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With the proliferation of simulation within the design and analysis of engineering sys-

tems, uncertainty quantification and sensitivity analysis have taken on increased importance,

providing valuable information for assessing the reliability of simulation outputs and a means

for improving these results. In this work, uncertainty quantification and sensitivity analysis

within the context of hypersonic computational fluid dynamics is examined. The simulation

of hypersonic relies on numerous constitutive relations to account for chemical reactions,

internal energy modes and molecular transport. Within these constitutive relations are hun-

dreds of constants and parameters, which are often the result of experimental measurements.

The goal of sensitivity analysis is determining the simulation parameters most affecting an

output of interest, while the goal of uncertainty quantification is determining the variabil-

ity of simulation outputs resulting from the uncertainty associated with model parameters.

Traditional methods for uncertainty quantification and sensitivity analysis typically rely on

exhaustive sampling, where hundreds to thousands of simulations are performed and rel-

evant statistics are computed. For complex simulations, these exhaustive approaches are

prohibitively expensive and well beyond the computational budget of most projects.

For this work, gradient-based methods are used to reduce the expense of uncertainty

quantification and sensitivity analysis. Using an adjoint-based approach, the derivative of

an output with respect to simulation parameters can be computed in a constant amount

of work, providing more information about the simulation output without a significant in-

crease in cost. This additional information can then be leveraged in novel ways, such as

surrogate models or optimization, to accelerate the process of uncertainty quantification or

sensitivity analysis. This dissertation demonstrates these gradient-based methods for sen-

sitivity analysis and uncertainty quantification in hypersonic flow simulations and assesses

the performance of these methods in terms of cost and accuracy.
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Chapter 1

Introduction

Over the past decades, the increasing power of computational hardware has led to the ex-

panded capability of computational modeling and an increased reliance on simulation for

the design and analysis of complex engineering systems. This increased reliance has led to

a desire to improve the efficiency of simulation, allowing for an acceleration of the design

process and improved analysis capability. In general, this increased efficiency is achieved

by increasing the ratio of simulation utility to the amount of work required to arrive at a

result. In the field of computational fluid dynamics (CFD), improving this efficiency has

taken the form of decreasing the time to solution or improving the value of the result with-

out a corresponding increase in cost. This increased value can come from expanding the

scope of the simulation, improved solution accuracy, or providing additional information

about the simulation result. One means of providing this additional information is through

sensitivity analysis (SA) and uncertainty quantification (UQ). The focus of this work are

methods for accelerating the process of sensitivity analysis and uncertainty quantification

within engineering CFD simulations, particularly the simulation of hypersonic flows.

For this work, engineering simulation is defined as simulation that seeks to characterize

a physical system for the purposes of design or ensuring desired performance. The opposite

of this type of simulation is scientific simulation, the purpose of which is to gain insight or

knowledge into the underlying physics governing a system. Engineering simulations are typ-

ified by a large number of input parameters defining the system and relevant physics and the
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results typically consist of a relatively small number of design metrics used to characterize the

performance of the system. Given this nomenclature, the purpose of sensitivity analysis is to

determine the effect of changes to input parameters on the simulation outputs. The purpose

of uncertainty quantification is to determine the uncertainty of simulation outputs due to

the uncertainty within the simulation, either due to uncertainty associated with defining the

system or inherent randomness within the simulation itself. Using the information gained

through sensitivity analysis and uncertainty quantification, the quality of the simulation re-

sult can be assessed and a means for improving the simulation is provided. Additionally, the

confidence level of the result can be quantified, allowing for further utilization of simulation

within the design process.

The additional information provided by uncertainty quantification and sensitivity anal-

ysis is especially important for situations in which real world data is difficult or impossible

to obtain. A prime example of this situation is hypersonic flow. The simulation of hyper-

sonic flow is characterized by high velocities, leading to strong shocks, high temperatures

and pressures, the excitation of internal energy modes and often chemical reactions. To

simulate these physical phenomena, a number of constitutive relations and empirical models

are required, each of which contain a large number of often experimentally derived inputs.

For engineering systems featuring hypersonic fluid flow, such as atmospheric re-entry of

spacecraft, acquiring experimental data is costly and, in some cases, impossible, leading to

a heavy reliance on simulation for the design of these systems and for ensuring the proper

performance. Because of this heavy reliance, uncertainty quantification and sensitivity anal-

ysis are vital tools for the simulation of hypersonic flow. Using uncertainty quantification,

the quality of simulation results can be assessed and the reliability of the system can be

characterized in a probabilistic sense. Using sensitivity analysis, the parameters within the

simulation most affecting the result are identified, providing a means for improving the ac-

curacy and precision of simulation results. Additionally, sensitivity analysis can provide a

basis for optimizing the performance of the system.

Traditional methods for sensitivity analysis and uncertainty quantification are often

expensive and heavily reliant on user experience. Methods, such as parameter studies [1],
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Monte Carlo sampling [2] and finite differences [3], have all been used in the past to assess

the quality of simulation results and determine the optimal results. Although non-intrusive

and easily applied, these methods are extremely time consuming and require significant

manual input. In this work, intrusive gradient-based methods are explored to reduce the

cost associated with uncertainty quantification and sensitivity analysis, enabling the use of

this information throughout the design process.

1.1 Background

With the motivation for incorporating rapid uncertainty quantification and sensitivity anal-

ysis into the simulation of hypersonic flow established, previous work that has advanced this

goal is given.

1.1.1 Sensitivity Analysis

Two approaches to sensitivity analysis are possible with in the context of computational

fluid dynamics, local and global sensitivity analysis. For the local approach, the sensitivity

represents the change in the objective due to an infinitesimal change in the design variable,

while the global sensitivity represents the average change in the objective due to variations of

the design variables over their possible values. For local analysis, the sensitivity represents

the derivative of the output with respect to the input parameters of the simulation. In

the past, these derivative values have been used to determine the relative importance of

parameters within the code as well as a basis for gradient-based numerical optimization.

This gradient can be calculated directly by differentiation of the analysis code or can be

approximated via finite-differences. When computed analytically, an adjoint approach is

typically used within the field of CFD. Historically, this adjoint approach has been used for

the purposes of aerodynamic design via optimization. For fluid mechanics, the use of the

adjoint was first proposed by Pironneau in 1974 [4]. This work was later extended to design

optimization by Jameson in 1988 [5]. Using an adjoint approach, the derivative of a single

output with respect to any number of input parameters, or design variables, can be computed
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with an essentially constant amount of work. For shape optimization purposes, these design

variables have historically been related to the geometric definition of the system, such as

parameters defining an airfoil. The approach pioneered by Jameson for aerodynamics is based

on the continuous adjoint. This continuous adjoint is derived from the governing equations

of the simulation and represents a PDE that can be discretized and solved to determine

the required derivative values. In contrast to this continuous approach, a discrete adjoint

approach has also been advanced by a number of researchers, including Anderson, Giles,

Elliott, and Peraire [6–8]. While the continuous adjoint predicts the analytical derivative

associated with the governing equations, the discrete approach predicts the derivative of the

simulation output itself. Because the goal of sensitivity analysis in this work is to determine

the effect of parameters on the simulation itself, the discrete adjoint is the natural choice.

The discrete approach possesses a number of advantages when compared to the continuous

approach, such as the ease with which boundary conditions are applied, the ease of verifying

derivative predictions and the ability to utilize automatic differentiation to compute the

necessary terms in the analysis code [9]. Outside of the field of CFD, the use of the adjoint

has a long history applied to sensitivity analysis [10], especially within the context of neutron

transport and reactor physics [11].

Although the localized sensitivity analysis is relatively easy to implement and computa-

tionally efficient when derivatives are calculated using an adjoint-based approach, it suffers

from two significant limitations. First, because the localized sensitivity analysis is based on

derivative values, it is only valid within a small vicinity of the original solution and may

not provide an accurate estimate of the change in output if large perturbations of the de-

sign variables are considered. Second, the localized analysis is incapable of accounting for

interference effects whereby the perturbations of one design variable may alter the derivative

value associated with another design variable [2]. To overcome these difficulties, a global

sensitivity analysis can be performed. This global sensitivity analysis is closely related to

the problem of uncertainty quantification. As such, the parameters within a global sensi-

tivity analysis have an associated interval or distribution, known as the uncertainty space

or design space. Global sensitivity analysis therefore quantifies the effect each variable has
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on the output measured over the entire design space. Within the simulation of hypersonic

flows, this global sensitivity analysis has been performed based on Monte Carlo sampling.

Examples of this sampling-based global sensitivity analysis for hypersonic flows can be found

in the works of Wright, Palmer and Kleb [2,12,13]. Based on the results of the Monte Carlo

sampling, correlation coefficients between the input parameters and the output of interest

are computed and used to determine the contribution to the output made by each variable.

Because of the slow convergence of statistics associated with Monte Carlo sampling, these

previous approaches required thousands of CFD simulations [2, 12, 13]. In order to reduce

the cost associated with this sensitivity analysis, polynomial regression has been used to

represent the simulation output, and correlation coefficients have been calculated based on

this regression [14]. Although this regression was able to reduce the number of CFD results

required for the sensitivity analysis, the it was limited to analyzing a small number of input

parameters due to the large growth in the size of the basis as the dimension of the parameter

space increases.

1.1.2 Uncertainty Quantification

Uncertainty quantification within the context of computational science is the process by

which variability is assigned to the output of a numerical simulation based on the variability

associated with input parameters as well as variability within the simulation itself. In the

case of deterministic simulations, such as solving the Navier-stokes equations for aerodynamic

applications, the process of uncertainty quantification consists of propagating the uncertainty

associated with model input parameters to the output of a simulation. In this context, it is

convenient to view the effect of the simulation as a function, y = f(x), that maps inputs x to

a simulation output y. Hence, y becomes uncertain only when considered with the uncertain

input x. As a matter of terminology, the inputs x belong to an uncertainty space, or design

space, and the goal of uncertainty quantification is to model the behavior of y over this

space. The variability of simulation inputs can come in two forms: aleatory or epistemic.

The quantification of each form, as well as the case of mixed form, requires a unique set of

methods. In order to provide a basis for the acceleration techniques used throughout this
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work, previous work relating to uncertainty quantification in CFD simulations is given.

Aleatory Uncertainty

Aleatory uncertainties arise due to the inherent randomness of a variable and are char-

acterized by a probability distribution [15]. For aleatory inputs, the goal of uncertainty

quantification is to determine the distribution of an output quantity due to these input dis-

tributions. Depending on the application, this characterization may consist of constructing

the full empirical distribution function or may be limited to calculating statistics of the

distribution that can be used within design, such as the average, variance or a specified

quantile. This characterization can be performed in a relatively straightforward, although

expensive, manner using Monte Carlo sampling. In the works of Wright and Palmer [2,12],

this approach has been used successfully within the context of hypersonic flows to build up

the required statistics for relevant simulation outputs. For this type of sampling, comput-

ing an output requires a complete computational fluid dynamic (CFD) simulation, making

exhaustive sampling expensive for complex problems. When only a limited number of simu-

lation outputs are of practical interest, a typical approach for reducing the expense of Monte

Carlo sampling is the use of an inexpensive surrogate. This surrogate approximates the

relationship between the true function value and the input parameters and is built based on

a limited number of function evaluations. Because the surrogate is inexpensive to evaluate,

exhaustive sampling of this model can be performed to build the required statistics of the

output. Surrogate models range in complexity from simple extrapolations [16, 17] to more

sophisticated models, such as least-squares polynomials [14, 18–20], support vector regres-

sion [21], radial basis functions [22], and Kriging. In computational fluid dynamics (CFD),

Kriging methods in particular have gained popularity [23–33]. For the quantification of

uncertainty in hypersonic flows, surrogates based on polynomial chaos have been employed

with success [14,18]. Despite this success, these polynomial approaches have been limited to

a small number of variables.

One drawback of surrogate-based methods is the “curse of dimensionality”, whereby the

number of samples required for an accurate surrogate increases exponentially as the number
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of input parameters grows. This problem is typically overcome using two methods. First,

a sensitivity analysis can be used to reduce the dimension modeled with the surrogate. As

shown in other works, the variance of a typical simulation is often a function of a small

fraction of the total number of variables [19]. By creating the surrogate only over these

variables, it should be possible to account for the output variance with a lower dimensional

surrogate model. The other method for overcoming this limitation is the incorporation

of gradient information into the training of the surrogate [19, 27, 31–34]. When adjoint

methods are employed, this gradient may be evaluated with a cost approximately equal to

the simulation of the physical problem [4, 35, 36]. By incorporating derivative values, the

cost associated with training an accurate surrogate can be greatly reduced. For the methods

detailed here, a combination of both methods are used.

Epistemic Uncertainty

Epistemic uncertainty arises from a lack of knowledge regarding the true value of a parameter.

Because of this lack of knowledge, the parameter has no associated probability distribution

function and is typically only specified using an interval. The goal of uncertainty quan-

tification for epistemic uncertainties is to determine the output interval of a quantity due

to specified input intervals. The quantification of epistemic uncertainties has been scarcely

explored in the context of hypersonic flows, despite their dominance in hypersonic flows. Pre-

vious studies assuming pure aleatory uncertainties, although important initial steps, have

likely underestimated the uncertainty associated with simulation objectives [2,12,37]. Epis-

temic uncertainty may be quantified via sampling based approaches or via optimization.

Typically, Latin hypercube sampling [38] is used for epistemic uncertainties, although other

methods such as approaches based on random sampling and Dempster-Shafer evidence the-

ory can be used [39–41]. For Latin hypercube sampling in particular, the required number of

samples grows quickly as the dimension of the problem increases, making the quantification

of epistemic uncertainties for large-dimension problems difficult [15]. As was the case with

aleatory uncertainty, one possible solution is to replace sampling with a surrogate model;

however, this approach will again eventually encounter the curse of dimensionality as the
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input dimension increases.

The other main approach for epistemic uncertainty quantification is to pose the prob-

lem as a bound-constrained optimization problem, defined as: given input parameters within

specified ranges, determine the maximum and minimum values of an output function. Al-

though this approach entails solving a complicated global optimization problem with the

possibility of multiple extrema [42], the number of function evaluations to solve the op-

timization problem scales more readily to high-dimensional problems if a gradient-based

optimizer is employed. For situations in which traditional gradient-based approaches, such

as those built from Newton’s method, are inadequate, efficient global optimization techniques

based on Kriging surrogate models have been successfully demonstrated within the field of

CFD [29]. For these methods, a Kriging surrogate is used to represent the design space, and

traditional global optimization techniques, such as genetic algorithms, are applied to this

surrogate. As is the case for aleatory uncertainty, these Kriging methods can be enhanced

with derivative values to improve the performance of the model in higher dimensions [31,33].

Mixed Aleatory/Epistemic Uncertainty

The problem of epistemic uncertainty quantification is further complicated when contribu-

tions from aleatory sources are also considered. This mixed aleatory/epistemic uncertainty

quantification typically relies on a nested sampling strategy. Although the required number

of samples grows extremely fast, these strategies are conceptually easy to understand and are

capable of separating the effects of each type of uncertainty [15, 43]. For nested strategies,

samples are first drawn from the epistemic variables; and for each set of epistemic variables,

the distribution of the output due to the aleatory variables is determined using sampling

over the aleatory variables. Since the number of samples required for the epistemic uncer-

tainty grows exponentially fast, the expense of nested sampling grows rapidly with respect

to the number of epistemic variables [15]. For hypersonic flows, the number of epistemic

variables is typically much greater than the number of aleatory variables. Hence, for com-

plex models with many uncertain epistemic variables, nested approaches will quickly become

prohibitively expensive. Here, too, surrogates can be created as a function of all variables
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and samples extracted according to a nested strategy.

For relatively low dimensions, this strategy has been shown to be effective [14] and, when

combined with gradient-enhancement, could be applied to problems of moderate dimension.

However, once the number of epistemic variables increases sufficiently, surrogate-based ap-

proaches will again become prohibitively expensive as the required number of samples for

an accurate surrogate increases. In order to address this concern, combination sampling/op-

timization approaches have been explored [43, 44]. For mixed aleatory/epistemic problems,

the goal of the uncertainty quantification is to produce a region in which the function is

contained with a specific level of confidence, known as a P-Box [15]. Because the bounds of

the P-Box are the desired results, the sampling over epistemic variables can be replaced by

optimization. The work of Eldred and Swiler explores the use of optimization to propagate

the epistemic uncertainty combined with a polynomial chaos expansion for the aleatory un-

certainty. For this method, the outer loop for a nested strategy is replaced by optimization

over the epistemic variables. The optimization itself is performed to determine the desired

bound of the P-Box, making the objective of the optimization stochastic in nature based

on the aleatory uncertainty. Hence, each function evaluation of the optimization requires

an aleatory uncertainty quantification. This quantification is performed rapidly using a

polynomial chaos expansion [43].

1.2 Issues with Previous Approaches

Although the previously described methods for uncertainty quantification and sensitivity

analysis are well established for other types of problems, their application to hypersonic flow

simulations, and CFD in general, is limited by two factors. For uncertainty quantification

and global sensitivity analysis, the large number of simulation results required for sampling-

based approaches limits their application to complex CFD simulations, which require hours

to days of computing for a single result. Additionally, the rapid increase in cost associated

with previous rapid uncertainty quantification techniques prevents these methods from be-

ing used for simulations with a large number of inputs. For the case of global sensitivity
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analysis and aleatory uncertainty quantification, previous works have reduced the required

number of simulation results by utilizing surrogate models. Although effective in reducing

the total number of simulation results, these works have been limited to low dimension. In

order to apply these methods for hypersonic CFD simulations, strategies to extend these

surrogates to higher dimension without a dramatic increase in expense must be devised.

For epistemic and mixed form uncertainties, the expense associated with quantification is

prohibitive for the number of inputs encountered in a typical CFD simulation, with a cost

increasing exponentially as the dimension expands. Although previous works have explored

optimization-based approaches for propagating these uncertainties, the use of optimization

for complex engineering calculations has yet to be demonstrated. Given these issues, the goal

of this work is to develop and implement uncertainty quantification and sensitivity analysis

strategies that can accurately capture the output variability of a hypersonic CFD simulation

with a small number of simulation results and that can readily scale to a large number of

input parameters.

1.3 Contributions of Current Work

Based on the previous research performed in the area of uncertainty quantification and

sensitivity analysis for CFD, the current work makes several contributions to the field by

incorporating gradient-based methods into the previously described techniques and applying

these techniques to hypersonic flows. Because this work relies on the efficient calculation of

derivative values, an analysis tool suitable for hypersonic flows with an adjoint capability was

required. Although a number of mature CFD tools exist for the simulation of hypersonic

flows, the application of the discrete adjoint to these tools is an area of active research

[45, 46]. Hence, in order to explore gradient-based approaches, a CFD solver capable of

simulating hypersonic flows was developed and a discrete adjoint approach was implemented

within this solver. Although this code is limited to two dimensions, it is capable of solving

problems in thermal and chemical non-equilibrium, replicating a number of the challenges

resulting from the simulation of hypersonic flow. Using this analysis code, the discrete
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adjoint was implemented using automatic differentiation. The details of the physical model

and solver used in this work can be found in Chapters 2 and 3, while the details of the

adjoint implementation are found in Chapter 4.

Using this solver and adjoint implementation, gradient-based strategies for sensitivity

analysis and uncertainty quantification were applied to rapidly determine the importance of

model parameters and to quantify the uncertainty in the simulation based on these param-

eters. For the case of sensitivity analysis, local sensitivity analysis is applied directly using

the gradients produced by the discrete adjoint approach. In addition to local sensitivity

analysis, a gradient-based approach for rapid global sensitivity analysis applicable to large

input dimensions was developed by expanding the regression used in previous work [14] to

include derivative values. The methods used for these sensitivity analyses and corresponding

results are presented in Chapter 4.

Utilizing the adjoint capability of the solver and building upon the sensitivity capa-

bility, gradient-based methods for uncertainty quantification developed in previous work

were applied to the simulation of hypersonic flows. For the case of aleatory uncertainty,

the performance of gradient-enhanced surrogate models was tested for the quantification

of uncertainty arising from model parameters within the CFD simulation. For epistemic

uncertainty, the use of gradient-based optimization was demonstrated and compared to the

traditional sampling-based method. Finally, for the case of mixed form uncertainty, a novel

optimization/surrogate based approach was developed. Compared to the method of Eldred

and Swiler [43,47], the order of optimization and surrogate approximation in this method is

switched. By reversing the order, the new method is capable of predicting multiple statis-

tics without an associated increase in cost. These gradient-based methods are detailed and

demonstrated for a hypersonic test problem in Chapter 5 for aleatory uncertainties, Chapter

6 for epistemic uncertainties and Chapter 7 for mixed form uncertainties.
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Chapter 2

Physical Models

In order to numerically solve problems featuring hypersonic flows, a number of physical mod-

els must be utilized. These models are detailed in this chapter. First, the characteristics of

high temperature gases are introduced. With the required physics introduced, the equations

solved for this work, the Navier-Stokes equations for reacting flow in thermal and chemical

non-equilibrium, are developed, and the required constitutive laws are identified. Finally, the

state relations required to close the equations, such as the caloric equation of state, thermal

equation of state, reaction terms and necessary fluid properties, are given.

2.1 Characteristics of High Temperature Gases

In order to provide the necessary background for developing the continuous equations gov-

erning hypersonic fluid flow, the properties of high temperature gases are discussed. Because

of the energy available to the molecules of the gas at high temperature, a number of unique

characteristics are encountered that do not appear for room temperature flows. These char-

acteristics include the excitation of internal energy modes, the dissociation of molecules and

thermal non-equilibrium, where by energy modes of the molecule are described by multiple

distinct temperatures.
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2.1.1 Energy Modes

The energy of a molecule is composed of four components: translational (et), rotational (er),

vibrational (ev), and electronic energy (eel). Typically, the energy of the molecule is assumed

separable and the total energy is the sum of these four components [48].

e = et + er + ev + eel (2.1)

The translational and rotational energy are present for molecules at room temperatures;

however, the vibrational and electronic energy are only significant for high temperatures due

to the fact that molecular energy is quantized. In order for molecules to occupy these states,

the average energy must be comparable to the energy spacing for the vibrational and elec-

tronic energy modes, which only occurs for high temperatures. Although all energies at the

molecular level are quantized, continuous descriptions of the average energy for a collection

of molecules can be assumed in certain circumstances. In order to determine properties of

the high temperature gas, the energy as a function of macroscopic thermodynamic variables

must be defined. For this work, a thermally perfect gas is assumed. This assumption implies

that the specific energy is a function only of temperature.

The translational energy represents the kinetic energy of the molecule due to its linear

momentum, while rotational energy is the kinetic energy due to angular momentum. Be-

cause the energy spacing for these energy modes is small, the translational and rotational

energy can be treated as continuous and fully excited for essentially all temperatures, with

discretization of these modes important only for extremely low temperature flows. For a

fully excited energy mode, the average energy for a molecule in a gas is a function of the

degrees of freedom [49].

ε =
d

2
kbT (2.2)

Here, d is the degrees of freedom for an energy mode, kb is Boltzmann’s constant and T is the

temperature. For the translational energy mode, the molecule has three degrees of freedom,

corresponding to three coordinates required to specify its location. Based on equation (2.2),

the translational energy is given as:
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et(T ) =
3

2
kbT (2.3)

This equation gives the average translational energy for a single molecule. This equation

can be converted to the energy for a single mole of molecules by replacing Boltzmann’s

constant with the universal gas constant, R̄. The equation for translational energy is the same

for both atoms and polyatomic molecules. For the rotational energy, the degrees of freedom

depend on the moments of inertia of the molecule. For a single atom, the principle moments

of inertia are negligible, which makes the rotational energy zero. For a diatomic molecule,

only one of the principle moments of inertia is negligible, giving a diatomic molecule two

rotational degrees of freedom. Given these facts, the average rotational energy per molecule

is given below.

er(T ) =

0 for atoms,

kbT for diatomic molecules

(2.4)

Because of the energy spacing associated with the vibrational and electronic energy,

these modes do not become significant until the energy of the molecule is comparable to this

energy spacing. The vibrational energy mode appears only for polyatomic molecules and

represents the energy contained in the vibrating of the atoms in the molecule relative to one

another. For a diatomic species, two vibrational degrees of freedom are possible; however,

the energy is not fully excited for most applications, meaning equation (2.2) can not be

used. In order to compute the vibrational energy, the molecule is represented as a harmonic

oscillator as given by equation (2.5) [50].

ev(T ) =
kbθv

eθv/T − 1
(2.5)

Here, θv is the characteristic temperature for the vibration. This characteristic temperature

is given in equation (2.6) and is unique for each molecule [49].

θv =
hν

kb
(2.6)
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Table 2.1: Vibrational Temperatures for Non-ionizing Dissociating Air

Species θv (K)
N2 3395.0
O2 2239.0
NO 2817.0
N -
O -

Here, h is the Plank’s constant and ν is the fundamental frequency of vibration for the

molecule. The vibrational temperature for the molecules used in this work are given in

Table 2.1 taken from reference [51]. Based on equation (2.5), the value of vibrational energy

in the limit of high and low temperature relative to the vibrational temperature can be

calculated as:

ev(T ) ≈ 0 for T << θv (2.7)

ev(T ) ≈ kbθv
(1 + θv/T + ...)− 1

= kbT for T >> θv (2.8)

For the case of temperatures well below the vibrational temperature, the vibrational

energy is essentially zero as the exponential in the denominator increases rapidly to a large

value. For the case of temperatures much greater than the vibrational temperature, a Taylor

series expansion is used for the exponential and the energy becomes linear in temperature.

This limit is the case of full excitation of the vibrational energy and the energy relationship

reverts to that found in equation (2.2) [49].

The electronic mode represents the energy contained in a molecule due to the excitation

of electrons above the ground state to higher energy orbitals. Because this energy mode is

atomic in nature, all species possess this energy mode. The representation of electronic en-

ergy is similar to that of vibrational energy, with a characteristic temperature for each mode.

Because multiple electron transitions are possible, numerous levels exist for the electronic

mode and the electronic energy is given by summing of these levels [51].
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Table 2.2: Electronic Temperatures and degenericies for Non-ionizing Dissociating Air

Species θel,1 (K) θel,2 (K) g0 g1 g2

N2 72,233.0 85,744.0 1 3 6
O2 11,392.0 18,985.0 3 2 1
NO 55,835.0 63,258.0 4 8 2
N 27,665.0 41,495.0 4 10 6
O 22,831.0 48,620.0 9 5 1

eel = kb

∑∞
i=1 giθel,ie

θel,i/T

g0 +
∑∞

i=1 giθel,ie
θel,i/T

(2.9)

Here, θel,i is the characteristic temperature for each electronic transition and gi is the de-

generacy for each transition. These values are given for the first and second electronic level

in Table 2.2. As the table shows, the characteristic temperature for the electronic mode is

much greater than the vibrational characteristic temperature. This fact signifies that the

electronic energy mode is excited at higher temperature than the vibrational energy mode.

Although the equations for vibrational and electronic energy are not used explicitly

in this work, the forms of these equations offer valuable insight into the energy modes

present for high temperature molecules. For this work, the energy is calculated based on

the integration of polynomial curve fits of specific heat for each species, which include the

effects of vibrational and electronic energy at high temperatures. This energy calculation is

detailed later in this chapter.

2.1.2 Molecular Dissociation

As the temperature of a molecule increases, the energy available eventually becomes large

enough to break the chemical bonds holding the molecule together. Once the molecules

dissociate, the composition of the gas mixture becomes variable and the effect of chemical

reactions must be modeled. The dissociation of molecules can be modeled in either an

equilibrium and non-equilibrium manner. An equilibrium treatment is appropriate when

the time scale of the reaction is much smaller than the other time scales experienced by

the molecule, such as the timescale associated with collisions with other molecules. For
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an equilibrium model, the properties of the reacting mixture are given by curve fits that

account for the changing composition of the mixture. Because of the dissociation, this

mixture becomes a non-ideal gas, making the properties of the mixture a function of two

variables, such as density and temperature. An example of these curve fits can be found in

Reference [52]. If the composition of the mixture is required, the equilibrium reaction rate

combined with the partial pressures can be used and a system of equations can be solved.

This process is demonstrated in Appendix D [53]. An equilibrium reaction model is used for

the Fay-Riddell heating correlation [54] discussed later in this chapter.

When the time scale of the reaction is comparable to the time scale associated with

molecule collisions, a non-equilibrium (or finite-rate) chemistry model is used. For this model,

each species in the mixture must be modeled separately and the creation and destruction

of each species is accounted for using a chemical kinetics model. This chemical kinetics

model determines the appropriate reaction rate as a function of the mixture properties. The

chemical kinetics models used in this work are detailed later in the chapter.

2.1.3 Thermal Non-equilibrium

For situations in which the energy modes are described by different representative tempera-

tures, the system is said to be in thermal non-equilibrium. Thermal non-equilibrium occurs

when the coupling between the energy modes is weak, typically because of the limited num-

ber of collisions caused by the low density of the mixture. For the thermal non-equilibrium

model used in this work, two temperatures are used to model the energy modes and all the

species in the mixture are described by the same representative temperatures. For systems

with weak inter-species coupling, each species can be modeled by its own representative

temperatures [55], but this type of model is not used in this work.

The two temperatures used for the model in this work are a translation-rotational tem-

perature and a vibrational-electronic temperature. The choice of these two temperatures

implies that the between translational and rotational energy modes is strong, as well as the

coupling between the vibrational and electronic energy modes. This strong coupling causes

these energy modes to be in equilibrium with one another and allows for a unified tempera-
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ture to describe these energy modes. Using these two temperatures, the functional form of

the total energy equation becomes:

e(T, Tv) = et(T ) + er(T ) + ev(Tv) + eel(Tv) (2.10)

where T is the translation-rotational temperature and Tv is the vibrational-electronic temper-

ature. The use of two temperatures necessitates the need to solve a separate conservation law

for each unified-energy mode, requiring two energy equations for this model. The assump-

tion of strong inter-species coupling and equilibrium between some energy modes implies

that the energy transferred in a collision is preferentially transferred to the same energy

mode in the colliding molecule. However, it is possible for energy to be transferred between

the modes, requiring the coupling between energy modes to be modeled within the multi-

ple energy modes. The exact form of the energy conservation equations and the coupling

between modes is examined in the next section.

2.2 Multicomponent Navier-Stokes Equations

With the energy modes presented and the concepts of chemical and thermal non-equilibrium

introduced, the five species, two temperature real gas model can be presented. In order to

solve problems utilizing this model, the Navier Stokes equations for a gas in chemical and

thermal non-equilibrium are solved. This model neglects the effect of ionization, accounting

only for dissociation and the creation of other species based on these dissociated species.

The equations for this model consist of a mass conservation equation for each species, a

momentum equation for the mixture of species, and an energy equation for each energy

mode of the mixture. In order to develop these equations, each species is assumed to be in

equilibrium with itself. This equilibrium implies that each species can be described by its

own set of continuous variables, namely a species density, velocity, and temperature for each

energy mode. As equilibrium is assumed over the appropriate variables, the equations will

be reduced to a manageable size.

The mass conservation equation for each species is given by [56]:
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∂ρs
∂t

+∇ · (ρs~us) = ωs (2.11)

where ωs is the net mass creation per unit time for species s. In order to reduce the required

number of variables required to describe the flow, the species velocity is decomposed into a

bulk velocity that is the same across all species and a diffusive velocity.

~us = ~U + ~Vs (2.12)

The bulk velocity is defined as:

~U =

∑
s ρs~us
ρ

(2.13)

0 =
∑
s

ρs~Vs (2.14)

where ρ is the total density of the mixture, given as the sum of the species densities. By this

definition, the sum of the diffusive velocity weighted by the species density over all species

is equal to zero as it represents the departure from the bulk velocity. Using this velocity

decomposition, the conservation of each species is given as:

∂ρs
∂t

+∇ · (ρs~U) = −∇ · (ρs~Vs) + ωs (2.15)

For this model, five mass equations must be solved. Instead of solving for each of the

five individual species, the total density along with 4 of the species equations are solved, as

this set of variables allows for convenient calculation of mixture properties. The total mass

equation is found by adding the individual species equations:

∑
s

∂ρs
∂t

+
∑
s

∇ · (ρs~U) = −
∑
s

∇ · (ρs~Vs) +
∑
s

ωs (2.16)

leading to the mass conservation equation for the mixture:

∂ρ

∂t
+∇ · (ρ~U) = 0 (2.17)
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Here, the fact that the sum over the reaction source term is zero when summed over all

species by conservation of mass has been utilized. The resulting equation is the total mass

equation typical of the Navier-Stokes equations.

Based on this velocity decomposition, a single momentum equation is solved for this

model. This equation is arrived at by summing the individual species momentum equations.

For a single species in a non-ionizing model, the species momentum equation is given as [57]:

∂ρs~us
∂t

+∇ · (ρs~us ⊗ ~us) = ~Qm,s (2.18)

where ~Qm,s is the rate of momentum transfer to species s. Summing this equation over all

species gives the momentum equation for the mixture, given as [51]:

∂ρ~U

∂t
+∇ · (

∑
s

ρs~us ⊗ ~us) = 0 (2.19)

Using the velocity decomposition given in equation (2.13), the momentum flux can be de-

composed into a convective term, pressure term and shear stress term.

∑
s

ρs~us ⊗ ~us =
∑
s

[
ρs~U ⊗ ~U + ρsU ⊗ ~Vs + ρs~Vs ⊗ U + ρs~Vs ⊗ ~Vs

]
(2.20)

∑
s

ρs~us ⊗ ~us = ρ~U ⊗ ~U +
∑
s

ρs~Vs ⊗ ~Vs (2.21)

Here, the fact that the sum of the diffusive velocity weighted by the species density is zero

(equation (2.14)) has been utilized to eliminate the two middle terms. By definition, the

diffusive term can now be decomposed into pressure and shear stress components, given in

equation (2.22).

∑
s

ρs~Vs ⊗ ~Vs =
∑
s

psI −
∑
s

τs (2.22)

∑
s

ρs~Vs ⊗ ~Vs = PI − τ (2.23)

Here, I is the identity matrix, τ is the shear stress tensor for the mixture and P is the total

pressure, which is the sum of the partial pressure of each species. The final momentum
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equation for the mixture is the same momentum equation encountered for a non-reacting

mixture or single isolated species.

∂ρ~U

∂t
+∇ · (ρ~U ⊗ ~U) = −∇P +∇ · τ (2.24)

Finally, the two energy equations are required for this model. These energy equations

are the total energy equation and a separate vibrational-electronic energy equation. To

derive the total energy equation, the species total energy equations are added to give an

equation for the mixture total energy. For a single species, the total energy equation is given

below [57].

∂ρset,s
∂t

+∇ · (ρset,s~us) = Qs (2.25)

Here, et,s is the total energy for the species, which is the sum of the molecular energy, e and

the macroscopic kinetic energy, 1
2
~us ·~us. The source term Qs is the total energy transfer into

species s. Summing this equation over all the species gives the total energy equation for the

mixture:

∂ρet
∂t

+∇ · (ρhtU) = ∇ · (τ~u)−∇ · ~qt (2.26)

The details of constructing the total energy equation are omitted here as the velocity

decomposition leads to a large number of terms. The omitted details can be found in

Reference [51]. In this equation, et is the total energy of the mixture, given as the sum of

the mixture molecular energy and the bulk kinetic energy 1
2
~U · ~U . The total enthalpy ht is

given as the sum of internal energy and pressure and the total heat flux ~qt represents the

transport of total energy by the diffusive species velocity. This total heat flux is the sum of

the multiple energy components as well as the flux of enthalpy due species diffusion.

ht = et +
P

ρ
(2.27)

~qt = ~q + ~qv +
∑
s

ht,sρsṼs (2.28)
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Here, ~q is the diffusion of translation-rotational energy and qv is the diffusion of vibrational-

electronic energy.

