Dissertation Defense

Enabling High-Order Methods for Extreme-Scale Simulations

February 9, 2018

Andrew C. Kirby

3D

UNIVERSITY of WYOMING

÷.

#

2D

Department of Mechanical Engineering University of Wyoming

6D

5D

4D

UNIVERSITY of WYOMING

Committee Dr. Dimitri Mavriplis Dr. Victor Ginting Dr. Jonathan Naughton Dr. Jay Sitaraman Parallel Geometric Algorithms, LLC Dr. Marc Spiegelman Columbia University

To Elizabeth J. Gilbert (1951-2016)

Motivation

Can high-order CFD methods be used for extreme-scale simulations?

- What do we mean by high-order methods? Why do we need them?
- What do we mean by extreme-scale simulations?

LINIVERSITY of WVOMING

Motivation

Can high-order CFD methods be used for extreme-scale simulations?

- What do we mean by high-order methods? Why do we need them?
- What do we mean by extreme-scale simulations?

NVIDIA V100 7.8 TFLOPS Double Precision

Traditional High-Order Method Challenges

Computationally Costly general FEM construction Stability Issues ad-hoc correction Multiscale Challenges unstructured methods (generally 2nd order) FD, HO FV stencils for AMR

Motivation Governing Equations Discretization Goals Results Conclusions Future Work

Governing Equations

Compressible Navier-Stokes Equations

$$\frac{\partial \mathbf{Q}\left(\boldsymbol{x},t\right)}{\partial t} + \vec{\nabla} \cdot \mathbf{F}\left(\mathbf{Q}\left(\boldsymbol{x},t\right)\right) = 0$$

$$\mathbf{Q} = \begin{cases} \rho \\ \rho u \\ \rho u \\ \rho w \\ \rho w \\ \rho E \end{cases}, \mathbf{F} = \begin{cases} \rho u & \rho v & \rho w \\ \rho u^2 + p - \tau_{11} & \rho u v - \tau_{12} & \rho u w - \tau_{13} \\ \rho u v - \tau_{21} & \rho v^2 + p - \tau_{22} & \rho v w - \tau_{23} \\ \rho u w - \tau_{31} & \rho v w - \tau_{32} & \rho w^2 + p - \tau_{33} \\ \rho u H + q_1 - \tau_{1j} u_j & \rho v H + q_2 - \tau_{2j} u_j & \rho w H + q_3 - \tau_{3j} u_j \end{cases}$$

Governing Equations

Continuous to Discrete

Motivation Governing Equations Discretization Goals Results Conclusions Future Work

$$\frac{\partial \mathbf{Q}(\boldsymbol{x},t)}{\partial t} + \vec{\nabla} \cdot \mathbf{F}(\mathbf{Q}(\boldsymbol{x},t)) = 0$$
Finite Element Method

 $-\mathbf{V} + \nabla \cdot \mathbf{F}$

$$-\int_{\Omega_k} \left(\mathbf{F} \cdot \vec{\nabla} \right) \boldsymbol{\psi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} + \int_{\Gamma_k} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) \mathrm{d}\Gamma_k$$

1.) Multiply by test function
 2.) Integrate over mesh element
 3.) Integrate by parts once

- I. Temporal Derivative Integral
- 💶. Weak Form Volume Integral
- **III.** Surface Integral

$$\frac{\partial \mathbf{Q}(\boldsymbol{x},t)}{\partial t} + \vec{\nabla} \cdot \mathbf{F}(\mathbf{Q}(\boldsymbol{x},t)) = 0$$
 Finite Element Method

$$\mathbf{R}^{\text{Weak}} = \int_{\Omega_k} \frac{\partial \mathbf{Q}}{\partial t} \boldsymbol{\psi}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\Omega_k} \left(\mathbf{F} \cdot \vec{\nabla} \right) \boldsymbol{\psi}(\boldsymbol{x}) d\boldsymbol{x} + \int_{\Gamma_k} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) d\Gamma_k = 0$$

1.) Multiply by test function
 2.) Integrate over mesh element
 3.) Integrate by parts once

