
𝜕Π

𝜕𝑼
)] 𝛿𝑼 (6.14) 

 

Again, in any state of equilibrium the first derivative of total potential energy with respect to any 

displacement variable is zero, so the first term in Eq. (6.14) vanishes, leaving 

 

δΠ =
1

2
𝛿𝑼𝑇 [

𝜕

𝜕𝑼
(
𝜕Π

𝜕𝑼
)] 𝛿𝑼 (6.15) 

 

The nature of any dynamic system is to reduce total potential energy.  It then follows that if there 

exists any perturbation vector 𝛿𝑼 such that the expression in Eq. (6.15) would evaluate to be 

negative, then that perturbation mode would result in an accelerated reduction of potential energy, 
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and therefore structural instability.  If no such perturbation vector exists, the system is in stable 

equilibrium. 

 The expression in Eq. (6.15) is a symmetric Hessian matrix multiplied from either side by 

the perturbation vector.  Thus, evaluating the stability of a structure in a given state is a matter of 

determining whether the matrix [
𝜕

𝜕𝑼
(
𝜕Π

𝜕𝑼
)] is positive definite.  Differentiation of Eq. (6.13) gives a 

representation of the matrix as 

 

[
𝜕

𝜕𝑼
(
𝜕Π

𝜕𝑼
)] = ∫ ([

𝜕𝝐

𝜕𝑼
]

𝑇

[
𝜕

𝜕𝝐
(
𝜕𝑉

𝜕𝝐
)] [

𝜕𝝐

𝜕𝑼
] + ∑

𝜕𝑉

𝜕𝜖𝑘
[
𝜕

𝜕𝑼
(
𝜕𝜖𝑘
𝜕𝑼

)]

6

𝑘=1

)𝑑Ω
Ω

 (6.16) 

 

Observing that the derivative of strain energy density with respect to strain is stress 𝝈, and a second 

order of differentiation yields the material stiffness matrix [𝐶] for linear elastic materials, Eq. 

(6.16) can be re-written as 

 

[
𝜕

𝜕𝑼
(
𝜕Π

𝜕𝑼
)] = ∫ ([

𝜕𝝐

𝜕𝑼
]

𝑇

[𝐶] [
𝜕𝝐

𝜕𝑼
] + ∑𝜎𝑘 [

𝜕

𝜕𝑼
(
𝜕𝜖𝑘
𝜕𝑼

)]

6

𝑘=1

)𝑑Ω
Ω

 (6.17) 

 

The above is none other than the tangent stiffness matrix of the structure, formed from the principle 

of virtual work including geometrically nonlinear terms, as given in the developments of Chapter 

3, Eq. (3.80).  It is concluded that the presence of structural instability and the threat of buckling 

at a given deformation state can be verified by checking whether the tangent stiffness matrix of 

the structure is positive definite. 

 Perhaps the most intuitive way of determining whether a matrix is positive definite is by 

computing its eigenvalues, since having all positive eigenvalues is one fundamental way of 

defining positive definiteness.  This is the standard approach to generalized buckling analysis, 

since eigenvalues can be used not only to determine the presence of structural instability but also 

to quantify it.  However, as discussed in Chapter 4, effective gradient-based optimization can 

require the consideration of many eigenpairs, as well as their sensitivities, which can be costly and 

problematic for large systems. 

An alternative approach may exist that is more cost-effective but still generally applicable.  

The key to determining positive definiteness of a matrix is to form some symmetric decomposition, 
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consisting of a diagonal matrix, multiplied from either side by another matrix and its transpose.  