The vibrational-electronic energy equation is derived based on the conservation of in-

ternal energy modes for a single species and summing these equations over the species. The

conservation of an internal energy mode, i, is given as [55]:

∂ρsei,s
∂t

+∇ · (ρsei,s~us + qi,s) = Qi,s + ei,sωs (2.29)

where ei,s is the internal energy mode for species s, qi,s is the heat flux for the energy

mode, Qi,s is the net rate of energy transfer into the energy mode and ei,sωs represents the

net internal energy created from chemical reactions. The internal energy equation for the

mixture is again found by summing over the species. The details of this summation are again

omitted and can be found in Reference [51]. The final vibrational-electronic energy is given

as:

∂ρev
∂t

+∇ · (ρevU) = QT−V +
∑
s

ev,sωs −∇ ·

(∑
s

hv,sρsṼs

)
−∇ · ~qv (2.30)

where QT−V represents the coupling between the translational and vibrational energy modes.

The final equations in vector form are given as:

∂U

∂t
+∇ · ~F (U) = ∇ · ~Fv(U) + S(U) (2.31)

The terms in the equation are defined as:

U =



ρs

ρ~u

ρet

ρev


~F =



ρs~u

ρ~u⊗ ~u+ P

ρ~uht

ρ~uhv


~Fv =



−ρsṼs
τ

τ · ~u− ~q − ~qv −
∑

s ht,sρsṼs

−
∑

s hv,sρsṼs − ~qv


In two dimensions, this model contains nine conserved variables. The first variables, ρs

for s = 1, 2, .., 5, are the five species densities. The other variables are the bulk momentum,

ρ~u, the total energy ρet, and the vibrational-electronic energy, ρev. In the absence of body

forces and internal heat generation, the source vector for this model can be represented by:
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S =



ωs

0

0∑
s ωsêv,s +QT−V


(2.32)

With these equations established, constitutive laws are used to define the heat flux,

stress tensor and diffusive velocity in terms of macroscopic flow properties. The species

diffusion velocities,Ṽs, are determined using Fick’s law.

ρsṼs = −ρDs∇cs (2.33)

where cs is the species mass fraction and Ds is the species diffusion coefficient. The shear

stress tensor, τ , is given by the relation for a Newtonian fluid and the heat flux for each

mode is represented by Fourier’s law of conduction.

τ = µ(∇~u+ ~u∇)− 2

3
µ∇ · ~uI (2.34)

~q = −k∇T (2.35)

~qv = −kv∇Tv (2.36)

With the equations defined, state relationships are used to close the equations.

2.3 State Relationships

In this section, the state relations required to close the equations are detailed. These rela-

tionships consist of the caloric equation of state, the thermal equation of state, the transport

coefficients, reaction models and energy coupling relationships.

2.3.1 Caloric Equation of State

The caloric equation of state defines the relationship between the internal energy and the

thermodynamic properties. The caloric equation of state is specified by the specific heat at
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constant volume cv. The variation of the specific heat as a function of temperature is given

by a set of fourth order polynomials for each species [56].

Cs
v(T )Ms

R̄
= Aio,s + Ai1,sT + Ai2,sT

2 + Ai3,sT
3 + Ai4,sT

4 (2.37)

Here, Ais are the polynomial coefficients for each species over a range of temperature i.

Because the curve fit specifies the specific heat on a molar basis, the species mass Ms is

required and the universal gas constant is used for normalization purposes. The coefficients

themselves vary depending on the temperature, with different coefficients defined for different

temperature ranges between 300 K up to 35000 K. The coefficients are given in Table A.2

of Appendix of A. To ensure the specific heat is smooth as a function of temperature,

the coefficients between two ranges are given by the temperature-weighted average of the

coefficients in the lower and upper temperature range. This averaging is defined in equation

(2.38).

A(T )s =
Tr − T
Tr − Tl

Ais +
T − Tl
Tr − Tl

Ai+1
s (2.38)

In this equation, Ais represents the coefficients from the lower temperature range, Ai+1
s rep-

resents the coefficients from the higher temperature range, Tl represents the highest tem-

perature from range i and Tr represents the lowest temperature from range i + 1. This

interpolation between coefficients occurs within ±50K of the boundary between tempera-

ture ranges.

These specific heat curves represent the total specific heat and have contributions from

all energy modes. Because the different energy modes are described by two different tem-

peratures, the different energy components must be separated in some way. Because the

translational and rotational energy modes are fully excited for the flows considered in this

work, the specific heat corresponding to these energy modes is constant. Hence, the vibra-

tional/electronic specific heat can be determined by subtracting the translation-rotational

specific heat from the total [56].

Cs
v,v−e(Tv) = Cs

v(Tv)− Cs
v,t−r (2.39)
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Because the vibrational/electronic specific heat is a function of the vibration/elec-

tronic temperature, the curve fit is evaluated based on this temperature and the constant

translational-rotational component is subtracted from this value. Based on the results from

Section 2.1, the translation-rotational specific heat is given on a per mass basis as:

Cs
v,t−r =


5
2
R̄
Ms

for diatomic species

3
2
R̄
Ms

(2.40)

The total internal energy is given by integrating the curve fits for each species, repre-

sented in equation (2.41).

es(T ) =

∫ T

To

Cv(T )dT + eo (2.41)

Here, eo is the reference energy, which includes the heat of formation, and To is the tem-

perature at which eo is evaluated. These reference values are given in Table A. Using the

previously defined curve fits, the internal energy is given as:

ēs(T ) = Aio,sT +
1

2
Ai1,sT

2 +
1

3
Ai2,sT

3 +
1

4
Ai3,sT

4 +
1

5
Ai4,sT

5 + Ai6,s (2.42)

where Ai6,s accounts for the reference temperature and energy. In order to determine the

individual energy components, the assumption of fully excited translational-rotational energy

is again utilized. Hence, the vibrational-electronic is given as:

esv−e(Tv) = ēs(Tv)− Cv,t−r(Tv − To)− eo (2.43)

The translational-rotational energy is given by integrating the translational-rotational spe-

cific heat. On a per mass basis, this energy is given as:

est−r(T ) = Cv,t−r(T − To) (2.44)

The total internal energy using the two temperature model is now the sum of the vibration-

electronic energy with the translational-rotational and the reference energy.
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es(T, Tv) = esv−e(Tv) + est−r(T ) + eo = ēs(Tv) + Cv,t−r(T − Tv) (2.45)

Finally, in order to determine the internal energy or specific heat of the mixture, the species

values are averaged using the mass fraction.

e(T ) =
∑
s

cse
s(T ) (2.46)

Cv(T ) =
∑
s

csC
s
v(T ) (2.47)

2.3.2 Thermal Equation of State

The thermal equation defines the relationship between the pressure and the thermodynamic

variables. For fluid dynamics, this equation of state is typically a function of density and

temperature. For this work, each species is assumed to obey an ideal gas equation of state.

From this assumption, the partial pressure is given by equation (2.48) [51].

ps = ρs
R̄

Ms

T (2.48)

Here, ρs is the species density, Ms is the molecular mass and R̄ is the universal gas constant.

Because this pressure is the result of atomic collisions, the pressure is evaluated using the

translational-rotational temperature, T . The mixture pressure is the sum of the partial

pressures given as:

P (ρ, T ) =
∑
s

ρs
R̄

Ms

T = ρ
∑
s

cs
R̄

Ms

T (2.49)

In addition to defining the relationship between thermodynamic variables and pressure,

the thermal equation of state also defines the speed of sound. By definition, the speed of

sound is defined as the derivative of pressure with respect to density evaluated isentropically.

c2 =
∂P

∂ρ

∣∣∣∣
isentropic

(2.50)
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Assuming the equation of state is defined based on density and internal energy, the derivative

can be evaluated as:

∂P

∂ρ
=
∂P

∂ρ

∣∣∣∣
e

+
∂P

∂e

∣∣∣∣
ρ

∂e

∂ρ
(2.51)

For an adiabatic flow, the derivative ∂e
∂ρ

is given by [49]:

∂e

∂ρ

∣∣∣∣
adiabatic

=
P

ρ2
(2.52)

By definition, a reversible (inviscid), adiabatic flow is isentropic. Hence, the isentropic

derivative is given by substituting the above expression into equation (2.51).

∂P

∂ρ

∣∣∣∣
isentropic

=
∂P

∂ρ

∣∣∣∣
e

+
∂P

∂e

∣∣∣∣
ρ

P

ρ2
(2.53)

For an equation of state defined based on temperature, the chain rule can be used to construct

the necessary derivative of pressure w.r.t energy.

∂P

∂e

∣∣∣∣
ρ

=
∂P

∂T

∣∣∣∣
ρ

∂T

∂e

∣∣∣∣
ρ

=
∂P

∂T

∣∣∣∣
ρ

1

Cv,t−r
(2.54)

The pressure relationship defined in equation (2.49) is a function of all of the species

densities. In order to evaluate the required derivatives, this dependency must be reduced to

a single density. This reduction is achieved by assuming a fixed chemical composition for

the derivative evaluation. This fixed composition assumption yields what is known as the

frozen speed of sound. The practical results of this assumption is that the mass fraction is

assumed fixed for the differentiation. Using the frozen assumption, the required derivatives

for equation (2.49) are given as:

∂P

∂ρ

∣∣∣∣
e

=
∑
s

cs
R̄

Ms

T (2.55)

∂P

∂T

∣∣∣∣
ρ

= ρ
∑
s

cs
R̄

Ms

(2.56)

∂e

∂T

∣∣∣∣
ρ

=
1

Cv,t−r
(2.57)
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Because the translational-rotational temperature is used in the equation of state, the translation-

rotational specific heat of the mixture is used in the derivative of energy with respect to

temperature. The specific heat in this equation is the specific heat of the mixture and can

be calculated using equation (2.46). Using these derivatives, the final frozen speed of sound

is given by [56]:

c2 =
∑
s

cs
R̄

Ms

T +
ρ
∑

s cs
R̄
Ms

Cv,t−r

P

ρ2
(2.58)

Using the definition of the mixture pressure, the first term can be replaced by the

pressure divided by density to give an expression similar to the speed of sound equation

typically seen for a perfect gas.

c2 =
P

ρ
+

∑
s cs

R̄
Ms

Cv,t−r

P

ρ
(2.59)

c2 =
P

ρ

(
1 +

∑
s cs

R̄
Ms

Cv,t−r

)
(2.60)

Here, the term in parentheses can be viewed as the effective ratio of specific heats, γeff , for

the mixture.

2.3.3 Transport Coefficients

In order to determine the viscosity, thermal conductivity and mass diffusivity, a transport

model is required. For this work, a transport model based on collision integrals is used. These

collision integrals account for the interaction of the individual species at the molecular level.

The basis of the transport model is the variation of the collision integrals with temperature.

This variation is modeled using the collision integrals measured at two temperatures and

interpolating between these temperatures for other variables. For each temperature, two

collision integrals are specified for each unique interaction. For a five species model, 15

interactions are possible, requiring a total of 30 collision integrals to be specified at each

temperature (60 total collision integrals). The collision integrals are specified at 2000 K and
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4000 K and interpolation of the base-10 logarithm of the collision integral is used. This

interpolation is found in equation (2.61) [56].

log10(Ωk,k
s,r ) = log10(Ωk,k

s,r )2000 +
[
log10(Ωk,k

s,r )4000 − log10(Ωk,k
s,r )2000

] ln(T )− ln(2000)

ln(4000)− ln(2000)
(2.61)

The collision integrals for each interaction are given in Table A in Appendix A in units of cm2.

In this equation, s and r represent the species participating in the collision and k is an index

running from 1 to 2. The different values for k are used to construct the different transport

terms required for the model. With the collision integral calculated at the appropriate

temperature, a modified cross-section is calculated, given by equation (2.62) [50].

∆1
s,r =

8

3

√
2MsMr

πR̄T (Ms +Mr)
Ω1,1
s,r (2.62)

∆2
s,r =

16

5

√
2MsMr

πR̄T (Ms +Mr)
Ω2,2
s,r (2.63)

With the modified collision integrals calculated, the viscosity and thermal conductivity

of the mixture can be calculated as:

µ =
∑
s

msγs∑
r γr∆

(2)
s,r

(2.64)

kt =
15

4
kb
∑
s

γs∑
r αs,rγr∆

(2)
s,r

(2.65)

kr = kb
∑

molecules

γs∑
r γr∆

(1)
s,r

(2.66)

kv = kb
∑

molecules

Csv,vMs

R̄∑
r γr∆

(1)
s,r

. (2.67)

In these equations, kb is Boltzmann’s constant, and ms is the species molecular mass (as

opposed to molar mass, Ms). The quantities αs,r and γs are defined as:
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γs =
ρs
ρMs

=
cs
Ms

(2.68)

αs,r = 1 +

[
1−

(
Ms

Mr

)] [
0.45− 2.54Ms

Mr

]
1 +

(
Ms

Mr

)2 (2.69)

Finally, the mass diffusivity is calculated using the previously defined modified collision

cross-section and molar concentration. First, the binary diffusion coefficient is calculated for

the collisions between each species [56].

Ds,r =
kbT

p∆
(1)
s,r

(2.70)

Here, T is the translation-rotational temperature and p is the pressure. Using this binary

coefficient, the effective diffusion coefficient for each species is calculated as:

Ds =
γ2
tMs(1−Msγs)∑
r 6=s (γr/Ds,r)

(2.71)

Here, the variable γt is the sum of the molar concentration over all species, defined as:

γt =
∑
s

γs (2.72)

With the transport quantities defined, the viscous fluxes can now be calculated based on the

local flow properties.

2.3.4 Reaction Rates

The source term ωs represents the creation or destruction of species s per unit time. From

the principle of conservation of mass, this source term must sum to zero over all species. The

source term is constructed by summing the contribution from each reaction and applying

conservation for each reaction. For a generic equilibrium reaction, the contribution to the

source is given as follows:
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n[A] +m[B] � p[C] (2.73)

∂A

∂t
= n(Rb −Rf ) (2.74)

∂B

∂t
= m(Rb −Rf ) (2.75)

∂C

∂t
= p(Rf −Rb) (2.76)

where [A], [B], [C] represent the molar concentrations of the reactants and products respec-

tively, and Rf and Rb represent the forward and backward reaction rates. The rate of change

of the concentration is converted to a mass-based source term by multiplying by the molar

mass. Based on the above individual reaction results, the source term for each species is

given for a general set of reactions by the following equation:

ωs = Ms

∑
r

(βs,r − αs,r)(Rf,r −Rb,r) (2.77)

Here, r represents a particular reaction, αs,r represents the stoichiometric coefficient of species

s in the reactants of reaction r and βs,r is the stoichiometric coefficient of species s in the

products of reaction r.

The reaction rates are dictated by the law of mass action, whereby the reaction rate is

proportional to the molar concentrations of the products or reactants. The reaction rates

are defined as:

Rf,r = 1000

[
kf,r

∏
s

(0.001ρs/Ms)
αs,r

]
(2.78)

Rb,r = 1000

[
kb,r
∏
s

(0.001ρs/Ms)
βs,r

]
(2.79)

Here, kf,r and kb,r are the forward and backward reaction rate coefficients. The factors 1000

and 0.001 are required because the rate coefficients are in terms of cgs units for most chemical

kinetics models, including the models specified in Appendix A.

For this work, two different models are used to specify the forward and backward reaction

rate coefficients. The Park model [58] is widely used in similar CFD simulations and appears
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to give more accurate than competing reaction rate specifications [56]. For the Park model,

the forward reaction rate coefficient is specified directly with an Arrhenius relationship, and

the backward reaction rate coefficient is calculated based on the equilibrium constant, Keq,r.

kf,r = Cf,rT
ηf,r
a e

−
Ef,r
kBTa (2.80)

Keq,r = eB
r
1+Br2 lnZ+Br3Z+Br4Z

2+Br5Z
3

(2.81)

kb,f =
kf,r
Keq,r

(2.82)

In these equations, kb is Boltzmann’s constant, Ta represents the rate controlling temper-

ature, which is a combination of the translation-rotational and vibrational-electronic tem-

perature. The other terms, such as the required constants Cf,r, ηf,r and Br, and activation

energy Ef,r, are specified by the Park model and given in Table A of Appendix of A. Finally,

Z is given as:

Z =
10, 000

Ta
(2.83)

where Ta is given in Kelvin. As a matter of implementation, the reaction rates for the Park

Model are set to zero when the equilibrium constant is sufficiently small. For each reaction,

the temperature at which the equilibrium constant is below machine zero (1E−14 for double

precision) is determined. For temperatures below this value, the reaction rate is set to zero,

signifying that the reaction is negligible.

In addition to the Park model, the Dunn-Kang model [59] is also used for this work.

For this model, the forward and backward reaction rate coefficients are specified directly

through Arrhenius relationships, given in equation (2.84).

kf,r = Cf,rT
ηf,r
a e

−
Ef,r
kBTa (2.84)

kb,r = Cb,rT
ηb,r
a e

−
Eb,r
kBTa (2.85)

The variables required for the Dunn-Kang model are given in Table A of Appendix of A [56].
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For both models, the rate controlling temperature is a combination of the translation-

rotational temperature and vibrational-electronic temperature, given as [51]:

Ta = T 0.7T 0.3
v (2.86)

This rate controlling temperature is used for the dissociation reactions while the translation-

rotational temperature is used for all other reactions, including recombination.

Because of its consistency with similar CFD tools, the Park model is used for the

validation flow results presented in this section, while the Dunn-Kang model is used for the

flow solutions and gradient evaluations required for the subsequent sensitivity analysis and

uncertainty quantification results due to the ease with which uncertainty parameters can be

specified for both the forward and backward rates.

2.3.5 Energy Coupling

The relaxation between translation energy and vibrational energy is modeled using the energy

coupling source term, QT−V . This term accounts for the exchange between translation energy

and vibrational energy. The exchange rate is approximately equal to the difference between

the two energies divided by a characteristic relaxation time. The expression used for this

exchange rate is given in equation (2.87) [56].

Qt−v =
∑

molecules

Cs
v,v(T − Tv)
< τs >

(2.87)

Here, Cs
v,v is the vibrational-electronic specific heat for each species, and < τs > is the

relaxation time for each species. Because this coupling is only for vibrational energy, the

sum is only over the polyatomic molecules. The calculation of the relaxation time is based

on a blending between two different relaxation times. The first is due to Millikan and White

and is given by equation (2.88) [60].

τMW
s =

∑
r nre

As(T−1/3−0.015µ
1/4
s,r )−18.42

p
∑

r nr
(2.88)
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In this equation, nr is the number density of species r and p is the pressure measured in

atmospheres. As is given in Table A of Appendix A. The reduced mass, µs,r, is defined as:

µs,r =
MsMr

Ms +Mr

(2.89)

The second relaxation time is due to Park [58] and given in equation (2.90).

τPs = (σc̄sns)
−1 (2.90)

In this equation, ns is again the number density, σ is the collision cross-section and c̄s is the

average molecular velocity. This velocity is given by:

c̄s =

√
8R̄T

πMs

(2.91)

and the cross-section is modeled as [51]:

σ = 10−21

(
50, 000

T

)2

(2.92)

where σ is assumed constant over all species. The final relaxation time is simply the sum of

the two different models.

< τs >= τMW
s + τPs (2.93)

2.4 Simplified Models

In order to provide inexpensive computational models, simplified versions of the above real

gas model can be constructed. To provide a simplified model for the CFD solver, a perfect

gas model can be constructed by neglecting reaction rates and internal energy modes. To

provide an explicit function capable of approximating hypersonic flow results but suitable for

testing uncertainty quantification strategies, the Fay-Riddell stagnation heating correlation

is used.
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2.4.1 Perfect Gas Idealization

To provide a simplified physical model for the CFD solver, the previously described real gas

can be reduced to a perfect gas model. Although none of the results in this dissertation use

this model, the perfect gas model was used to prototype the CFD solver and the gradient-

based methods for uncertainty quantification and sensitivity analysis. For completeness, the

reduction of the real gas model to a perfect gas model is given. In order to arrive at the perfect

gas model, several assumptions must be made. First, chemical reactions and dissociation

are ignored and the flow is modeled as a mixture of molecules whose composition does not

change. With this assumption, the species mass equations can be combined into a single

conservation equation for the mixture. Second, the vibrational-electronic energy modes are

assumed to be unexcited and thus contain zero energy (ev,e = 0). This assumption has

two consequences. First, the second energy equation is no longer required as this energy

is assumed zero. Second, the specific heat will consist exclusively of the translational and

rotational components. Because these modes are fully excited at the temperatures typical

of most flows, this fact implies that the specific heat is constant.

From these assumptions, the perfect gas variables and fluxes are given as:

U =


ρ

ρ~u

ρet

 ~F =


ρ~u

ρ~u⊗ ~u+ P

ρ~uht

 ~Fv =


0

τ

τ · ~u− ~q


In addition to simplifying the equations, many constitutive relations become simplified.

In particular, when a constant specific heat is assumed, the speed of sound becomes:

c2 = (1 +
R

Cv
)
P

ρ
(2.94)

c2 =
Cv +R

Cv

P

ρ
(2.95)

c2 = γ
P

ρ
(2.96)

where R is the gas constant of the mixture and Cv is the translation-rotational specific heat

of the mixture. The transport model must also be adjusted for a perfect gas flow. Because
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the composition of the mixture is constant, the mass diffusivity is no longer required as the

effect of species diffusion is no longer important. Additionally, only the translation-rotational

thermal conductivity is required as vibrational-electronic energy modes are assumed to be

zero. Given these drastic differences, the collision integral based transport model is overly

complicated for perfect gas flows and Sutherland’s law is instead used.

For Sutherland’s law, the viscosity obeys the following equation:

µ

µref
=
C1T

3/2

T + S
(2.97)

where µref is the reference viscosity and C1 and S are model parameters found in any fluid

dynamics textbook [49].

Using this viscosity, the thermal conductivity is found by assuming a constant Prandtl

number for the flow, with air having a Prandtl number of approximately 0.7.

kt =
Cpµ

Pr
(2.98)

Here, Cp is the specific heat at constant pressure.

2.4.2 Fay-Riddell Stagnation Heating Correlation

In order to provide a simplified, computationally inexpensive test problem that can mimic

the characteristics of hypersonic CFD simulations with respect to model parameters and

design space complexity, the Fay-Riddell stagnation heating correlation is examined [54].

This model is an analytic function, permitting the use of exhaustive sampling to validate the

uncertainty quantification strategies examined in this paper. The equations for this model

are as follows.
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q” = 0.76
(ρwµw)0.1(ρeµe)

0.4

Pr0.6
w

√(
dUe
dx

)
(ho,e − hw)

[
1 + (Le0.52 − 1)

(
hD
ho,e

)]
(2.99)(

dUe
dx

)
=

1

RN

√
2
pe − p∞
ρe

(2.100)

hD =
∑
i

Ci,e∆h
o
f,i (2.101)

In these equations, q” is the heat flux at the stagnation point, Pr represents the Prandtl

number, Le is the Lewis number, RN is the radius of curvature, ∆hof,i is the heat of formation

for each species, h is the internal enthalpy and ho is the total enthalpy. For this equation, the

subscript e represents properties at the edge of the boundary layer, and w represents values

at the wall. The properties at the edge of the boundary layer are found by solving the normal

shock problem using equilibrium properties for air and determining the composition after

the shock. From the curve fits for the equilibrium properties of air, the enthalpy downstream

of the shock is first written in terms of the density and pressure. A root-finder is then used

to determine the downstream density and pressure required to satisfy the Rankine-Hugoniot

jump conditions. With this density and pressure determined, all other bulk properties are

calculated via curve fits [52]. The composition after the shock is determined via statistical

thermodynamics. Through analytic expressions of each species partition function, the equi-

librium constant for each dissociation reaction is calculated. These equilibrium constants are

then related to the partial pressure of each species and a Newton solver is used to solve for

the partial pressure of each species [48, 53]. Using these partial pressures, the mass fraction

for each species can be found. Further details of the solution process used for the Fay-Riddell

heating correlation can be found in Reference [61] and in Appendix D. The required viscosi-

ties and thermal conductivity are evaluated by using the collision integral transport model

described in the previous section. This model was chosen in order to maintain the same

input parameters between the Fay-Riddell model and the real gas CFD code. The Prandtl

number at the wall is computed based on the transport values evaluated at the wall, and the

Lewis number is evaluated based on the Prandtl number and assuming a constant Schmidt

number of 0.5 [51].
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2.5 Summary

In this chapter, the details of the real gas model used throughout this work were given. First,

the prerequisite knowledge required from gas kinetics was presented and the properties of high

temperature gases were introduced. Next, the continuous equations solved for this model

were developed and the required constitutive laws were introduced. Finally, the equations of

state for the model as well as the transport, chemical kinetics and energy coupling models

were introduced. Contained in these models is a large number of experimentally derived

constants and parameters. The effect of these parameters on relevant simulation outputs

will be examined within the uncertainty quantification and sensitivity analysis presented

in this work. In order to provide simplified computational models to test the proposed

uncertainty quantification techniques, a perfect gas model and the Fay-Riddell stagnation

heating correlation were also presented. In the next chapter, the numerical methods used to

approximate the solution to the governing equations for this model will be detailed.
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Chapter 3

Numerical Implementation of Real

Gas Model

For this work, a two dimensional finite volume solver utilizing the previously described five

species/two temperature real gas model was developed. This solver was developed from the

ground up both for practical and pedagogical reasons. The development of a solver from

scratch allowed for experimentation with regard to choice of flux function, physical models,

and linear and nonlinear solver. Additionally, because it is central to this work, the solver

was built to accommodate the implementation and solution of the flow adjoint either through

manual or automatic differentiation.

In this chapter, the details of the solver are described. First, the spatial discretization

is examined and details of the unstructured finite volume method are given. With the

spatial discretization presented, the non-linear solvers used to determine the flow solution is

explained. Finally, the linear solvers employed within the two non-linear solvers are given.

3.1 Spatial Discretization

In order to solve problems using the previously described models, the governing equations

are first discretized in space and the solution is advanced in time using a non-linear solver.

In semi-discrete form, the unsteady equations have the following form:
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∂VU

∂t
+ R(U) = 0 (3.1)

The term R(U) is referred to as the residual and represents the result of the spatial

discretization. For this work, the finite volume method is used. To apply this method, a

mesh is created and the governing equations (2.31) are integrated over the volumes defined

by this mesh, denoted as cells.

∫
Vi

∂U

∂t
dV +

∫
Vi

∇ · ~F (U)dV =

∫
Vi

∇ · ~Fv(U)dV +

∫
Vi

S(U)dV (3.2)

Using the divergence theorem, the integration of the flux terms is converted from an

integration over the cell volume to an integration over the surface of the volume, given as

equation (3.3).

∫
Vi

∂U

∂t
dV +

∫
Si

~F (U) · ~ndA =

∫
Si

~Fv(U) · ~ndA+

∫
Vi

S(U)dV (3.3)

With the equations in this form, several finite volume approximations are applied. First,

the integration over the volume is approximated as a representative cell-centered value (lo-

cated at the volume centroid) multiplied by the cell volume. Second, the integration over

the surface is represented as a sum over the faces of the cell. For volumes that are fixed over

time, these approximations result in the following equation:

Vi
∂Ui

∂t
+
∑
k

~F k(U) · ~Nk =
∑
k

~F k
v (U) · ~N + ViSi(U) (3.4)

where k is a sum over the faces and ~Nk is the dimensional normal for the face. The final

discretized equations used in this work are arrived at by first reducing the dimension to two,

resulting in the volume Vi being replaced by the area Ai. Next, the face-centered flux is

replaced by a flux function that approximates the solution to the Riemann problem at the

interface based on the values on either side of the face. Finally, despite its nonlinearity, the

cell-centered source term is assumed to be the source evaluated using the cell-centered flow

variables. Based on these approximations, the final residual within each cell is given by the

sum of the normal inviscid and viscous flux over all faces plus a cell centered contribution
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Figure 3.1: Variable definitions at mesh face

due to source terms. The residual equation for cell i is given in equation ((3.5)) along with

the functional dependence of each flux function.

Ri(U) =
∑
k

[
F k
n (V+,V−, ~N)− F k

v,n(VL,VR,∇VL,∇VR, ~N, ~T )
]
− AiSi(Vi) (3.5)

In this equation, VL and VR represent cell centered primitive values for the cell to the

left and the right of the face respectively. The variables V+ and V− represent reconstructed

primitive variables to the left and right of the face. The variables Si represent the source

terms computed using the cell-centered primitive variables of cell i. Finally, ~N is the dimen-

sional face normal and ~T represents the vector connecting the two cell centers on either side

of the face. These terms are clarified in Figure 3.1.

The inviscid flux is defined exclusively in terms of the primitive variables, V, instead

of the conserved variables, U. The conserved variables for this model are the 5 species

densities (ρs), the two components of linear momentum (ρu and ρv), and the total and

vibrational energy (ρet and ρev). In contrast to these conserved variables, a set of primitive

variables is also used. These primitive variables are the five species mass fractions cs, the

two components of velocity (u and v), and the two temperatures (T and Tv). This choice of

variables has two major advantages. For the diffusive fluxes, the gradients of these variables

are required; hence, performing reconstruction strictly on the primitive variables eliminates

the need for two sets of gradients. Reconstruction of primitive variables also increases the
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robustness of the solver as it ensures the appropriate variables, such as pressure, remain

positive throughout the calculation.

For the inviscid flux, Fn, the AUSM+UP flux function is used [62]. This flux function is

chosen based on its applicability to a wide range of Mach numbers and the ease with which

it can be extended to additional equations. For the real gas model, a frozen speed of sound

is used within the inviscid flux function [63]. In order to achieve second-order accuracy,

the flux function is evaluated using the reconstructed primitive variables on each side of

the face, denoted previously as V+ and V−. This reconstruction requires the cell-centered

gradient of the primitive variables. This gradient is calculated based on Green-Gauss contour

integration. The gradient of a generic variable ζ is given by:

∂ζ

∂x i
=

∑
k
ζL+ζR

2
Nx,k

Ai
(3.6)

∂ζ

∂y i
=

∑
k
ζL+ζR

2
Ny,k

Ai
(3.7)

where the subscript i represents the cell-centered value, k is a loop over the faces, and L

and R represent the cell centered value on the “left” and “right” side of the face. The

variables Nx and Ny represent the components of the dimensional normal ~N . In order to

maintain stability, a limiter is used in this reconstruction process. The limiter used within

this code is a combination of a pressure switch and smooth Van Albada limiter, inspired by

the experiences in references [51] [50], and [63]. The pressure switch in each cell is defined

by: [64]

νi =
|
∑

k PR − PL|∑
k PR + PL

(3.8)

The limiter value at each face is defined by the continuous function Φ which assigns a

limiter value given inputs dependent on the reconstructed value and neighboring cell-centered

values [65]. The value at face k for cell i is given as:

Φ(∆+,∆−) =
1

∆−
(∆+2

+ ε2)∆− + 2∆−
2
∆+

∆+2 + 2∆− + ∆−∆+ + ε2
(3.9)
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where ∆− and ∆+ are defined as:

∆− = Vk −Vi (3.10)

∆+ =

Vmax −Vi if Vk −Vi > 0

Vmin −Vi if Vk −Vi < 0

(3.11)

. Here, Vk is the unlimited reconstructed face value, Vi is the cell centered value and Vmin

and Vmax represent the minimum and maximum values surrounding cell i. The parameter ε

reduces the limiter sensitivity to small changes in the flow, effectively forcing the limiter to

unity in smooth regions. This reduced sensitivity allows the limiter to achieve convergence

to machine zero provided the parameter ε is high enough [65]. Unfortunately, this improved

convergence tends to come at the price of robustness. Hence, the pressure switch is included

in the limiter to ensure the solution is first order in the presence of strong shocks. Outside

of this small region, the limiter is allowed to adjust the reconstruction. In functional form,

the final limiter at each face takes the form:

Ψk = max(0, 1−Kmax(νL, νR))Ψ̃k (3.12)

where Ψ̃k is the result of applying the function Φ at each face with the proper inputs and

K is a prescribed constant used to set the minimum value of the pressure switch required to

force the limiter to zero. The cell centered limiter value is taken to be the minimum of the

limiters calculated at each face of the cell. With the limiter calculated, the reconstructed

value at each face is given by:

V+ = VL + ΨL∇VL ·∆ ~XL (3.13)

V− = VR + ΨR∇VR ·∆ ~XR (3.14)

where ∆ ~XL and ∆ ~XR are the position vectors connecting the face center with the left and

right cell centers respectively.

The viscous flux is a function of both the cell centered primitive variables as well as

the cell centered gradients of the primitive variables. The calculation of the viscous flux is

relatively straight forward. Each term in the viscous flux from equation ((3.5)) is calculated
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using face centered quantities. In the case of any primitive variables, a simple average of

the left and right states is used and transport quantities are calculated using this averaged

state. Face-based gradients are calculated through the following equation which ensures a

coupling between neighboring cells and a straight forward approximate linearization: [66]

∇Vk = ∇̃V +
VR −VL − ∇̃V ·∆T

|∆T |
∆T

|∆T |
(3.15)

In this equation, ∇̃V is a simple average of the left and right cell centered gradients

and the vector ∆T is defined as before.

The source term is calculated using the cell-centered primitive variables, evaluating the

reaction and energy coupling terms using these variables. The cell-centered source term is

then weighted by the cell area (or volume in 3D) to account for the integration over the

volume of the source term.

3.2 Nonlinear Solver

In this section, the non-linear solvers used to determine the solution of the spatial discretiza-

tion are outlined. Two different non-linear solvers are required to determine the flow solution:

a start-up solver and a full-convergence solver. The start-up solver is a pseudo-time unsteady

solver used to overcome start-up transients caused by a poor initial flow field. Once these

transients have been overcome, a steady-state solver based on Newton’s method is used to

rapidly drive the residual to zero.

3.2.1 Pseudo-time Solver

The result of the previously described spatial discretization is a system of coupled ordinary

differential equations. These ODE’s are advanced toward steady-state using the first-order

backward difference formula (BDF1 or Backward Euler) given by:

∂U

∂t
≈ Un −Un−1

∆t
(3.16)
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The result of this temporal discretization is a system of nonlinear equations that must

be solved at each time step. These nonlinear equations are represented by the unsteady

residual J. Applying this temporal discretization to equation (3.1), the unsteady residual is

given by:

J(Un,Un−1) =
Un −Un−1

∆t
+ R(Un) = 0 (3.17)

To solve this nonlinear equation, an approximate Netwon’s method is employed. In

general, a Newton’s method for this problem takes the following form:

δUk = −
[
∂J(Uk,Un−1)

∂Uk

]−1

J(Uk,Un−1) (3.18)

Uk+1 = Uk + δUk (3.19)

Within this general form, several approximations are introduced to increase the robustness of

the solver and improve its applicability to steady problems. First, instead of fully converging

the nonlinear problem, only a set number of Newton iterations is performed per time step

(typically 10). Additionally, local time-stepping is used within the formulation. Using local

time-stepping, the solution in each cell is allowed to advance with a different time-step,

accelerating convergence to steady-state. To decrease the time required per Newton iteration,

the exact Jacobian matrix is replaced by a preconditioning matrix that is calculated once at

the beginning of the time step and frozen for the duration of the time step. Typically, this

preconditioning matrix is based upon a robust and easy to calculate simplified Jacobian.