- Temporal Derivative Integral
- **Weak Form Volume Integral**
- **III.** Surface Integral

Test and Basis Functions

UNIVERSITY OF WYOMING

Solution Expansion

14

Gauss Lobatto Legendre

Solution Expansion

15

NGINEERING &

Numerical Integration

UNIVERSITY of WYOMING

COLLEGE OF

ENGINEERING &

APPLIED SCIENCE

<u>Collocation</u> Solution Points = Integration Points

$$\mathbf{R}^{\text{Weak}} = \int_{\Omega_k} \frac{\partial \mathbf{Q}}{\partial t} \boldsymbol{\psi}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\Omega_k} \left(\mathbf{F} \cdot \vec{\nabla} \right) \boldsymbol{\psi}(\boldsymbol{x}) d\boldsymbol{x} + \int_{\Gamma_k} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) d\Gamma_k = 0$$

$$\int_{E} \frac{\partial \mathbf{Q}}{\partial t} \psi(\mathbf{x}) d\mathbf{x} \qquad \int_{E} \frac{\partial \mathbf{Q}}{\partial t} \psi J(\boldsymbol{\xi}) d\boldsymbol{\xi} = \frac{\partial}{\partial t} \int_{E} \mathbf{Q} \psi J(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

$$\mathbf{Q}(\boldsymbol{\xi}, t) = \sum_{m,n,l=1}^{N} \mathbf{Q}_{mnl}(t) \ell_m(\xi^1) \ell_n(\xi^2) \ell_l(\xi^3) \qquad \psi(\mathbf{x}) = \ell_i(\xi^1) \ell_j(\xi^2) \ell_k(\xi^3)$$

$$\frac{\partial}{\partial t} \int_{E} \mathbf{Q} \psi J(\boldsymbol{\xi}) d\boldsymbol{\xi} = \frac{\partial}{\partial t} \int_{E} \left(\sum_{m,n,l=1}^{N} \mathbf{Q}_{mnl}(t) \ell_m(\xi^1) \ell_n(\xi^2) \ell_l(\xi^3) \right) \underbrace{\ell_i(\xi^1) \ell_j(\xi^2) \ell_k(\xi^3)}_{\psi} J(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

$$\int_{-1}^{1} f(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^{n} \omega_i f(\xi_i)$$

$$\approx \frac{\partial}{\partial t} \sum_{\lambda,\mu,\nu=1}^{N} \left(\sum_{m,n,l=1}^{N} \mathbf{Q}_{mnl}(t) \ell_m(\xi_h^1) \ell_n(\xi_h^2) \ell_l(\xi^3) \right) \underbrace{\ell_i(\xi_h^1) \ell_j(\xi^2) \ell_k(\xi^3)}_{\psi} J(\xi_h^1, \xi_\mu^2, \xi_\nu^3) \omega_\lambda \omega_\mu \omega_\nu$$

Term I

$$\ell_s(\xi_i) = \delta_{si} = \begin{cases} 0, & s \neq i \\ 1, & s = i \end{cases}$$

18

Term I

$$\begin{array}{c} \hline \textbf{Temporal Derivative Integral:} \\ \hline \int_{\Omega_k} \frac{\partial \mathbf{Q}}{\partial t} \boldsymbol{\psi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = \mathbb{M} \frac{\partial \mathbf{Q}_{ijk}}{\partial t} \end{array} \end{array} \right|$$

$$\begin{split} \mathbb{M} &= M_{ijk} \\ &= J\omega_i\omega_j\omega_k \end{split}$$