The eigenpair, or spectral decomposition of a matrix is one example of this, where a symmetric 

matrix [𝐾] can be written in terms of its normalized eigenvectors [𝑉] and a matrix [𝜆] with the 

corresponding eigenvalues placed on the diagonals, as shown: 

 

[𝐾] = [𝑉][𝜆][𝑉]𝑇 

 

[𝑉] = [𝒗1 𝒗2 𝒗3 …],      [𝜆] = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

…
…
…

⋮ ⋮ ⋮ ⋱

] 

(6.18) 

 

If the eigenvalues of the matrix are all positive, then the eigenvalue matrix can be split into a 

product of two identical matrices with the square roots of the eigenvalues on the diagonals, which 

would be all real values.  Consequently, the inner product of [𝐾] with any vector 𝑼 operating from 

both sides can be written as the dot product of a vector containing all real values with itself, as 

follows: 

 

𝑼𝑇[𝐾]𝑼 = 𝑼𝑇[𝑉][𝜆][𝑉]𝑇𝑼 = 𝑼𝑇[𝑉][𝜆]
1
2[𝜆]

1
2[𝑉]𝑇𝑼 = ([𝜆]

1
2[𝑉]𝑇𝑼) ∙ ([𝜆]

1
2[𝑉]𝑇𝑼) (6.19) 

 

Since the dot product of any real vector with itself must always be greater than or equal to zero, it 

is concluded that any symmetric matrix with all positive eigenvalues must be positive definite. 

The same argument can be applied to any symmetric decomposition of a matrix, with the 

understanding that the values of the diagonal matrix can be used to determine and quantify the 

positive definiteness of the matrix.  An alternative decomposition is the [𝐿][𝐷][𝐿]𝑇 factorization 

for symmetric matrices, which is often used to find solutions of linear systems.  With this 

decomposition applied to the tangent stiffness matrix of a structure, it is simple to determine a 

perturbation vector 𝛿𝑼 that exploits any negative values in the matrix [𝐷], and therefore any 

instability in the structure at its current state.  The inner product of Eq. (6.15) can then be used as 

a scalar criterion for detecting and quantifying instability, and applying the constraint of buckling 

resistance to a structure. 
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The proposed approach is as follows.  Let the global nonlinear stiffness matrix of a structure 

be denoted [𝐾], and find the symmetric [𝐿][𝐷][𝐿]𝑇 factorization of the matrix at a given state of 

loading/deformation.  Then the inner product of Eq. (6.15) becomes 

 

𝛿𝑼𝑇[𝐾]𝛿𝑼 = 𝛿𝑼𝑇[𝐿][𝐷][𝐿]𝑇𝛿𝑼 (6.20) 

 

If a perturbation vector 𝛿𝑼 is then defined such that 

 

[𝐿]𝑇𝛿𝑼 = {
 𝐷𝑖𝑖 𝑖𝑛 𝑟𝑜𝑤𝑠 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖𝑖 <  0

 
0 𝑖𝑛 𝑟𝑜𝑤𝑠 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖𝑖 ≥ 0  

  } (6.21) 

 

then the inner product 𝛿𝑼𝑇[𝐾]𝛿𝑼 will be the sum of all the negative elements in the diagonal 

matrix [𝐷] cubed, effectively quantifying the instability at the present state and providing a scalar 

buckling criterion.  Since [𝐿]𝑇 is upper triangular, 𝛿𝑼 can be found with simple back-substitution. 

There is a caveat to this approach when it comes to evaluating sensitivities.  The 

perturbation vector is a function of the factorization of the tangent stiffness matrix, and by 

extension a function of the design variables 𝑫.  However, there is no known cost-effective way to 

obtain the sensitivities of the full matrix factorization, even with an adjoint-based approach.  The 

sensitivity of the buckling criterion must then be approximated by treating 𝛿𝑼 as locally constant 

at any given state, while examining the sensitivity of the stiffness matrix itself.  Under this 

assumption the sensitivity of the buckling criterion with respect to a design variable 𝐷𝑖 becomes 

 

𝑑

𝑑𝐷𝑖
(𝛿𝑼𝑇[𝐾]𝛿𝑼) ≈ 𝛿𝑼𝑇 [

𝑑[𝐾]

𝑑𝐷𝑖
] 𝛿𝑼 (6.22) 

 