Finally, transport quantities such as viscosity, thermal conductivity and species diffusion

coefficients can be frozen within the Newton iterations to further decrease computational

cost. Incorporating these simplifications, the sub-iterations within each timestep take the

following form.

δUk = −[P̃ ]−1J(Uk,Un−1) (3.20)

Uk+1 = Uk + λδUk (3.21)
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In these equations, [P̃ ] is the frozen preconditioning matrix and the variable λ is used to

ensure that updates remain within a specified percentage of the previous solution value [67].

The preconditioner matrix consists of an unsteady term and contributions from the

spatial residual linearization. In order to preserve a nearest-neighbor sparsity pattern, only

the first-order Jacobian is used. For the inviscid flux Jacobian, the Van-Leer-Hänel flux

function [68] is linearized, as opposed to the AUSM+UP flux function. The presence of

additional dissipation in the Van-Leer-Hänel flux function yields a Jacobian with increased

diagonal dominance. For the viscous Jacobian, only the nearest neighbor edge terms in

equation (3.15) for the face-centered gradient are linearized. By ignoring the derivative of

the gradient with respect to the flow variables, the stencil of the viscous Jacobian remains

nearest-neighbor. Additionally, the transport term linearization is neglected to reduce the

cost of constructing the viscous Jacobian. Because the source term is exclusively a cell-

centered quantity, the linearization can be performed exactly; however, due to the complexity,

the Jacobian is computed using automatic differentiation (AD) with the AD engine Tapenade

[69]. More information regarding the use of automatic differentiation is given in Chapter 4.

For the sake of stability, a relaxation term is applied to each component of the Jacobian.

Hence, the final preconditioner matrix is given as:

[P ] =
A

∆t
+ ri

[
∂Ri

∂U

]
1o−V LH

+ rv

[
∂Rv

∂U

]
edge

+

[
∂Rs

∂U

]
(3.22)

where the subscript i corresponds to inviscid components, v corresponds to the viscous

components and s stands for the source terms. The relaxation factors ri and rv are added

to increase the stability of the non-linear solver and should take on values greater than

1.5 for the inviscid component and 0.5 for the viscous component. Because these values

represent minimum requirements, relaxation factors of 5 and 3 for the inviscid and viscous

terms respectively are typical for the solver [70].

The pseudo-timestep is determined based on a CFL number uniform over the domain

and a local timestep is computed based on the inviscid stability criteria. The timestep for

cell i for a given CFL number is calculated as [64]:
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∆ti = CFL
Ai∑

k |~Uk · ~Nk|+ Ck| ~Nk|
(3.23)

where ~Nk is the dimensional face normal, and ~Uk and Ck are the face centered velocity and

sound speed respectively, evaluated by simply averaging the cell-centered quantities on each

side of the face.

The CFL itself is varied during the simulation, increasing with the number of timesteps

performed. This increase takes the form of a power-law whereby the next CFL is the previous

CFL multiplied by some specified rate. The CFL variation as a function of pseudo-timestep

is therefore given as:

CFL(n) = min(αnCFLo, CFLmax) (3.24)

where CFLo is the starting CFL,α is the rate of increase and CFLmax is the maximum CFL

allowed to ensure diagonal dominance of the linear system. Because of the presence of strong

starting transients, the initial CFL is typically taken to be 1× 10−2 and the rate is typically

between 1.001 and 1.01. The maximum CFL depends on the linear solver used within the

solver. For linear solvers requiring diagonal dominance, the CFL must be capped, with a

typical value for the Jacobi or Gauss-Seidel linear solver equal to 100 and for the line-implicit

linear solver as 1000. These linear solvers are described in detail in Section 3.3.

3.2.2 Newton Solver

Once start up transients have been overcome, an exact Newton solver is used to accelerate the

convergence to machine zero. This solver can be arrived at from the pseudo-unsteady solver

by increasing the pseudo-time step to a large value (CFL ∼ 1012), causing the unsteady

terms in the residual to reduce to approximately zero. The steps performed at iteration k

are given in equation (3.25).
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[
∂R

∂U

]
δUk = −R(Uk) (3.25)

Uk+1 = Uk + δUk (3.26)

For a Newton solver, the exact second-order Jacobian must be inverted. This inversion

is performed using a preconditioned GMRES solver. For this solver, only Jacobian vector

products are required; hence, the exact Jacobian does not need to be explicitly calculated

and stored and the effect of the Jacobian can be built up on the fly. The steps in the

preconditioned GMRES algorithm are given as [71]:

[P ] qj = vj Preconditioning (3.27)

wj =

[
∂R

∂U

]
qj Matrix-vector product (3.28)

Hi,j = wj · vi Hessenberg Matrix (3.29)

Here, [P ] is the same preconditioner used in the start-up solver, namely the first-order

Van-Leer-Hänel Jacobian inverted using either Jacobi, Gauss-Seidel or line smoothing. The

Jacobian-vector product is built-up in one of three ways for this work: finite-differences, com-

plex differentiation and automatic differentiation. Each of these approaches have different

trade-offs regarding speed, ease of implementation and accuracy with automatic differentia-

tion preferred throughout this work.

For the finite-difference approach, the Jacobian-vector product is constructed by equat-

ing it with the appropriate Frechet derivative and approximating the derivative through

finite difference.

∂R

∂U
q = lim

h→0

R(U + hq)−R(U)

h
(3.30)

∂R

∂U
q ≈ R(U + εq)−R(U)

ε
(3.31)

Here, ε is the finite-difference step size. This step size affects the overall accuracy of the finite

difference approximation and must be chosen heuristically. The step size must be chosen
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such that it is small enough to provide a sufficiently accurate approximation of the derivative

but large enough such that finite precision arithmetic does not corrupt the approximation.

The step size used for this work is given by:

ε =

√
(1 + |U|2)εm
|q|2

(3.32)

where εm is the tolerance to which R can be evaluated (5×10−10 for these calculations) [72].

The implementation of the finite-difference GMRES solver is relatively straight forward

and requires nothing more than the code required to evaluate the residual. To construct

the Jacobian-vector product, the flow variables are perturbed by the preconditioned Krylov

vector q weighted by the finite difference step ε. A new residual is then evaluated using these

perturbed flow variables and the difference between the two residual values is the Jacobian-

vector product. Despite the ease of implementation, the choice of proper step size as the

problem approaches full convergence can be difficult, jeopardizing the desirable properties

of the exact Newton method.

In order to improve on the finite-difference approach, complex differentiation is used to

construct the Jacobian-vector product. For complex differentiation, the subroutines used to

compute the residual are modified to operate on complex numbers instead of real. When

this substitution is made and the proper inputs are supplied, the complex part of these

variables can be used to obtain the derivative of the variable. Further information on com-

plex differentiation is given in Chapter 4 and Appendix B. For the GMRES solver, the

Jacobian-vector product can be calculated by first creating complex flow variables with the

real part corresponding to the flow variables U and the imaginary part proportional to the

preconditioned Kylov vector q. The complex flow variables are then used as an input to the

complex residual subroutines. The imaginary part of the output of these complex residual

subroutines is the desired Jacobian-vector product. These steps are given in equation (3.33).

Ũ = U + iεq (3.33)

R̃(Ũ) = R(U) + iε

[
∂R

∂U

]
q (3.34)
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Here, i is the imaginary number and ε is the step size for the differentiation. In order

to calculate the Jacobian-vector product accurately, the step size should be as small as

possible. As opposed to finite difference, there is no lower limit for the choice of this step

size as no arithmetic is required for the derivative prediction, as the Jacobian-vector product

is the imaginary part of the complex residual divided by the complex step ε. A step size

of 10−200 is used throughout this work. Although not as easy to implement as the finite-

difference approach, the complex-differentiation approach is still relatively easy to implement

as it simply requires the recasting of variables from type ”real” to type ”complex” and

the overloading of some operators. Additionally, the increased accuracy provided by the

complex differentiation, due to the flexible choice of step size, provides better convergence to

machine zero than the finite difference approach. The downside of the complex differentiation

approach is the increased computational overhead associated with complex operators.

Finally, in order to increase the accuracy of the Jacobian-vector product without the

dramatic increase in the cost associated with the complex approach, automatic differentiation

can be used to construct the derivative. Automatic differentiation is the use of a ”compiler-

like” tool to differentiate the individual operators of a code to produce a new code that is

able to compute the derivative of the original code outputs. Automatic differentiation is

especially suited for applications requiring derivative-vector products. As part of this work,

forward differentiated subroutines for the residual calculation are generated for the purposes

of sensitivity analysis. Because these subroutines are already available from the sensitivity

analysis, they can be easily used within the GMRES-based flow solver. The details of the

forward differentiation are given in Chapter 4. When the forward linearization of the residual

is available for the purposes of sensitivity analysis, the use of these subroutines in GMRES

represents the best combination of accuracy and computational speed as the Jacobian-vector

product is exact and the increase in cost is only associated with calculating the linearization,

which is typically only 2-3 times the cost of the original operator [73]. For these reasons, the

AD-based GMRES is used exclusively for the presented results.
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3.3 Preconditioner Techniques

Until now, the techniques used to invert the approximate Jacobian matrix have been listed

but not explained. In this section, the techniques used to invert the Jacobian matrix are

given. Because these techniques are used to precondition the GMRES solver, the various

solvers are referred to as preconditioners.

The preconditioners can generally be divided into point and line solvers. To examine

these preconditioners, they are cast as linear solvers. The general form of these precondi-

tioners is found by placing the linear equation in the following form:

[A]x = b (3.35)

[A]
(
xk+1 − xk

)
= b− [A]xk (3.36)

[P ] δxk = b− [A]xk = −rk (3.37)

In order to be an effective preconditioner, the matrix P−1 must approximate the matrix

A−1. For the preconditioners used for this work, a matrix is computed and stored. The

first-order Jacobian given in equation (3.22) has a nearest neighbor stencil, allowing it to

be calculated and stored easily. Additionally, the Van-Leer-Hänel flux function is used to

construct the Jacobian, as this flux function gives enhanced diagonal dominance and allows

for larger pseudo-time steps to be used.

Each of the preconditioners presented in this section represent different approximations

applied to the Jacobian given in equation (3.22).

3.3.1 Point Solvers

The first preconditioner corresponds to a Jacobi solver. For this preconditioner, the block

diagonal elements of the first-order Jacobian are inverted to determine the solution update.

When this preconditioner is applied multiple times to the linear system within the Newton

iteration, it is referred to as Jacobi. When it is applied once before moving to the next

non-linear iteration, it is often referred to as a point-implicit solver (or non-linear Jacobi).

The Jacobi preconditioner is given below.
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[D] δxk = −rk (3.38)

Because a system of equations is solved for each cell, the matrix D is organized into blocks

and these blocks are inverted to yield the solution update. The block size for the five species,

two temperature model is 9× 9 for each cell and is inverted using LU factorization. For the

point-implicit solver, the right-hand side of equation (3.38) is the non-linear residual, while

the Jacobi linear solver requires the linear residual on the right-hand side, given as:

rk = [A]xk − b (3.39)

The Jacobi preconditioner can be improved by incorporating the lower triangular part

of the Jacobian matrix. This preconditioner is referred to as Gauss-Seidel and often will give

twice the convergence rate of Jacobi [74].

[L] δxk = −rk (3.40)

Here, [L] is a lower triangular block matrix. Using forward substitution, this matrix can

be inverted exactly in a single pass. Assuming [L] is sparse, inverting this lower triangular

matrix is only marginally more expensive than inverting the Jacobi preconditioner. Algo-

rithmically, the Gauss-Seidel solver is given as:

δxki = − [Di]
−1

(
rki −

∑
j<i

[Oj,i] δx
k
j

)
(3.41)

where [D]i represent the diagonal blocks of the Jacobian and [O] are the off-diagonal blocks

of the Jacobian matrix. As this equation demonstrates, the Gauss-Seidel solver is inherently

sequential, with the update for cell i requiring the updates for the cells that have already

been computed (j < i).

In order to allow the preconditioner to be inverted in parallel, a cell coloring strategy

is employed. For this strategy, the cells are divided into groups (or colors) such that the

elements in each group share no neighbors with other elements in the group. With the cells

colored in this way, the inverse is performed on a color by color basis and the off-diagonal
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Figure 3.2: Cell coloring for (Left) structured quadrilateral mesh, and (Right) unstructured
triangular airfoil mesh.

elements consist of the previously calculated colors. The form of the preconditioner matrix

for colored Gauss-Seidel is depicted for three colors below:


[D]r 0 0

[O]b,r [D]b 0

[O]g,r [O]g,b [D]g



δxkr

δxkb

δxkg

 =


−rkr
−rkb
−rkg

 (3.42)

Here, [D] is a diagonal block matrix for each color and Os,r is a matrix consisting of the

off-diagonal elements for color s that come from color r. The colored Gauss-Seidel solver is

implemented by determining the update for the first color and using this solution to build

up the subsequent updates for the other colors. Due to the nature of the coloring and the

matrix [D], the update for a given color can be computed in parallel.

The number of colors required for the solver is dependent on the topology of the mesh

used for the solution. For a structured quadrilateral grid, only two colors are required and the

solver is often referred to as red-black colored Gauss-Seidel. For an unstructured triangular

grid, four colors are required to divide the mesh into appropriate groups. Representative

colored meshes can be found in Figure 3.2.
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3.3.2 Line Solver

In order to overcome the stiffness caused by the anisotropic grid stretching encountered

in boundary layer flows, a line relaxation algorithm is employed in this work. For this

algorithm, lines are constructed across the boundary layer and these lines are treated as

the fundamental units of the linear solver. In this way, the Jacobian matrix is divided into

blocks corresponding to each line. With the basic blocks of the solver identified, Jacobi is

used to invert the matrix once it has been partitioned into line blocks. The Jacobi line solver

is represented as:

[M ] δxk = −rk (3.43)

where [M ] is a diagonal block matrix with the blocks corresponding to each line. The

structure of this line block matrix is itself a tridiagonal block matrix that is inverted to

determine the update for each line.

The lines are constructed by first starting at the boundaries of the mesh where a no-slip

boundary condition is enforced. These areas should also correspond to the boundaries from

which the boundary layer mesh is grown. For each cell on this boundary, a line is initialized

using the face on the boundary and the first cell off the boundary. With the line initialized,

the algorithm for adding new cells is the following. Using the last face added to the line,

the dot product between the unit normal of this face and the other faces in the current cell

is calculated. The face with the largest dot product and the corresponding cell across this

face are then added to the line. The process is then continued using the newly added face

and cell as the basis for adding additional cells. The line creation process is terminated once

the angle between the face normals is less than 0.7 radians. At this point, any cells not

incorporated into a line are treated as their own lines with length 1. For these cells, the line

solver merely reduces to a point Jacobi scheme. The lines constructed for a quadrilateral

mesh used for hypersonic calculations and an airfoil mesh are depicted in Figure 3.3. Within

these figures, the lines are denoted by the thick black lines.

With the lines created, the line connectivity can be used to partition the Jacobian matrix

into a series of blocks, the diagonal of which is a tridiagonal block matrix. The Jacobi scheme
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Figure 3.3: Lines constructed for (Left) structured quadrilateral mesh, and (Right) unstruc-
tured triangular airfoil mesh.

is applied to this partitioned Jacobian whereby only the tridiagonal component is inverted

to advance the solution. When a single iteration of this line relaxation is applied, the

scheme is referred to as line implicit. The tridiagonal matrix is inverted using the Thomas

algorithm, which can perform LU factorization on the tridiagonal matrix with a cost directly

proportional to the length of the line [74]. In addition to applying the Jacobi scheme, a Gauss-

Seidel line solver can also be constructed. By constructing a connectivity between the line

elements, the lines can be colored using an algorithm similar to the one presented for the cells.

Using these colored lines, the Gauss-Seidel algorithm can be implemented by incorporating

the previously updated lines on the right hand side of equation (3.43). Although the use of

a Gauss-Seidel line solver would improve the convergence rate of the preconditioner, only a

Jacobi line solver is used for this work due to the complexity of constructing the connectivity

between line elements.

3.4 Demonstration Flow Results

To demonstrate the capability of the solver and provide validation for both the model and

numerics, the 5km/s standard test case is used [45]. For this case, the flow over a cylin-

der is considered in two dimensions. A fixed temperature is applied to the surface of the
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cylinder and the cylinder is assumed to be super-catalytic, meaning that the surface induces

the species to recombine. In practice, this boundary condition is equivalent to enforcing the

species concentrations at the wall to match the freestream concentration. In addition to being

super-catalytic, the surface also induces thermal equilibrium, meaning that the same tem-

perature is enforced for the translation-rotational temperature and the vibrational-electronic

temperature [45]. The results produced by the developed finite volume solver were compared

against those produced by the thoroughly validated NASA code LAURA [70]. The flow con-

ditions for this test case are given in Table 3.1.

Table 3.1: Benchmark flow conditions

V∞ = 5 km/s
ρ∞ = 0.001 kg/m3

T∞ = 200 K
Twall = 500 K
M∞ = 17.605
Re∞ = 376,930
Pr∞ = 0.72

The chemical kinetics model used for this flow solution is the Park model [58] as this

model gave results in better agreement with those from LAURA. The mesh used for this test

case was the grid generated by LAURA and used for the validation results produced by that

code. Although the mesh used in LAURA is structured, the mesh is treated as unstructured

within the developed finite-volume framework. The mesh itself consists of 64 cells normal to

the cylinder surface and 60 tangential to the surface. Using the mesh generated by LAURA

had two advantages. First, it eliminated the variable of mesh resolution and quality when

comparing the finite volume results to those of LAURA. Hence, discrepancies in the results

are due to modeling differences and differences in spatial discretization, such as flux function,

gradient calculations and viscous discretization. The second advantage of using the same

mesh is that the mesh produced by LAURA is aligned with the shock. For hypersonic flows,

calculations on unstructured grids will typically contain spurious oscillations in the surface

heating. The non-smooth surface heating can be addressed by aligning the edges in the mesh

with the bow shock. For structured grids, this shock alignment is relatively well established;
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however, for unstructured grids, this shock alignment is a topic of active research, especially

in three dimensions [75,76]. Because this alignment is beyond the scope of this work, shock

aligned meshes produced by LAURA have been employed exclusively.

To solve this problem, the start-up pseudo-time solver is first used. For this solver, the

Jacobi point preconditioner is used. The Jacobian matrix is frozen and 10 quasi-non-linear

steps are performed for each pseudo-time step. The constant used within the pressure switch

is K = 2 and the constant within the limiter is 50. The CFL for this start-up problem was

specified by the power law, with a starting value of 1× 10−2, a maximum value of 100 and

a growth rate of 1.001 per timestep. Using this CFL, a local timestep for each cell was

calculated based on the inviscid eigenvalue. Finally, the relaxation factors on the inviscid

and viscous Jacobians were 5 and 3 respectively.

Once the residual was reduced to 1 × 10−4, the exact Newton solver was engaged. At

this point, the number of subiterations within a pseudo-timestep was reduced to 1 and the

CFL was allowed to grow to a maximum of 1× 1012 with a growth factor of 10 per iteration.

To solve the linear system at each nonlinear iteration, the line preconditioned GMRES solver

was used. For the preconditioner, a single iteration of line relaxation was performed using

the first-order Van-Leer-Hänel Jacobian. Given the small problem size, a maximum of 500

GMRES vectors was allowed; however, this limit was never reached in the calculation and in

practice, approximately 100 GMRES vectors were required to invert the linear system when

the line-implicit solver was used as a preconditioner.

The convergence of the flow solution can be found in Figure 3.4 as a function of iteration

and Figure 3.5 as a function of CPU time. As the results show, the solver convergence is

irregular for the first 10000 iterations as start-up transients are overcome and the CFL is

slowly allowed to grow to a reasonable value. Once the convergence has become regular and

the exact Newton solver is engaged, the residual initially spikes due to the sharp growth in

the CFL. After this spike, the solver encounters another mild start-up transient where the

residual is flat, followed by rapid convergence in the residual once the solution is within the

vicinity of the true solution.

In Figure 3.6, a temperature contour for the flow field is plotted. Additionally, the tem-
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Figure 3.4: Left: Full solver convergence for 5km/s flow case using 34, 560 unknowns as a
function of non-linear iteration count. Right: Exact newton solver convergence for same test
case.

Figure 3.5: Solver convergence for 5km/s flow case using 34, 560 unknowns as a function of
CPU wall time executed sequentially on an Intel core i7-870 clocked at 2.93 GHz.
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perature along the stagnation streamline is plotted and compared to the temperature profile

from LAURA. In Figure 3.7, the surface heating distribution and skin friction distribution

are plotted and compared to the surface distributions from LAURA.

As the results show, the finite-volume code produces results in good agreement with

those from LAURA. The differences in the results can reasonably be attributed to the various

differences between the two codes. While the same mesh is used for the two simulations, the

finite volume code uses a slightly different chemical kinetics model and a different spatial

discretization. While the Park model is used in both codes, LAURA uses a more up to date

version of the model as the coefficients in the Park model are continuously improved to match

new experimental results. Additionally, the gradient calculation, viscous discretization and

flux function differ between the two codes. While this work uses the AUSM+UP flux function

[62], the LAURA solver uses Roe’s approximate Riemann solver [77]. The LAURA solver is

also structured, giving inherently different gradient calculations and viscous discretizations

when compared to the unstructured finite-volume solver developed for this work. Despite

these differences, the two codes give similar results, especially for the surface distributions,

giving an indication that the physical model has been implemented and solved correctly.

3.5 Summary

In this chapter, the solver used to approximate the solution of the governing equations for the

real gas fluid model described in Chapter 2 was presented. First, the application of the finite

volume method to the governing equations was presented. Next, the details of the spatial

discretization were given. The result of this spatial discretization is a set of couple ordinary

differential equations. These ODE’s are advanced using a pseudo-time stepping scheme to

overcome start-up transients and a Newton solver to accelerate the convergence to steady-

state. Additionally, the preconditioners used to advance the linear systems encountered in

the nonlinear solver were explained. Finally, The performance of the developed CFD solver

was demonstrated for the 5km/s flow over a cylinder.
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Figure 3.6: Validation of solver for 5 km/s flow over circular cylinder. Top: Computed
flow field temperature contours. Bottom: Comparison of temperatures along centerline with
LAURA [70] results running on equivalent mesh.

60



θ (deg)

2q
"/

ρ ∞
V

3 ∞

0 30 60 90
0

0.002

0.004

0.006

0.008

0.01 LAURA
FV code

θ (deg)

C
f

0 30 60 90
0

0.001

0.002

0.003

0.004

LAURA
FV code

Figure 3.7: Validation of solver for 5 km/s flow over circular cylinder. Top: Surface heating
distribution. Bottom: Surface Skin friction.
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Chapter 4

Adjoint Derivation and Sensitivity

Analysis

In this chapter, the derivation of the adjoint sensitivity equations and the details of the sensi-

tivity implementation are given. With the calculation of the sensitivity derivatives outlined,

the partial derivative values are used for the purposes of sensitivity analysis. As a starting

point, the gradient values are used to rank the importance of each input parameter. Because

this approach is inherently localized in nature, the gradient-based approach is compared with

a global approach based on Monte Carlo sampling. Due to the expense of this sampling, a

gradient-based strategy for global sensitivity analysis is explored.

4.1 Derivation of Sensitivity Derivatives

Because the calculation of derivatives is central to the sensitivity analysis and eventual

uncertainty quantification central to this work, the derivation of the sensitivity derivative

procedure is given. For this derivation, the gradient of an objective, L, with respect to a set

of input parameters, D, is constructed. To determine the sensitivity of an objective to the

input parameters, the code is differentiated and the final sensitivity is constructed using the

chain rule. To illustrate this process, the following objective dependence is considered:
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L = L(D,U(D)) (4.1)

In addition to this objective, a constraint is needed. For the steady problems considered in

this work, the constraint is that the spatial residual must equal zero.

R(D,U(D)) = 0 (4.2)

Both the constraint and the residual have an explicit dependence on the input parameter,

or design variable D, and an implicit dependence through the flow variables U. In order to

determine the sensitivity derivative, the objective can be differentiated using the chain rule

as: [78]

dL

dD
=
∂L

∂D
+
∂L

∂U

∂U

∂D
(4.3)

The constraint may be differentiated in a similar manner. In this case, the derivative is

equal to zero as the constraint must be satisfied for all admissible values of D and U:

∂R

∂D
+
∂R

∂U

∂U

∂D
= 0 (4.4)

Solving for ∂U
∂D

in the above equation and substituting into the objective derivative gives the

forward sensitivity equation.

dL

dD
=
∂L

∂D
− ∂L

∂U

∂R

∂U

−1∂R

∂D
(4.5)

The adjoint sensitivity equation is found by taking the transpose of the forward equation.

dL

dD

T

=
∂L

∂D

T

− ∂R

∂D

T ∂R

∂U

−T ∂L

∂U

T

(4.6)

Here, the last two terms can be replaced by the adjoint variable Λ, defined as:

∂R

∂U

T

Λ = − ∂L
∂U

T

(4.7)
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Finally, with the flow adjoint computed and the appropriate partial derivatives deter-

mined, the final sensitivity can be calculated with the equation:

dLT

dD
=
∂LT

∂D
+
∂R

∂D

T

Λ (4.8)

Based on these equations, several conclusions can be drawn. Because of the dimension

of the matrix, the inversion of the flow Jacobian, ∂R
∂U

, represents the dominant cost in the

sensitivity equations. As such, the number of Jacobian inversions required to yield the desired

derivative values should be minimized. For the forward sensitivity equation, a new matrix

inversion is required to determine the flow field sensitivity to each design variable; however,

with this sensitivity in hand, the derivative with respect to any number of objectives can be

calculated via derivative-vector products. Hence, the forward sensitivity equations should be

used for situations with a large number of objectives and a limited number of design variables.

For the adjoint sensitivity equation, a single adjoint can be used to compute the derivatives

of a single objective with respect to all of the design variables, but a new adjoint solution

is required for each additional objective. Because solving for the flow adjoint requires a

Jacobian inversion, the adjoint approach is best suited for applications with a limited number

of objectives and a large number of design variables. For typical engineering calculations, the

number of input variables is typically much larger than the number of objectives, making the

adjoint approach preferable. Although this work uses the adjoint approach exclusively, the

forward sensitivity is detailed as its development is required to verify the adjoint sensitivity.

For this work, the sensitivity derivatives with respect to model input parameters are

required. Let α represent a set of model parameters in the code. Although the derivative

with respect to model parameters is desired for sensitivity analysis, it is convenient to allow

the model parameters to be a function of a set of design variables α(D) for the purposes

of uncertainty quantification. This abstraction allows for correlation to be considered be-

tween design variables as well as more realistic specification of the uncertainty in the model

parameters.

To determine the sensitivity of an objective to any of the variables in the parameter

vector, the following functional dependence should be considered:
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L = L(U(α(D)),α(D)) (4.9)

R = R(U(α(D)),α(D)) (4.10)

The forward sensitivity associated with this functional dependence is given by:

dL

dα
=
∂L

∂α

∂α

∂D
+
∂L

∂U

∂U

∂D
(4.11)

where ∂U
∂D

is determined by solving the equation:

[
∂R

∂U

]
∂U

∂D
= −∂R

∂α

∂α

∂D
(4.12)

Because the model parameter abstraction only affects the specification of design vari-

ables, the equation for the flow adjoint (i.e. equation (4.7)) is unchanged. Using this adjoint,

the final parameter sensitivity is given by:

dL

dD

T

=
∂α

∂D

T [∂L
∂α

T

+
∂R

∂α

T

Λ

]
(4.13)

For the case where the model parameters are identical to the design variables, the matrix

∂α
∂D

becomes the identity matrix. For all other cases, the matrix ∂α
∂D

is determined by differ-

entiating the desired relationship between input parameters and design variables.

4.2 Sensitivity Implementation

In order to solve the forward and adjoint sensitivity equations, the equations are placed in

defect correction form to aide with the construction and inversion of the flow Jacobian [78].

For the forward sensitivity equation, the defect correction form is given as:

[A] δUk
D = −∂R

∂D
− ∂R

∂U

∂U

∂D

k

(4.14)

∂U

∂D

k+1

=
∂U

∂D

k

+ δUk
D (4.15)
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while the defect correction form of the adjoint equation is given by:

[A]T δΛk = − ∂L
∂U

T

− ∂R

∂U

T

Λk (4.16)

Λk+1 = Λk + δΛk (4.17)

In the above equations, the iteration matrix, [A], is used to advance the solution toward

convergence (as k → ∞). This form of the equations has two advantages. First, the choice

of the iteration matrix [A] is general and can incorporate diagonal padding for cases where

diagonal dominance of the matrix is required for the iterative solver. Second, the exact flow

Jacobian only appears as a matrix-vector product. This fact allows the effect of the exact

Jacobian to be built up piece by piece as opposed to explicitly computed and stored.

For this work, a line-preconditioned GMRES solver is used to invert the iteration matrix

at each step. Because GMRES requires only matrix-vector products, the use of this solver

allows the exact flow Jacobian with no diagonal padding to be used as the iteration matrix

([A] =
[
∂R
∂U

]
). Additionally, the full second-order Jacobian does not need to be explicitly

computed and stored. The steps performed for each iteration of GMRES applied to the flow

adjoint problem are enumerated below [71]:

[P ]T qj = vj Preconditioning (4.18)

wj =

[
∂R

∂U

]T
qj Matrix-vector product (4.19)

Hi,j = wj · vi Hessenberg Matrix (4.20)

The preconditioner, [P ], is the same preconditioner used in the flow solver, namely the first-

order flow Jacobian calculated using the Van-Leer-Hanel flux function. The preconditioner

is inverted using the line-Jacobi solver described in Chapter 3.

In addition to using the line-preconditioned GMRES solver, the preconditioners used

for the flow solver can be used directly to solve for the flow adjoint. Because the iterative

solvers outlined in Chapter 3 require diagonal dominance, a pseudo-timestep is added to the

diagonal of the preconditioner matrix for both the adjoint and forward sensitivity equations.
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[
P +

V

∆tk

]
δUk

D = −∂R

∂D
− ∂R

∂U

∂U

∂D

k

(4.21)

∂U

∂D

k+1

=
∂U

∂D

k

+ δUk
D (4.22)

[
P T +

V

∆tk

]
δΛk = − ∂L

∂U

T

− ∂R

∂U

T

Λk (4.23)

Λk+1 = Λk + δΛk (4.24)

Because the purpose of this pseudo-timestep is used to ensure diagonal dominance,

the CFL number or timestep size, ∆tk, for the defect-correction solve can be fixed at its

maximum value. In some circumstances, the CFL ramping used in the flow solver may be

required during the defect-correction process in order to get over start-up problems caused

by a bad initial guess for the iterative solver. Although this ramping will not affect the

final forward-sensitivity or adjoint solutions, it does break duality of the solution process, a

property which is explained later in the section.

In order to construct the derivatives required for the flow Jacobian, as well as, construct-

ing the final sensitivity, automatic differentiation is applied on a subroutine by subroutine

basis to the code required to compute the flow residual and objective. The automatic differ-

entiation engine used throughout this work is Tapenade version 3.2 [79]. Because both the

forward and adjoint sensitivity procedure can be written exclusively as a series of Jacobian-

vector products, the automatically differentiated subroutines build up the effect of the Jaco-

bian matrix on an input vector in a piece-wise manner. The process by which individually

differentiated subroutines are constructed and validated is given by the following three steps:

complexify, differentiate, transpose.

The first step of the differentiation requires the generation of a complex version of

the original subroutine. This process consists of converting the variables in the subroutine

from type “real” to type “complex”. With the variables in complex form, the real part

of the variable will remain unchanged and the complex part can be used to approximate

the derivative of the variable with respect to a single design variable. The derivative with
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respect to a single input variable is computed by adding an imaginary perturbation to the

desired complex input variable and determining the corresponding imaginary part of the

output. With the variables in complex form, the operators within the subroutine need to be

overloaded to ensure the desired performance when applied to complex inputs. A majority of

the intrinsic functions automatically possess the desired properties for complex inputs. The

exceptions to this rule are comparative operators as well as non-differentiable operators such

as the min/max functions and the absolute value function. For these operators, the desired

behavior must be overloaded. The definition of these overloaded operators may be found in

Appendix B. The veracity of the complex subroutines are confirmed in two ways. First, the

output of the complex subroutine is compared with the output of the original subroutine.

For this comparison, the output of the original subroutine should match the real part of the

complex subroutine to essentially machine zero in a relative sense (meaning 13-14 digits of

agreement for double precision). Because of the nature of the intrinsic complex operators,

the complex part of a variable can induce a perturbation in the real part of the variable;

however, this perturbation can be minimized by using a sufficiently small complex step for

the input variables. Unlike finite difference, the step used for complex differentiation can

be arbitrarily small. As a second check on the complex subroutines, the accuracy of the

imaginary part of the subroutine (representing the derivative w.r.t a single design variable)

can be compared with finite difference applied to the original subroutine.

With the complex subroutine generated and validated, the forward differentiation can

be generated. This forward differentiation is performed using the automatic differentiation

engine Tapenade, although it could be carried out by hand. The first step of differentiat-

ing the subroutine is properly identifying the input parameters that depend on the design

variable of interest, either explicitly or implicitly. In addition to variable identification, the

original source code must be modified to remove any pieces of code that the AD tool cannot

process. For the code written in this work, only the openMP directives must be removed

to differentiate the code correctly. With the set of input variables identified and offending

code removed, the AD tool can then proceed through the subroutine, differentiating each

operator. The resulting source code produces both the output of the original code as well
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as the derivative of the output with respect to a single, generic design variable. Although

the derivative with respect to multiple design variables can be generated using Tapenade,

this approach is seldom efficient from a memory point of view. In the event that multi-

ple matrix-vector products are required, the single variable differentiation is merely called

multiple times with different inputs.

With the forward differentiation generated, it can be verified using the complex sub-

routine. Because automatic differentiation is employed in this work, this verification is a

formality and simply serves the purpose of ensuring that any modifications to the original

subroutine required for the AD tool did not alter the output or linearization of the differen-

tiated subroutine. This verification against complex differentiation is more critical when the

differentiated subroutine is implemented by hand.