$$\begin{split} \int_{\Omega_{k}} \left(\mathbf{F} \cdot \vec{\nabla} \right) \psi(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} &= \int_{\Omega_{k}}^{3} \int_{E} \mathcal{F}^{d}(\mathbf{Q}(\boldsymbol{\xi})) \frac{\partial \psi(\boldsymbol{\xi})}{\partial \xi^{d}} \mathrm{d}\boldsymbol{\xi} \\ \mathcal{F}^{d}(\mathbf{Q}(\boldsymbol{\xi})) &= \sum_{m,n,l=1}^{N} \tilde{\mathcal{F}}_{mnl}^{d} \ell_{m}(\xi^{1}) \ell_{n}(\xi^{2}) \ell_{l}(\xi^{3}) \\ \hline \mathbf{Weak \ Formulation \ Volume \ Integral:} \\ &\int_{\Omega_{k}} \left(\mathbf{F}(\mathbf{Q}) \cdot \vec{\nabla} \right) \psi(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = \omega_{j} \omega_{k} \sum_{\lambda=1}^{N} \overline{D}_{i\lambda} \tilde{\mathcal{F}}_{\lambda j k}^{1} \omega_{\lambda} \\ &+ \omega_{i} \omega_{k} \sum_{\mu=1}^{N} \overline{D}_{j\mu} \tilde{\mathcal{F}}_{i \mu k}^{2} \omega_{\mu} \\ &\int \overline{D}_{ij} = \frac{\mathrm{d}\ell_{i}(\xi_{j})}{\mathrm{d}\xi}, \quad i, j = 0, \dots, N \end{split}$$

Term II

20

$$\int_{\Gamma_k} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) \mathrm{d}\Gamma_k$$

Term III

University of Wyoming

$$\int_{\Gamma_k} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) \mathrm{d}\Gamma_k$$

$$\begin{aligned} \frac{\mathbf{Surface Integral:}}{\int_{\Gamma} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}}\right) \boldsymbol{\psi} \mathrm{d}\Gamma} &= \left(\tilde{\mathcal{F}}^*_{(+1)jk} \ell_i(+1) - \tilde{\mathcal{F}}^*_{(-1)jk} \ell_i(-1)\right) \omega_j \omega_k \\ &+ \left(\tilde{\mathcal{F}}^*_{i(+1)k} \ell_j(+1) - \tilde{\mathcal{F}}^*_{i(-1)k} \ell_j(-1)\right) \omega_i \omega_k \\ &+ \left(\tilde{\mathcal{F}}^*_{ij(+1)} \ell_k(+1) - \tilde{\mathcal{F}}^*_{ij(-1)} \ell_k(-1)\right) \omega_i \omega_j \end{aligned}$$

Term III

Semi-Discrete Formulation

UNIVERSITY OF WYOMING

NGINEERING &

 $\frac{\partial \mathbf{Q}_{ijk}(t)}{\partial t} + \mathbf{R}_{ijk}\left(\mathbf{Q}\right) = 0$ $\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0$

Explicit Runge-Kutta Methods 2-Stage, 2nd-Order SSP-TVD RK2 3-Stage, 3rd-Order SSP-TVD RK3 4-Stage, 4th-Order RK 3/8-rule

Ringleb Flow

- Exact solution of 2D Inviscid equations
- Asymptotic error reduction Ch^{p+1}

Taylor-Green Vortex

Motivation Governing Equations Discretization Goals Results Conclusions Future Work

Develop High-Order CFD Method

Computationally Efficient Parallel Scalable Robust Multiscale Real Applications

Develop High-Order CFD Method

Computationally Efficient Parallel Scalable Robust Multiscale Real Applications

Computational Efficiency

General Basis vs Tensor Basis

Computational Efficiency

Peak Performance

31

Develop High-Order CFD Method

Computationally Efficient Parallel Scalable Robust Multiscale Real Applications

Parallel Scalability

UNIVERSITY of WYOMING

COLLEGE OF

ENGINEERING &

APPLIED SCIENCE

Strong Scaling on ANL Mira

- Taylor-Green Vortex
- Fully periodic
- Mesh: 512 x 512 x 512
- Fifth order: p = 4
- 16.8 Billion DOFs
 83.9 Billion unknowns
- 2 MPI ranks per core 64% faster