Once 𝛿𝑼 is obtained, the sensitivity of the buckling criterion can be approximated with just 

the sensitivity of the stiffness matrix, which is inexpensive and easily implemented using the tools 

developed in AStrO.  Using this approach, only a single matrix factorization and the differentiation 

of the stiffness matrix by design variables is required at each design state.  Not only is it cost-

effective, but it avoids the potential difficulties with repeated eigenvalues or the uncertainty in the 

appropriate number of eigenpairs to consider. 
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The critical question is whether the approximation in the sensitivity calculation is 

acceptable.  Ferrari et al. [22] investigated the issue of approximate or inconsistent sensitivities in 

gradient-based topology optimization with eigenmodal buckling constraints.  They compared 

optimization results using exact sensitivities with those obtained when a certain term in the 

sensitivity calculation was omitted.  It was found that in some cases, the use of inconsistent 

sensitivities led to suboptimal results or caused convergence problems in optimization.  Yet in 

other cases there was little influence on the results. 

A similar observation could be made in other well-known applications.  Take, for example, 

modified Newton-Raphson iterations as opposed to full Newton-Raphson iterations for the 

solution of nonlinear systems.  In many cases, neglecting to re-evaluate the Jacobian matrix on 

every iteration can cut down computational cost, and still successfully obtain the desired solution.  

There can, however, be a greater risk of divergence due to the inaccuracy of the local derivatives. 

It would seem to be a reasonable hypothesis that the potential difficulties with the use of 

inconsistent sensitivities in gradient-based optimization is an important thing to keep in mind when 

exploring alternative methods, but that concern should not discourage the investigation of an 

approach that could have considerable benefits over more common methods.  This study seeks to 

investigate the proposed alternative approach to applying buckling constraints in gradient-based 

optimization, and identify strengths and weaknesses compared with standard eigenpair-based 

methods. 

Because this investigation requires data structures and procedures that have not been used 

in any previous study, the two approaches were first tested on a basic flat plate geometry before 

moving on to a more meaningful application in aircraft design.  The details and results are 

presented in the next two sections. 

 

6.2.2   Test of Buckling Constraint Methods on Flat Plate in Compression 

 

As a preliminary test of the LDLT method of applying structural buckling constraints proposed in 

the previous section, as well as the eigenvalue-based approach, consider a square flat plate divided 

into four equal sections, clamped on one end with a uniform compressive loading applied to the 

other, as illustrated in Fig. 6.20. 
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Figure 6.20  Four-sectioned clamped flat plate in compression. 

 

For such a configuration, if all four sections have the same uniform material properties and 

thickness, the critical load to cause buckling is known from analytical theory to be 

 

𝑃𝑐𝑟 =
𝐸𝐼𝜋2

4𝐿2
 (6.23) 

 

where 𝐸 is Young’s modulus of the material, 𝐼 is the second moment of area about the buckling 

axis, and 𝐿 is the length in the direction of loading.  In the present study, the plate material was 

taken to be aluminum, with Young’s modulus 𝐸 = 73.7 GPa, and the distributed load was set to 

𝑃 = 1.90 (106) N.  Under these conditions, buckling of the first mode should occur at a uniform 

plate thickness of 5 cm or less.  The two buckling constraint methods of interest were tested by 

letting the thickness of each of the four sections of the plate be design variables, and attempting to 

minimize the total mass/volume of the plate while ensuring structural stability. 

 Since the accuracy of the objective sensitivities using the LDLT method are a potential 

concern, the sensitivities were obtained using the adjoint method and compared with complex 

differentiation with the thickness of the four sections set at 49 mm, 48 mm, 47 mm, and 46 mm 

respectively.  The results are shown in Table 6.3. 
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Table 6.3  Objective sensitivities of flat plate using LDLT buckling criterion. 