Once the forward differentiation is generated and validated, the transpose operator can

be implemented. The transpose implementation consists of two steps. First, the state about

which the linearization is performed is computed and stored. Second, with the state com-

puted, the steps of the differentiation are performed in reverse order with each operator

transposed. This transposing has the effect of interchanging the input and outputs of the

differentiated operator. Hence, if the operator is defined as f(x) and the forward differen-

tiation takes in a δx and produces a δf , the resulting transpose operator will take in a δf

and produce a corresponding δx. Because this transpose operator is again constructed using

automatic differentiation, the details of the transpose implementation are handled by the

AD tool. In order to apply the AD tool for the transpose operator, the original source sub-

routine must again be modified to ensure compatibility with the AD tool, namely removal of

openMP directives. Once the AD tool has been applied to the original source code, the re-

sulting transpose linearization often must be slightly modified to ensure proper performance

when coupled with other operators. First, the initialization of all input variables within the

linearized subroutine must be removed to allow multiple subroutines to contribute to the

same variable. Second, because the input to the subroutine is often irrelevant once it has

been propagated to the output, Tapenade typically sets this variable to zero. When a sub-

routine is considered in isolation, this behavior has no effect on the overall behavior; however,
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this zeroing must be removed when multiple subroutines are to be considered together.

The validity of the transpose operator is verified by checking duality between the trans-

pose and forward linearization. Duality is best demonstrated through a series of equations.

With the operator defined as y = f(x), the derivative and transpose are represented as:

δy =
∂f

∂x
δx (4.25)

δx̄ =
∂f

∂x

T

δȳ (4.26)

Given these problem definitions, duality requires the following relation to hold:

δy · δȳ = δx · δx̄ (4.27)

By checking this duality relationship, the validity of the transpose operator can be

tested. This duality relationship can be extended to multiple inputs and outputs demon-

strated below. With the operators defined as y1 = f(x1, x2, x3) and y2 = g(x1, x2, x3), the

derivative and transpose become:

δy1 =
∂f

∂x1

δx1 +
∂f

∂x2

δx2 +
∂f

∂x3

δx3 (4.28)

δy2 =
∂g

∂x1

δx1 +
∂g

∂x2

δx2 +
∂g

∂x3

δx3 (4.29)

δx̄1 =
∂f

∂x1

T

δȳ1 +
∂g

∂x1

δȳ2 (4.30)

δx̄2 =
∂f

∂x2

T

δȳ1 +
∂g

∂x2

δȳ2 (4.31)

δx̄3 =
∂f

∂x3

T

δȳ1 +
∂g

∂x3

δȳ2 (4.32)

For these functional forms, the duality relationship is given by:

δy1 · δȳ1 + δy2 · δȳ2 = δx1 · δx̄1 + δx2 · δx̄2 + δx3 · δx̄3 (4.33)
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In practice, to test the transpose of individual operators, random inputs are supplied

to the input derivatives of the forward and adjoint subroutines and duality is tested using

the subroutine outputs. Obviously for the case of multiple inputs, equation (4.27) can be

recovered by supplying the forward and adjoint subroutines with a single non-zero input

each.

In addition to applying duality to individual operators, the property can be applied

to the solution of the flow adjoint and forward sensitivity equations. By definition of the

duality property, the following relationship must be satisfied for fully converged sensitivity

and adjoint solutions:

∂L

∂U

∂U

∂D
=
∂R

∂D

T

Λ (4.34)

This requirement can be used to ensure the correctness of the transposed flow Jacobian

as well as the validity of the fully converged sensitivity and adjoint values. Because the

forward sensitivity and flow adjoint equations are solved using a defect-correction scheme,

duality can also be evaluated for each solver iteration. When duality holds at each iteration,

the solution method is denoted as duality preserving. For a duality preserving scheme, the

convergence rate of the forward sensitivity equation will match that of the adjoint problem;

implying that if a forward sensitivity solution can be found, the adjoint solution can be found

with a similar amount of work.

∂L

∂U

∂U

∂D

k

=
∂R

∂D

T

Λk for all k (4.35)

For a scheme to be duality preserving, the iteration matrix used in the adjoint solu-

tion process must be the exact transpose of the iteration matrix, A, used for the forward

sensitivity equation. In addition to transposing the iteration matrix, the exact steps of the

iterative solver must be reversed. For example, for a Gauss-Seidel solver, the order in which

solution updates are calculated must be reversed. Hence, if the order of the loop over el-

ements is in increasing order for the forward sensitivity equation, the transpose operator

must loop over the elements in decreasing order. For Jacobi-type iterative solvers, no special

consideration is required to ensure duality. Further information regarding the construction
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Figure 4.1: Convergence of forward sensitivity and adjoint solution using (left) Jacobi-line
preconditioned GMRES and (right) Colored Gauss-Seidel with forward ordering

of duality preserving iteration strategies can be found in References [78, 80, 81]. Because

the preconditioning in the GMRES solver is a Jacobi-line solver, the GMRES solver is au-

tomatically duality preserving. The practical impact of duality preservation can be seen by

examining the convergence of the forward sensitivity and adjoint solution for both a duality

preserving and non-preserving scheme. Figure 4.1 shows the convergence of the forward and

adjoint solution using the Jacobi-line preconditioned GMRES solver as well as a colored

Gauss-Seidel solver looping over the elements in increasing order for both the forward and

adjoint problem.

As the figure demonstrates, the convergence rate for the duality preserving scheme

is identical for the forward sensitivity and adjoint solution. When duality preservation is

not enforced on the iteration scheme, the forward and adjoint problems may converge at

significantly different rates. Because the iteration matrices are not exact tranposes of one

another, the adjoint solution is not guaranteed to converge under the same circumstances

as the forward sensitivity equation and different solver settings for the two problems, such

as the amount of diagonal padding or linear solver subiterations, may be required for the

adjoint solution.

With each operator independently verified, the final sensitivity derivative must be ver-

ified to ensure the operators have been assembled correctly. The verification of the final

derivative can be performed in two ways: finite difference or complex differentiation. For the
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complex differentiation, the entire solution process must be complexified, including the lin-

ear and nonlinear solver used to determine the flow solution. The advantage of this method

is that the derivative of every step in the solution process may be verified. The drawback

of this approach is that a wider range of operators must be overloaded including file I/O

and simulation monitoring subroutines. For situations in which complexification is not vi-

able, finite difference can be applied to the entire code. Although finite-difference gradients

will have an associated approximation error, the implementation of finite difference to the

entire solution process is straight forward, simply requiring the calculation of a solution at

perturbed input parameter values. Because the derivative of each individual operator used

to calculate the gradient has been verified using complex differentiation, the use of finite

difference should be sufficient to verify the fully assembled sensitivity derivative.

4.3 Localized Sensitivity Analysis

Using the previously described sensitivity process, the derivative of an objective with respect

to model input parameters is calculated to determine the parameters most affecting the

output. This sensitivity analysis is performed within the context of the real gas CFD solver

described in Chapter 3. The flow conditions for this sensitivity analysis correspond to the

5 km/s flow over a cylinder test case described previously. The objective for this sensitivity

analysis is the integrated surface heating over the surface of the cylinder, given by equation

(4.36).

L = −
∫
∂Ω

(k∇T · ~n+ kv∇Tv · ~n) dA
1
2
ρ∞V 3

∞
(4.36)

In this equation, T is the translational-rotational temperature, k is the translational-rotational

thermal conductivity, Tv is the vibrational temperature, and kv is the vibrational thermal

conductivity.

A total of 66 model parameters are examined for this sensitivity analysis. These pa-

rameters cover freestream conditions, transport properties and the chemical kinetics model.

Although other model parameters exist within the real gas model, these additional parame-
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Figure 4.2: Left: Density adjoint for integrated surface heating (left) throughout flow field
and (right) around stagnation point.

ters will not be examined for this work. These parameters are left out either because previous

sensitivity and uncertainty analyses have indicated the parameters to be unimportant or re-

liable uncertainty specifications are unavailable [2]. The derivatives produced by the discrete

adjoint were confirmed using finite difference. The comparison with finite difference is given

in Appendix C. Although only a single step size is presented in Appendix C, a number of

different step sizes were analyzed to ensure these results were representative. A representa-

tive adjoint field solution for this problem is given in Figure 4.2. Depicted in this figure is

the adjoint variable corresponding to the density. The large value of the adjoint near the

stagnation point and along the surface of the cylinder indicates that the density has a large

effect on the objective, integrated surface heating, in that region. The adjoint problem itself

was solved using the line-preconditioned GMRES solver. The solver required 527 Jacobian-

vector products and 5 GMRES restarts to arrive at the solution. The total time to solution

was 208 seconds. Compared with the 8616 seconds required for the flow solution, the adjoint

was over a factor of 40 times faster than the flow solution when serial run-times are com-

pared. Because the adjoint implementation lacks shared memory parallelization, this ratio

would obviously decrease when the solver is run in parallel. However, because subsequent

testing employed a form of embarrassingly parallel sampling, the typical simulation was run

sequentially and parallelization was performed over the independent simulations required for

sampling.

The first set of parameters considered in the sensitivity analysis relate to the specification

of transport quantities (specified in Chapter 2). The transport model used for this work
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requires 60 input parameters. For the five species model, 15 unique collision interactions

are possible. For each interaction, two collision integrals must be specified for both 2000

K and 4000 K. Although the transport model requires 60 inputs, these inputs are likely

not independent for the purposes of uncertainty quantification. Because the inputs at 2000

K and 4000 K are correlated, a single parameter is prescribed that accounts for shifts in

the cross-section across the entire temperature range. This parameter modifies the collision

integrals as follows:

Ωk,k
s,r (T ) = Aks,rΩ̂

k,k
s,r (T ) (4.37)

where Ω̂k,k
s,r (T ) is the unperturbed collision integral and Aks,r is a multiplicative constant for

each unique collision integral (30 total). In terms of equation (4.9), the design variable D are

the multiplicative constants Aks,r while the input parameters into the code α are the base-10

logarithm for each collision integral at 2000 K and 4000 K. By adding the same base-10

logarithm of As,r to the input collision integrals at both 2000 K and 4000 K, the functional

relationship above can be implemented without any modification to the analysis code. This

fact is demonstrated below.

log10(Ωk,k
s,r )2000 = log10(Ω̂k,k

s,r )2000 + log10A
k
s,r (4.38)

log10(Ωk,k
s,r )4000 = log10(Ω̂k,k

s,r )4000 + log10A
k
s,r (4.39)

log10(Ωk,k
s,r (T )) = log10(Ω̂k,k

s,r )2000+ (4.40)[
log10(Ω̂k,k

s,r )4000 − log10(Ω̂k,k
s,r )2000

] ln(T )− ln(2000)

ln(4000)− ln(2000)

+ log10A
k
s,r

log10(Ωk,k
s,r (T )) = log10(Ω̂k,k

s,r (T )) + log10A
k
s,r (4.41)

Ωk,k
s,r (T ) = Aks,rΩ̂

k,k
s,r (T ) (4.42)

Hence, the desired parameter relationship (given in equation (4.37)) is implemented simply

by adding the base-10 logarithm of As,r to the input collision integrals at 2000 K and 4000

K.
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Figure 4.3: Sensitivity of surface heating to collision integrals parameters

Given this specification of the model parameter, the gradient of integrated surface heat-

ing is constructed using the adjoint sensitivity framework. In order to rank the importance

of each collision interaction to integrated surface heating, the magnitude of the derivative is

used. The associated sensitivity for each interaction can be found in Figure 4.3.

As the figure demonstrates, the interactions associated with diatomic nitrogen have the

greatest effect on integrated surface heating. This result is unsurprising as diatomic nitrogen

is the dominant species near the surface of the cylinder due to the super-catalytic boundary

condition.

The next set of parameters relate to the chemical kinetics model. Specifically, the

parameters in the Dunn-Kang chemical kinetics are examined. For the Dunn-Kang model,

the forward and backward reaction rates are specified using Arrhenius relations, given by

equation (4.43).
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Kf = CfT
ηf
a e
−
Ea,f
kBTa (4.43)

Kb = CbT
ηb
a e
−
Ea,b
kBTa (4.44)

Here Ea,f and Ea,b represent the activation energy for the forward and backward reactions,

kB is Boltzmann’s constant, and Ta is the rate controlling temperature for the reaction.

From previous uncertainty and sensitivity studies, the specification of the uncertainty for the

reaction rate is again given by a multiplicative constant applied over the entire temperature

range. Because of the large uncertainty typical of reaction rates, the uncertain reaction

parameter is written as [2]:

log10

(
kr
ko

)
= ξ (4.45)

where kr is either the forward or backward reaction rate, ko is the corresponding unperturbed

reaction rate and ξ is the design variable examined for this sensitivity study. A separate

parameter is applied to each reaction rate, resulting in a total of 34 total parameters when

both the forward and backward reaction rates are considered. Transforming equation (4.45),

the reaction rates are specified as:

Kf = 10ξfCf,oT
ηf
a e
−
Ea,f
kBTa (4.46)

Kb = 10ξbCb,oT
ηb
a e
−
Ea,b
kBTa (4.47)

where Cf,o and Cb,o represent the unperturbed coefficients, and ξf and ξb represent the

corresponding model parameters for the forward and backward rates. These design variables

are implemented in the solver by perturbing the inputs Cf and Cb to the model and gradients

are computed via the chain rule.

Cr = 10ξrCr,o (4.48)

∂Cr
∂ξr

= 10ξrCr,oln(10) (4.49)
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Figure 4.4: Sensitivity of surface heating to reaction rate parameters

In addition to being consistent with the uncertainty for these parameters, this specifica-

tion gives the resulting gradient value a convenient normalization. The Arrhenius coefficients

are large numbers and have variations of many orders of magnitude between them. This wide

variation in magnitude causes corresponding magnitude variations in the components of the

gradient ∂L
∂Cr

. Using the above parameter specification, the resulting gradient values ∂L
∂ξr

can

be directly compared against each other and other model parameters.

In order to assess the sensitivity of integrated surface heating to the reaction rates, the

magnitude of the gradient is once again used. The magnitude of ∂L
∂ξ

is plotted in Figure

4.4. As the results show, the dissociation of diatomic oxygen and nitric oxide with oxygen

have the greatest effect on surface heating as well as the creation and decomposition of nitric

oxide. In addition to identifying the most sensitive reactions, these results demonstrate that

based on this localized analysis, the collision integrals in general have a greater effect on the

surface heating than the reaction rates.
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Table 4.1: Ranking of input parameters based on derivative values

Number Variable Derivative Value
1 ρ∞ 4.887
2 O2-N2 (k=1) 1.1630× 10−3

3 N2-N2 (k=1) 9.6708× 10−4

4 N2-N2 (k=2) 9.4977× 10−4

5 O-N2 (k=2) 8.6974× 10−4

6 O2 +O � 2O +O (f) 6.2120× 10−4

7 NO-N2 (k=2) 5.2660× 10−4

8 NO +O � N +O +O (b) 4.1447× 10−4

9 N2 +O � NO +N (f) 3.9861× 10−4

10 N2 +O � NO +N (b) 3.8755× 10−4

Finally, in order to determine the relative importance of parameters drawn from the

various parts of the real gas model, the derivative magnitude over all the model parameters

are directly compared. In addition to the parameters for the transport model and chemical

kinetics model, the freestream density and velocity are also included in the sensitivity analysis

to measure the relative importance of freestream conditions. The top ten parameters based

on the derivative magnitude are given in Table 4.1. As these results demonstrate, the

freestream density has the greatest effect on surface heating by several orders of magnitude.

The rest of the top parameters are composed of the previously identified important collision

integrals and reaction rates with the top collision integrals ranking above the majority of

the top reaction rates.

4.4 Global Sensitivity Analysis

The previously presented derivative sensitivity analysis is inherently localized in nature and

may give inaccurate results for large perturbations of the input parameters or due to in-

terference effects between variables [2]. To overcome these limitations, a global sensitivity

analysis can be performed and the importance of each variable can be estimated based on

its contribution to the simulation output. This global sensitivity analysis is performed using

Monte Carlo sampling. For this method, design variable values are drawn from the asso-
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ciated input distribution and a simulation is run to acquire an output sample. Statistics

are then calculated based on these output samples. Although the work associated with this

sampling is independent of the number of design variables, the expense of this sampling is

often prohibitively high due to the slow convergence of output statistics. The sensitivity

itself can be quantified using a linear regression analysis. This linear analysis calculates

the correlation coefficient for each variable based on the Monte Carlo results. Although

this method cannot fully separate the effect of each variable on the output, it can provide

valuable information on the overall effect each variable has on the output measured over the

entire design space. It can also account for interference effects between the variables and

give a measure of the contribution each variable’s uncertainty makes to the overall output

uncertainty. The correlation coefficient for variable Di is given by the following [2]:

ri =
cov(Di, y)

σDiσy
(4.50)

Here, y represents the output of interest from the simulation, σDi represents the standard

deviation of the input design variable and σy represents the standard deviation of the output.

The standard deviation of the input design variable is a quantity that must be taken from

the relevant literature or estimated based on some expert judgment or experience [2, 15].

The quantity σy is measured empirically from the Monte Carlo data set. Because the output

variance is required, uncertainty quantification is intricately tied to global sensitivity analysis.

Gradient-based techniques for rapid uncertainty quantification will be covered extensively

in Chapters 5 through 7; however, to aide in the discussion of global sensitivity analysis,

relevant concepts will be introduced as needed.

In practice, the correlation coefficient must be estimated based on the Monte Carlo data

using estimators for each of the statistical quantities in equation (4.50). The correlation

coefficient can therefore be estimated as [2, 82]:

ri =

∑
k(Di,k − D̄i)(yk − ȳ)√∑

k(Di,k − D̄i)2
∑

k(yk − ȳ)2
(4.51)

where the summation over k indicates a sum over the Monte Carlo sample points.

Because the statistics required for the correlation coefficient are estimated based on

80



Table 4.2: Input Model Parameters with Uncertainty

Number Variable Mean Standard Deviations
1 ρ∞ (kg/m3) 1× 10−3 5%
2 V∞(m/s) 5000 15.42

3-17 A1
s−r 1 5%

18-32 A2
s−r 1 5%

33-49 ξf 0 0.25
50-66 ξb 0 0.25

Monte Carlo sampling, there will be an associated error due to the finite size of the data

set. This error will be inversely proportional to the number of Monte Carlo samples (N),

decreasing as 1√
N

. For the purposes of ranking the sensitivities, the square of the correlation

coefficient is used. In addition to acting as a proxy for the magnitude of the sensitivity, the

square of the correlation coefficient represents the fraction of the output variance from each

of the input parameters [2].

Within this section, a global sensitivity analysis for the 66 model parameters identified

previously is performed and compared to the results of the localized sensitivity analysis.

This comparison is performed to assess the practical effect of the theoretical limitations to

localized sensitivity analysis on a real world simulation. In order to perform the sensitivity

analysis, the uncertainty for each model parameter must be specified to define the space over

which the sensitivity is assessed. The uncertainty for each parameter is given in Table 4.2.

The correlation coefficients for each variable were computed based on Monte Carlo

sampling using 6331 simulation results. The error in the square of the correlation coefficient

is estimated at 0.02 based on the results of a similar global sensitivity analysis with a similar

number of samples [2]. Hence, when comparing coefficients, only differences greater than

0.04 should be considered when ranking parameters.

The results of the local and global sensitivity analysis are compared based on the square

of the correlation coefficient. Because this metric represents the fraction of the output

variance based on a particular input parameter, a corresponding number for the localized

sensitivity analysis must be constructed. Based on the moment method, the fraction of the
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output variance based on an input can be computed as:

fi =
∂L
∂Di

2
σ2
Di∑

k
∂L
∂Dk

2
σ2
Dk

(4.52)

The global and local sensitivity analysis results are first compared for the collision inte-

gral model parameters. This comparison is made in Figure 4.5. As the figure demonstrates,

both the local and global sensitivity analysis identify the same high importance collision

integrals although the magnitude of the uncertainty contribution show some disagreement.

Hence, the local sensitivity analysis appears to provide the appropriate importance rank-

ings; however, if exact contributions to uncertainty are required, the localized analysis is not

sufficient.

In order to further investigate the differences between global and local sensitivity anal-

ysis, the results for the reaction rates are compared. Figure 4.6 shows this comparison.

Compared to the collision integral parameters, the results for the reaction rate parameters

show greater discrepancy between the two sensitivity analyses. These discrepancies occur in

terms of predicting the contribution to output variance as well as the relative importance of

each parameter. In addition to misidentifying the top reaction rates, the uncertainty con-

tribution estimates vary dramatically between the two methods. This behavior is predicted

in the literature when the input uncertainties increase [2]. For the reaction rates, the uncer-

tainty is specified as plus/minus an order of magnitude, giving an indication that the linear

analysis used in the local analysis may break down.

Finally, the rankings of model parameters between the two methods are compared. For

this comparison, the top parameters from the local sensitivity analysis are identified and

compared with their ranking from the global sensitivity analysis. This comparison is made

in Table 4.3. In addition to comparing the ranking of each parameter, the uncertainty

contribution is also compared. The inverse of Table 4.3 is given in Table 4.4 where the top

parameters from the global sensitivity are given with their associated local ranks.

As this comparison shows, the local sensitivity analysis does a reasonable job identifying

the most sensitive parameters with the global and local analysis. The two analyses identify

the same top 3 parameters and identify 7 of the same parameters within their respective
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Figure 4.5: Comparison of local and global sensitivity analysis for collision integrals for (top)
k=1 and (bottom) k=2.
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Figure 4.6: Comparison of local and global sensitivity analysis for reaction rates for (top)
forward reaction and (bottom) backward reaction.
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Table 4.3: Top 10 parameters from local sensitivity analysis compared with global

Rank Variable Global Local Global
Rank Contribution Contribution

1 ρ∞ 1 0.43230 0.60055
2 O2 +O � 2O +O (f) 2 1.7490× 10−1 1.0610× 10−1

3 NO +O � N +O +O (b) 3 7.7860× 10−2 5.1914× 10−2

4 N2 +O � NO +N (f) 7 7.2017× 10−2 2.0647× 10−2

5 N2 +O � NO +N (b) 10 6.8076× 10−2 1.2155× 10−2

6 NO +O � N +O +O (f) 11 2.5979× 10−2 8.3596× 10−3

7 O2-N2 (k=1) 4 2.4524× 10−2 4.2121× 10−2

8 NO +O � O2 +N (f) 16 2.2155× 10−2 1.4609× 10−3

9 NO +O � O2 +N (b) 63 1.7353× 10−2 3.7488× 10−6

10 N2-N2 (k=1) 6 1.6956× 10−2 3.1617× 10−2

Table 4.4: Top 10 parameters from global sensitivity analysis compared with local

Rank Variable Local Global Local
Rank Contribution Contribution

1 ρ∞ 1 0.60055 0.43230
2 O2 +O � 2O +O (f) 2 1.0610× 10−1 1.7490× 10−1

3 NO +O � N +O +O (b) 3 5.1914× 10−2 7.7560× 10−2

4 O2-N2 (k=1) 7 4.2121× 10−2 2.4524× 10−2

5 N2-N2 (k=1) 10 3.1617× 10−2 1.6956× 10−2

6 O2 +O2 � 2O +O2 (b) 13 2.1621× 10−2 1.3120× 10−2

7 N2 +O � NO +N (f) 4 2.0647× 10−2 7.2017× 10−2

8 N2-N2 (k=2) 11 1.9019× 10−2 1.6354× 10−2

9 O-N2 (k=2) 12 1.3874× 10−2 1.3714× 10−2

10 N2 +O � NO +N (b) 5 1.2155× 10−2 6.8076× 10−2
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top 10 lists. Unfortunately, outside of the top three, the two types of analysis begin giving

dramatically different rankings and the local sensitivity analysis seems to miss a number of

the important collision integrals. Based on the uncertainty in the global sensitivity results,

the disagreement in rankings is only important for variables with correlation coefficients

significantly greater than 0.02, namely O2−N2(k = 1) and N2−N2(k = 1). The fact that

the local analysis misidentifies the ranking of these parameters demonstrates a significant

disagreement between the two forms of sensitivity analysis. Interestingly, these collision

integrals are identified as important when the derivative magnitude is used and not weighted

with the input uncertainty. When the rankings in Table 4.4 are compared with those from

Table 4.1, there is more overlap between the two groups even though these rankings are

based on different measures of sensitivity (derivative magnitude vs. correlation). When

compared with the results in Table 4.1, 9 of the top 10 parameters are in agreement between

the two analysis, even though the relative ranking of the parameters does vary, indicating

the agreement may be the result of chance.

4.4.1 Gradient Accelerated Global Sensitivity Analysis

Based on the previous comparison, it is clear that the localized sensitivity analysis has sig-

nificant deficiencies when compared to the global method when it comes to identifying the

most important parameters and their contribution to the output uncertainty. In order to

combine the speed of the localized analysis with the utility of the global sensitivity analy-

sis, techniques based on rapid uncertainty quantification, namely surrogate models, can be

incorporated into the Global sensitivity analysis. A surrogate model is a function that can

be used to inexpensively approximate the output of a simulation based on a handful of sim-

ulation results. The main drawback with surrogate models is that the cost associated with

constructing an accurate surrogate typically grows exponentially as the number of design

variables increases. To address this limitation, two strategies are typically employed. First,

a sensitivity analysis is performed to reduce the dimension of the space the surrogate must

represent. Obviously, this approach cannot be used within this context as global sensitivity

analysis is the purpose of the surrogate. The second approach for addressing the issue of
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dimensionality is the incorporation of gradient information into the surrogate model. By

providing more information to the surrogate model, the cost associated with training an

accurate surrogate can be reduced. Because an adjoint-based approach gives a cost inde-

pendent of dimension, the gradient can provide additional information for the surrogate at a

fixed cost. Hence, by calculating the simulation output and gradient at a number of points

throughout the design space, an accurate surrogate may be constructed and used as a basis

for global sensitivity analysis [19,33,34].

Two requirements will be imposed on the surrogate used for global sensitivity analysis.

First, the surrogate must easily incorporate gradient information. Second, the cost associated

with training the surrogate must increase minimally as the input dimension increases. As a

practical limitation, linear growth in the cost as the dimension increases will be the largest

allowed growth rate, with a cost independent of dimension preferred. The most simple

surrogate that meets these requirements is least-squared polynomial regression incorporating

gradient information [19].

The cost of constructing a polynomial regression model is dictated by the number of

terms required in the regression, as the number of simulation results required for the surrogate

must be greater than or equal to the number of terms in the regression. The number of terms

in the regression is given by the following relation:

S =
(d+ p)!

d!p!
(4.53)

where d is the dimension of the space and p is the highest polynomial order. When gradient

information is incorporated into the training of the surrogate, each simulation result provides

d+ 1 pieces of information. Hence, the number of simulation results required for a surrogate

using gradient information is given by:

N ≥
⌈

(d+ p)!

d!p!(d+ 1)

⌉
(4.54)

In order to satisfy the requirement of worst-case linear growth in the number of required

simulations, only regression orders of p = 1 and p = 2 are considered. With this constraint,

the required number of simulation results is given as:
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N ≥

1 for p = 1,⌈
(d+2)

2

⌉
for p = 2.

(4.55)

As these equations show, when gradient information is used, there is no constraint on

the number of simulations required to construct a linear model. For a quadratic model, the

expense associated with training the model increases only linearly. Equation (4.55) places

a lower bound on the number of simulations required to construct the regression model. In

practice, the regression model is typically over-determined and the coefficients are determined

in a least-squares sense.

The regression model is based on the assumption that the output is approximated by a

linear combination of polynomials given by equation:

y(D) =
∑
s

βsΨs(D) (4.56)

where Ψ(D) represent a series of polynomials in D with degree less than p and β are a set

of undetermined coefficients. The coefficients are determined by finding the set that best

describe the simulation results at various values of D. Based on the results of N simulations,

a system of equations can be solved to determine β.



Ψ1(D1) Ψ2(D1) · · · Ψs(D1)

Ψ1(D2) Ψ2(D2) · · · Ψs(D2)
...

. . . . . .
...

Ψ1(DN−1) Ψ2(DN−1) · · · Ψs(DN−1)

Ψ1(DN) Ψ2(DN) · · · Ψs(DN)




β1

β2

...

βs

 =



y(D1)

y(D2)
...

y(DN−1)

y(DN)


(4.57)

Here, the matrix on the left-hand side of the equation is defined as the collocation matrix H.

Because N is typically greater than S (normally by a factor of two), this collocation matrix

is inverted in a least-squared sense. This process is demonstrated below. Let the vector

Y represent the results of N simulations using the input parameters Di for i = 1, 2, ..., N .

Additionally, define the collocation matrix H as the rectangular matrix (dimension N × S)
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whose elements represent the basis functions evaluated at the input parameters Di. The

coefficients β are determined by solving a set of linear equations, represented below.

Hβ = Y (4.58)

Because H is a rectangular matrix, the coefficients are determined in a least-squares sense.

To solve the problem in this manner, both sides of equation (4.58) are multiplied by the

transpose of the collocation matrix. The product of the collocation matrix with its transpose

is denoted as the regression matrix, A.

HTHβ = Aβ = HTY (4.59)

Because the regression matrix A is square, it can be inverted to determine the coefficients

that best describe the simulation outputs Y . These coefficients are given as:

β = A−1HTY (4.60)

Derivative observations can be incorporated into the regression model by differentiating

equation (4.56).

∂y(D)

∂Dk

=
∑
s

βs
∂Ψs(D)

∂Dk

(4.61)

These derivative observations can be incorporated into the collocation matrix, providing

additional equations without increasing the number of samples required for the regression.
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

Ψ1(D1) Ψ2(D1) · · · Ψs(D1)

∂Ψ1(D1)
∂D1

∂Ψ2(D1)
∂D1

· · · ∂Ψs(D1)
∂D1

...
. . . . . .

...

∂Ψ1(D1)
∂Dd

∂Ψ2(D1)
∂Dd

· · · ∂Ψs(D1)
∂Dd

...
. . . . . .

...

Ψ1(DN) Ψ2(DN) · · · Ψs(DN)

∂Ψ1(DN )
∂D1

∂Ψ2(DN )
∂D1

· · · ∂Ψs(DN )
∂D1

...
. . . . . .

...

∂Ψ1(DN )
∂Dd

∂Ψ2(DN )
∂Dd

· · · ∂Ψs(DN )
∂Dd




β1

β2

...

βs

 =



y(D1)

∂y(D1)
∂D1

...

∂y(D1)
∂Dd
...

y(DN)

∂y(DN )
∂D1

...

∂y(DN )
∂Dd



(4.62)

With the collocation defined as in equation (4.62), the regression coefficients are determined

using the least-squares procedure given in equations (4.58) through (4.60).

The choice of basis functions ΨD used for this regression is general. In previous work,

Hermite polynomials have been used within gradient-enhanced regression models [19] and

multidimensional basis have been constructed by means of a tensor product of one dimen-

sional polynomials [20].

Ψk(D) =
d∏
i=1

Hmji
(Di) (4.63)

Here, mj
i is a multi-index dictating the order of the polynomial H. The basis of a given

order p will contain products of polynomials less than or equal to degree p. In this way, the

basis is hierarchical in that the basis of degree p contains all the terms of basis of degree

p − 1. Because this work is limited to p = 1 and p = 2 to satisfy the scaling requirements,

an example basis of degree 2 in 3 dimensions is given below.

Ψ(D) =


1,

H1(D1), H1(D2), H1(D3)

H1(D1)×H1(D2), H1(D1)×H1(D3), H1(D2)×H1(D3),

H2(D1), H2(D2), H2(D3)

 (4.64)
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Here, Hk is the hermite polynomial of degree k. As the above set demonstrates, the number

of terms in the regression grows rapidly as order and/or dimension is increased.

The gradient-enhanced regression model detailed here can provide a basis for rapid

global sensitivity analysis even in the limit of large input dimension when the degree of

the regression is limited to 2. To demonstrate this capability, a global sensitivity analysis is

performed on the real gas solver using the previously enumerated 66 model parameters based

on a polynomial regression of degree 1 and 2. The results of this regression-based analysis

are then compared with the Monte Carlo global sensitivity analysis results.

For 66 dimensions, the size of the regression basis is 67 terms for p = 1 and 2278 terms for

p = 2. When gradient values are included, these facts indicate a single simulation result can

be used for a p = 1 regression and 34 simulation results are required for a p = 2 regression.

These numbers represent the minimum number of simulations and in practice additional

simulations can be incorporated into the regression by additional over-determination of the

system. The training data for the regression is found by performing simulations using ran-

domly sampled inputs. The random inputs are generated through uniform Latin Hypercube

sampling and the total number of simulations is determined by the computational budget.

In order to demonstrate the advantage of the regression approach, the top parameters

from a P=1 and P=2 regression are calculated and compared to the Monte Carlo global

sensitivity results. The linear regression is built from 10 sample points with associated

function/gradient values spread uniformly throughout the design space. The quadratic re-

gression is built from 68 function/gradient evaluations. The number of training points for

each regression was determined by monitoring the convergence of statistic predictions and

is demonstrated in Chapter 5.

With this regression model built, samples are extracted from the model using the same

sample points used for the Monte Carlo global sensitivity analysis. In Tables 4.5 and 4.6,

the top 10 parameters from a P=1 and P=2 regression are given and compared to the global

sensitivity results. As the Table demonstrates, the top parameters from the regression based

analysis show greater overlap with the top parameters from the Monte Carlo global sensitivity

analysis for both the p = 1 and p = 2 models. For the localized analysis, only seven of the top

91



Table 4.5: Top 10 parameters from P=1 regression sensitivity analysis compared with global

Rank Variable Global Regression Global
Rank Contribution Contribution

1 ρ∞ 1 0.49814 0.60055
2 O2 +O � 2O +O (f) 2 1.5388× 10−1 1.0610× 10−1

3 NO +O � N +O +O (b) 3 1.0557× 10−1 5.1914× 10−2

4 O2 +O2 � 2O +O2 (b) 6 5.0369× 10−2 2.1621× 10−2

5 O2-N2 (k=1) 4 4.3405× 10−2 4.2121× 10−2

6 N2-N2 (k=1) 5 3.6679× 10−2 3.1617× 10−2

7 O2 +O � 2O +O2 (b) 13 2.4095× 10−2 7.4280× 10−3

8 N2-N2 (k=2) 8 1.5437× 10−2 1.9019× 10−2

9 O-N2 (k=2) 9 1.4627× 10−2 1.3874× 10−2

10 O2 +N2 � 2O +N2 (f) 15 1.2281× 10−2 3.5848× 10−3

Table 4.6: Top 10 parameters from P=2 regression sensitivity analysis compared with global

Rank Variable Global Regression Global
Rank Contribution Contribution

1 ρ∞ 1 0.56879 0.60055
2 O2 +O � 2O +O (f) 2 1.0002× 10−1 1.0610× 10−1

3 O2 +O2 � 2O +O2 (b) 6 5.7669× 10−2 2.1621× 10−2

4 NO +O � N +O +O (b) 3 4.0057× 10−1 5.1914× 10−2

5 N2-N2 (k=1) 5 3.7461× 10−2 3.1617× 10−2

6 O2-N2 (k=1) 4 3.3299× 10−2 4.2121× 10−2

7 N2-N2 (k=2) 8 2.1163× 10−2 1.9019× 10−2

8 O-N2 (k=2) 9 1.7395× 10−2 1.3874× 10−2

9 V∞ 14 1.3497× 10−2 4.8401× 10−3

10 O2 +O � 2O +O (b) 13 1.1734× 10−2 7.4280× 10−3

ten parameters were in agreement when the comparison was made based on the contribution

to uncertainty. When the regression model is used, eight of the top ten parameters are in

agreement and the rankings produced by the methods are in greater agreement. In addition

to identifying more of the important parameters from the global sensitivity analysis, the p = 2

regression shows good agreement in predicting the contribution to output uncertainty for

most of the top parameters. This predictive capability is likely important for the dimension

reduction required for many surrogate-based approaches to uncertainty quantification.
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4.5 Summary

In this chapter, procedures for sensitivity analysis were outlined. Because the calculation of

derivatives was central to this sensitivity analysis, the calculation of gradients via an adjoint

based approach was first detailed. With the adjoint calculation given, the application of

derivatives for a localized sensitivity analysis was demonstrated for the 5km/s real gas flow

over a cylinder. Using this localized sensitivity analysis, the important parameters from

the collision integral and chemical kinetics model were identified. In order to investigate

potential drawbacks of this localized analysis, a global sensitivity analysis was performed

and the results were compared with the local analysis. Finally, a gradient-based approach

for global sensitivity analysis based on polynomial regression was explored to combine the

strengths of the localized and global methods.