Develop High-Order CFD Method

Computationally Efficient Parallel Scalable Robust Multiscale Real Applications

Robustness

UNIVERSITY oF ₩YOMING

COLLEGE OF ENGINEERING & APPLIED SCIENCE

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} \omega_i f(\xi_i)$$

Robustness Split Formulation with Summation By Parts

$$u(x): [x_L, x_H] \to \mathbb{R}$$
 $v(x): [x_L, x_H] \to \mathbb{R}$

 $[\mathbf{Q}] := [\mathbf{M}][\mathbf{D}] \text{ with } [\mathbf{Q}] + [\mathbf{Q}]^T = [\mathbf{B}] := \text{diag}(-1, 0, ..., 0, 1)$ $[\mathbf{D}] = [\mathbf{M}]^{-1}[\mathbf{Q}] = [\mathbf{M}]^{-1}[\mathbf{B}] - [\mathbf{M}]^{-1}[\mathbf{Q}]^T$

 $\begin{bmatrix} \mathbf{M} \end{bmatrix} \text{- discrete mass matrix} \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} \text{- discrete derivative matrix} \\ \begin{bmatrix} \mathbf{Gauss \ Lobatto} \\ \text{Legendre} \end{bmatrix} \begin{bmatrix} \mathbf{M} \end{bmatrix} = \text{diag}(\omega_0, \dots, \omega_N) \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} = D_{ij} = \frac{\mathrm{d}\ell_j(\xi_i)}{\mathrm{d}\xi} \\ \begin{bmatrix} \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix} = D_{ij} = \frac{\mathrm{d}\ell_j(\xi_i)}{\mathrm{d}\xi} \\ \end{bmatrix}$ $(\begin{bmatrix} \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix}) + (\begin{bmatrix} \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix})^T = \begin{bmatrix} \mathbf{B} \end{bmatrix}$ Strong Form Differential

Strong Formulation

UNIVERSITY OF WYOMING

 J_{Ω_k}

$$\frac{\partial \mathbf{Q}\left(\boldsymbol{x},t\right)}{\partial t} + \vec{\nabla} \cdot \mathbf{F}\left(\mathbf{Q}\left(\boldsymbol{x},t\right)\right) = 0$$
 Finite Element Method

$$\int_{\Omega_k} \left(\frac{\partial \mathbf{Q}}{\partial t} + \vec{\nabla} \cdot \mathbf{F} \right) \boldsymbol{\psi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = 0$$

$$\begin{split} \mathbf{R}^{\text{Weak}} &= \int_{\Omega_k} \frac{\partial \mathbf{Q}}{\partial t} \boldsymbol{\psi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} - \int_{\Omega_k} \left(\mathbf{F} \cdot \vec{\nabla} \right) \boldsymbol{\psi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} + \int_{\Gamma_k} \left(\mathbf{F}^* \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) \mathrm{d}\Gamma_k = 0 \\ & \text{Integrate By Parts} \\ & \text{Again} \end{split}$$
$$\begin{aligned} \mathbf{R}^{\text{Strong}} &= \int_{\Omega_k} \frac{\partial \mathbf{Q}}{\partial t} \boldsymbol{\psi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} + \int_{\Omega_k} \left(\vec{\nabla} \mathbf{F} \cdot \boldsymbol{\psi}(\boldsymbol{x}) \right) \mathrm{d}\boldsymbol{x} + \int_{\Gamma_k} \left((\mathbf{F}^* - \mathbf{F}) \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) \mathrm{d}\Gamma_k = 0 \end{aligned}$$

 $\mathrm{d} x +$

 J_{Γ_k}

 $abla \mathbf{F} \cdot oldsymbol{\psi}(oldsymbol{x})$

 J_{Ω_k}

40

Volume Integral

n,n,l=1

$$\int_{\Omega_k} \left(\vec{\nabla} \mathbf{F} \cdot \boldsymbol{\psi}(\boldsymbol{x}) \right) d\boldsymbol{x} = \int_{\Omega_k} \left(\vec{\nabla} \mathbf{F}(\mathbf{Q}) \cdot \boldsymbol{\psi}(\boldsymbol{x}) \right) d\boldsymbol{x} = \sum_{d=1}^3 \int_E \frac{\partial \mathcal{F}^d(\mathbf{Q}(\boldsymbol{\xi}))}{\partial \xi^d} \boldsymbol{\psi}(\boldsymbol{\xi}) d\boldsymbol{\xi}$$
$$\frac{\partial \mathcal{F}^d(\mathbf{Q}(\boldsymbol{\xi}))}{\partial \xi^d} = \sum_{i=1}^N \mathcal{F}^d_{mnl} \frac{\partial \left[\ell_m(\xi^1) \ell_n(\xi^2) \ell_l(\xi^3) \right]}{\partial \xi^d}$$