 Sensitivities Unit Direction 

Section Adjoint Complex Adjoint Complex 

1 -4.97325E+06 -1.49197E+07 -7.17342741218840E-01 -7.17342741218884E-01 

2 -1.11251E+06 -3.33753E+06 -1.60468735399371E-01 -1.60468735399392E-01 

3 -4.54578E+06 -1.36374E+07 -6.55685295716613E-01 -6.55685295716418E-01 

4 -1.19571E+06 -3.58714E+06 -1.72470199051847E-01 -1.72470199051852E-01 

 

 

In this case, the sensitivities are inconsistent in magnitude by a factor of three, but the gradient 

direction of the adjoint sensitivity is correct to nearly machine precision.  This result is not 

guaranteed in all cases, as will be seen in the next section.  The reason it is observed in this case, 

and the conditions under which it could be expected is an intended topic of future investigation.  

In the context of gradient optimization, having the correct sensitivity direction is generally the 

most critical result, and depending on the optimization algorithm the inaccuracy of magnitude may 

not even be of any significance.   

 A line search optimization was performed to minimize the mass of the flat plate while 

ensuring structural stability using the LDLT buckling criterion, and the eigenvalue-based criterion.  

The objective for the LDLT criterion was defined as 

 

𝐿 =∑𝑉𝑜𝑙𝑖

𝑛𝑒𝑙𝑠

𝑖=1

− 𝛿𝑼𝑇[𝐾]𝛿𝑼 (6.24) 

 

For the eigenvalue criterion, the buckling constraint was expressed in terms of an exponential 

aggregation function of the lowest ten eigenvalues, based on classical Kreisselmeier–Steinhauser 

(KS) aggregation function [98].  This type of approach is typical with generalized buckling 

analysis, although there are many variations of the aggregation function and the number of 

eigenvectors used.  The objective for the eigenvalue criterion was defined as 

 

𝐿 =∑𝑉𝑜𝑙𝑖

𝑛𝑒𝑙𝑠

𝑖=1

+ 𝑐 ∑ 𝑒−2𝜅𝜆𝑗

𝑛𝑣𝑎𝑙𝑠

𝑗=1

 (6.25) 
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with 𝑐 and 𝜅 set to 0.05 and 3 respectively, based on the specifications of this problem.  Adjoint-

based sensitivities were obtained as outlined in Chapter 4, Section 4.3.2. 

 For both criteria, the flat plate was initialized to a uniform thickness of 6 cm, and the line 

search optimization was run until termination for failure to find a suitable design step.  The 

progression of the objectives for both cases are plotted in Fig. 6.21. 

 

 

Figure 6.21  Optimization history of flat plate for volume minimization subject to buckling 

constraints. 

 

A fundamental difference between the two buckling constraint methods is that the LDLT criterion 

is defined so that it is exactly zero for a structure in a state void of any buckling risk.  Although it 

is a smooth function when the tangent stiffness matrix becomes indefinite, it tends to produce 

rather abrupt changes in the objective when a critical buckling state is reached, as is evident from 

the curve in Fig. 6.21.  An appropriate scaling parameter may alleviate this effect, but it can be 

somewhat challenging to identify a suitable value before running an optimization.  In contrast, the 

eigenvalue criterion formed from KS aggregation has a constant presence, albeit a small one, even 

in a state far from any risk of buckling.  Its influence gradually gains prominence as the structure 

approaches a critical buckling state, leading to the curved level-off of the objective seen in Fig. 

6.21. 

 The LDLT criterion produced a slightly lower final volume than the eigenvalue criterion, 

but both methods drove sections 1 and 3, the sections on the clamped end of the plate, to a higher 
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thickness than sections 2 and 4 on the loaded end.  The difference is more pronounced in the results 

for the eigenvalue method, as can be seen in Table 6.4.  Both solutions ended up converging around 

the known critical state at a uniform thickness of 5cm, and both solutions are buckling-safe 

according to positive definiteness of the nonlinear stiffness matrix.  Based on this initial test, it 

would seem that the LDLT criterion is at least potentially effective, and is worth investigating 

further in more meaningful applications. 