To further compare the methods presented in this section, the cost of each of the sensitiv-

ity analyses in terms of cpu-hours should be presented. For the localized sensitivity analysis,

a single function and gradient evaluation is required, giving a cost of 2.45 cpu-hours. For the

Monte Carlo based global sensitivity analysis, 6331 function evaluations (corresponding to

an equal number of flow solutions) were required. These 6331 function evaluations required

5090 cpu-hours with each function evaluation requiring an average of 2893 seconds. The

average function time is less for the Monte Carlo sampling than the normal flow analysis as

the flow solution with mean parameters can be used as the starting point for simulations

with parameters away from the mean, reducing the time required for a flow solution with

parameters away from their mean values. Although significantly more expensive than the

local analysis, this global analysis gives a more widely accepted sensitivity for hypersonic

flow simulations. The expense of global sensitivity analysis was reduced using a gradient-

enhanced polynomial regression. For the two regression orders tested in this chapter, 10 and

68 function and gradient evaluations were required for the P = 1 and P = 2 respectively.

These two regression orders required 11.01 cpu-hours and 60.97 cpu-hours respectively. All

of the costs reported here are measured using a single core of an Intel Core i7-870 clocked at

2.93 GHz. Because the samples are independent in nature, the Monte Carlo sampling and

acquisition of the training data can be performed in parallel to reduce the cost.
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Comparing the cost of these methods, the localized analysis is clearly the least expensive;

however, this analysis can be insufficient for nonlinear problems and large perturbations of

the input parameters. For the global sensitivity analysis, the regression-based approach gives

results similar to the Monte Carlo based approach but at a fraction of the cost. For the P = 1

regression, a factor of 462 cost savings was achieved, while the P = 2 regression achieved

a factor of 83 savings. Hence, for problems in which the low order regression is sufficient

for the sensitivity analysis, which appears to be the case for the test case presented here,

the gradient-enhanced regression approach is capable of greatly reducing the cost associated

with global sensitivity analysis. Further analysis of the costs associated with sampling and

surrogate training are given in Chapter 5.
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Chapter 5

Aleatory Uncertainty Quantification

Results

In this chapter, the gradient-based aleatory uncertainty quantification strategies are out-

lined and applied to a test case using the real gas CFD solver. To provide the necessary

background, each strategy is detailed. With the strategies specified, the performance of

these methods is assessed based on accuracy and computational cost. To characterize the

performance these strategies, a data set of simulation results is generated using Monte Carlo

sampling. Based on this data, the statistic predictions and overall surrogate error for each

gradient-based approach is judged. Despite the uncertainty associated with Monte Carlo

sampling, the performance of the surrogates are validated against these results in the sense

that consistency between the gradient-based strategies and Monte Carlo sampling is ensured,

the latter method being a widely accepted approach for characterizing aleatory uncertainties.

In this chapter, the statistics based on the linear methods, such as the moment method

and linear extrapolation, are first calculated and compared against those of the validation

data. Next, the polynomial regression approaches outlined in Chapter 4 are used to represent

the design space and the surrogate error as well as statistic predictions are calculated for

each model. Finally, gradient-enhanced Kriging methods are used to approximate the design

space. Because of the dimensional issues relating to Kriging models, the space approximated

by the Kriging model is reduced in two different ways. The first method simply truncates the
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set of variables used to construct the model based on a global sensitivity analysis and the low

importance variables are ignored. The second method relies on a low order model built over

all variables that is then enhanced with a Kriging model over the important variables. The

performance is again assessed based on the statistic predictions and surrogate approximation

error for each model. The chapter concludes with a comparison of the results from each

method and the savings associated with each model when compared to exhaustive Monte

Carlo sampling.

5.1 Gradient-based Aleatory Uncertainty Quantifica-

tion

Acceleration techniques for propagating aleatory uncertainties typically rely on assuming

a functional representation of the output over the design space and sampling from this

approximation. The most simple functional representation is a linear function over the

design space. When gradient information is available, this model is possible with a single

function/gradient evaluation. Using this information, a Taylor series approximation can be

constructed using the function and gradient evaluated at the mean input parameters. In the

case that only the mean and variance are desired, the moment method can be used. For a

first-order moment method, the mean and variance can be given by [16]:

µ = f(x̄) (5.1)

σ2 =
d∑
i=1

∂f

∂xi

2

σ2
i (5.2)

where µ is the mean of the output, x̄ is the mean of the inputs, σi is the standard devia-

tion of the input xi and σ is the standard deviation of the output. Although this method

does not rely explicitly on a Taylor series approximation, it is implicitly dependent on this

approximation.

If other statistics are desired, inexpensive Monte Carlo can be performed. In the case

of the linear model, approximate function values are calculated for the randomly sampled
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inputs based on the Taylor series about the mean input values [16].

ylin(x) = f(x̄) +
∂f

∂xi

∣∣∣∣
x̄

(xi − x̄i) (5.3)

Obviously, any functional representation can be used as a basis for modeling the variation

of the function f throughout the design space, known as the surrogate model. As was

presented in Chapter 4, the Taylor series can be replaced with polynomial regression. The

main drawback of this functional representation is the “curse of dimensionality” with the cost

increasing exponentially as the dimension of the space increases. For the global sensitivity

analysis presented in Chapter 4, this problem was overcome by restricting the order of the

polynomial to no higher than 2 and incorporating gradient information into the training of

the regression model. Although this second order regression appeared accurate enough for

sensitivity analysis, the limitation of second order may be overly restrictive for a general

surrogate model.

For a general surrogate model, a two pronged approach is employed. First, the dimension

of the space modeled by the surrogate model must be reduced. For this work, dimension

reduction is based exclusively on the sensitivity analysis detailed in Chapter 4. As was

demonstrated in Chapter 4, the variance in the output for this work is due to a small

subset of the variables. Hence, constructing a surrogate over only this subset should be

able to account for the majority of the variation in the output. Second, the surrogate is

enhanced with gradient information to provide additional information to the surrogate at

reduced cost. This two pronged approach is employed exclusively on Kriging surrogate

models. Although it suffers from the curse of dimensionality, Kriging models can easily

accommodate gradient information and perform well in the low sample density regime [83].

Additionally, the polynomial regression presented in Chapter 4 can be easily incorporated

into the Kriging model, allowing for a unification of the various surrogate model discussed

here.

A Kriging model is a form of regression that is able to account for correlation between

the data points, enabling more accurate function representations. An overview of Kriging

models is given here based on the descriptions in Reference [83]. The Kriging model is
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premised on the assumption that the output data y obey a Gaussian process, specified as:

y = N(m(x), K(x, x′; θ)) (5.4)

where m(x) is the mean function, K(x, x′; θ) represents the covariance between data points,

and θ represent parameters used to govern the covariance function, known as hyperparam-

eters. The choice of mean function can vary widely based on the application of the Kriging

model. Within machine learning applications where training data is abundant, a zero mean

function is often used, known as simple Kriging. For the purposes of uncertainty quantifi-

cation, a non-zero mean function is typically required. This mean function can be explicitly

defined or incorporated as part of the Kriging construction. For an explicitly defined mean

function, the output is represented as the sum of the mean function with a zero mean Gaus-

sian process [83].

y = m(x) +N(0, K(x, x′; θ)) (5.5)

For an explicit mean function, the zero mean Kriging model is built based on the residual

between the measured output y and the explicitly defined mean function m(x).

To construct the Kriging model, it is first “trained” using a number of simulation re-

sults, represented as Y , evaluated at a set of input parameters, ~X. Using these results,

the parameters in the Gaussian process are fitted and predictions away from these training

points can be made. The prediction from the Kriging model is itself a Gaussian process with

an associated mean value and variance. Using the covariance between points in the domain,

model predictions throughout the domain are determined by sampling from the conditional

distribution y∗| ~X, Y where ~X, Y are the input and output training data. The posterior mean

predictions for an explicit mean are given by the formula [83]:

y(~x∗)| ~X, Y,m(x) = m(x) + kT∗K
−1(Y −m(x)) (5.6)

where kT∗ represents the covariance between the test point, ~x∗, and the training points ~X (a

row vector of length N). The term K is the covariance between the training data, represented

by a matrix of dimension N ×N .
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In addition to an explicitly defined mean function, a non-zero mean function can be

incorporated into the construction of the Gaussian process. This non-zero mean function

usually takes the form of a polynomial regression and the coefficients within the regression

are informed by the correlation within the Kriging model. When a polynomial mean function

is used, the Kriging model is referred to as Universal Kriging. The special case of a zeroth

order regression, meaning a constant mean function, is referred to as ordinary Kriging. For

a universal Kriging model, the functional form becomes [83]:

y(~x) = N(h(~x)β,K(~x, ~x; θ)) (5.7)

where h(~x) is a column vector containing the basis functions of the regression evaluated at

the point ~x and β are the regression parameters. Using a regression-based mean function,

predictions can be made based on this model using the formula:

y(~x∗)| ~X, Y = h(~x∗)β + kT∗K
−1(Y −Hβ) (5.8)

where H is the collocation matrix of the regression, Y is the vector of training function values,

K is the covariance matrix between the training points and k∗ is the vector of covariances

between the training points and the test point (x∗). Since the regression is built from a

limited number of training points, it is prudent to assume that the regression parameters

belong to a distribution of parameters. In the limit of zero knowledge of this distribution

(vague prior assumption), the optimal regression parameters are given by [83]:

β̂ = (HTK−1H)−1HTK−1Y = A−1HTK−1Y (5.9)

where A is the regression matrix defined as HTK−1H. Unlike the regression matrix used in

polynomial regression, the regression matrix for the Kriging model includes the correlation

between the data points, K. The case of polynomial regression is found by assuming no

correlation between the data points, represented as K reducing to the identity matrix. Using

this definition of regression parameters, mean predictions can be made using the following

single formula:
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y(~x∗)| ~X, Y = kT∗K
−1Y + (h(~x∗)− kT∗K−1H)β̂ = kT∗K

−1Y +R(~x∗)β̂ (5.10)

The elements of the covariance matrix represent the covariance between the function

values. For Kriging, the covariance between function values is assumed to be a function

of distance between the two data points. This functional form is known as a stationary

covariance function [83].

Ki,j = cov(yi, yj) = k(|~xi − ~xj|) + σnδi,j (5.11)

Here, k(|~xi − ~xj|) is the covariance between training points i and j and σn represents the

noise in the training data. For machine learning applications, this noise is treated as a

hyperparameter and fitted through the likelihood equation, which is described below. For

the application of uncertainty quantification, this noise is a specified value and is set to ensure

proper conditioning of the covariance matrix. The multidimensional covariance function is

formed as the product of one dimensional covariance functions as this form produces better

conditioned covariance matrices [84]. The covariance between two points (denoted as ~x and

~x′ to avoid confusion) is given below.

k(~x, ~x′; θ) = σ2

d∏
i=1

ki(xi − x′i; θi) = σ2

d∏
i=1

ki(ri; θi) (5.12)

Here, σ represents the covariance magnitude and θi is the length scale for each dimension.

The one dimensional covariance function used in this work is the Matern function with the

parameter ν = 3/2, given below [83].

ki(xi − x′i) =

(
1 +
√

3

∣∣∣∣xi − x′iθi

∣∣∣∣) e−√3

∣∣∣∣xi−x′iθi

∣∣∣∣
(5.13)

The parameters in the covariance function are determined via the likelihood equation.

The likelihood equation gives the probability that the data with a given set of parameters

satisfy the assumed Gaussian process. By maximizing this probability, the optimal param-

eters can be determined. The log-likelihood equation for a universal Kriging model is given

by [83]:
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log(p(y|X; θ)) = −1

2
(Y −HTβ)TK−1(Y −HTβ)− 1

2
log |K| − N

2
log 2π (5.14)

where N is the number of training points. Based on this likelihood equation, the optimal

covariance magnitude can be found analytically. By differentiating the likelihood equation

with respect to the covariance magnitude, the optimal magnitude can be determined. De-

noting the covariance matrix with a magnitude of 1 as K̂, the optimal magnitude is given

as [84]:

σ(θ)2 =
(Y −HTβ(θ))K̂(θ)−1(Y −HTβ(θ))

N
(5.15)

Using this explicit equation for the magnitude, the likelihood equation can be rewritten as:

log(p(y|X; θ)) = −n log σ(θ)2 − log(|K̂(θ)|)− N

2
log 2π (5.16)

The only parameters without analytic expressions are the length scales θ. These length

scales are determined via numerical optimization. For this work, a pattern search [85] is

used to determine the optimal parameters as a global deterministic optimization technique

is preferable to non-deterministic methods, such as genetic algorithms, as deterministic meth-

ods allow for repeatability of results. This optimization represents the most expensive part

of constructing the Kriging model, as the covariance matrix must be constructed and in-

verted for each function evaluation in the optimization. Additionally, the dimension of the

optimization problem corresponds to the dimension of the space approximated by the model.

Like the polynomial regression presented in Chapter 4, the Kriging model is also suscep-

tible to the “curse” of dimensionality. Although the Kriging model does not have an explicit

relationship for the number of training points as the dimension of the space expands, the

amount of data required for an accurate model typically increases exponentially fast as the

number of parameters increases. This fact is because an accurate surrogate requires training

points that fill the design space. To reduce the cost of training the model as the dimen-

sion expands, gradient information can be incorporated into the Kriging model. To include

gradient information in the Kriging model, the covariance matrix must first be extended to
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include the covariance between derivative values. When these correlations are included, the

covariance becomes a block matrix with the following components.

K =

 cov(Y, Y ) cov(Y,∇Y )

cov(∇Y, Y ) cov(∇Y,∇Y )

 (5.17)

The covariance between function and gradient components is found by differentiating

the covariance function [86]:

cov(
∂y

∂xk
, y′) =

∂

∂xk
k(~x, ~x′) (5.18)

Differentiating once more (now w.r.t to the second argument of the covariance function)

gives the covariance between gradient components:

cov(
∂y

∂xk
,
∂y′

∂x′l
) =

∂2

∂xk∂x′l
k(~x, ~x′) (5.19)

The gradient vector and Hessian matrix resulting from equations (5.18) and (5.19) can

then be arranged into the matrices cov(∇Y, Y ) and cov(∇Y,∇Y ) respectively.

In addition to extending the covariance matrix, the training data must be redefined as:

Y =

 Y

∇Y

 (5.20)

and the collocation matrix must be extended to include the derivative of the basis function

evaluated at the training points. This extension is performed by differentiation of the basis

functions, as was demonstrated in Chapter 4.

5.2 Problem Statement and Validation Results

The problem examined throughout this chapter is determining the uncertainty in integrated

surface heating for the 5km/s flow of the cylinder outlined in Chapter 3. The definition

integrated surface heating, given in Chapter 4, is given by:
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Table 5.1: Input model parameters with uncertainty

Number Variable Mean Standard Deviations
1 ρ∞ (kg/m3) 1× 10−3 5%
2 V∞(m/s) 5000 15.42

3-17 A1
s−r 1 5%

18-32 A2
s−r 1 5%

33-49 ξf 0 0.25
50-66 ξb 0 0.25

L = −
∫
∂Ω

(k∇T · ~n+ kv∇Tv · ~n) dA
1
2
ρ∞V 3

∞
(5.21)

where T is the translational-rotational temperature, k is the translational-rotational thermal

conductivity, Tv is the vibrational temperature, and kv is the vibrational thermal conductiv-

ity.

The uncertainty in this output due to 66 uncertain input parameters is determined.

These 66 parameters include collision integrals (A1
s−r and A2

s−r), reaction rates (ξf and ξb),

and freestream parameters (ρ∞ and V∞). These parameters are described in detail in Chapter

4. For this study, these input parameters are assumed to be aleatory and described by a

Gaussian distribution. These variables and the associated mean and standard deviations are

given in Table 5.1.

Statistics for the output are estimated through Monte Carlo sampling. To implement

this sampling, input samples are drawn from the corresponding input distribution. A CFD

simulation is then performed using these sample points and statistics are estimated for the

output. Because these samples are independent, the simulations are performed in parallel

using MPI. For the validation results, 6331 samples were used corresponding to an equal

number of CFD simulations. The convergence of the mean and variance estimate are found

in Figure 5.1. The sample mean is given by:

µ =
1

N

∑
s

yi (5.22)

while the sample variance is given by:
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Figure 5.1: Monte Carlo convergence of surface heating for average and variance for increas-
ing sample size.

S2 =
1

N − 1

∑
s

(y2
i − µ2) (5.23)

The square root of the sample variance is the standard deviation and can be used to calculate

a 95% confidence interval for the output, given by ±2 standard deviations around the mean

when N is large enough.

Because the statistics are based on a limited number of samples, the Monte Carlo

results require an error estimate so that the confidence level of the statistic predictions can

be quantified and a sufficient number of samples for the desired level of accuracy can be

chosen. For Monte Carlo sampling, the uncertainty in the statistic are quantified using a

distribution and the confidence level for the prediction is quantified using the variance of

this distribution. For Monte Carlo sampling, the statistics obeys a normal distribution with

a variance dependent on the number of samples. For the mean, the standard deviation for

this convergence distribution is given by [87]:

σN =
σ√
N

(5.24)

where σ is the underlying standard deviation of the the simulation objective. This standard

deviation is in turn estimated by the sample variance (S2) of the Monte Carlo results. Using
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this standard deviation estimate, a 95% confidence interval for the average prediction can

be established based on a two-σ bound, given as:

µL = µ− 2
σ√
N

(5.25)

µR = µ+ 2
σ√
N

(5.26)

where µ is the sample mean and σ is approximated by the sample standard deviation, S.

To provide bounds for the sample variance, its variance must also be estimated. For

independent, identically distributed samples, the variance of the sample variance can be

calculated as [88]:

V ar(S2) = σ4

(
2

N − 1
+
K

N

)
(5.27)

where K is the excess kurtosis of the distribution being sampled. The kurtosis can be

estimated using the sample kurtosis G, given as [89]:

G =
1
N

∑N
i=1(yi − ȳ)4(

1
N

∑N
i=1(yi − ȳ)2

)2 − 3 (5.28)

The 95% confidence interval for the variance prediction can be calculated as:

S2
L = S2 − 2σ2

√
2

N − 1
+
K

N
(5.29)

S2
R = S2 + 2σ2

√
2

N − 1
+
K

N
(5.30)

where σ2 is approximated by the sample variance, and K is approximated by the sample

kurtosis, G. Due to the importance of tail statistics in calculating the higher order moments

required in the Kurtosis, the sample Kurtosis can be unreliable for all but large numbers of

samples. However, in this context, a highly accurate Kurtosis is not required as it is scaled

by the number of samples point used for the Monte Carlo sampling, N . For hypersonic

applications, reasonably converged statistics require N to be on the order of 1000 [2,13]. For
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Table 5.2: Statistics based on Monte Carlo sampling using 6331 points.

Statistic Prediction Lower Limit Upper Limit
Mean 1.0401E-002 1.0393E-002 1.0409E-002

Variance 9.7517E-008 9.3979E-008 1.0106E-007
Standard Deviation 3.1228E-004 3.0656E-004 3.1789E-004

95% Confidence Interval ±6.0049% ±5.8994% ±6.1083%

the data set generated in this work, the sample Kurtosis of the output was 0.083 compared

to the 0 expected if the output obeyed an exact normal distribution. Hence, the effect of the

Kurtosis on the variance error estimate was small for this case.

Table 5.2 shows the estimate of the average and variance based on the Monte Carlo

results. Using the above formulas, the uncertainty in these statistics is also estimated and

given in Table 5.2 in the form of a 95% confidence interval on each of the statistics.

In addition to these statistics, the entire cumulative distribution function (CDF) of the

output is often desired. The CDF is the integral of the probability density function and

is useful for determining the percentiles of the distribution and characterizing the tails of

the distribution. In order to provide addition validation data, the CDF of the Monte Carlo

results is constructed and shown in Figure 5.2.

Using these validation results, the performance of the proposed gradient-based uncer-

tainty quantification strategies is assessed.

5.3 Linear Methods

The first gradient-based method tested for this problem is the first-order moment method.

For this method, the average is estimated by the output evaluated at the average of the

input parameters and the variance is given by the gradient evaluated at the average input

parameters multiplied by the standard deviation of the input parameters. The average and

variance estimates are given in Table 5.3 and compared with the Monte Carlo results. As the

table demonstrates, the moment method overestimates the variance and underestimates the

mean. For both statistics, the moment method produces estimates outside of the intervals
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Figure 5.2: CDF curve for Monte Carlo results based on 6331 sample points

produced by the Monte Carlo sampling. Despite this disagreement, the method produces a

variance estimate in the same range as Monte Carlo. For applications where rapid uncertainty

estimates are required, such as robust optimization, the moment method is likely sufficient

for this problem. The moment method is limited to predicting moments of the distribution,

such as the statistics and variance. In order to predict other statistics, such as quantiles or

a full CDF curve, linear extrapolation about the mean can be used. In order to test this

functional form, approximate function values using the input samples from the Monte Carlo

were calculated using equation (5.3) and statistics were predicted. The mean and variance

prediction from this linear extrapolation are also given in Table 5.3. In addition to predicting

specific statistics, an approximate CDF curve based on linear extrapolation is constructed.

This approximate CDF is plotted in Figure 5.3 and compared to the CDF from Monte Carlo

sampling. As the statistic predictions and CDF curve show, the linear approach does a

reasonable job approximating the upper part of the CDF curve but deviates significantly for

the bottom tail of the distribution. Although the results of the first-order moment method

and linear extrapolation should be identical in theory, in practice the two methods will
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Table 5.3: Statistics based on the moment method and linear extrapolation

Statistic Moment Linear Monte Carlo Monte Carlo
Method Extrapolation Lower Upper

Mean 1.0370E-002 1.0369E-002 1.0393E-002 1.0409E-002
Variance 1.3790E-007 1.3412E-007 9.3979E-008 1.0106E-007

Standard Deviation 3.7134E-004 3.6622E-004 3.0656E-004 3.1789E-004
95% Confidence Interval ±7.1616% ±7.0638% ±5.8994% ±6.1083%

Figure 5.3: CDF curve from linear extrapolation compared to CDF curve from Monte Carlo
sampling.

give different results due to the finite sample size used to acquire results from the linear

extrapolation model. As the number of sample points increases, the linear extrapolation

results will approach those of the moment method.

5.4 Regression

In order to improve upon the predictions of the moment method and linear extrapolation,

these simplified relationships are replaced with polynomial regression. The details of these
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regression models were given in Chapter 4. As was the case for the sensitivity analysis, the

regression is limited to first and second order. Because the coefficients in the regression

model are solved in a least-squares sense, there is no upper limit on the number of sample

points that can be used to construct the regression and only a minimum number of sample

points is required. Hence, the optimal number of training points for the regression must

first be determined. In order to assess the effect of the number of training points on the

regression predictions, the surrogate errors based on increasing numbers of training points

for a first and second order regression model were calculated. The surrogate error is calculate

based on the difference between the Monte Carlo function values and those predicted by the

surrogate at the same sample locations. For the results presented throughout, the RMS

surrogate error is used. The variation of this error versus the number of simulations used to

construct the regression is plotted in Figure 5.4 for both the first and second-order model.

Figure 5.5 shows the convergence of the statistic predictions for the model. A simulation

result in this context represents a function and gradient evaluation and provides d+ 1 pieces

of information, where d is the dimension of the problem.

From the plot, both models show non-monotone variation in the error and the error does

not appear to converge as the number of function/gradient evaluations (or training points)

is increased. Additionally, the convergence of the statistics also shows erratic variation. In

practice, the Monte Carlo results are not available, so these statistic predictions are the only

measure of the solution that can be used to evaluate the number of training points needed

for an accurate model. For the first-order model, the error initially drops rapidly, before

settling into an oscillatory behavior. The first minimum in the error occurs for 10 sample

points. Based on the convergence of the statistics, 10 function/gradient evaluations is also

the point where the variance prediction settles into a range typical of the large number

of sample points. Based on these observations, 10 will be the number of training points

used throughout for the first order model. For the second order model, the variation of the

error is slight with a minimum at 136 training points. Based on the statistic predictions,

136 training points also gives the most accurate variance prediction, although the variance

prediction from 68 training points is more typical of the value seen for larger number of
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Figure 5.4: Variation of surrogate error for regression model as number of training points
increases.

Figure 5.5: Variation of mean (left) and variance (right) predictions for regression model as
number of training points increases.
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Table 5.4: Statistics based on first (N=10) and second order (N=68) polynomial regression.

Statistic First Second Monte Carlo- Monte Carlo-
Order Order Lower Upper

Mean 1.0497E-002 1.0370E-002 1.0393E-002 1.0409E-002
Variance 8.8273E-008 8.6692E-008 9.3979E-008 1.0106E-007

Standard Deviation 2.9711E-004 2.9444E-004 3.0656E-004 3.1789E-004
95% Confidence Interval 5.6610% 5.6786% 5.8994% 6.1083%

training point. Because of this fact and because over-determining the system by a factor

of two is indicated in the literature as a good rule of thumb for regression models [20], 68

training points will be used for the second order regression models moving forward.

Based on these results, the statistic predictions of the first order model and second model

are examined. Table 5.4 shows the mean and variance prediction for these two regression

models. As the results show, both regression models give more accurate statistic predictions

than the linear extrapolation based models. While the linear model gives a slightly improved

variance prediction, the second order model produces more accurate predictions in general,

showing better agreement for the mean value and reasonable variance predictions.

In addition to statistic predictions, an approximate CDF for both models is constructed

and compared to that of Monte Carlo sampling. These CDF curves are plotted in Figure

5.6. As the plot shows, the P = 1 regression gives a CDF curve shifted to the right but

with a generally correct spread. The P = 2 regression on the other hand matches the CDF

from Monte Carlo well over the entire curve with slight departures near the upper tail of the

distribution.

5.5 Kriging Results

In order to improve on the regression predictions, a Kriging model is used to represent

the simulation output. Unless specified otherwise, a gradient-enhanced Kriging model is

used throughout this chapter for aleatory uncertainty quantification. The performance of

the Kriging model is assessed based on the error of the Kriging approximation and the
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Figure 5.6: CDF prediction based on P=1 (N=10) and P=2 (N=68) regression models
compared with Monte Carlo CDF.

statistic predictions. Because the number of training points required for an accurate Kriging

model increases rapidly as the dimension increases, the number of variables over which the

Kriging model is constructed must be reduced. This reduction is achieved by leveraging

the information provided by the sensitivity analysis presented in Chapter 4. For this work,

two dimension reduction techniques will be explored. For the first method, the output of

the simulation is assumed to be only a function of the most sensitive variables and low

importance variables are ignored. For the second method, the regression and Kriging models

will be combined. For this method, a low-order regression model is first constructed over all

of the input variables. Then, the surrogate is improved by creating a Kriging model based

on the difference between the training data and the regression model. This Kriging model

is based only on the most sensitive variables. In this way, a low-order model is used for the

low importance variables and the Kriging model is used for the most sensitive variables.

112



5.5.1 Variable Truncation Results

From the global sensitivity analysis presented in Chapter 4, it was shown that the majority

of the uncertainty is the result of a relatively small number of variables. Because of this fact,

the dependence of the output on the lower importance variables can be neglected, allowing for

the creation of a Kriging model with respect to the variables contributing the majority of the

uncertainty. In order to demonstrate the performance of this strategy, three properties of the

Kriging model are assessed. First, the error encountered in neglecting a number of the input

variables is quantified. Second, because the Kriging model must accurately approximate the

design space with a limited number of training points, the effect of number of training points

on surrogate accuracy is examined. Third, in order to reduce the required number of points,

gradient information is incorporated into the training of the Kriging model. The effect that

the incorporation of gradients has on the accuracy of the model is also be quantified.

To quantify the effect of neglecting variables, the accuracy of the surrogate is measured.

The performance of the model is assessed based on predictions of the average and variance,

and the overall error of the surrogate. The error of the surrogate is calculated by sampling

the Kriging model at the same points used for the Monte Carlo sampling and measure the

difference between the Kriging predictions and the Monte Carlo results. Based on the global

sensitivity analysis, variables are chosen such that a specified percentage of the uncertainty is

accounted. In Chapter 4, a global sensitivity analysis was performed using both exhaustive

Monte Carlo analysis as well as an inexpensive regression-based approach. In practice, the

exact global sensitivity analysis based on Monte Carlo is not available, so results will be

presented based on the exhaustive Monte Carlo global sensitivity analysis as well as the

second-order regression based approach.

For the variable truncation based on the exhaustive Monte Carlo global sensitivity

analysis, the Kriging model was created for sets of variables accounting for 80%, 85%, 90%

and 95% of the total variance. This necessitated creating Kriging models in 4,6,9 and 15

dimensions. The variables used to create the Kriging model are given in Table 5.5. For the

variable truncation method, an ordinary Kriging model is used throughout.

The Kriging model itself was created based on 68 simulation results including function
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Table 5.5: Variables for the Kriging model based on Monte Carlo global sensitivity analysis

Rank Variable Uncertainty Contribution Total Contribution
1 ρ∞ 0.60055 0.60055
2 O2 +O � 2O +O (f) 1.0610× 10−1 0.70665
3 NO +O � N +O +O (b) 5.1914× 10−2 0.75857
4 O2-N2 (k=1) 4.2121× 10−2 0.80069
5 N2-N2 (k=1) 3.1617× 10−2 0.83231
6 O2 +O2 � 2O +O2 (b) 2.1621× 10−2 0.85393
7 N2 +O � NO +N (f) 2.0647× 10−2 0.87457
8 N2-N2 (k=2) 1.9019× 10−2 0.89359
9 O-N2 (k=2) 1.3874× 10−2 0.90747
10 N2 +O � NO +N (b) 1.2155× 10−2 0.91962
11 NO +O � N +O +O (f) 8.3596× 10−3 0.92798
12 NO-N2 (k=1) 7.6676× 10−3 0.93565
13 O2 +O � 2O +N (b) 7.4280× 10−3 0.94308
14 V∞ 4.8401× 10−3 0.94792
15 O2 +N2 � 2O +N2 (f) 3.5848× 10−3 0.95150

and gradient values. Because gradient values are used in the training of the model, the

dimension reduction was also applied to remove the unnecessary derivative values from the

training data. Table 5.6 shows the error of the Kriging predictions for models with increasing

dimension. Included in this table is the fraction of the variance accounted for by the subset

of variables. This fraction is given by the sum of the square of the correlation coefficient for

each subset of variables. The effect of increasing the dimension could have mixed effects on

the accuracy of a general Kriging model. Although increasing the dimension allows for more

variation to be accounted for when predicting function values, the increase in dimension when

combined with a fixed number of training points reduces the sampling density, indicating

that the quality of the Kriging model may not improve as dimension increases. However, for

a gradient-enhanced model, as the dimension increases, more training data is introduced to

the model, alleviating the issue of decreasing function density (although not eliminating it).

As Table 5.6 shows, the error in the predictions steadily decreases as the dimension of the

Kriging model increases to account for more input variables. In order to test the effect of

gradients on this dimension expansion, a non-gradient enhanced model was also created using
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Table 5.6: Surrogate error for gradient-enhanced Kriging model as dimension increases

Dimension Variance Fraction RMS Error
4 8.0069E-001 3.3045E-004
6 8.5393E-001 2.0711E-004
9 9.0747E-001 1.6189E-004
15 9.5150E-001 6.8632E-005

Table 5.7: Surrogate error for function-only Kriging model as dimension increases

Dimension Variance Fraction RMS Error
4 8.0069E-001 3.4776-004
6 8.5393E-001 2.5753E-004
9 9.0747E-001 2.6424E-004
15 9.5150E-001 1.3642E-004

only the function values at the same 68 training points. Table 5.7 shows the error resulting

for the function-only Kriging model as dimension increases. As the table shows, the error

generally decreases as the dimension expands, indicating that the increased flexibility of the

model to account for more input variables outweighs the decrease in sampling density for this

combination of training points and dimension. However, when compared with the gradient-

enhanced Kriging model, the error for the function-only model reduces less significantly as

the dimension increases, and the decrease in error is non-smooth, actually increasing for the

9 dimensional case. This fact indicates that the function-only model may be moving into

a regime where the amount of training data is insufficient for the design space and that

the addition of gradient-information significantly reduces the problem of declining sample

density for this test case.

In addition to measuring the error, statistic predictions based on Kriging models of

increasing dimension were calculated. These statistic predictions are given in Table 5.8.

Because the global sensitivity analysis used to truncate the variables also provides an estimate

for the percentage of the variance these variables contribute to the total uncertainty, the

Kriging results can also be corrected based on this fraction to predict the total output
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Table 5.8: Statistic predictions for gradient-enhanced Kriging model as dimension increases

Dimension Mean Variance Variance Fraction Corrected Variance
4 1.0408E-002 1.8544E-007 8.0069E-001 2.3160E-007
6 1.0324E-002 8.5423E-008 8.5393E-001 1.0004E-007
9 1.0301E-002 7.9160E-008 9.0747E-001 8.7232E-008
15 1.0416E-002 9.4618E-008 9.5150E-001 9.9441E-008

Monte Carlo Results Mean Variance
Mean 1.0401E-002 9.7517E-008

Lower Bound 1.0393E-002 9.3979E-008
Upper Bound 1.0409E-002 1.0106E-007

uncertainty for the full dimension model. This corrected variance is computed by simply

dividing the variance predicted by the Kriging model by the fraction of the uncertainty

accounted for by the choice of variables. The corrected variance is also given in Table 5.8.

As the table shows, the statistic predictions vary more widely than the surrogate error,

which decreases monotonically. While the low dimension case predicts the average accurately,

the variance prediction is nearly double the appropriate value. As the dimension increases,

while the variance predictions improve, the average prediction begins loosing accuracy. The

15 dimensional case is the only scenario in which both statistics are reasonably predicted.

It should be noted that with the exception of the 4 dimensional case, the corrected variance

seems to provide an improved variance estimate. Because the Kriging model is built on a

subset of variables accounting for a specified fraction of the variance, this corrected value

will only provide improved estimates when the output variance based on the Kriging model

is underestimated, as is the case for all dimensions above 4.

With the dimension reduction examined, the effect of number of training points is exam-

ined. This examination is performed based again on surrogate error and statistic predictions.