41

COLLEGE OF ENGINEERING & Split Form APPLIED SCIENCE UNIVERSITY OF WYOMING

 $\frac{\partial \mathbf{Q}}{\partial t} + \tilde{\vec{\mathcal{L}}}_{X}(\mathbf{Q}) + \tilde{\vec{\mathcal{L}}}_{Y}(\mathbf{Q}) + \tilde{\vec{\mathcal{L}}}_{Z}(\mathbf{Q}) = 0$

Gauss Lobatto Legendre

$$\begin{split} \left(\tilde{\vec{\mathcal{L}}}_{X} \left(\mathbf{Q} \right) \right)_{i,j,k} &\approx \frac{1}{\omega_{i}} \left(\delta_{iN} \left[\tilde{\mathcal{F}}^{*} - \tilde{\mathcal{F}} \right]_{Njk} - \delta_{i1} \left[\tilde{\mathcal{F}}^{*} - \tilde{\mathcal{F}} \right]_{1jk} \right) &+ \sum_{m=1}^{N} \mathbf{D}_{im} (\tilde{\mathcal{F}})_{mjk} \\ \left(\tilde{\vec{\mathcal{L}}}_{Y} \left(\mathbf{Q} \right) \right)_{i,j,k} &\approx \frac{1}{\omega_{j}} \left(\delta_{jN} \left[\tilde{\mathcal{G}}^{*} - \tilde{\mathcal{G}} \right]_{iNk} - \delta_{j1} \left[\tilde{\mathcal{G}}^{*} - \tilde{\mathcal{G}} \right]_{i1k} \right) &+ \sum_{m=1}^{N} \mathbf{D}_{jm} (\tilde{\mathcal{G}})_{imk} \\ \left(\tilde{\vec{\mathcal{L}}}_{Z} \left(\mathbf{Q} \right) \right)_{i,j,k} &\approx \frac{1}{\omega_{k}} \left(\delta_{kN} \left[\tilde{\mathcal{H}}^{*} - \tilde{\mathcal{H}} \right]_{ijN} - \delta_{k1} \left[\tilde{\mathcal{H}}^{*} - \tilde{\mathcal{H}} \right]_{ij1} \right) &+ \sum_{m=1}^{N} \mathbf{D}_{km} (\tilde{\mathcal{H}})_{ijm} \end{split}$$

NNInterpreted as $\sum \mathbf{D}_{im}(\tilde{\mathcal{F}})_{mjk} \approx \sum 2\mathbf{D}_{im}F^{\#}(\mathbf{Q}_{ijk},\mathbf{Q}_{mjk})$ sub-cell volume differencing operator m=1m=1

$$\sum_{m=1}^{N} \mathbf{D}_{im}(\tilde{\mathcal{F}})_{mjk} \approx \sum_{m=1}^{N} 2\mathbf{D}_{im} F^{\#}(\mathbf{Q}_{ijk}, \mathbf{Q}_{mjk})$$

$${ \{\!\!\!\!\ a \\!\!\!\ \}} := rac{1}{2}(a_1 + a_2)$$

$$F^{\#}\left(\mathbf{Q}_{1},\mathbf{Q}_{2}
ight)=\{\!\!\{
ho\}\!\!\}\left\{\!\!\{u\}\!\!\}\,=rac{1}{2}(
ho_{1}+
ho_{2})\cdotrac{1}{2}(u_{1}+u_{2})$$