 

Table 6.4  Final design configuration of flat plate subject to buckling constraints. 

Quantity LDLT Criterion Eigenvalue Criterion 

Sec. 1 thickness 5.0434E-02 5.6537E-02 

Sec. 2 thickness 4.8023E-02 4.3509E-02 

Sec. 3 thickness 5.0434E-02 5.6537E-02 

Sec. 4 thickness 4.8023E-02 4.3509E-02 

Total volume 4.9229E-02 5.0023E-02 

 

 

6.2.3   Optimization of Truss Braced Wing 

 

A design trend that has been receiving much interest in the aviation community lately is the truss-

braced wing design for fixed-wing aircraft, as depicted in Fig. 6.22.  This configuration is intended 

to reduce bending loads at the root of the wing, making it possible to implement more slender, 

high aspect ratio wing designs in the interest of improved aerodynamic performance and fuel 

efficiency.  While there is potentially much to be gained from the truss-braced wing design, it also 

invites a two-fold increase in the risk of structural buckling.  Not only are higher aspect ratio wings 

inherently more prone to instability, but the tension in the truss below the wing with the 

aerodynamic lift distribution creates a combined compressive and bending load on the interior 

section of the wing, which is a condition of high risk for buckling.  It then becomes more important 

than ever to use care in the design to ensure that structural stability is enforced. 
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Figure 6.22  Conceptual illustration of next-generation truss-braced wing design. 

 

 A finite element model of a wing box for a truss-braced configuration was constructed and 

used as the test case to compare methods for applying buckling constraints in gradient-based 

optimization.  The wing box cross section was fit to the NASA Common Research Model (CRM) 

airfoil [97] from 10% chord to 60% chord.  The wingspan was set at 25.9 meters, with a quarter-

chord sweep angle of 12.5o, and a chord dimension ranging linearly from 3.3 meters at root to 1.2 

meters at tip.  Figure 6.23 visually depicts the overall wing box design. 

 

Figure 6.23  Overall design of the truss-braced wing finite element model. 

 

The wing box model was divided into 48 spanwise sections, each with an upper panel, a lower 

panel, a leading edge spar section and a trailing edge spar section.  Ribs run through the interior 

of the wing in the chord direction at the joining of the spanwise sections.  All sections of the wing 

box are composed of four-node shell elements, with a row of two-node beam elements connecting 
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the lower panel midway through the span to the underside of the fuselage, to simulate the structural 

effect of the truss.  Figure 6.24 shows the interior design of the wing box model. 

 

 

Figure 6.24  Interior structure of truss-braced wing box model. 

 

 It is a common objective in structural wing design to minimize the total mass/weight of the 

wing subject to constraints on maximum stress and buckling criteria under some target loading or 

operating condition.  This was the objective chosen for the present study as well.  Specifically, the 

goal was to minimize mass/weight by modifying the shell panel thicknesses, under an elliptic wing 

loading distribution as illustrated in Fig. 6.25.  The loading was scaled to produce a total lift of 

300 kN, or half the approximate weight of a commercial aircraft of this scale. 
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Figure 6.25  Response of (a) displacement magnitude and (b) normal stress in the span direction  

of truss-braced wing under elliptic loading in initial configuration of 40 mm uniform panel 

thickness. 

 

 Two optimization cases were run, one using the LDLT buckling criterion and one using the 

eigenvalue criterion, as was done with the flat plate test case in the previous section.  The objective 

function was defined in a similar fashion, except with an added constraint on the maximum von 

Mises stress not to exceed 345 MPa, the approximate yield strength of aluminum.  This constraint 

was also applied with a KS aggregation-based approach.  For the LDLT criterion, the objective 

was defined as 

 

(a) 

(b) 
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𝐿 =∑𝑉𝑜𝑙𝑖

𝑛𝑒𝑙𝑠

𝑖=1

− 𝛿𝑼𝑇[𝐾]𝛿𝑼 + ℎ
1

(𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙)
∑ 𝑒

2(
𝜎𝑣,𝑘
𝜎𝑚

)
𝑉𝑜𝑙𝑘

𝑛𝑒𝑙𝑠

𝑘=1

 (6.26) 