For this test, gradient-enhanced Kriging models were created using training datasets of in-

creasing sizes. These models were based on the 15 variables identified by the Monte Carlo

based global sensitivity analysis as accounting for 95% of the variance, given in Table 5.5. In

addition to creating gradient-enhanced Kriging models, function-only models were created

to again examine the effect of including gradients as the number of training points increases.
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Figure 5.7: Variation of surrogate error as number of training points increases for gradient-
enhanced and function-only Kriging models

The error as the number of training points increases is plotted in Figure 5.7 for both the

gradient-enhanced and function-only models. As the figure shows, the gradient-enhanced

model consistently produces a more accurate surrogate than the function-only model. Addi-

tionally, the error for the gradient-enhanced model quickly levels off while the function-only

model shows large variation over all but the largest numbers of training points. This varia-

tion may indicate that the sampling density for the function-only model may not be sufficient

until a large number of points is reached.

Figure 5.8 shows the average and variance predictions as the number of training points

increases for both the gradient-enhanced and function only model. As the figure demon-

strates, the average predictions for the gradient-enhanced model show less variation and

have better agreement with the Monte Carlo results when compared to the function-only

results. For the variance, both models show discrepancies with the Monte Carlo results but

the predictions for gradient-enhanced model show less variation as the number of training

points increases, indicating some level of convergence for the model training.
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Figure 5.8: Variation of mean (Left) and variance (Right) as number of training points
increases for gradient-enhanced and function-only Kriging models

In order to test the variable truncation technique under a more realistic set of circum-

stances, the correlation coefficients built from the regression-based global sensitivity analysis

are used to identify the variables over which to create the Kriging model. The global sensi-

tivity analysis was performed using the same 68 training points used to construct the Kriging

model. Based on the function and gradient values for these points, a second order polyno-

mial regression was created and correlation coefficients were computed using this functional

representation. Hence, this method only relies on 68 function/gradient evaluations for both

the sensitivity analysis and uncertainty quantification. The variables for this test were cho-

sen to account for 80%, 85%, 90% and 93% of the uncertainty. The last percentage was

altered because the regression-based global sensitivity analysis could not account for 95% of

the uncertainty in a dimension comparable to the Monte Carlo global sensitivity analysis.

These uncertainty percentages required Kriging models to be constructed over 5, 7,10 and

17 dimensions. The variables used to construct these models are given in Table 5.9.

Based on the regression-based global sensitivity analysis and variable truncation, the

performance of Kriging models using these sets of variables was again assessed using surrogate

error as well as statistic prediction. The statistic predictions and surrogate error are given

in Table 5.10. As the table shows, the error steadily decreases as the dimension of the

surrogate expands, indicating that the regression-based global sensitivity analysis identifies

the appropriate variables in which to expand the Kriging model. However, the regression-
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Table 5.9: Variables for the Kriging model based on regression global sensitivity analysis

Rank Variable Uncertainty Contribution Total Contribution
1 ρ∞ 0.56879 0.56879
2 O2 +O � 2O +O (f) 1.0002× 10−1 0.66882
3 O2 +O2 � 2O +O2 (b) 5.7669× 10−2 0.72649
4 NO +O � N +O +O (b) 4.0057× 10−2 0.76654
5 N2-N2 (k=1) 3.7461× 10−2 0.80400
6 O2-N2 (k=1) 3.3299× 10−2 0.83730
7 N2-N2 (k=2) 2.1163× 10−2 0.85847
8 O-N2 (k=2) 1.7395× 10−2 0.87586
9 V∞ 1.3497× 10−2 0.88936
10 O2 +O � 2O +O (b) 1.1734× 10−2 0.90109
11 NO-N2 (k=1) 9.0220× 10−3 0.91011
12 O2 +N2 � 2O +N2 (f) 5.5034× 10−3 0.91562
13 NO +O � N +O +O (f) 5.1194× 10−3 0.92074
14 NO +N2 � N +O +N2 (b) 2.9103× 10−3 0.92365
15 NO +O � O2 +N 2.6108× 10−3 0.92626
16 NO +N � N +O +N (b) 2.0229× 10−3 0.92828
17 NO +N � N +O +N (f) 1.9061× 10−3 0.93019

based global sensitivity analysis fails to reduce the error as significantly as the Monte Carlo

based truncation, due to discrepancies between the two sensitivity analyses. As the dimension

of the models increase, the statistic predictions again show wide variation as more simulation

results are included. However, the predictions resemble those from the models produced

using the Monte Carlo sensitivity analysis, and the models in 10 and 17 dimensions give

reasonable predictions for both the mean and variance. Additionally, the corrected variance

provide good estimates for the full dimensional variance for all but the lowest dimension.

Finally, to examine the prediction of statistics beside the mean and variance based on a

Kriging model, the CDF of the output based on the 17 variables identified in Table 5.9 was

constructed using 68 training points. This CDF is plot in Figure 5.9 along with the CDF

from the Monte Carlo results. The CDF curve produced by the Kriging model matches

the CDF from the Monte Carlo results well, falling somewhere between the first and second

order regressions in terms of quality of fit. This fact is in spite of the fact that a majority of

the input variables have been ignored within the construction of the Kriging model.
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Table 5.10: Statistic predictions/surrogate error for gradient-enhanced Kriging model as
dimension increases based on regression global sensitivity analysis

Dimension Mean Variance RMS Variance Corrected
Error Fraction Variance

5 1.0237E-002 9.7286E-008 2.7561E-004 0.8040036369 1.2100E-007
7 1.0309E-002 8.3252E-008 1.8621E-004 0.8584660143 9.6978E-008
10 1.0406E-002 8.7731E-008 1.3462E-004 0.9010918226 9.7361E-008
17 1.0446E-002 1.0227E-007 9.8999E-005 0.9301866679 1.0994E-007

Monte Carlo Results Mean Variance
Mean 1.0401E-002 9.7517E-008

Lower Bound 1.0393E-002 9.3979E-008
Upper Bound 1.0409E-002 1.0106E-007

Figure 5.9: CDF prediction for Kriging model based on 68 training points in 17 dimensions
compared with Monte Carlo CDF.
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5.5.2 Regression/Kriging results

Instead of merely discarding the variables identified as ”low importance”, these variables

can be accounted for in a low order manner, reserving the Kriging model for only the most

important variables. This low order model is incorporated into the Kriging model by using

an explicitly defined mean function. For an explicitly defined mean function, the output

predictions are assumed to be the sum of a zero mean Gaussian process and the mean

function.

y(x) = m(x) +N(0, K(x, x′)) (5.31)

Hence, the Kriging model is created based on the difference between the measured training

data and the prediction of the training data from the mean function. The explicit mean

function used here is the second-order regression used in Chapter 4 for the global sensitivity

analysis. This regression is gradient-enhanced and includes all of the input variables in the

code. Using this mean function, the residual between the actual function and gradient values

with the regression-predicted values is used to construct the surrogate model.

 R(x)

∇R(x)

 =

 y(x)−m(x)

∇y(x)−∇m(x)

 = N(0, K(x, x′)) (5.32)

To test the ability of this method to account for the low-importance variables, the

dimension was again increased based on the global sensitivity analysis and the surrogate

error and statistic predictions were measured. The variables for the Kriging model are

identified in Table 5.9 and the models again range from 5 to 17 dimensions. It should

be noted that the choices of which parameters to treat as important were based on the

regression-based global sensitivity analysis. This global sensitivity analysis uses the same

mean function that is used to enhance the Kriging model. Both the sensitivity analysis and

Kriging model are built from the same 68 function/gradient evaluations and the regression

is second order. In Table 5.11, the statistic predictions and surrogate error for gradient-

enhanced regression/Kriging models are given as the dimension is increased. For comparison,

the results of Table 5.10 are repeated. As the results demonstrate, the surrogate error for the
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Table 5.11: Statistic predictions/surrogate error for gradient-enhanced Kriging model com-
bined with regression mean function

Dimension Mean -Reg Mean Trunc Variance Reg. Variance Trunc.
5 1.0361E-002 1.0237E-002 8.9684E-008 9.7286E-008
7 1.0396E-002 1.0309E-002 9.5146E-008 8.3252E-008
10 1.0412E-002 1.0406E-002 9.3201E-008 8.7731E-008
17 1.0384E-002 1.0446E-002 9.2394E-008 1.0227E-007

Dimension Error Reg. Error Trunc.
5 1.1250E-004 2.7561E-004
7 9.6692E-005 1.8621E-004
10 9.4842E-005 1.3462E-004
17 9.3034E-005 9.8999E-005

Monte Carlo Results Mean Variance
Mean 1.0401E-002 9.7517E-008

Lower Bound 1.0393E-002 9.3979E-008
Upper Bound 1.0409E-002 1.0106E-007

combined regression/Kriging model is consistently lower than the corresponding model based

on variable truncation. This decrease in error is more pronounced for the lower dimensions

and disappears once the highest dimension is reached. As a result of this decreased error,

the statistic predictions for the lower dimensions, in particular the mean predictions, are

improved by incorporating the regression model.

In addition to examining individual statistic predictions, a CDF curve based on the

prediction of the 17 dimensional Kriging model using the regression mean function was

created. This CDF is plotted in Figure 5.10. As the plot demonstrates, the CDF produced

by the combined Kriging/regression model matches the Monte Carlo results incredibly well,

producing the best fit of all the methods. It should be noted that the P = 2 regression

that is enhanced by the Kriging model already produced a relatively accurate CDF curve;

however, the Kriging/regression approach is able to improve the predicted CDF toward the

upper tail of the distribution.
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Figure 5.10: CDF prediction for P = 2 regression enhanced with 17 dimensional Kriging
model using 68 function/gradient evaluations.

5.6 Method Comparison

In order to directly compare the various methods presented in this section, the statistic

predictions from each method are summarized. In addition to comparing the statistic pre-

dictions, the number of simulations required for each statistic prediction is also compared,

such that possible trade-offs between accuracy and expense can be judged. Tables 5.12 and

5.13 contain a summary of the results from the various strategies employed in this chapter

and compares these to the Monte Carlo results. For the regression and Kriging methods, a

single optimal result is used for each. A description for each of the methods compared in

Tables 5.12 and 5.13 is given below:

• Moment Method: First order moment method using a single function/gradient evalu-

ated at mean.

• Linear Extrapolation: Inexpensive Monte Carlo based on linear extrapolation about

mean value.
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Table 5.12: Summary of statistic predictions for gradient-based uncertainty quantification
strategies

Method Mean Variance 95% CI F/G Cost
Moment Method 1.0370E-002 1.3790E-007 7.1616% 1

Linear Extrapolation 1.0369E-002 1.3412E-007 7.0638% 1
P=1 Regression 1.0497E-002 8.8273E-008 5.6610% 10
P=2 Regression 1.0370E-002 8.6692E-008 5.6786% 68

Kriging-Var. Trunc.-17D 1.0446E-002 1.0227E-007 6.1228% 68
Kriging-Regression-17D 1.0384E-002 9.2394E-008 5.8543% 68

Monte Carlo 1.0401E-002 9.7517E-008 6.0049 % 6331 (f only)

• P=1 Regression: Inexpensive Monte Carlo based on first order polynomial regression

using 10 function/gradient evaluations.

• P=2 Regression: Inexpensive Monte Carlo based on second order polynomial regression

using 68 function/gradient evaluations.

• Kriging-Variable Truncation-17D: Sampling based on Gradient-enhanced Kriging model

of top 17 parameters using 68 function/gradient evaluations. Important parameters

identified using global sensitivity analysis based on P=2 polynomial regression.

• Kriging-Regression-17D: Sampling based on P = 2 regression augmented with Gradient-

enhanced Kriging model over the top 17 parameters using 68 function/gradient eval-

uations. Important parameters again identified using global sensitivity analysis based

on P=2 polynomial regression.

As the table shows, all the methods examined for this work produce reasonable approx-

imations for the mean, matching the Monte Carlo results to within 1% of the exact value.

For the variance, the Kriging models produce the best estimates followed by the regression

models. The linear methods produce the worst predictions, significantly over estimating

the variance. Given the low computational cost associated with these linear methods, these

methods may be sufficient for optimization under uncertainty methods, where the uncer-

tainty quantification is merely a step within a broader optimization; however, even for these
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Table 5.13: Error in statistic prediction for gradient-based uncertainty quantification strate-
gies

Relative Error of Average Relative Error of Variance
Moment Method 0.29% 41.41%
Linear Extrapolation 0.30% 37.53%
P=1 Regression 0.92% 9.48%
P=2 Regression 0.29% 11.10%
Kriging-Variable Truncation-17D 0.44% 4.87%
Kriging-Regression-17D 0.16% 5.25%

applications, a P = 1 gradient-enhanced regression model may be preferable as the cost

can be varied to match the computational budget, with increased function/gradient eval-

uations improving the variance predictions. For accurate variance predictions, the Kriging

models are the clear choice, producing variance predictions just outside the error bounds

of the Monte Carlo result. Between the variable truncation method or combined Kriging-

Regression method, the optimal strategy is unclear from these results with each method

giving a superior estimate for one of the statistics. In this case, the CDF curves should also

be compared to gauge the prediction of distribution quantiles given by each method. This

comparison is most easily made using a quantile-quantile (QQ) plot where the quantiles pre-

dicted by each of the Kriging methods are plotted against the quantiles of the Monte Carlo

results. The closer this plot approaches a line of slope 1, the better the agreement between

the Kriging predictions and the Monte Carlo results.

As Figure 5.11 shows, although both method perform reasonably well, the Kriging-

regression method gives predictions most in agreement with the Monte Carlo results. From

a cost point of view, the Kriging-regression approach requires the same number of func-

tion/gradient evaluations, making the increased accuracy well worth the extra complexity

required for Kriging. Comparing the Kriging-regression approach to the variable trunca-

tion approach, the Kriging-regression approach does have a lower limit for the number of

function/gradient evaluations required to construct the model as a regression must first be

constructed. For situations where this lower limit is unacceptably high, variable truncation
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Figure 5.11: QQ Plot for Variable truncation Kriging and regression/Kriging models with
the Monte Carlo results. Line with Slope 1 indicates perfect agreement with Monte Carlo.

method may be preferable; however, given the results presented in Figure 5.7, it is likely

that the lower limit required for regression may be a good rule of thumb for achieving an

accurate Kriging model even when no regression model is used.

In Table 5.12, the cost of the methods is compared in terms of function and gradient

evaluations. Comparing on this basis allows more general conclusions to be drawn from

these results. When comparing these methods for a specific application, the dimension of

the uncertainty problem as well as the cost of the adjoint solution relative to the primal

solution. The scaling of these methods as the dimension increases has been examined within

the main body of this chapter. For the linear methods requiring a single flow and adjoint

solution, the total computational cost was equal to 2.45 cpu-hours with the adjoint solution

solving approximately 40 times faster than the flow solution. For the Monte Carlo sampling,

6331 function evaluations were required. Because multiple flow solutions were required for

this sampling, the flow solution using mean parameter values can be used as the starting

point for additional flow solutions using off-mean parameters. Using this mean solution as
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Table 5.14: Cost comparison for gradient-based uncertainty quantification strategies

Simulation Cost per Total Ratio to
results simulation (hrs) Cost (hrs) MC cost

Moment Method 1 2.45 2.45 2077
Linear Extrapolation 1 2.45 2.45 2077

P=1 Regression 1 0.861 11.01 462
P=2 Regression 68 0.861 60.97 83

Kriging-Variable Truncation-17D 68 0.861 60.97 83
Kriging-Regression-17D 68 0.861 60.97 83

Monte Carlo Sampling 6331 0.804 5090 1

the starting point eliminated a portion of the start-up transient for the other flow solutions,

reducing the time required for a fully converged solution from 2.39 to 0.804 hours on average.

Hence, the total cost for the Monte Carlo sampling was 5090 cpu-hours. To acquire the

function/gradient values used to train the regression and Kriging models, multiple flow and

adjoint solutions were required. Utilizing the same start-up procedure used for the Monte

Carlo sampling, the average time for a flow solution was again 0.804 hours and the cost

of an adjoint solution remained unchanged at 0.058 hours. Based on these facts, the ratio

of flow solution to adjoint is reduced to 14 when multiple flow and adjoint solutions are

computed. Including to cost of acquiring the initial flow solution, the cost associated with

acquiring the 10 and 68 function/gradient values used in the regression and Kriging models

is 11.01 cpu-hours and 60.97 cpu-hours respectively. Neglected in these costs is the cost

associated with building the regression or Kriging model. For this case (and for most complex

simulations), the cost associated with building these models is insignificant compared with

the cost associated with generating the training data. The cost comparison is summarized

in Table 5.14. Based on these computational costs, the cost savings for these methods range

from over a factor of 2000 for the linear methods to a factor of 83 for the Kriging model

and second order regression. Depending on the desired level of accuracy, it is clear that the

gradient-based methods examined in this chapter show great potential in reducing the cost

associated with aleatory uncertainty quantification.
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5.7 Summary

In this chapter, gradient-based strategies for aleatory uncertainty quantification were pre-

sented. At the heart of these strategies are a surrogate models that can be built from a small

number of simulation results and can inexpensively approximate the output of a simulation,

serving as a basis for inexpensive Monte Carlo sampling. These surrogates ranged in com-

plexity from simple linear extrapolation to polynomial regression and Kriging models. To

reduce the cost associated with the construction of these surrogate models as the number

of input parameters expanded, gradient values were incorporated into the training of the

surrogate, providing additional information for a reduced cost relative to a full simulation

result. These strategies were tested using the 5km/s flow test case and the output uncer-

tainty resulting from 66 uncertain model parameters was quantified. Compared with the

results from traditional sampling methods, the gradient-based strategies presented in this

chapter were able to accurately approximate the statistics of the output using a fraction of

the flow results required for Monte Carlo sampling.
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Chapter 6

Epistemic Uncertainty Quantification

Results

In this chapter, gradient-based approaches for epistemic uncertainty quantification are pre-

sented. Because of the expense associated with traditional methods of episetmic uncertainty,

a subset of the input variables used in Chapter 5 is chosen and treated as epistemic. Using

this variable subset, the output interval for a simulation is predicted using a linear surrogate

and an optimization approach. The performance of these methods is measured by comparing

against the bounds produced by exhaustive sampling.

6.1 Gradient-based Epistemic Uncertainty Quantifica-

tion

For epistemic uncertainty, the goal is to determine the interval of the output given intervals

for the input parameters. As was the case with aleatory uncertainty, this output interval can

be approximated by assuming a functional form of the output over the design space. Using

a linear functional representation, the output interval width can be approximated using a

moment-method type formula, given as:
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yo = f(xo) (6.1)

∆y =
d∑
i=1

∣∣∣∣ ∂f∂xi∆xj

∣∣∣∣ (6.2)

where xo represents the design variables at the center of the input interval and yo repre-

sents the center of the output interval. Because epistemic uncertainties are often specified

using a plus/minus, xo and yo can be thought of as the unperturbed values. Although these

values are analogous to mean values for the aleatory case, the use of mean implies an associ-

ated probability distribution function so the term unperturbed will be used throughout this

section.

For cases in which the linear approximation is insufficient, the determination of the out-

put interval can be recast as a bound-constrained optimization problem. The optimization

problem is specified as: given a set of intervals for the input parameters, determine the min-

imum and maximum possible output values. This problem statement gives two optimization

problems, given in equation (6.3).

ymin = min
x∈I

f(x) (6.3)

ymax = max
x∈I

f(x) (6.4)

Here, the input intervals are given by the space I and the minimum and maximum values

are determined based on inputs in this space. The process by which these minimum and

maximum values are determined can vary widely in expense and complexity. The most

straight-forward method for determining the extrema is by exhaustive sampling of the func-

tion. Typically, uniform Latin hypercube sampling is performed using a fixed number of

samples, usually 3, for each variable. For this method, the required number of samples

grows exponentially fast as the number of input parameters is increased, with the formula

given as N = 3d. For complex simulations, this exhaustive sampling is prohibitively expen-

sive. As was the case with aleatory uncertainty, the simulation output can once again be

replaced with a gradient-enhanced surrogate model and the Latin hypercube sampling can
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be performed on this surrogate. As was discussed previously, the expense associated with

these surrogate models increases dramatically with dimension; hence, for large numbers of

epistemic variables, the expense of a surrogate based approach may become prohibitively

large.

In addition to exhaustive sampling approaches, more sophisticated optimization meth-

ods can be applied directly to the problems posed in equation (6.3). In particular, this

work will focus on gradient-based methods for optimization as these method can scale to

large input dimension without an exponential increase in cost. The optimization method

used for this work is the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-

rithm [90]. The L-BFGS algorithm is a quasi-Newton solver, meaning that only the function

and gradient at each iteration is required and an approximate Hessian is constructed based

on the convergence history of the solver. Using this approximate Hessian, Newton’s method

is used to drive the gradient to zero. For a BFGS method, the design space is approximated

at iteration k as [85]:

mk(p) = yk +∇yTk p+
1

2
pTBkp (6.5)

where the subscript k indicates current iteration values, Bk is the approximate Hessian and

p represents the search direction. With this functional form, the direction of the minimum

location is given by:

pk = −Bk∇yk (6.6)

With the search direction determined, a line search is performed in this direction to

determine a step size that gives a sufficient decrease in the function. The approximate Hessian

is updated at each iteration based on the requirement that the new approximate Hessian

Bk+1 must accurately predict the difference between the current gradient value ∇yk+1 and

the previous gradient ∇yk when used in a Taylor series approximation. The exact details

of the construction of this approximate Hessian can be found in Reference [85]. For the

limited-memory BFGS algorithm, this approximate Hessian is never explicitly constructed

and the effect of the approximate Hessian is built up using only a limited number of previous
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gradient values. The limited storage requirements of this method make it particularly suited

for high dimensional problems.

The main drawback of gradient-based optimization is that the methods are inherently

localized in nature. For epistemic uncertainty propagation, the global maximum and min-

imum are required. For this work, the localized nature of gradient-based optimization did

not prove to be a constraint as the optimization results were in agreement with the results

of exhaustive sampling, often located at the bounds of the design space. For problems where

gradient-based optimization is insufficient, a global optimization method must be employed.

Popular global optimization methods include genetic algorithms, pattern searches, Monte-

Carlo sampling and swarm-based algorithms. Global optimization methods typically require

a large number of function evaluations. In light of this drawback, efficient global optimiza-

tion is an area of active research. One such efficient global optimization technique often used

in CFD is based on the previously outlined Kriging model [29, 31, 33]. Although no results

will be shown using this method, the method will be outlined due to its close relation to the

other techniques outlined in this chapter.

The process of Kriging-based global optimization is given by the following steps. This

process is outlined only for minimization as the case of maximization can be found by

reversing the sign on the function. First, a handful of function evaluations are performed and

a Kriging surface is constructed based on these results. Second, based on the Kriging surface,

promising candidate locations for the minimum value are determined. Finally, additional

function evaluations are performed at these candidate locations and a new Kriging surface is

constructed with these new function values added to the surrogate training data. This process

is repeated until a termination criteria is met, typically a relative convergence, gradient norm

or maximum function evaluation criteria.

An effective way of determining promising candidate locations is based on the underlying

Gaussian process representation of the Kriging surface. Because the Kriging surrogate is

stochastic, function predictions have an associated variance. Hence, the surrogate predictions

have an associated uncertainty representing the accuracy of the surrogate at a particular

location. For optimization applications, this variance, along with the mean predictions,
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can be used to determine the location in the design space with the highest probability of

containing a new minimum value. This criteria is known as the expected improvement (EI)

method and is given by the following formula [29]:

EI(x) =

(ymin − y∗(x))Φ
(
ymin−y∗(x)

s(x)

)
+ sxφ

(
ymin−y∗(x)

s(x)

)
if s(x) > 0,

0 if s(x) = 0

(6.7)

where ymin is the minimum value from the previous optimization iteration, y∗(x) is the mean

prediction from the Kriging model, s(x) is the Kriging standard deviation prediction, Φ is

the normal cumulative distribution function and φ is the normal probability density function.

As the formula shows, the EI criteria contains two terms. The first term is proportional to

the mean Kriging prediction and grows when the mean prediction is less than the current

minimum value. The second term is proportional to the variance of the Kriging prediction

and grows for x values away from existing sample points. Hence, the EI criteria maintains a

balance between a local search, where points around the minimum of the surrogate model are

added, and a global search, where points are added in unexplored areas of the design space.

The candidate locations are the points in the design space where the expected improvement

function is maximized. Because this maximization is performed on the Kriging model, any

global optimization technique can be used. In previous works, genetic algorithms have been

used to determine the location with highest expected improvement [29]. Obviously, because

this optimization technique is dependent on the construction of a Kriging model, gradient

information can easily be incorporated into the training of the surrogate, improving the

accuracy of the Kriging surface [33].

6.2 Problem Statement and Validation Results

In order to test the proposed epistemic uncertainty quantification strategies, the output

interval for integrated surface heating for the 5km/s flow is determined. For convenience,

this objective is repeated here:
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L = −
∫
∂Ω

(k∇T · ~n+ kv∇Tv · ~n) dA
1
2
ρ∞V 3

∞
(6.8)

where T is the translational-rotational temperature, k is the translational-rotational thermal

conductivity, Tv is the vibrational temperature, and kv is the vibrational thermal conductiv-

ity.

The tradition method for quantifying epistemic uncertainty is Latin Hypercube sam-

pling. This sampling is performed using a fixed number of samples (∼ 3) in each direction

(with a total number of samples increasing as 3d with d representing the number of epistemic

variables). Due to the expense of sampling approaches, the dimension for this problem is re-

duced relative to the aleatory uncertainty problem presented in Chapter 5. For the purposes

of validation, the set of 66 variables used for the aleatory uncertainty problem is reduced to

a set of 8 variables for the epistemic problem. Limiting the validation to 8 variables allowed

the output interval to be computed in a cost equivalent to that of an aleatory problem. Using

3 sample points in each direction, as indicated in Reference [15], the choice of 8 epistemic

variables requires 6, 561 simulation results to provide the appropriate interval, a cost similar

to the 6, 331 results used to validate the aleatory results. The choice of which 8 parameters

to include in the epistemic study was motivated by both theoretical and practical concerns.

Of the 66 parameters used in the sensitivity analysis and aleatory uncertainty quantification,

the parameters corresponding to the collision integrals and chemical kinetics model are most

accurately described by epistemic uncertainty due to their experimental nature and the lack

of information in the literature regarding the distribution of these values.

In addition to this insight, the set of variables was further reduced based on the solver

robustness. Because of the large uncertainty in the chemical kinetics model, the convergence

of the solver will often stall for certain combinations of reaction parameters far from their

mean values. For the Monte Carlo sampling used to validate the aleatory uncertainty, the

parameter combinations far from the mean occur rarely due to the assumed Gaussian nature

of the uncertainty. When this assumption is relaxed for the case of epistemic uncertainty,

these reaction combinations occur frequently and disrupt the sampling process. This problem

is exasperated by the nature of the design space associated with the 5km/s simulation. For
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Table 6.1: Epistemic Model Parameters

Variable Unperturbed Value Lower Bound Upper Bound
A1
N2−N2, A

2
N2−N2 1 0.8 1.2

A1
N2−N , A

2
N2−N 1 0.8 1.2

A1
N2−O, A

2
N2−O 1 0.8 1.2

A1
N2−O2, A

2
N2−O2 1 0.8 1.2

this space, the minimum and maximum values typically occur at or near the bounds of

the space. Because this region is the area with the least solver robustness in terms of

the reaction parameters, the interval predictions are drastically affected by solver failure.

Although solver failure (by means of non-convergence, not floating point exception) did

occur in some cases for the aleatory sampling, these failures likely did not significantly effect

the statistic predictions as their occurrence was infrequent and the contribution to output

statistics by a single point is small for Monte Carlo sampling. Because of the issue of solver

robustness to large perturbations of the reaction parameters, the set of variables examined

for the epistemic validation problem was limited to transport parameters exclusively.

With the possible set of epistemic variables limited to the 30 transport parameters, the

final set of 8 parameters was chosen based on the sensitivity analysis presented in Chapter

4. From this analysis, the collisions involving diatomic nitrogen have the greatest effect on

surface heating. The final set of 8 variables are chosen as the collision integrals of diatomic

nitrogen with itself and the other predominant species near the wall, namely O2, O, and N ,

for k equal to 1 and 2. These variables are given in Table 6.1 with their associated intervals.

The assumption of ±20% uncertainty for the collision integrals is taken from Reference [12],

although that work assumed a Gaussian for the uncertainty while an interval is used in

this work. It should be noted that the parameters chosen for the epistemic problem do not

correspond exactly with the 8 most important collision integrals from the sensitivity analysis,

although that criteria would indicate 6 of the same parameters. Although the sensitivity

analysis played a role in selecting the parameters used for the epistemic problem, the variable

set was modified slightly to more closely match the experiences of Reference [13]. Had similar

studies not been available, the sensitivity analysis could have been used exclusively.
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The output interval due to variations in these 8 parameters was determined based on

Latin Hypercube sampling using 3 samples in each dimension (6, 561 total samples). For

this sampling, variations were only allowed for these 8 variables and the other variables were

frozen at their unperturbed or mean values. With the samples determined, the minimum

and maximum objective values from the data set are determined. Because no distribution

can be associated with epistemic uncertainty, this output interval is the only useful result of

the sampling, as the epistemic nature of this problem prevents inferring any other properties.

The choice of using 3 samples in each dimension was made based on Reference [15]. As will

be shown in the next chapter, this choice may lead to underestimation of the output interval.

Hence, when comparing the results of other methods to the interval predicted by sampling,

an interval prediction larger than the sampling result is preferred, as the sampling result is

limited by the number of samples used and is used to guard against the possibility of the

optimization falling into a local optimum. Using these validation results, the performance

of the gradient-based methods can be measured.

In addition to this 8 dimensional problem, the gradient-based methods are used to

predict the output interval due to uncertainty in all 30 transport parameters. Although

interval predictions are made, no validation of the interval based on sampling is possible due

to the prohibitively high cost associated with sampling. Using 3 samples in each direction for

30 dimensions would require over 100 trillion samples. Instead of comparing the results of the

gradient-based method to a sampling based approach, the methods can only be compared

with one another. The interval for all 30 transport parameters was [0.8, 1.2] and again

corresponds to ±20% uncertainty [12].

6.3 Linear Results

When gradient values are available, the width of the output interval can be predicted based

on a single function/gradient evaluation at the unperturbed parameter values. The half

width of the interval is predicted using the gradient values (according to equation (6.1))

and the lower and upper bounds of the output interval are predicted by subtracting and
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adding this half width to the function prediction of the simulation. The results of this linear

approximation for the 8 dimensional case are given in Table 6.2 and compared to the interval

produced by Latin Hypercube sampling.

Table 6.2: Interval prediction from moment method compared with LHS result

Linear Method LHS interval
Center 1.0370E-002 1.0449E-002

Interval Half Width 8.6634E-004 7.1266E-004
Upper 1.1237E-002 1.1161E-002
Lower 9.5040E-003 9.7361E-003

Percentage ±8.35% ±6.82%

As this table demonstrates, the linear method gives a conservative estimate for both the

lower bound and the upper bound of the interval. Also included in Table 6.2 is the center

of the interval predicted by the LHS sampling and linear method. As the table shows, the

center of the interval from sampling deviates significantly from the function value evaluated

using parameters at the center of the interval. This fact gives an indication of the non-

linearity of the simulation result. Additionally, it demonstrates the difficulty in determining

a representative result for the simulation value. While the center of the interval prediction

may be an intuitive representative result, any value inside the interval bounds is equally

valid. Despite this difficulty, the center of the interval is used as a representative value

so the uncertainty can be represented as a plus/minus value about this value. When this

percentage error about the center is computed, it is clear that the linear method produces a

significantly wider output uncertainty when compared to the sampling results.

Because a single function/gradient evaluation is used to predict the output interval,

this method can be applied to the 30 dimensional problem without increasing the cost of the

prediction. Although no validation results are presented for this case, the 30 dimensional

interval prediction is given in Table 6.3. As expected, the size of the output interval, relative

to the 8 dimension case, is larger as a result of adding more uncertain parameters. Although

no validation of this result is possible, it will be compared to the corresponding optimization

result in the next section.
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Table 6.3: Interval prediction using moment method for 30 dimensional case.

Linear Method
Center 1.0370E-002

Interval Half Width 1.1787E-003
Upper 1.1549E-002
Lower 9.1916E-003

Percentage 11.37%

6.4 Optimization results

In order to provide an inexpensive interval prediction even as the problem dimension in-

creases, gradient-based optimization is used to determine the minimum and maximum val-

ues possible given specified intervals on the inputs. Specifically, the L-BFGS algorithm is

used for the optimization. The optimization approach is first tested for the 8 dimensional

test case. The convergence for the minimum and maximum optimization results is shown

in Figure 6.1 in terms of function/gradient evaluations. Plotted with the convergence are

the minimum and maximum values from the LHS results. As the figure demonstrates, the

interval produced by optimization is larger than the sampling result, producing conservative

estimates for the minimum and maximum values.

Because the optimization result produces interval bounds beyond the values produced

by sampling, the optimization results should be viewed as the correct result. Because the

results of the optimizations represent actual function values achieved with inputs contained

in the specified intervals, the bounds produced by optimization are the correct solution

to equations (6.3) provided the minimum and maximum values are the global extrema.

Hence, the sampling results are used to ensure the optimization has not fallen into any local

extrema. Although the sampling does not ensure that the optimization gives the global

minimum and maximum values, the sampling results provide no evidence to undermine the

optimization results. Even though L-BFGS is an inherently local optimization, in this case it

appears to produce the global minimum and maximum values. In addition to producing the

more accurate interval estimate, the optimization produces it at significantly reduced cost,
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requiring only 43 function/gradient evaluations. The rapid convergence of these optimization

problems is likely due to the relatively smooth behavior of the design space and the fact that

the optimal values typically occur at the bounds for most variables. Although a smooth

design space is typical for most outputs of engineering calculations [19, 34], it is likely more

complex simulations will require more work to solve the required optimization problems.

Figure 6.1: Convergence of optimization over epistemic variables for fixed aleatory variables
compared with bounds from Latin hypercube sampling.

In order to further compare the optimization to the other results, its bounds are com-

pared with sampling and the linear method in Table 6.4. In addition to comparing the

bounds, the center of the interval as well as a symmetric uncertainty percentage are given.

Based on these results, the optimization and linear method produce similar measures of un-

certainty as a percentage of the center of the interval. Despite this fact, the bounds produced

by the linear method show disagreement with the optimization result, with the linear method

underestimating the maximum and producing an overly conservative minimum bound.

Because the gradient-based optimization can scale to larger dimension, the bounds for

the 30 dimensional problem can be determined. These bounds are compared with the results

from the linear method. Although the agreement of these two methods does not imply that

139



Table 6.4: Comparison of Interval prediction for Optimization, Sampling and Linear Method

Linear Method LHS interval Optimization
Center 1.0370E-002 1.0449E-002 1.0506E-002

Interval Half Width 8.6634E-004 7.1266E-004 8.8912E-004
Upper 1.1237E-002 1.1161E-002 1.1395E-002
Lower 9.5040E-003 9.7361E-003 9.6168E-003

Percentage 8.35% 6.82% 8.46%

the bound is necessarily correct, the fact that the predictions are based on differing methods

should give an indication of the quality of the result. Because the optimization result is

based on actual function values, instead of extrapolation, the optimization result is likely

the more correct result. The convergence of the 30 dimensional optimization problems is

given in Figure 6.2. Using 83 function/gradient evaluations, the optimization method is able

to produce the output interval for the 30 dimensional problem. Despite the large increase in

the dimension of the problem, the cost of the optimization only increased by approximately

a factor of two. This fact is likely because the optimal values are located at the bounds of the

domain for most variables, allowing the optimizer to easily find the optimum. Additionally,

because the sensitivity of many collision integrals is small, the addition of these variables to

the optimization does not drastically effect the overall design space. The interval produced

by optimization on the 30 dimensional problem is compared to the linear method in Table

6.5. As the table shows, the linear method again underestimates the maximum value but is

overly conservative for the minimum value. Although the width of the interval and center of

the interval do not agree with the optimization, the uncertainty expressed as a percentage

of the center value agree remarkably well for the two methods, as was the case for the 8

dimensional case. Given the difference in bound predictions, this fact is likely coincidental.