Strong FormKennedy & GruberPirozzoli
$$F^{\#,standard}(\mathbf{Q}_{ijk}, \mathbf{Q}_{mjk}) =$$
 $F^{\#,KG}(\mathbf{Q}_{ijk}, \mathbf{Q}_{mjk}) =$ $F^{\#,PZ}(\mathbf{Q}_{ijk}, \mathbf{Q}_{mjk}) =$ $\left\{ \begin{array}{c} \{\rho u\} \\ \{\rho uu + p\} \\ \{\rho uv\} \\ \{\rho uv\} \\ \{\rho uw\} \\ \{\rho uw\} \\ \{\rho uw\} \\ \{\rho ue + pu\} \end{array} \right]$ $\left\{ \begin{array}{c} \{\rho\} \{u\} \\ \{\rho\} \{u\} \\ \{u\} \\ \{v\} \\ \{v\}$

43

Surface Flux Consistency

$$\mathbf{R}^{\text{Strong}} = \int_{\Omega_k} \frac{\partial \mathbf{Q}}{\partial t} \boldsymbol{\psi}(\boldsymbol{x}) d\boldsymbol{x} + \int_{\Omega_k} \left(\vec{\nabla} \mathbf{F} \cdot \boldsymbol{\psi}(\boldsymbol{x}) \right) d\boldsymbol{x} + \int_{\Gamma_k} \left(\left(\mathbf{F}^* - \mathbf{F} \right) \cdot \vec{\mathbf{n}} \right) \boldsymbol{\psi}(\boldsymbol{x}|_{\Gamma_k}) d\Gamma_k = 0$$

$$F^*\left(\mathbf{Q}_{-},\mathbf{Q}_{+}\right) := F^{\text{Symmetric}}\left(\mathbf{Q}_{-},\mathbf{Q}_{+}\right) - F^{\text{Stab}}\left(\mathbf{Q}_{-},\mathbf{Q}_{+}\right)$$

$$F^*\left(\mathbf{Q}_{-},\mathbf{Q}_{+}\right) = F^{\#}\left(\mathbf{Q}_{-},\mathbf{Q}_{+}\right) - F^{\text{Stab}}\left(\mathbf{Q}_{-},\mathbf{Q}_{+}\right)$$

Kennedy & Gruber $F^{\#, \mathbf{KG}} (\mathbf{Q}_{ijk}, \mathbf{Q}_{mjk}) = \begin{bmatrix} \{\rho\} \{u\} \{u\} \\ \{\rho\} \{u\} \{u\} + \{p\} \\ \{\rho\} \{u\} \{u\} + \{p\} \\ \{\rho\} \{u\} \{w\} \\ \{\rho\} \{u\} \{e\} + \{p\} \{u\} \end{bmatrix}$ 44

Robustness Results

UNIVERSITY OF WYOMING

COLLEGE OF ENGINEERING & APPLIED SCIENCE

16 Fourth-Order Elements

Develop High-Order CFD Method

Computationally Efficient Parallel Scalable Robust Multiscale Real Applications

Multiscale Problems

UNIVERSITY of WYOMING

Adaptive Mesh Refinement

UNIVERSITY of WYOMING

COLLEGE OF ENGINEERING & APPLIED SCIENCE

(a) patch-based AMR

AMR Operators

Projection/Refine

Restriction/Coarsen

COLLEGE OF ENGINEERING & APPLIED SCIENCE

UNIVERSITY OF WYOMING

Verification

Feature-Based Tagging

UNIVERSITY of WYOMING

51

n-1	n-1-1
p = r	$\rho - 1 4$
2 nd -order	2 nd - to 5 th -order

Develop High-Order CFD Method

Computationally Efficient Parallel Scalable Robust Multiscale Real Applications

Overall Strategy

Wyoming Wind and Aerospace Application Komputation Environment

- Multidisciplinary
 - CFD
 - Atmospheric turbulence
 - Structural dynamics
 - Controls
 - Acoustics
- Multi Mesh-Multi Solver Paradigm
 - Near-body unstructured mesh with sub-layer resolution
 - Off-body structured/Cartesian high-order discontinuous Galerkin solver
 - Adaptive mesh refinement (p4est)
 - Overset meshes (TIOGA)
- HPC
 - Scalability
 - In-situ visualization/data reduction

Computational Framework W²A²KE3D

Solvers

NSU3D

- High-fidelity viscous RANS analysis
 - Resolves thin boundary layer to wall
 - O(10⁻⁶) normal spacing
 - Suite of turbulence models available
- Stiff discrete equations to solve
 - Implicit line solver
 - Agglomeration Multigrid acceleration
- High accuracy objective
 - 1 drag count
- Unstructured mixed element grids for complex geometries
- Validated through AIAA Drag/High-Lift Prediction Workshops