 

where 𝜎𝑣,𝑘 is von Mises stress at the centroid of element 𝑘, 𝜎𝑚 is the maximum allowable stress, 

in this case 345 MPa, and ℎ is a scaling parameter, set to be 0.5 in the present context.  For the 

eigenvalue criterion, the objective was defined as 

 

𝐿 =∑𝑉𝑜𝑙𝑖

𝑛𝑒𝑙𝑠

𝑖=1

+ 𝑐 ∑ 𝑒−2𝜅𝜆𝑗

𝑛𝑣𝑎𝑙𝑠

𝑗=1

+ ℎ
1

(𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙)
∑ 𝑒

2(
𝜎𝑣,𝑘
𝜎𝑚

)
𝑉𝑜𝑙𝑘

𝑛𝑒𝑙𝑠

𝑘=1

 (6.27) 

 

where 𝜆𝑗 are the applicable eigenvalues, in this case the lowest ten, of the tangent stiffness matrix 

and 𝜅 is a scaling parameter set at 0.3.  The thicknesses for the upper and lower panels, spars and 

ribs of every section of the wing were defined as the design variables, such that 

 

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖 = 𝑡𝑖,0(1 + 𝐷𝑖) (6.28) 

 

where 𝑡𝑖,0 is the initial thickness of section 𝑖.  All panels were set to an initial thickness of 40 mm, 

which is far out of range of any violation of buckling or stress constraints.  With aluminum 

construction, this gives the wing a total initial mass of 8,500 kg. 

 Before proceeding with the optimization, the objective sensitivities were obtained for the 

LDLT criterion using the adjoint and complex differentiation, with the thickness of all panels set 

at 1 mm to ensure that the wing would be at risk for buckling.  The results for the first five design 

variables are shown in Table 6.5.  Clearly, the degree of agreement in the gradient direction seen 

for the flat plate test is not present in this case, confirming that consistency in direction is not a 

general result.  However, the angle of discrepancy at this state is 8.68o, which could at least be 

argued to be within a reasonable range.  How much discrepancy is permissible is, of course, 

ambiguous and highly case dependent, but that discussion is beyond the present context. 
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Table 6.5  Objective sensitivities for truss-braced wing at 1mm panel thickness.  Angle of 

difference between adjoint and complex 𝜃 = 8.68o. 

 Sensitivities Unit Direction 

Section Adjoint Complex Adjoint Complex 

1 5.8177E+24 3.6156E+26 8.3054E-01 7.6316E-01 

2 3.3838E+24 2.3923E+26 4.8308E-01 5.0496E-01 

3 1.7267E+24 1.5660E+26 2.4650E-01 3.3055E-01 

4 5.5874E+23 6.6266E+25 7.9766E-02 1.3987E-01 

5 6.9036E+23 8.7057E+25 9.8557E-02 1.8376E-01 

 

  

 The optimization was performed on the truss-braced wing using both buckling constraint 

methods as described, and the objective progression history is plotted in Fig. 6.26.  Both cases 

brought the objective down steadily for several design cycles before halting at the onset of a 

constraint violation.  The gradual decrease in slope for the eigenvalue criterion is less visible in 

this case, but some subtle evidence of it can be seen on the last two cycles.  The final wing mass 

was 4300 kg for the LDLT criterion, and 3400 kg for the eigenvalue criterion.  A plot of the final 

panel thickness distributions is given in Fig. 6.27.  There are some qualitative similarities in the 

final configurations for the two methods.  They both tend to generally focus on the larger panels 

of the wing, as they have the strongest influence on total mass.  There are notable differences in 

the panels of the center box section of the wing, perhaps because these are the regions of highest 

compressive stress, as indicated in Fig. 6.25 (b). 