6.5 Summary

In this chapter, the application of a linear surrogate and gradient-based optimization to the

problem of episetmic uncertainty quantification was outlined. For a rapid quantification
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Figure 6.2: Convergence of optimization over epistemic variables for fixed aleatory variables.

Table 6.5: Interval prediction for optimization method for 30 dimensional problem.

Linear Method Optimization
Center 1.0370E-002 1.0543E-002

Interval Half Width 1.1787E-003 1.2031E-003
Upper 1.1549E-002 1.1746E-002
Lower 9.1916E-003 9.3400E-003

Percentage 11.37% 11.41%

of the output interval due to epistemic sources, a linear method similar to the moment

method was presented. To improve on this method, a gradient-based method using the

L-BFGS algorithm was given. Comparing the results against Latin Hypercube sampling,

both methods produced reasonable estimates of the output interval, with the optimization

providing a more accurate interval prediction than even the sampling result. Additionally,

the gradient-based methods were able to produce interval estimates for cases where sampling

is prohibitively expensive.
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Chapter 7

Mixed Results

With gradient-based optimization demonstrated as a viable means of epistemic uncertainty,

the problem of mixed aleatory/epistemic uncertainty can be addressed. This form of un-

certainty is quantified using a combined surrogate-optimization approach. Two combined

approaches are explored in this work, a statistics-of-intervals approach and an uncertain

optimization approach. Due to the expense associated with traditional methods for mixed

uncertainty, the Fay-Riddell stagnation heating correlation is used to validate these com-

bined approaches and demonstrate their advantageous properties. With the properties of

the combined methods demonstrated on this explicit function, the statistics-of-interval ap-

proach is demonstrated for the real gas problem. Because of the expense of validation, the

mixed results for the real gas solver can not be validated directly, and accuracy is inferred

based on validation of each individual component of the combined method and convergence

of the results.

7.1 Gradient-based Mixed Aleatory/Epistemic Uncer-

tainty

The quantification of uncertainty arising from both aleatory and epistemic sources is par-

ticularly challenging, especially as the dimension of the problem increases. For these types

of problems, the input parameters are divided into two sets: a set of variables with only
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aleatory uncertainty and a set of variables with only epistemic uncertainty. The traditional

strategy for mixed aleatory/epistemic uncertainty is known as nested sampling. For nested

sampling, sampling is performed over the epistemic samples and for each epistemic sample,

an aleatory uncertainty quantification problem is solved. The sampling over epistemic sam-

ples is performed using Latin Hypercube sampling with a fixed number of samples (∼ 3)

in each direction (with a total number of samples increasing as 3d with d representing the

number of epistemic variables). For the aleatory uncertainty problem, Monte Carlo sam-

pling is typically used, requiring several thousands of samples. Hence, the expense of nested

sampling increases exponentially fast and easily requires millions of samples even for a low

dimensional problems. In order to reduce the cost associated with nested sampling, a surro-

gate model can be constructed over all the input parameters and samples can be extracted

from it according to a nested strategy.

The main limitation of this surrogate based approach is again the curse of dimensional-

ity. Using the strategies outlined for aleatory uncertainty, such as gradient-enhancement and

dimension reduction, it is possible to construct a surrogate over all variables and sampling

from this surrogate according to a nested strategy. However, due to the extreme number of

points required for nested sampling, even sampling from a surrogate can pose problems. For

example, if approximately 6000 sample points are used for the aleatory uncertainty quan-

tification (∼ 38) and 3 sample points are used for each epistemic variable, the total number

of samples required for the nested strategy is 3d+8. For hypersonic flows, the number of

epistemic variables is much larger than the number of aleatory variables [13]. For the 66

dimensional problem used in Chapter 5, 64 of the parameters are more accurately charac-

terized as epistemic, corresponding to the transport and chemical kinetic parameters. For

this variable partitioning, the total number of samples required for the nested approach is

over 1034. For comparison, the total number of stars in the observable universe is between

3 × 1022 and 100 × 1022 and the total number of bacterial cells on earth is estimated as

5× 1030 [91,92]. Clearly, acquiring and processing this amount of data is infeasible, regard-

less of how inexpensive a function evaluation is.

Because the goal of mixed aleatory/epistemic uncertainty is the determination of a P-
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box (a region in which the function exists with a specified probability), only the minimum

and maximum values over the epistemic variables are required. Hence, optimization can

replace the sampling over epistemic variables. To account for the aleatory uncertainty in an

inexpensive manner, this optimization can be combined with a surrogate model. Because

the number of aleatory variables in hypersonic flow is limited, the curse of dimensionality is

likely not a problem for this surrogate. By using a gradient-based optimization technique,

the scaling of the combined method as a function epistemic variables can be optimal when

combined with a Newton or quasi-Newton optimizer.

Optimization and surrogate modeling can be combined in one of two ways. The approach

most analogous with nested sampling will be referred to as the uncertain optimization ap-

proach. For this method, the surrogate model is constructed within the optimization process

to account for aleatory uncertainty. The second method is referred to as the statistics-of-

intervals (SOI) approach. For this method, a surrogate is constructed based on the results

of multiple optimizations carried out at different aleatory values.

Statistics-of-Intervals Approach

For the statistics-of-intervals approach to the mixed uncertainty quantification strategy, the

bounds of the output interval due to the epistemic uncertainty are treated as random vari-

ables, and the variability of these bounds due to the aleatory uncertainties in the problem are

characterized. This process is best demonstrated with a set of equations. Let α represent the

variables with associated aleatory uncertainties, β represent variables with epistemic uncer-

tainties, and y represent the output of interest for a simulation. For this work, the variables

in each group are assumed to have only aleatory or only epistemic uncertainty. In order to

account for both types of uncertainty, sampling is performed for the aleatory variables while

optimization is performed over the epistemic variables. This combination can be represented

mathematically as follows.

144



y = f(α, β) (7.1)

ymax(α) = max
β

f(α, β) (7.2)

ymin(α) = min
β
f(α, β) (7.3)

The variables ymax and ymin can now be treated as random variables, since the inputs,

α, are random variables with associated distributions. To characterize the distribution of

ymax and ymin, one must extract repeated samples of ymax and ymin. These extractions entail

running the optimization problem for the specified variables α. Because of the expense of

these optimizations, strategies used to reduce the computational cost associated with sam-

pling must be employed. For this work, separate surrogates are created for ymax and ymin as

a function of the aleatory variables, and samples are extracted from these surrogates. Be-

cause the number of aleatory variables in this work is relatively small for this work compared

with the number of epistemic variables, the required number of samples for this surrogate is

small, necessitating few optimization results. Additionally, because of the small dimension,

gradient information is not required for the surrogate. This fact is fortunate as a gradient-

enhanced surrogate for this application would required the differentiation of the extrema

of the optimization with respect to the aleatory variables, a quantity which is difficult to

calculate.

Because the optimization results are viewed as general random variables, any surro-

gate can be used to represent the aleatory dependence of the variables. For this work,

a Kriging surrogate is used. (When the Kriging model is used in conjunction with the

statistics-of-intervals approach, the method is referred to as SOI-Kriging). With the surro-

gate constructed over the optimization results, any statistic of the output can be predicted

and a full CDF for each bound can be constructed.

Uncertain Optimization Approach

In addition to the proposed method, an uncertain optimization (UQOPT) approach is con-

sidered for comparison [43]. In this approach, a single pair of optimization problems (one
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minimization and maximization) is performed over the epistemic variables. The objective for

this optimization is a statistical quantity due to the aleatory uncertainty present in the prob-

lem. This process is represented by using the following equations. Within these equations,

β again represents the set of epistemic variables, and α represents the aleatory variables.

In contrast to the statistics-of-intervals approach, the statistical metric of interest must be

chosen before the optimization is performed. Let the variable J(β) represent a statistical

metric based on the simulation output f(α, β), such as a variance or reliability metric. The

optimization problem is now posed as follows.

Jmax = max
β

J(β) (7.4)

Jmin = min
β
J(β) (7.5)

An example of J(β) is the reliability metric seen in equation (7.6). This reliability

metric approximates the quantiles of the distribution based on moments of the distribution.

J(β) = µ(β)− cσ(β) (7.6)

Here, µ is the mean of the distribution, σ is the standard deviation and c is the specified

reliability. For a 99% reliability metric, c is −2.33.

In order to determine statistics required for J(β), the distribution of y(α, β) based on

variations in α must be characterized for each β encountered during the optimization process.

In order to accelerate this process, a surrogate of y(α, β) with respect to α is created, and

statistics are calculated based on this surrogate. Because of the ease with which statistics

can be calculated in closed form, a polynomial chaos expansion is used to calculate J(β),

yielding the method denoted as UQOPT-PC [43]. The polynomial chaos expansion is similar

to the polynomial regression given in Chapter 4; however, the choice of basis functions and

nature of the desired outputs allows for several time saving simplifications. For a polynomial

chaos expansion, this expansion is represented as follows [20].

y(α, β) =

Np∑
i=0

ŷi(β)φi(α) (7.7)
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Here, ŷ are the expansion coefficients, and φ(α) is a polynomial in the random variable.

The exact choice of polynomial depends on the input distribution with Hermite polynomials

used for normal distributions and Legendre polynomials for uniform distributions [20]. Since

the expansion polynomials are orthogonal, the determination of the expansion coefficients

requires a simple inner production that can be computed by quadrature.

ŷi(β) =

∫
R

y(α′, β)φi(α
′)dα =

Nq∑
k=0

wky(αk, β)φi(αk) (7.8)

Here, R is the support of the basis function φ, wk are the quadrature weights, and Nq is

the total number of quadrature points. Once the coefficients are determined, the mean and

variance are given by the following.

µy = ŷ0 (7.9)

σ2
y =

Np∑
i=1

ŷ2
i

∫
R

φi(α
′)2dα′ (7.10)

Because of these explicit relations, the derivatives required for a gradient-based optimizer

are easily computable for many statistical metrics. Because the optimization is performed

over the epistemic variables, only the derivative with respect to β is required. This gradient

is easily computed using the following equations [43].

∂y(α, β)

∂β
=

Np∑
i=0

∂ŷi(β)

∂β
φi(α) (7.11)

∂ŷi(β)

∂β
=

∫
R

∂y(α′, β)

∂β
φi(α

′)dα′ =

Nq∑
k=0

wk
∂y(αk, β)

∂β
φi(αk) (7.12)

Although technically any surrogate or statistical metric J(β) can be used with this

method, the desire to use a gradient-based optimizer limits the type of surrogate and statis-

tical metric that can be used. In order to use a gradient-based optimizer, both the statistical

metric and the surrogate process used to produce the metric must be differentiable, limiting

the choice of statistical metric to distribution moments and choice of surrogate to determin-

istic models.
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Method Comparison

The two combined optimization/surrogate-based mixed uncertainty quantification methods

outlined here approach the UQ problem from different directions, with the order of sur-

rogate modeling and optimization interchanged between the two methods. In comparing

the two methods, the question of whether the two approaches yield equivalent results must

be addressed. For a given statistic, the uncertain optimization produces the minimum and

maximum values of the statistic, while the statistics-of-intervals approach produces the cor-

responding statistic of the minimum and maximum values from the optimization. In mathe-

matical terms, let the function F (y(β), β) map the samples over the aleatory variables from

a given set of episetmic variables to the statistic of interest. The results from the uncertainty

optimization are given as:

Jmin = min
β
F (y(β), β) (7.13)

Jmax = max
β

F (y(β), β) (7.14)

while the results of the statistics-of-intervals approach gives:

Jmin = F (ymin, β) (7.15)

Jmax = F (ymax, β) (7.16)

From these results, it is clear that if the statistic of interest, F , is monotone, the

results will be identical as: minβ F (y) = F (ymin) and similarly for the maximum. For most

statistics of interest, this condition is met, meaning the two approaches will produce identical

results [44].

In addition to theoretical concerns, several practical differences exist between the two

methods. The main practical difference between the two approaches is that the uncertain

optimization requires a new pair of optimization results for each statistic of interest, while

the statistics-of-intervals approach can produce any number of statistics. Even though the
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Table 7.1: Uncertain Model Parameters

Variable Type Uncertainty
ρ∞ (kg/m3) Aleatory ±10% (σ = 5%)
V∞(m/s) Aleatory ±30.84 (σ = 15.42) m/s

Ω1,1
N2−N2,Ω

2,2
N2−N2 Epistemic ±20%

Ω1,1
N2−N ,Ω

2,2
N2−N Epistemic ±20%

Ω1,1
N2−O,Ω

2,2
N2−O Epistemic ±20%

Ω1,1
N2−O2,Ω

2,2
N2−O2 Epistemic ±20%

statistics-of-intervals approach can predict any number of statistics with a single set of op-

timization results, the overall expense of the two methods is comparable. Although a single

pair of optimizations is required for the uncertain optimization, each iteration of the opti-

mization requires a surrogate to be constructed, necessitating numerous function evaluations.

For the statistics-of-intervals approach, multiple optimizations are required; however, each

optimization is straight-forward, requiring a single function/gradient evaluation per itera-

tion. In addition to issues of cost, the use of a gradient-based optimizer requires that the

metric J(β) used with the UQOPT method be differentiable. Additionally, the process used

to inexpensively predict J(β) based on a surrogate must also be differentiable. The statistics-

of-intervals approach has no such limitations on the statistics that can be computed or the

surrogate that can be used to model the aleatory variability. Because the surrogate is ap-

plied merely to a collection of optimization sampling results, any surrogate may be used to

represent the aleatory distribution and any statistic predicted.

7.2 Problem Definition

For these mixed results, the epistemic variables were the same 8 variables used for the

validation and testing in Chapter 6. The aleatory variables were the freestream density and

velocity. These variables are listed in Table 7.1. For the episetmic variables, the uncertainty

is specified by an interval with a half width of 20%, while the aleatory variables were assumed

to follow a Gaussian distribution, specified with the mean and standard deviation.
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7.3 Fay-Riddell Heating Results

In order to provide a baseline result for the combined surrogate-optimization methods il-

lustrated in this work, exhaustive nested sampling is performed, and a series of cumulative

distribution function (CDF) curves is constructed (known as a horse-tail plot). This plot is

shown in Figure 7.1. For this baseline result, 5,000 aleatory samples were performed for each

epistemic sample. For the epistemic variables, three samples were taken for each variable,

following the experiences of other mixed aleatory/epistemic uncertain studies [15]. This

sampling strategy gave a total of 6,561 (38) epistemic samples. Because a full set of aleatory

samples is required for each epistemic sample, the total number of samples was 3.28 × 107.

Clearly, for anything other than an analytic function, this nested sampling is prohibitively

expensive. For the Fay-Riddell heating correlation, this nested sampling required approxi-

mately 82 minutes to perform. In contrast, performing 3.28 × 107 samples using the CFD

solver would require 3010 cpu-years for this test case. Even if performed in parallel, this

amount of computing is far beyond the budget of nearly all modeling projects. This fact

is in spite of the limited dimension of the problem. The samples for both the epistemic

and aleatory variables were extracted using Latin hypercube sampling, uniform sampling in

the case of epistemic variables and transformed to normal sampling by means of the inverse

cumulative distribution function for the aleatory variables.

Because the epistemic uncertainty comes with no associated statistical distribution,

each of the CDF curves in Figure 7.1 is equally valid. In order to provide some manageable

metric, the bounds of the CDF curves can be found such that all samples lie between these

two curves. One method for finding these bounding curves is to generate a CDF for the

minimum and maximum values produced by sampling over the epistemic variables. In terms

of nested sampling, for a given set of aleatory variables, the maximum and minimum values

generated through sampling over the epistemic variables are determined and a CDF of these

variables is constructed. These bounds are plotted in Figure 7.2.

With these baseline results established, the performance of optimization for the epis-

temic uncertainty within the mixed problem is demonstrated. With optimization demon-

strated as a viable strategy for mixed problems, the statistics-of-intervals approach will be
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Figure 7.1: Horse-tail plot for Fay-Riddell heating with 6,561 epistemic samples and 5,000
aleatory samples.

applied for this problem. In addition to providing demonstration results for this method,

the statistics-of-intervals approach will be compared with uncertain optimization.

7.3.1 Performance of Optimization

In order to show that optimization can be used for the epistemic component of the mixed

problem, the distribution associated with the optimization results is constructed through ex-

haustive sampling of the optimization. For this test, a pair of maximization and minimization

problems over the epistemic variables is performed for each set of aleatory variables. In or-

der to accurately characterize the distribution of these bounds, 5,000 pairs of optimization

problems were performed corresponding to the aleatory samples from the nested sampling

approach. The optimization method used throughout this test is again L-BFGS [93]. Ap-

proximately 40 function/gradient evaluations were required for each pair of optimizations,

giving a total of 1.96 × 105 function/gradient evaluations. The CDF curves of these opti-

mization results should agree with the bounding CDF curves from nested sampling. The

horsetail plot for nested sampling and the CDF curves for the optimization results are plotted
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Figure 7.2: Horsetail plot with CDF curves for bounds from sampling.

in Figure 7.3.

From these results, the optimization seems to give overly conservative predictions for

the combined epistemic/aleatory uncertainty. This behavior is similar to the result seen

for the pure epistemic uncertainty case. Because the horsetail plot is constructed through

exhaustive sampling, the minimum and maximum predictions for a given set of aleatory

variables are limited by the extent to which sampling in the epistemic variables has been

performed. Because optimization does not suffer from this limitation, it is reasonable to

expect that the optimization approach gives the more accurate uncertainty prediction and

that more extensive sampling of epistemic variables within the nested sampling approach

should cause the sampling-based results to approach the optimization bounds.

In order to demonstrate that the optimization results give the proper bounding CDF

curves, nested sampling was performed with increasing numbers of epistemic samples. Be-

cause the number of samples over the epistemic variables increases rapidly with dimension,

the dimension of the problem was reduced to 6, and the number of samples for each epistemic

variable was increased. As was the case with the 10-dimensional problem, the freestream

density and velocity were again treated as aleatory. The set of epistemic variables was re-
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Figure 7.3: Horsetail plot with optimization based bounding CDF curves.

duced to the first four collision integrals in Table 7.1, and nested sampling was performed

using 3, 5 and 10 samples in each dimension. Figure 7.4 shows the bounding CDF curves

for each of these cases. Plotted with these sampling-based CDF curves are the CDF curves

based on optimization.

As the plot demonstrates, the bounding CDF curves for nested sampling approach the

optimization bounding curves as the number of samples in each dimension is increased.

Hence, provided the global minimum and maximum can be found (a condition that is virtu-

ally impossible to guarantee but appears to be the case for this problem), the optimization

should be viewed as more accurate than the nested sampling approach. This conclusion is

fortunate because the total number of samples required for exhaustive sampling of the opti-

mization results is only 1.96×105 function/gradient evaluations as opposed to the 3.28×107

function evaluations required for nested sampling. Given the large savings, any additional

cost associated with calculating the gradient appears to be more than off-set by the reduction

in total number of evaluations.
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Figure 7.4: Nested sampling bounding CDF curves with increasing numbers of epistemic
samples compared with optimization-based bound CDF curves.

7.3.2 Statistics of Intervals-Kriging Results

With the validity of optimization shown for propagating epistemic uncertainty for this prob-

lem, sample reduction techniques can be applied over the aleatory variables to reduce the

total number of optimizations required to characterize the distribution of the optimization

bounds. For this work, two surrogates are created to model the variation of the optimization

bounds as a function of the aleatory variables. Although any surrogate could be used, a

Kriging model is employed throughout this section (ordinary Kriging unless otherwise spec-

ified). Unlike the surrogate used in Chapter 5, this Kriging model is built exclusively from

function values. In this context, the use of a gradient-enhanced Kriging model would require

the differentiation of the optimal results, a quantity that is difficult to calculate. In order

to test the surrogate’s ability to represent the distribution of optimization results with a

limited number of samples, a Kriging model was created by using the results of four pairs

of optimizations run with different values for the aleatory variables. The aleatory variables
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used for these optimizations were chosen through Latin Hypercube sampling. Once the

Kriging model was constructed, aleatory samples were extracted from the surrogate to build

up an approximate CDF curve for the optimization results. Figure 7.5 shows the bounding

CDF curves for this Kriging-based sampling. For comparison, the CDF curves for exhaustive

sampling of the optimization results and the CDF curves from nested sampling are shown.
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Figure 7.5: CDF of optimization results based on Kriging model using 4 pairs of optimization
results.

As the figure demonstrates, with only four pairs of optimizations and 157 function/-

gradient evaluations, the Kriging-based results closely approximate the CDF curves for the

minimum and maximum surface heating values based on exhaustive sampling of the opti-

mization results. In addition to qualitatively judging the quality of the CDF curves produced

by sampling from the Kriging model, specific statistics of the interval bounds can be cal-

culated. By examining a specific statistic, the effect of number of training points (pairs

of optimization results in this context) for the model can be characterized, and the total

expense in terms of function/gradient evaluations can be shown.

In order to assess the performance of the Kriging model for characterizing the distribu-

tion of surface heating due to aleatory variables, the average, standard deviation and 99th

percentile of the minimum and maximum distributions were calculated with varying numbers
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of training points. The ordinary Kriging model (p = 0 regression) was used for this test.

The convergence of the average and variance predictions for the maximum and minimum

values as a function of training data size are plotted in Figure 7.6. Table 7.2 shows the

99th percentile prediction based on Kriging models with varying training-set sizes. Unlike

the uncertain optimization method, quantile predictions for the interval can be made with

ease since the statistic of interest need not be differentiable for the SOI method. In order

to generate the training data, sets of aleatory variables were generated via Latin Hypercube

sampling, and a pair of optimizations (minimization and maximization) was run for each

value of the aleatory variables.

Figure 7.6: Convergence of average (Left) and variance (Right) prediction for minimum and
maximum distribution using Kriging models built from increasing numbers of optimization
results

As these results demonstrate, the statistic predictions for the ordinary Kriging model

closely approximate the exact values with a moderate number of optimization results (match-

ing 4 digits in both the average and variance with 16 pairs of optimizations with a total cost

of 603 function/gradient evaluations of the physical model).
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Table 7.2: 99th percentile predictions for SOI method Using ordinary Kriging model

Training Data Size F/G Evaluations 99th Percentile of Min 99th Percentile of Max
4 156 1.18169× 10−2 1.41405× 10−2

8 289 1.17531× 10−2 1.40693× 10−2

16 603 1.17928× 10−2 1.41132× 10−2

32 1190 1.17950× 10−2 1.41126× 10−2

64 2433 1.17951× 10−2 1.41133× 10−2

128 4862 1.17952× 10−2 1.41140× 10−2

Exact 196427 1.17951× 10−2 1.41151× 10−2

7.3.3 Comparison between Statistics of Intervals and Uncertain

Optimization

In this section, the performance of the uncertain optimization approach is compared with the

SOI approach using the Fay-Riddell heating correlation. For this comparison, the interval on

a single statistic was predicted by using both methods. For a fair comparison, a polynomial

chaos expansion was used to represent the aleatory variation in both methods while L-BFGS

was again used as the optimization strategy.

The statistical metric used in this test was the following mean value reliability metric.

J = µ− σc (7.17)

Here, µ is the average and σ is the standard deviation of the distribution due to aleatory

variables and c is a defined parameter corresponding to the desired reliability level. For a

normal distribution, c equal to −2.33 gives a 99% reliability metric. This statistic was chosen

because of the ease with which it and its derivative with respect to epistemic variables are

calculated for a polynomial chaos expansion.

The comparison between the two methods is based on the accuracy of the statistical

metric as well as the total number of function/gradient evaluations required for each method.

For this test, accuracy was assessed based on statistics calculated from exhaustive sampling of

the optimization results (5,000 independent pairs of optimizations), and this assessment was

based on multiple polynomial orders. Table 7.3 summarizes the results of this test. As these

results demonstrate, when the same surrogate is used, the two methods give identical results,
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Table 7.3: Method comparison results for 99% reliability metric

Order UOPT Lower UOPT Upper SOI Lower SOI Upper
P=1 1.174679× 10−2 1.405831× 10−2 1.174679× 10−2 1.405831× 10−2

P=2 1.174877× 10−2 1.406067× 10−2 1.174877× 10−2 1.406067× 10−2

P=3 1.174878× 10−2 1.406068× 10−2 1.174878× 10−2 1.406068× 10−2

Exhaustive Lower Exhaustive Upper
1.174998× 10−2 1.406205× 10−2

Table 7.4: Method cost comparison in terms of number of function gradient evaluations for
99% reliability metric

Order UOPT Cost SOI Cost
P=1 156 157
P=2 351 355
P=3 624 631

Exhaustive optimization sampling cost = 196427

and these results compare well to those based on exhaustive sampling of the optimization

results. For this problem at least, the sampling and the optimization steps of the methods

appear to be interchangeable, although this is likely not the case in general.

In addition to assessing the predictions of the two methods, the cost of each method

was also compared. Table 7.4 shows the number of function/gradient evaluations required

for each method at the different polynomial orders. As the results demonstrate, the costs

of the two methods are nearly the same, with the uncertain optimization slightly edging

out the statistics-of-intervals approach, but only by an insignificant amount compared with

the total cost. Additionally, both methods are significantly less expensive than exhaustive

sampling of the optimization results. As the number of aleatory variables increases, the

savings experienced would likely decrease as the expense of training the surrogate increases.

For the SOI approach, any surrogate may be used to represent the aleatory dependence of

the minimum and maximum values. In the previous section, an ordinary Kriging model was

used. In order to compare the polynomial regression approach to Kriging, a universal Kriging

model can be used. As previous work has shown, universal Kriging typically provides higher
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Table 7.5: Universal Kriging model for 99% reliability metric

Order UOPT Lower UOPT Upper SOI-UK Lower SOI-UK Upper
P=1 1.174679× 10−2 1.405831× 10−2 1.17471× 10−2 1.40586× 10−2

P=2 1.174877× 10−2 1.406067× 10−2 1.17499× 10−2 1.40620× 10−2

P=3 1.174878× 10−2 1.406068× 10−2 1.17500× 10−2 1.40621× 10−2

Exhaustive Lower Exhaustive Upper
1.174998× 10−2 1.40641150205× 10−2

accuracy than does standard L2 regression and under some circumstances can outperform

ordinary Kriging [34].

As the results show, although the polynomial chaos results are accurate, the universal

Kriging results achieve a higher level of accuracy using the same number of training points

and regression order. Although universal Kriging could be used within the UQOPT ap-

proach, the calculation of the gradient of statistic predictions is difficult. In contrast, the

implementation of universal Kriging within the SOI approach is straight forward, demon-

strating another advantage of the SOI approach.

7.4 Real Gas Computational Fluid Dynamics Results

In order to demonstrate the proposed statistics-of-intervals/Kriging approach for a practical

computational simulation, the approach was applied for uncertainty quantification within

a real gas CFD solver. For these tests, the uncertainty of integrated surface heating was

calculated. The uncertain parameters for the simulation are the same as the parameters

used for the Fay-Riddell model (Table 7.1).

Because of the expense of the CFD simulation, the exact mixed aleatory/epistemic un-

certainty results can not be calculated through either nested sampling or exhaustive sampling

of optimization results (which would require approximately 30 million and 300,000 CFD re-

sults, respectively). As stated previously, performing nested sampling on this problem would

require 3010 cpu-years of computing, a number which would increase exponentially as the

dimension of the problem expands. Performing exhaustive sampling of optimization results
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is only slightly more feasible, requiring 29.52 cpu-years of computing. Unlike the nested

sampling, this number should increase less dramatically as the dimension expands; however,

for both methods, the computational cost is clearly beyond the budget for most projects.

Because exhaustive methods are prohibitively expensive for this problem, validation for

the SOI-Kriging method applied to the real gas simulation was achieved by validating each

element of the method against exhaustive sampling. With each element validated, the mixed

aleatory/epistemic uncertainty was calculated by using successively more accurate surrogate

models to demonstrate convergence of the statistic predictions.

The optimization portion of this method was demonstrated in the Chapter 6. Based on

these results, the optimization produced an output interval encompassing that of sampling.

With the optimization portion of the method validated, the ability of a function-only sur-

rogate model to capture the aleatory variation of the integrated surface heating was tested.

Additionally, by sampling in the same dimension as the mixed problem, this validation

gives insight into the number of optimization pairs required to construct the bounding CDF

curves. For this test, the epistemic variables were frozen at their non-perturbed values (1

in the terms of the parameters defined in Table 7.1), and sampling was performed over the

aleatory variables. In order to provide validation data, Monte Carlo sampling was performed

over the aleatory variables, and the distribution was characterized both by constructing a

CDF curve and by calculating specific statistics. In order to acquire accurate statistics, 4,564

samples were used, and a separate simulation was performed for each. With the validation

data acquired, ordinary Kriging models with increasing numbers of training points were

constructed. Because the epistemic variables for this test were fixed, each training point

required only a single CFD simulation.

As a first test, the convergence of the mean, variance, and 99th percentile are shown for

Kriging models with increasing numbers of training points. The convergence of this metric as

a function of training point number is given in Table 7.6. As the results show, predictions of

the Kriging model rapidly converge toward the Monte Carlo results. In addition to predicting

distribution statistics, a CDF of the output is constructed based on samples extracted from

the Kriging model and compared with that of Monte Carlo sampling. Figure 7.7 shows the
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Table 7.6: Convergence of Kriging statistic predictions for aleatory uncertainty with fixed
epistemic variables with increasing number of training points

Training Points Average Variance 99th Percentile
8 1.036110× 10−2 6.061055× 10−8 1.098518× 10−2

16 1.036622× 10−2 6.075630× 10−8 1.097558× 10−2

31 1.034997× 10−2 6.145065× 10−8 1.098506× 10−2

59 1.037171× 10−2 6.185576× 10−8 1.099184× 10−2

121 1.036669× 10−2 6.120957× 10−8 1.097695× 10−2

Monte Carlo Results
Samples MC Average MC Variance MC 99th Percentile

4564 1.036082× 10−2 6.103365× 10−8 1.098385× 10−2

predicted CDF curve for a Kriging model with 8 training points and the CDF from Monte

Carlo sampling.

Using only 8 samples, the Kriging model produces a CDF curve nearly identical to the

curve produced through Monte Carlo sampling, at a fraction of the cost. For this problem,

the uncertainty due to only two variables was considered. Obviously, as the dimension of the

problem grows, the cost associated with training the Kriging model will increase. Based on

these results, the mixed problem likely needs on the order of 8 sample points to accurately

predict the bounding CDF curves.

With each element of the SOI-Kriging approach validated independently, the complete

mixed aleatory/epistemic uncertainty is predicted by using optimization for the epistemic

dependence and an ordinary Kriging model for the aleatory dependence. In order to demon-

strate the validity of the full results, the convergence of the minimum and maximum 99th

percentile predictions are shown as the number of training points for the Kriging model is

increased. For the mixed results, a training point now represents a pair of optimizations

and has a cost of approximately 60 function/gradient evaluations on average. Table 7.7

shows the convergence of the maximum 99th percentile and minimum 99th percentile as

the number of training points is increased. As the table demonstrates, the statistic pre-

dictions quickly converge to asymptotic values. Included in Table 7.7 is the total cost in

terms of function/gradient evaluations. While the nested sampling and exhaustive sampling
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Figure 7.7: CDF based on Kriging model using 8 sample points compared with CDF of
Monte Carlo results with fixed epistemic variables.

Table 7.7: 99th percentile predictions for SOI method using ordinary Kriging model for real
gas CFD simulation

Training Data Size F/G Evaluations 99th percentile of Min 99th percentile of Max
8 500 1.017556× 10−2 1.206949× 10−2

15 900 1.016681× 10−2 1.207132× 10−2

23 1400 1.018928× 10−2 1.207939× 10−2

52 3000 1.020232× 10−2 1.210513× 10−2

104 6176 1.020243× 10−2 1.210416× 10−2

of the optimization were prohibitively expensive for the CFD model, the SOI-Kriging model

was able to capture converged statistics with a number of function/gradient evaluations

within the computational budget (although still most likely prohibitively high for complex

simulations). Nevertheless, by using the Kriging model combined with optimization, the

SOI-Kriging method was able to quantify the mixed aleatory/epistemic uncertainty problem

where other methods could not be used.

Figure 7.8 shows the convergence of the average and variance prediction based on Kriging
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models with increasing numbers of training points. As this Figure shows, the convergence

of the statistics for the real gas simulation are not as nicely behaved as those from the Fay-

Riddell heating correlation; however, it is clear that the Kriging surrogate produces similar

results for all numbers of training points. Additionally, it appears that the variability caused

by insufficient amount of training data is small compared with the overall interval produced

due to the epistemic uncertainty.

Figure 7.8: Convergence of average (Left) and variance (Right) prediction for minimum and
maximum distribution using Kriging models built from increasing numbers of optimization
results for real gas CFD simulation.

In addition to calculating specific statistics of the output interval, the CDF of the

minimum and maximum values can be predicted by sampling from the Kriging surface. The

bounding CDF curves are plotted in Figure 7.9 for a Kriging model based on 8 and 104

pairs of optimizations. As the figure demonstrates, the CDF curves are nearly identical,

suggesting that the Kriging model has reached some level of convergence.

7.5 Summary

In this chapter, a combined optimization-surrogate method for the propagation of mixed

aleatory/epistemic uncertainty was outlined. The details of the proposed statistics-of-intervals

approach were first given and compared to a similar method, denoted as uncertainty opti-
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Figure 7.9: Kriging-predicted CDF curves for maximum and minimum values using 8 and
104 optimization pairs.

mization. With the methods detailed, the various properties of the statistics-of-intervals

method were demonstrated using the Fay-Riddell heating correlation. Finally, the method

was demonstrated for a real gas CFD simulation. From the results of this section, the

statistics-of-intervals approach was shown to give results in good agreement with nested sam-

pling approaches and compared favorably with the similar uncertainty optimization method.