DG4est

- High-order discretization
 - Discontinuous Galerkin method
 - Split form w/ summation-by-parts
- Adaptive mesh refinement
 - p4est AMR framework
 - Dynamic adaption
 - *hp*-refinement strategy

Motivation Governing Equations Discretization Goals Results Conclusions Future Work

UNIVERSIT V OF WVOMINC

Wind Energy

• Simulation-based analysis, design and optimization and for large wind plant installations

- Largest gains to be had at the wind plant scale
- 20% to 30% installed losses
- Optimization of siting
- Operational techniques for increased output and life
- Development of control techniques at high fidelity

• Blade-resolved models enable:

- Accurate prediction of flow separation/stalling
- Effect on blade loads, wake structure
- Interaction with atmospheric turbulence structures
- Incorporation of additional effects
 - lcing, contamination (transition)
 - Acoustics (FWH methods)

Results

Mesh Resolution Study NREL-5MW Single Long Run-Time Study NREL WindPACT-1.5MW Single Baseline Turbine Validation Siemens SWT-2.3-93 Wind Farm Simulation Lillgrund 48 Wind Turbine Farm

Results

- Mesh Resolution Study NREL-5MW
- Single Long Run-Time Study NREL WindPACT-1.5MW
- Single Baseline Turbine Validation Siemens SWT-2.3-93
- Wind Farm Simulation
 - Lillgrund 48 Wind Turbine Farm

NREL 5MW

UNIVERSITY OF WYOMING

AIAA Paper 2017-3958

NREL 5MW

Mesh Resolution Study

AIAA Paper 2017-3958 62

AIAA Paper

2017-3958

NREL 5MW

¼° Time Step Medium Mesh

63

Results

Mesh Resolution Study NREL-5MW Single Long Run-Time Study

NREL WindPACT-1.5MW

Single Baseline Turbine Validation Siemens SWT-2.3-93

Wind Farm Simulation

Lillgrund 48 Wind Turbine Farm

NREL WindPACT-1.5MW

UNIVERSITY of WYOMING

2D Cross-Wake Stations

- 7 stations
 - 0.5 6.0 rotor diameters (D)
- 160 m x 160 m
 - 400 x 400 (Δx²: 40 cm x 40 cm)

2,880 Temporal Samples

- 16 rotor revolutions of data
- 2° rotation data frequency
- 31st revolution start

1D

5D

4D

3D

2D

6D

Wake Characteristics

Vortex Generation, Merging & Hopping, Breakdown

Absolute tangential velocity

AIAA Paper 2018-0256 Isocontour of velocity magnitude of 8.5 m/s

Wake Breakdown

UNIVERSITY of WYOMING

AIAA Paper 2018-0256

COLLEGE OF

ENGINEERING & APPLIED SCIENCE

Results

Mesh Resolution Study NREL-5MW Single Long Run-Time Study NREL WindPACT-1.5MW Single Baseline Turbine Validation Siemens SWT-2.3-93 Wind Farm Simulation Lillgrund 48 Wind Turbine Farm

AIAA Paper

2017-3958

Siemens SWT-2.3-93

2.2M grid points per blade0.5M grid points per tower

- Based on mesh res. study
- Total for Turbine:
 7.1M grid points

Used for Wind Farm Simulations

Results

- Mesh Resolution Study NREL-5MW Single Long Run-Time Study NREL WindPACT-1.5MW Single Baseline Turbine Validation Siemens SWT-2.3-93 Wind Farm Simulation
 - Lillgrund 48 Wind Turbine Farm

Lillgrund Wind Farm

10 km

48 Wind Turbines

- 1.55 billion DOFs
- 22,464 cores
- Domain
 10 km x 10 km
- Smallest element in boundary layer 7E-6 m
- 10 magnitudes of spatial scales
- 192 near-body grids
- 360 cores (Visualization)