 Both optimization cases effectively satisfied both the stress and buckling constraints, but 

the LDLT method is substantially less costly to implement.  In both methods the cost of obtaining 

sensitivities via the adjoint method is independent of the number of design variables, but using the 

eigenvalue criterion requires roughly the cost of the LDLT method for each eigenpair considered.  

In practice this could translate to a 10X to 100X speedup, depending on the number of eigenpairs 

necessary.  The eigenvalue criterion did produce a lower structural weight in this case, and may 

yet have some advantages, but few generalizations can be made from these results alone.  The 

present study is an initial test run of the feasibility of the LDLT criterion, and calls for much further 

investigation, as discussed in the conclusions.  
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Figure 6.26  Objective optimization history for truss-braced wing. 

 

 

Figure 6.27  Panel thickness distributions for (a) LDLT buckling criterion and (b) eigenvalue 

criterion. 
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    Chapter 7                                      

Conclusions 

 

A high-fidelity, open-source package for the finite element thermoelastic modeling and adjoint-

based sensitivity analysis of structures (AStrO) has been developed and demonstrated.  Validation 

tests show the analysis results to be reliable within the assumptions of the fundamental 

formulations, and the adjoint-based sensitivities derived from the linearization of the analysis code 

to be consistent with direct differentiation of the results.  The package is versatile for general 

applications, and has been successfully coupled with CFD codes for multidisciplinary analysis. 

 In this day and age, numerous codes and software packages exist for applications across 

physical disciplines, as well as for optimization and visualization.  Many have undergone years of 

commercial testing and debugging, and there are those who would question the value of putting 

forth the effort to build an in-house code for disciplines in which commercial tools exist.  The 

development of AStrO and the investigations conducted with it thus far have provided much 

insight on this question.  Perhaps the most notable benefits of open-source tools are their capability 

to be tightly coupled for efficient multidisciplinary analysis, and to be linearized to produce exact 

adjoint-based sensitivities.  But even beyond those general characteristics, having an open-source 

capability developed from the ground up such as AStrO has proven to have its advantages. 

 In the study of fatigue stress minimization on the SWiFT wind turbine blade, for example, 

the optimization objective was set to be the Fertig effective off-axis matrix stress criterion, which 

is a sophisticated formula that is not a standard metric in any commercial code.  The flexibility to 

not only evaluate this criterion but also differentiate it exactly using the finite element solution for 

adjoint-based sensitivity analysis would not be a trivial task, if even possible with most commercial 

codes.  The capabilities of AStrO made it possible to perform gradient-based optimization with 

this criterion which had not been done previously. 

 Similarly, the testing of the LDLT buckling criterion required low-level manipulation of 

the data structures involved in the finite element equations, and the freedom to apply the adjoint 
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in the highly specialized manner required for objectives derived from eigenvalues of the governing 

equation matrix.  Not only having the open-source tools, but the intimate knowledge of the internal 

structure and organization of the code was vital to performing the investigation.  The robustness 

and reliability of commercial codes and the flexibility of open-source tools complement each other 

well, and they both serve a valuable purpose in computational analysis and design. 

 With regard to the SWiFT wind turbine fatigue stress minimization study in general, all 

optimization runs successfully reduced the maximum objective stress by 18-60%.  Using the 

adjoint method enabled analysis for 16,310 design variables at a cost of 9.8 seconds per static 

design cycle on a single core, compared to an estimated 3 to 45 hours per design cycle using finite 

difference or solving the tangent sensitivity problem, depending on the implementation.  Although 

simplified assumptions were used in this study, the results provide some insight into the potential 

to improve fatigue life of wind turbine blades through composite optimization.  If implemented, 

substantial gains could possibly be achieved without adding any mass, material cost or changing 

the external shape of the structure.  However, results also suggest that optimal design is highly 

dependent on loading, and it is not clear how much benefit would actually be seen from optimizing 

over the full range of possible loading conditions, or how results would change for turbines of 

different size and design.  It is evident that the design space chosen has a strong influence on the 

potential for reduction of objective stress, but that there may be an inevitable trade-off between 

effective stress reduction and preserving the ideal stiffness properties of a blade. 