In terms of cost, the combined surrogate/optimization approaches examined in this work

represented the only practical way of solving the combined aleatory/epistemic uncertainty

quantification problem for expensive simulations. In order to apply nested sampling to

the real gas CFD test case, 3010 cpu-years of computing would be required for the 10

dimension case examined here. In contrast, the SOI-Kriging method was able to produce

reasonable approximations for the minimum and maximum statistics using approximately

431 cpu-hours of computing, representing over a factor of 60, 000 savings. This savings

was achieved on a problem with 2 aleatory variables and 8 epistemic variables. As the

number of epistemic variables increase relative to the number of aleatory variables, this

savings should only increase due to the favorable scaling of gradient-based optimization as

dimension expands.
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Chapter 8

Conclusions and Future Work

For this work, a flow solver capable of simulating real gas hypersonic flows using a five species,

two temperature model was developed. Within this solver, the discrete adjoint was imple-

mented and used to efficiently calculate derivatives of the simulation output with respect to

model parameters. Using this solver and adjoint implementation, gradient-based methods

for both local and global sensitivity analysis were tested for a typical hypersonic flow over

a blunt body. While the local sensitivity analysis was based on derivative values directly,

a global sensitivity analysis based on derivative-enhanced regression was used as a basis for

inexpensive Monte Carlo sampling. In addition to sensitivity analysis, gradient-based meth-

ods for rapid uncertainty quantification were developed and implemented for hypersonic flow

simulations. For aleatory uncertainty quantification, gradient-based surrogate models were

used to inexpensively approximate the output of a simulation and Monte Carlo sampling

was performed on this surrogate. For epistemic uncertainty quantification, gradient-based

optimization was used to inexpensively determine the interval of the simulation output based

on the interval uncertainty of the input parameters. Finally, for mixed aleatory/epistemic

uncertainty quantification, a combined surrogate-optimization approach was developed that

builds a surrogate based on multiple gradient-based optimization results and Monte Carlo

sampling is performed on this surrogate to determine statistics associated with the optimiza-

tion results. Based on the results presented in the previous chapters, several conclusions can

be made and a basis for future work is established.
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8.1 Summary of Results

From the results presented in Chapters 4 through 7, a number of outcomes deserve to be

highlighted. These outcomes are enumerated below.

1. Despite the complexity of the physical models within the simulation and the highly

nonlinear nature of the flow physics, the discrete adjoint can be applied to hypersonic

flows and the gradients produced by this approach show good agreement with finite

difference. Additionally, because of the nonlinear nature of the flow solution versus the

linear nature of the adjoint equations, the adjoint can be solved in a fraction of the

time required for the flow solution, a property unique to hypersonic applications. For

other flow regimes, the adjoint solution is typically between half to three times the cost

of the flow solution [73, 94]. Provided this property holds across a range of test cases,

gradient-based approaches show great promise for hypersonic simulations by providing

additional information with only a marginal increase in cost.

2. Using the gradient produced by the discrete adjoint, local sensitivity analysis for the

physical parameters in the simulation can be performed. Despite being localized in

nature, this localized analysis identified a majority of the same important parame-

ters when compared to the globalized sensitivity analysis. This result indicates that

the regime where local sensitivity analysis is appropriate may be larger than initially

thought in terms of flow complexity and input uncertainty.

3. Although the localized approach identified similar parameters, it was unable to accu-

rately predict the fraction of the output variance contributed by each variable. To

accomplish this prediction, global sensitivity analysis was required. Using a gradient-

enhanced polynomial regression, this global sensitivity analysis was performed using a

fraction of the simulation results required for the Monte Carlo approach. In contrast

to similar regression-based global sensitivity [14], this gradient-enhanced method is

capable to extending to large numbers of input variables with only linear growth in

the cost when the regression order is limited. Although the regression-based results
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were not in exact agreement with the Monte Carlo-based GSA, this approach repre-

sented a significant improvement over the localized approach in terms of predicting

contributions to output variance and ranking of the importance of each variable.

4. For the case of aleatory uncertainty, statistics associated with the simulation output

can be predicted inexpensively using gradient-based methods. Although not as ac-

curate as other methods, linear extrapolation methods, such as the moment-method,

provided reasonable estimates for the statistics. Through the use of gradient-enhanced

surrogate models in conjunction with global sensitivity analysis, improved statistic pre-

dictions were possible for large dimensional problems without a dramatic increase in

cost. For the 66 dimensional problem analyzed in this work, only 68 function/gradient

evaluations were required to accurately predict the statistics associated with a 6000

point Monte Carlo data set. This result indicates that these rapid aleatory uncertainty

quantification techniques are indeed applicable to problems involving hypersonic flows

and the incorporation of gradient information serves to partially alleviate the curse of

dimensionality often associated with these techniques.

5. For epistemic uncertainties, the interval of a simulation result was predicted using

gradient-based optimization. In addition to more accurately predicting the output in-

terval, the expense associated with this optimization was significantly less than that of

traditional sampling-based approaches and hence, shows promise of scaling to larger

dimension more readily than alternative methods. In addition to demonstrating the

feasibility of gradient-based optimization for hypersonic problems, the results presented

here indicated that local optimization approaches may be sufficient for practical epis-

temic uncertainty quantification problems in CFD.

6. For mixed aleatory/epistemic uncertainty, a novel optimization/surrogate based ap-

proach was developed and applied for a hypersonic simulation. Compared to nested

sampling, this novel approach was able to reproduce relevant statistics with a cost

several orders of magnitude smaller than the tradition approach for the explicit Fay-

Riddell heating correlation. Compared with a similar method [43], the method was
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able to produce more valuable information while maintaining the same cost. When

applied to a CFD simulation, the method was able to give an estimate for the output

uncertainty when the traditional method was prohibitively expensive.

Given these outcomes, the incorporation of gradient information into accelerated meth-

ods for uncertainty quantification and sensitivity analysis appears to be a valuable technique

for further reduction in the cost associated with these methods and the extension of these

methods to higher dimension.

8.2 Conclusions

The goal of this work was the advancement of strategies for rapid uncertainty quantifi-

cation and sensitivity analysis applicable to complex engineering calculations, namely the

simulation of hypersonic fluid flow. Based on the results presented in this dissertation, the

gradient-based strategies explored in this work have advanced this goal. By reducing the cost

associated with uncertainty quantification, the methods demonstrated in this work enable

the use of simulation uncertainty in a wider variety of scenarios. As the role of simulation

in the design and certification of new engineering systems expands, computational scientists

will be increasing required to supply a confidence level for simulation results. For complex

simulations, a single result can require days to weeks of computing, even when performed

on massively parallel computers. In these situations, accelerated uncertainty quantification

techniques, such as the methods presented in this work, represent the only possible means of

providing this confidence level. This ability to assert a confidence level in simulation results

is particularly important for situations in which experimental data is difficult or impossible

to obtain; however, the utility of uncertainty quantification is not limited to these situations.

For situations where experimental data is available, the rapid quantification of uncertainty

in the simulation results can aide in the validation of computational models, enabling the

uncertainty of both the experimental data and simulation results to be used in assessing the

validity of the model. Finally, rapid uncertainty quantification techniques enable the use of

simulation uncertainty within the process of numerical optimization. By incorporating un-

168



certainty into the optimization, reliability and realizability constraints can be enforced within

the optimization algorithm. Using more realistic constraints and reliability measures, the

results of these robust optimizations should provide major gains in terms of safety, cost and

performance compared with the traditional design process. Currently, robust optimization is

only possible for relatively simple CFD applications [95]; however, if the cost of uncertainty

quantification can be sufficiently reduced, it should be possible to apply these methods to

more complex systems.

8.3 Future Work

The results of this work lay out a solid foundation for further explorations of adjoint methods

and rapid uncertainty quantification and sensitivity analysis techniques in hypersonic flows.

As this work only represents initial steps toward applying these techniques to hypersonic CFD

applications, the gradient-based methods obviously need to be more extensively validated on

a wider variety of flow problems and model parameters, as only a single flow test case and

set of variables has been used throughout this work. Assuming the previously enumerated

conclusions withstand this validation, future work should likely focus on the following.

Based on the regression models used for the sensitivity analysis and aleatory uncer-

tainty, the design space for the hypersonic simulation appears to be accurately modeled by

a quadratic representation. This fact coupled with the extremely low cost associated with

solving the adjoint sensitivity equation motivates the use of higher-order derivatives for hy-

personic applications. Using a combination of adjoint and forward sensitivity, the Hessian

can be computed efficiently by solving d + 1 linear equations, where d is the number of pa-

rameters in the problem [17]. Based on the results presented here, the cost associated with

these linear equations is likely significantly less than a flow solution for hypersonic simula-

tions, allowing for the Hessian to be computed rapidly. Using the Hessian, a number of the

methods used in this work can be expanded. For the case of surrogate models, the Hessian

can be incorporated into the construction of the model just as the gradient was incorporated

for this work [33]. For the case of optimization, the availability of the Hessian enables the
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use of more sophisticated full-newton optimization methods [96]. Although these methods

may not be appropriate for optimization in all CFD applications, the extremely low cost

associated with calculating the Hessian for hypersonic flows should justify the use of these

optimization strategies.

In addition to exploring the use of higher order derivatives, the gradient-based methods

presented here can be improved in a number of ways. In particular, the surrogate models used

in this work should be extended to account for lower fidelity or faulty data. For predicting

the behavior of real world systems, numerous sources of data, such as experimental data

and various numerical approximations can be leveraged. Each of these sources have an

associated quality. Using the appropriate multi-fidelity model, this quality can be accounted

for when interpolating between this data to ensure higher quality data takes precedent in the

prediction [97]. For CFD, this approach has been demonstrated for aerodynamic simulations

using different mesh resolutions [98]. Due to the long history associated with hypersonic flow,

numerous approximations exist for the prediction of systems in hypersonic flows and the use

of multi-fidelity surrogate models can likely reduce the cost associated with constructing

an accurate surrogate for complex design spaces. In addition to intelligently accounting

for the quality of data, surrogate models capable of accounting for faulty data should be

explored. For this work, the result of the simulation is assumed to be deterministic and

exact. Practically, this assumption is not always possible as a CFD solution can be flawed

due to incomplete convergence or numerical error. A surrogate capable of accounting for

these faulty results will likely produce more accurate predictions of the output by effectively

separating trends in the design space from noise in the simulation results [83].

As well as expanding the models used to capture aleatory uncertainty, the optimiza-

tion methods used for epistemic uncertainty can likely benefit from the incorporation of

surrogate models. Although the gradient-based approaches used in this work were capa-

ble of capturing what appeared to be global minimum and maximum values, this behavior

is likely not the norm for most simulations [42]. The use of surrogate models for efficient

global optimization is a topic of active research within CFD. In particular, the Kriging and

gradient-enhanced Kriging methods used for aleatory uncertainty in this work have been
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shown effective for efficient global optimization in CFD [29, 31]. The application of these

methods to the quantification of epistemic uncertainty represents a promising avenue toward

alleviating the problem of local extrema. Additionally, because a pair of optimization prob-

lems are solved for epistemic uncertainty quantification, a surrogate-based approach allows

for work to be shared between the two optimization problems, as the same surrogate can be

used for both problems [43].

Besides these specific improvements, future work should focus on the goals of increasing

the efficiency of simulation by providing additional information through derivative calcu-

lations. Additionally, further work is required in the field of uncertainty quantification in

general, extending the field to account for all sources of uncertainty in the simulation. In

addition to uncertainty quantification, incorporating information about the uncertainty of

simulation results into the design and validation process is an area requiring additional

research. Moving forward, uncertainty quantification is likely to become a necessary com-

ponent of future simulation tools as validation of simulation results is moved later in the

design process and as modeling is increasingly used to gain insight into the fundamental

laws governing nature. For these situations, assessing the quality of simulation results will

be critical for drawing relevant conclusions and the limited availability of experimental data

will necessitate knowledge of both the uncertainty of the simulation as well as the experi-

ment. The drive toward uncertainty quantification can also be viewed as a practical response

to the evolution of computer hardware. Within high performance computing, increases in

computing power have focused on increased core count, with Exascale computing likely to

accelerate this trend. The scaling of PDE-based simulations, such as CFD, to these large

core counts is an open question. Currently, although strong scaling (i.e. reducing time to

solution as resources expand) is no longer typical of CFD on large scale simulations, weak-

scaling (i.e. improving solution quality without an increase in time as resources expand) is

relied on to utilize these resources. For practical engineering systems, diminishing returns

in terms of solution quality will eventually occur. At this point, utilizing additional CPU

resources by increasing solution accuracy is no longer efficient and this additional compu-

tational power will need to be put to better use. Hence in the limit that both strong and
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weak scaling break down, additional productive uses for parallel resources will need to be

determined. One use for these resources is uncertainty quantification, as it is particularly

suited for parallelization due to the independent nature of the sampling often accompanying

it. Although it remains unclear if and when, these scaling arguments may hold true for

real-world CFD applications, the use of uncertainty quantification as a means of improving

the parallel efficiency of simulation is worthy of consideration for the future.
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Appendix A

Model Parameters for Real Gas

Model

This appendix contains the parameters used with the solver. These parameters come from

Reference [56]. The only modification to these parameters is to the specific heat parameters.

Reference [56] specifies the specific heat at constant pressure while this work uses the specific

heat at constant volume. To change from cp to cv, 1 is subtracted from the first coefficient A1.

Additionally, the enthalpy of formation hs,o is modified to an internal energy of formation

es,o using the formula:

es,o = hs,o −
R̄

Ms

Tref (A.1)

where Tref = 298.16K.

Table A.1: Species Properties for Air including reference energy at Tref = 298.16K and
Millikan and White coupling parameter

Molar Mass (kg/kmol) eo,s (J/kg) As
O2 32 -7.7465E+004 129
NO 30 2.9300E+006 168
N 14 3.3579E+007 0
O 16 1.5416E+007 0
N2 28 -8.8532E+004 220
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Table A.2: Curve Fits for Specific Heat at Constant Volume
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Table A.3: Definition of Temperature Ranges for Specific Heat Coefficients

Range Lower (K) Upper (K)
1 300 1000
2 1000 6000
3 6000 15000
4 15000 25000
5 25000 35000

Table A.4: Collision Integrals for 5-Species Air Model

Pairs K=1 K=2
s r 2000 K 4000 K 2000 K 4000 K
O2 O2 -14.60 -14.64 -14.54 -14.57
O2 NO -14.59 -14.63 -14.52 -14.56
O2 N -14.58 -14.64 -14.52 -14.56
O2 O -14.66 -14.74 -14.59 -14.66
O2 N2 -14.66 -14.75 -14.67 -14.66
NO NO -14.08 -14.11 -14.74 -14.82
NO N -14.69 -14.76 -14.62 -14.69
NO O -14.66 -14.74 -14.59 -14.66
NO N2 -14.76 -14.86 -14.69 -14.80
N N -14.11 -14.14 -14.71 -14.79
N O -14.58 -14.63 -14.51 -14.54
N N2 -14.57 -14.64 -14.51 -14.56
O O -14.67 -14.75 -14.59 -14.66
O N2 -14.63 -14.72 -14.55 -14.64
N2 N2 -14.56 -14.65 -14.50 -14.58
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Table A.5: Arrhenius Relations for Park Chemical Kinetics Model
Reaction Cf,r ηf,r Ef,r/k Br1 Br2 Br3 Br4 Br5

N2 +O2 � 2N +O2 3.700E+21 -1.6 1.132E+5 1.858 -1.325 -9.856 -0.174 0.008
N2 +NO � 2N +NO 4.980E+21 -1.6 1.132E+5 1.858 -1.325 -9.856 -0.174 0.008
N2 +N � 2N +N 1.600E+22 -1.6 1.132E+5 1.858 -1.325 -9.856 -0.174 0.008
N2 +O � 2N +O 4.980E+22 -1.6 1.132E+5 1.858 -1.325 -9.856 -0.174 0.008
N2 +N2 � 2N +N2 3.700E+21 -1.6 1.132E+5 1.858 -1.325 -9.856 -0.174 0.008
O2 +O2 � 2O +O2 9.680E+22 -2.0 5.975E+4 2.855 0.988 -6.181 -0.023 -0.001
O2 +NO � 2O +NO 9.680E+22 -2.0 5.975E+4 2.855 0.988 -6.181 -0.023 -0.001
O2 +N � 2O +N 2.900E+23 -2.0 5.975E+4 2.855 0.988 -6.181 -0.023 -0.001
O2 +O � 2O +O 2.900E+23 -2.0 5.975E+4 2.855 0.988 -6.181 -0.023 -0.001
O2 +N2 � 2O +N2 9.680E+22 -2.0 5.975E+4 2.855 0.988 -6.181 -0.023 -0.001

NO +O2 � N +O +O2 7.950E+23 -2.0 7.550E+4 0.792 -0.492 -6.761 -0.091 -0.004
NO +NO � N +O +NO 7.950E+23 -2.0 7.550E+4 0.792 -0.492 -6.761 -0.091 -0.004
NO +N � N +O +N 7.950E+23 -2.0 7.550E+4 0.792 -0.492 -6.761 -0.091 -0.004
NO +O � N +O +O 7.950E+23 -2.0 7.550E+4 0.792 -0.492 -6.761 -0.091 -0.004
NO +N2 � N +O +N2 7.950E+23 -2.0 7.550E+4 0.792 -0.492 -6.761 -0.091 -0.004
N2 +O � NO +N 6.440E+17 -1.0 3.837E+4 1.066 -0.833 -3.095 -0.084 0.004
NO +O � O2 +N 8.370E+12 0.0 1.940E+4 -2.063 -1.48 -0.58 -0.114 0.005

Table A.6: Arrhenius Relations for Dunn-Kang Chemical Kinetics Model
Reaction Cf,r ηf,r Ef,r/k Cb,r ηb,r Eb,r/k

N2 +O2 � 2N +O2 1.900E+017 -0.5 1.130E+005 1.100E+016 -0.5 0.000E+000
N2 +NO � 2N +NO 1.900E+017 -0.5 1.130E+005 1.100E+016 -0.5 0.000E+000
N2 +N � 2N +N 4.085E+022 -1.5 1.130E+005 2.270E+021 -1.5 0.000E+000
N2 +O � 2N +O 1.900E+017 -0.5 1.130E+005 1.100E+016 -0.5 0.000E+000
N2 +N2 � 2N +N2 4.700E+017 -0.5 1.130E+005 2.720E+016 -0.5 0.000E+000
O2 +O2 � 2O +O2 3.240E+019 -1.0 5.950E+004 2.700E+016 -0.5 0.000E+000
O2 +NO � 2O +NO 3.600E+018 -1.0 5.950E+004 3.000E+015 -0.5 0.000E+000
O2 +N � 2O +N 3.600E+018 -1.0 5.950E+004 3.000E+015 -0.5 0.000E+000
O2 +O � 2O +O 9.000E+019 -1.0 5.950E+004 7.500E+015 -0.5 0.000E+000
O2 +N2 � 2O +N2 7.200E+018 -1.0 5.950E+004 6.000E+014 -0.5 0.000E+000

NO +O2 � N +O +O2 3.900E+020 -1.5 7.550E+004 1.000E+020 -1.5 0.000E+000
NO +NO � N +O +NO 7.800E+021 -1.5 7.550E+004 2.000E+021 -1.5 0.000E+000
NO +N � N +O +N 7.800E+021 -1.5 7.550E+004 2.000E+021 -1.5 0.000E+000
NO +O � N +O +O 7.800E+021 -1.5 7.550E+004 2.000E+021 -1.5 0.000E+000
NO +N2 � N +O +N2 3.900E+020 -1.5 7.550E+004 1.000E+020 -1.5 0.000E+000
N2 +O � NO +N 7.000E+013 0.0 3.800E+004 1.560E+013 0.0 0.000E+000
NO +O � O2 +N 3.200E+009 1.0 1.970E+004 1.300E+010 1.0 3.580E+003
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Appendix B

Overloaded Complex Functions

In order to perform complex differentiation, the variables within the code are defined as

complex numbers. The real part of the complex variables represents the result of the analy-

sis code while the imaginary part represents the derivative of the code. For the majority of

intrinsic functions, the complex versions have the desired behavior. For comparative opera-

tors however, the behavior of the operator must be overloaded to give the proper complex

behavior for differentiation. The overloaded functions required for complexifying the code

used in this work are given in the Fortran 90 module below. In order to use these functions,

the module is included in each subroutine of the code and the function names are modified to

the new names. For example, all references to abs are converted to myabs. This process can

be performed either by hand or using shell scripting. Although this module does not consist

of all the operators that must be overloaded, it does represent the operators encountered in

the calculation of the residual used in this work.

module complexfuncs

implicit none

complex(8), parameter :: null=cmplx(0.D0,0.D0)

contains
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function mymax(x,y)

complex(8), intent(in) :: X,Y

complex(8) mymax

if (real(x)>=real(y)) then

mymax=X

else

mymax=Y

end if

return

end function mymax

function mymin(x,y)

complex(8), intent(in) :: X,Y

complex(8) mymin

if (real(x)<=real(y)) then

mymin=X

else

mymin=Y

end if

return

end function mymin

function mysign(scale,X)

real(8), intent(in) :: scale

complex(8), intent(in) :: X

complex(8) mysign

if (real(x)>=0.D0) then

mysign=scale

else

mysign=-scale

end if

return

end function mysign

function myabs(X)

complex(8), intent(in) :: X

complex(8) myabs

real(8) a, b

a=real(x)

b=Aimag(x)

if (a>=0.D0) then

myabs=X

else

myabs=cmplx(-a,-b)

end if

return

end function myabs

end module complexfuncs
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Appendix C

Comparison of Adjoint to

Finite-Difference

In this appendix, the comparison of the derivatives produced by the adjoint approach is

compared with those from finite difference. The step size for each variable was set as ε =

1×10−3x̄ where x̄ was the mean value for each parameter. For the case of reaction parameters,

because the mean parameter value was zero, the step size was equal to ε = 1×10−3. Although

results are given for a single step size, these results were typical for a range of step sizes.

The finite difference results are divided by parameter type in the following tables.

Table C.1: Derivative Values for Freestream variables compared with Finite difference

Number Variable Adjoint Finite Difference
1 ρ∞ -4.8870323E+000 -4.8868409E+000
2 V∞ 7.1690751E-007 7.6010671E-007
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Table C.2: Derivative Values for Collision Integrals compared with Finite difference

Number Interaction k Adjoint Finite Difference
3 O2-O2 1 -1.0840317E-004 -1.0840420E-004
4 O2-NO 1 -6.9513883E-005 -6.9507882E-005
5 O2-N 1 1.0791157E-004 1.0791818E-004
6 O2-O 1 2.0758635E-004 2.0761970E-004
7 O2-N2 1 -1.1630498E-003 -1.1630843E-003
8 NO-NO 1 -9.3887081E-006 -9.3829684E-006
9 NO-N 1 -5.4009297E-006 -5.4004388E-006
10 NO-O 1 -9.0939378E-005 -9.0936809E-005
11 NO-N2 1 -5.2659642E-004 -5.2659199E-004
12 N-N 1 0.0000000E+000 0.0000000E+000
13 N-O 1 -1.2973699E-004 -1.2974068E-004
14 N-N2 1 2.7172604E-005 2.7169776E-005
15 O-O 1 0.0000000E+000 0.0000000E+000
16 O-N2 1 -1.9250337E-004 -1.9250942E-004
17 N2-N2 1 -9.6708053E-004 -9.6709112E-004
18 O2-O2 2 1.0715441E-005 1.0755055E-005
19 O2-NO 2 -4.9572368E-006 -4.9623971E-006
20 O2-N 2 -7.3993089E-008 -7.4365900E-008
21 O2-O 2 -8.4361474E-005 -8.4372518E-005
22 O2-N2 2 -1.5126972E-004 -1.5108523E-004
23 NO-NO 2 -5.5241359E-007 -5.5394992E-007
24 NO-N 2 -1.9608136E-007 -1.9586574E-007
25 NO-O 2 -1.8534312E-005 -1.8537716E-005
26 NO-N2 2 -4.6173824E-005 -4.6205203E-005
27 N-N 2 -3.4571720E-007 -3.4542269E-007
28 N-O 2 -5.8964621E-006 -5.8934939E-006
29 N-N2 2 -1.1119636E-005 -1.1113398E-005
30 O-O 2 -1.3461675E-004 -1.3461919E-004
31 O-N2 2 -8.6974458E-004 -8.6981023E-004
32 N2-N2 2 -9.4976566E-004 -9.4959133E-004
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Table C.3: Derivative Values for Reaction Rate Parameters (Dunn-Kang Model) compared
with Finite difference

Number Reaction Direction Adjoint Finite Difference
33 N2 + 02 � 2N +O2 f -3.1778578E-009 -3.2107095E-009
34 N2 +NO � 2N +NO f -3.0800223E-008 -3.0349421E-008
35 N2 +N � 2N +N f -1.0183336E-005 -1.0122142E-005
36 N2 + 0 � 2N +O f -1.2051486E-006 -1.1960762E-006
37 N2 +N2 � 2N +N2 f -4.6736098E-006 -4.6388180E-006
38 O2 + 02 � 2O +O2 f -1.2969275E-005 -1.3430814E-005
39 O2 +NO � 2O +NO f -2.0709647E-006 -2.0641845E-006
40 O2 +N � 2O +N f -1.8455302E-006 -1.8303218E-006
41 O2 + 0 � 2O +O f -6.2119821E-004 -6.1994923E-004
42 O2 +N2 � 2O +N2 f -9.8581943E-005 -9.8685557E-005
43 NO + 02 � N +O +O2 f -1.1568841E-007 -1.1456310E-007
44 NO +NO � N +O +NO f -9.5627449E-006 -9.3710407E-006
45 NO +N � N +O +N f -3.9708607E-005 -3.9435009E-005
46 NO + 0 � N +O +O f -2.3941186E-004 -2.3801602E-004
47 NO +N2 � N +O +N2 f -1.9681584E-005 -1.9518035E-005
48 N2 +O � NO +N f -3.9861457E-004 -3.9666744E-004
49 NO +O � O2 +N f -2.2109266E-004 -2.2023820E-004
50 N2 + 02 � 2N +O2 b 1.8752425E-009 0.0000000E+000
51 N2 +NO � 2N +NO b 3.3659984E-008 3.3543477E-008
52 N2 +N � 2N +N b 1.7208950E-005 1.7169968E-005
53 N2 + 0 � 2N +O b 2.0205526E-006 2.0160363E-006
54 N2 +N2 � 2N +N2 b 7.7651682E-006 7.7481466E-006
55 O2 + 02 � 2O +O2 b 1.7013675E-004 1.7013272E-004
56 O2 +NO � 2O +NO b 2.7374531E-006 2.7368669E-006
57 O2 +N � 2O +N b 2.9400559E-006 2.9351427E-006
58 O2 + 0 � 2O +O b 1.1181845E-004 1.1177612E-004
59 O2 +N2 � 2O +N2 b 2.8210339E-005 2.8204919E-005
60 NO + 02 � N +O +O2 b 6.5485560E-008 6.5437740E-008
61 NO +NO � N +O +NO b 7.9618924E-006 7.9438647E-006
62 NO +N � N +O +N b 7.4729759E-005 7.4649275E-005
63 NO + 0 � N +O +O b 4.1446892E-004 4.1451404E-004
64 NO +N2 � N +O +N2 b 3.3079241E-005 3.3033146E-005
65 N2 +O � NO +N b 3.8755479E-004 3.8538363E-004
66 NO +O � O2 +N b 1.9566870E-004 1.9512396E-004
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Appendix D

Fay-Riddell Heating Correlation

In this appendix, the process used to solve for the Fay-Riddell stagnation heating correlation

is given. This process consists of solving a normal shock equation using equilibrium gas

curve fits. Based on the state after the shock, the composition of the gas is then solved for

using statistical thermodynamics. With the properties at the edge of the boundary layer

determined, the correlation can be calculated directly.

The first step of calculating the correlation is determining the thermodynamic properties

after the shock. This state is computed using the Rankine-Hugoniot jump relations and curve

fits for the enthalpy of the gas. The Rankine-Hugoniot shock relations are given as:

ρ1U1 = ρ2U2 (D.1)

ρ1U
2
1 + P1 = ρ2U

2
2 + P2 (D.2)

h1(ρ1, P1) +
1

2
U2

1 = h2(ρ2, P2) +
1

2
U2

2 (D.3)

where the subscript 1 indicate the flow properties upstream of the shock and 2 indicate the

properties downstream of the shock. Because the curve fits for enthalpy account for dissoci-

ation, the gas is no longer ideal and the enthalpy becomes a function of two thermodynamic

variables, namely density and pressure. To determine the state downstream of the shock,

the density ρ2, velocity U2, and pressure P2 must be determined. As there are three shock

relations and three unknowns, the state can be determined by using a root finder, such as
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bisection, secant or Newton’s method. Because the jump relations can be rearrange into

explicit expressions for the density and pressure downstream of the shock, Newton’s method

only needs to be applied to the energy equation. Parameterizing the problem using the

density, the nonlinear equations reduce to those below.

U2(ρ2) =
ρ1U1

ρ2

(D.4)

P2(ρ2) = P1 + ρ1U
2
1

(
1− ρ1

ρ2

)
(D.5)

R(ρ2) = h2(ρ2, P2(ρ2))− h1(ρ1, P1) +
1

2
U2

1

[(
ρ1

ρ2

)2

− 1

]
(D.6)

With the equations cast in this form, R(ρ2) is driven to zero by varying ρ2 using a root

finder. With two variables downstream of the shock determined, all other properties can be

found using curve fits. These curve fits are found in Reference [52].

With the thermodynamic state after the shock determined, the composition after the

shock must also be found. Based on the state after the shock, the equilibrium constants

for the dissociation reactions are first determined based on expressions for the partition

function. With the equilibrium constants determined, the partial pressure of each species

can be determined by solving a system of nonlinear equations.

The partition function for each species is first evaluated using the temperature after the

shock. Each energy mode in the atom contributes to the partition function. As equilibrium is

assumed in this problem, the partition functions are evaluated at a single temperature. The

total partition function is the product of the partition function for each energy mode [53].

Qs = Qt,sQr,sQv,sQel,s (D.7)

The partition function for the translational energy, Qt is given as [53]:

Qt,s =

(
2πmskbT

h2

)3/2

(D.8)

where ms is the molecular mass of species s, kb is Boltzmann’s constant and h is Plank’s

constant. The rotational partition function is 1 for monatomic species and is given by
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equation D.9 for diatomic species [53].

Qr,s =
T

θr,s
(D.9)

Here, θr is a characteristic rotational temperature for each species given in Table D.1. The

vibrational partition function is again 1 for monatomic species and is given below for diatomic

species [53].

Qv,s =
1

1− e−θv,s/T
(D.10)

Here, θv is the characteristic vibrational temperature of each species found in Table D.1. The

electronic partition function is approximated by including only one or two modes above the

ground state for each species. The partition function for electronic energy is given by [53]:

Qel,s = go,s + g1,se
−θ1el,s/T + g2,se

−θ2el,s/T + ... (D.11)

where go,s, g1,s and g2,s are the degeneracy at the ground state, first mode and second

mode(given in Table D.1), and θ1
el,s and θ2

el,s are the characteristic temperatures for the first

and second electronic energy modes, given in Table D.1.

Using this partition function, the equilibrium constant for each dissociation reaction can

be evaluated. Three dissociation reactions are possible for the 5 species model used for these

calculations. The expressions for these equilibrium constants are given below.

KO2�2O = kbT
Q2
O

QO2

e−θd,O2 (D.12)

KN2�2N = kbT
Q2
N

QN2

e−θd,N2 (D.13)

KNO�N+O = kbT
QNQO

QNO

e−θd,NO (D.14)

The dissociation temperature θd is given for each diatomic species in Table D.1. This

temperature gives an indication of the temperature at which each species dissociates.

Using the equilibrium constants, the partial pressure of each species can be determined.

For each reaction, the equilibrium constant is related to the partial pressure as [48]:
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Table D.1: Heat of Formation, Characteristic Temperatures and degeneracy for each species

Species θr (K) θv (K) θd (K) ∆hof,s (J/kg)

O2 2.1 2,270 59,500 0
NO 2.5 2,740 75,500 2.996123× 106

N — — — 3.362161× 107

O — — — 1.543119× 107

N2 2.9 3,390 113,000 0

Species θ1
el (K) θ2

el (K) go g1 g2

O2 11,390 — 3 2 —
NO 174 — 2 2 —
N — — 4 — —
O 228 326 5 3 1
N2 — — 1 — —

KO2 =
p2
O

pO2

(D.15)

KN2 =
p2
N

pN2

(D.16)

KNO =
pNpO
pNO

(D.17)

Using these equations, five partial pressures must be determined. As the system is

under-determined, two additional constraints must be determined. The first constraint is

that the sum of the partial pressures must sum to the mixture pressure, which is known

based on solving the normal shock problem. The second constraint is ensuring that the

amount of each element is conserved. As there are only two elements in this model, this

constraint is enforced by ensuring the ratio of one element to the other is fixed. These extra

constraints are given as:

P =
∑
s

ps (D.18)

2pO2 + pO + pNO = χ (2pN2 + pN + pNO) (D.19)

where χ represents the ratio of elemental oxygen to elemental nitrogen in air. This ratio is

set to 0.25 for this work. Using these two constraints, the system is fully determined with the
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five partial pressures corresponding to five equations. As these equations are nonlinear, the

partial pressures are solved using Newton’s method. With each partial pressure determined,

the mass fraction of each species is determined by inverting the partial pressure equation.

cs = ps
ms

ρkbT
(D.20)

With the thermodynamic state and composition after the shock determined, the Fay-

Riddell heating correlation can be evaluated. The equation for the stagnation heat flux is

given as [54]:

q” = 0.76(Prw)−0.6(ρwµw)0.1(ρeµe)
0.4

√(
dUe
dx

)
(ho,e− hw)

[
1 + (Le0.52 − 1)

(
hD
ho,e

)]
(D.21)

The properties at the edge of the boundary layer are assumed to be the state after the

shock. The wall properties are given by the boundary conditions for the problem. In the

case of the 5km/s cylinder, the temperature and composition at the wall are assumed fixed.

The viscosity of the wall µw and viscosity at the edge of the boundary layer are evaluated

using the transport model specified in Chapter 2. The velocity gradient in the boundary

layer is approximated using the pressure at the edge of the boundary layer and the radius of

curvature (RN = 1m for the 5km/s cylinder case).

(
dUe
dx

)
=

1

RN

√
2
pe − p∞
ρe

(D.22)

The total enthalpy ho,e is calculated based on the post-shock state and hw is calculated

based on the temperature and pressure at the wall. The total enthalpy calculation is straight-

forward:

ho,e = h(ρe, Pe) +
1

2
U2
e (D.23)

For the enthalpy at the wall, the density at the wall must be approximated. To calculate

the density, the pressure at the edge of the boundary layer is used to approximate the

pressure at the wall and the density is calculated using the state equation and the prescribed

temperature at the wall.
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Pw ≈ Pe (D.24)

ρw =
Pw
RTw

(D.25)

hw = h(ρw, Pw) (D.26)

The gas constant for the mixture,R is given as:

R =
∑
s

cs,w
R̄

Ms

(D.27)

where cs,w is the gas composition at the wall (same as the freestream composition for the

super-catalytic wall considered in 5km/s cylinder). The heat of formation for the mixture,

hD, at the edge of the boundary layer is given below.

hD =
∑
s

cs,e∆h
o
f,s (D.28)

The heat of formation for each species is given in Table D.1. Finally, the Prandtl number

and Lewis number are calculated using the flow properties.

Prw =
cp,wµw
kw

(D.29)

Lew =
Prw
Sc

(D.30)

Because these numbers are evaluated at the wall, the specific heat can be assumed constant

as cp,w = 7/2R and the Schmidt number, Sc, is assumed to be 0.5 [51]. With all the terms

specified, the stagnation heating can be calculated using the correlation in equation (D.21).
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