10 km

Lillgrund Wind Farm

48 Wind Turbines

- 1.55 billion DOFs
- 22,464 cores
- Domain
 10 km x 10 km
- Smallest element in boundary layer 7E-6 m
- 10 magnitudes of spatial scales
- 192 near-body grids
- 360 cores (Visualization)

Motivation Governing Equations Discretization Goals Results Conclusions Future Work

FR SIT V of W/VOMINC

Developed DG Method viable for Extreme Scale Computational Efficient Parallel Scalable Robust Multiscale **Real Applications** Largest Overset Simulation Largest Blade-Resolved Wind Farm Simulation Enabler of Future CFD Technologies and Reseach

UNIVERSIT V OF WVOMINC

Fine-Grain Parallelism Split Form Method Development Turbulence Model Development Error-Based AMR Criterion Temporal Discretizations AMR Time Step Sub-Cycling Atmospheric Boundary Layer Physics

Acknowledgements

UNIVERSITY OF WYOMING

Committee

Dr. Dimitri Mavriplis (Advisor) Dr. Victor Ginting Dr. Jonathan Naughton Dr. Jay Sitaraman Dr. Marc Spiegelman

HELIOS Team

Dr. Andrew Wissink

Mechanical Engineering

Dr. Michael Stoellinger Staff

Peers

High-Altitude CFD Laboratory

Dr. Michael Brazell Dr. Zhi Yang Dr. Behzad Ahrabi Dr. Asitav Mishra

Peers

Friends and Family Dr. Rabia Tugce Yazicigil

NGINEERING &

2016-2017 Blue Waters Fellowship NSF Awards OCI-0725070 and ACI-1238993 Compute Time NCAR ASD Project NCAR-Wyoming Alliance UWYO ARCC NSF Blue Waters Office of Naval Research

ONR Grant N00014-14-1-0045 ONR Grant N00014-16-1-2737

U.S. Department of Energy, Office of Science, Basic Energy Sciences

Award #DE-SC0012671

Thank You Questions?

Motivation Governing Equations Discretization Goals Results Conclusions Future Work

Backup Slides

Explicit Runge-Kutta Methods

$$\begin{aligned} \frac{dy}{dt} &= f(t, y) \quad y_{n+1} = y_n + h \sum_{j=1}^{s} b_j k_j \quad 0 & \text{Butcher Tableau} \\ k_1 &= f(t_n, y_n), \\ k_2 &= f(t_n + c_2 h, y_n + h(a_{21}k_1)), \\ k_3 &= f(t_n + c_3 h, y_n + h(a_{31}k_1 + a_{32}k_2)), \\ \vdots \\ k_s &= f(t_n + c_s h, y_n + h(a_{s1}k_1 + a_{s2}k_2 + \dots + a_{s,s-1}k_{s-1})) & b_1 \quad b_2 \quad \dots \quad b_{s-1} \quad b_s \end{aligned}$$

University of Wyoming

Overset

TIOGA-Topology Independent Overset Grid Assembler

- High-Order interpolation
- Parallel enclosing cell search (donor-receptor) bases on ADT
 - Modified for high-order curved cells
- Interpolation types supported
 - HO FEM to HO FEM
 - HO FVM to HO FEM
 - 2nd-Order FVM to HO FEM
 - 2nd-Order FVM to 2nd-Order FVM

Fringe cells

of the/ Cartesian orid

NREL 5MW

UNIVERSITY of WYOMING

AIAA Paper 2017-3958

Time Refinement Study

Medium Mesh

WAKE3D Scalability

UNIVERSITY OF WYOMING

Turbine Count	Efficiency	Revs	Near-Body Cores	Off-Body Cores	Total Cores
6	1.0000	1.374	2,088	720	$2,\!808$
12	0.9874	1.360	$4,\!176$	$1,\!440$	$5,\!616$
24	0.9682	1.331	$8,\!352$	$2,\!880$	$11,\!232$
48	0.9333	1.283	16,704	5,760	22,464
96	0.8686	1.194	$33,\!408$	$11,\!520$	44,928

Atmospheric Inflow Conditions

NCAR WRF

NREL SOWFA