A number of recommendations for future work can be made from the observations of this 

study.  For more meaningful and accurate results, fully coupled aeroelastic optimizations should 

be performed to capture accurate loading histories and account for fluid-structural 

interdependence.  More realistic composite layup definitions should be defined, and reasonable 

constraints applied to see a more accurate picture of what might be gained from optimizations like 

these in practice.  In the present study the objective was derived from the effective off-axis matrix 

stress associated with the propagation of fatigue damage, but it may be worth setting fatigue life 

itself as the objective using a model approach like that of Bhuiyan et al. [88], to confirm the 

correlation with the effective stress.  The present work demonstrates AStrO as a capable tool for 

further studies following the above recommendations. 

 A few general conclusions can be drawn about the use of the proposed LDLT buckling 

method in gradient-based optimization.  The method is effective at detecting instability and the 



165 

 

threat of buckling in any general structure, requiring no more information or input than is necessary 

for basic finite element analysis.  It is cost-effective, requiring only a single matrix factorization 

and differentiation of the nonlinear stiffness matrix at any given design state, making it 

significantly cheaper than eigenvalue-based analysis with multiple eigenpairs.  The use of the 

LDLT criterion does not produce exact objective sensitivities, and although all cases observed 

showed reasonable if not exact agreement in gradient direction, the lack of consistency could prove 

problematic for some applications, or for algorithms where the magnitude of the sensitivity vector 

is crucial.  The buckling criterion is a smooth, differentiable function but it has a tendency to cause 

abrupt changes in the objective function around critical buckling states. 

 The optimization results of the truss-braced wing are a reasonable first attempt, but it is 

likely that a more sophisticated algorithm could produce better results than the steepest descent 

line search used in this study.  Further investigation using such algorithms would be a suitable next 

step.  There is also potential to investigate numerous variations on aspects like choice of 

aggregation functions and parameters in the constraint definitions, number of eigenvalues used, 

etc.  A great deal more work would need to be done to understand the method’s advantages and 

limitations fully, but there is much to be gained from the pursuit, not only for next-generation 

aircraft design but for other advanced applications as well. 

 In reflection on what has been learned so far and consideration of upcoming goals, some 

recommendations can be made for next steps and future work.  From the beginning, one of the 

main purposes for which AStrO was intended was for high-fidelity multidisciplinary optimization.  

Completing the linearization and adjoint-based sensitivities for the fluid-structure interface will 

allow for the true fully coupled optimization that is required for the most meaningful and accurate 

results.  If necessary, for high aspect ratio wing applications which may have difficulty converging 

with the current FSI approach, the flow and structural solver may be wrapped into a single system 

of nonlinear equations, and solved with a method like GMRES using the disciplinary solvers as 

block preconditioning. 

 AStrO currently has no parallel implementation, and although that has been a long-term 

goal from the beginning, the priority to date has been on development of the fundamental tools.  

Now, particularly after the investigations in generalized buckling analysis, the value of a parallel 

implementation is becoming more apparent.  The operations in eigenvalue-based optimization are 
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costly, but also highly parallelizable, and further studies in methods of buckling analysis could be 

expedited by such an advancement. 

 There is also growing interest among colleagues for structural applications that go beyond 

some of the general assumptions of AStrO’s formulations, such as hypersonic flow and high-speed 

ballistic applications.  These would require not only nonlinear geometry, but nonlinear material 

behavior as well, and the appropriate modifications would need to me made in the matrices 

resulting from the discretization of the governing equations, and subsequently the formulations for 

the adjoint-based sensitivities. 

 These are only a few possibilities for future advancement.  The hope is that whatever 

directions research may take in the years ahead, AStrO will provide a versatile toolset for modeling 

and optimization, and enable future contributions in computational simulation and design. 
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