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Background

Utility of simulation has dramatically expanded over the past 30
years.

Driven by increased computational resources and improved algorithms
Simple design tools → Accurate Predictive Simulation

Computational Science increasingly viewed as third branch of Science

Theory
Experiment
Simulation

Increased capability has made simulation critical for situations where
experiment is difficult/impossible to obtain

Hypersonic Flow
Nuclear Reactor Design

Simulations must be able to supply confidence measure/uncertainty
to enable design and decision making.
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Uncertainty Quantification (UQ)

Problem: Determine uncertainty of simulation results based on
uncertainties within the simulation.

Multiple sources of uncertainty:

Random Elements in simulation
Physical Parameters
Manufacturing Tolerances
Modeling inadequacies
Boundary Conditions
Initial Conditions

Goal: Calculate Statistics/Interval of simulation outputs

Traditionally requires running large number of simulations (∼ 1000)

Prohibitively expensive for complex simulations

Must reduce cost to enable use of UQ in design/certification process
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Sensitivity Analysis (SA)

Problem: Determine the effect of parameters on simulation outputs.

Closely related discipline to Uncertainty Quantification (UQ)

Provides means of improving results by:

Identifying the most critical parameters
Determining contribution to output uncertainty
Providing focus for further experiments

Global Analysis: Calculate Correlation between input and output

Localized Analysis: Partial derivative of output w.r.t. inputs

Applicable beyond sensitivity analysis
Can be viewed as gradient of output w.r.t inputs
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Motivation

Observations:

For practical CFD simulations, interested in limited number of
outputs

Number of inputs ≫ Number of simulation outputs

Simulation outputs typically vary smoothly as inputs vary

Additional information provided by Gradients

Approximately same computational cost of simulations
Single adjoint gives derivative of single output w.r.t all inputs

Adjoint capability increasingly available in commercial solvers for error
estimation and optimization.

Gradient Information can be used to reduce the cost associated with
uncertainty quantification and sensitivity analysis.
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Hypersonic Flow

Hypersonic Flow roughly defined as M > 5
Characterized by:

Strong Shocks
Internal Energy Modes (Rotational, Vibrational, Electronic)
Chemical Reactions

Non-equilibrium chemistry requires each species to be modeled

Thermal non-equilibrium requires individual energy modes to be
solved independently

Models can require hundreds of parameters to define (Arrhenius
Reaction Coefficients, Curve fits, etc.)
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Physical Model

Five Species, Two Temperature Real Gas Model for Air
Accounts for Molecular dissociation: N2, O2,N,O,NO
Energy described by translation-rotational temperature and
vibrational-electronic temperature

Compressible Navier Stokes Equations:

∂ρs
∂t

+∇ · (ρs ~U) = −∇ · (ρs ~Vs) + ωs

∂ρU

∂t
+∇ · (ρ~U ⊗ ~U) = −∇P +∇ · τ

∂ρet
∂t

+∇ · (ρhtU) = ∇ · (τ~u)−∇ · ~q −∇ · ~qv −∇ ·

(∑
s

ht,sρs Ṽs

)
∂ρev
∂t

+∇ · (ρevU) = QT−V +
∑
s

ev ,sωs

−∇ ·

(∑
s

hv ,sρs Ṽs

)
−∇ · ~qv
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Physical Model

Constitutive Law’s:

ρs Ṽs = −ρDs∇cs Fick’s Law

τ = µ(∇~u + ~u∇)− 2

3
µ∇ · ~uI Newtonian Fluid

~q = −k∇T Fourier’s Law

~qv = −kv∇Tv

Equations of State:

C s
v (T )Ms

R̄
= Ai

o,s + Ai
1,sT + Ai

2,sT 2 + Ai
3,sT 3 + Ai

4,sT 4 (Caloric)

P(ρ,T ) = ρ
∑
s

cs
R̄

Ms
T (Thermal)
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Transport Model

Defines: µ = µ(T , ρs), k = k(T , ρs), kv = kv (T , ρs), Ds = Ds(T , ρs)

Calculated using Collision integrals (cross-sections) for each

interaction Ωk,k
s,r

Specified at 2000 K and 4000 K and interpolated using:

log10(Ωk,k
s,r ) =log10(Ωk,k

s,r )2000+[
log10(Ωk,k

s,r )4000 − log10(Ωk,k
s,r )2000

] ln(T )− ln(2000)

ln(4000)− ln(2000)

15 interactions possible giving 60 total model parameters

Effect of curve shifts accounted for using parameter Ak
s,r :

Ωk,k
s,r (T ) = Ak

s,r Ω̂k,k
s,r (T )
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Chemical Kinetics Model

Net creation/destruction of each species ωs :

ωs = Ms

∑
r

(βs,r − αs,r )(Rf ,r − Rb,r )

Reaction Rates specified using Law of Mass Action:

Rf ,r = 1000

[
kf ,r

∏
s

(0.001ρs/Ms)αs,r

]

Rate Coefficients kf ,r and kb,r given by Arrhenius relation
(Dunn-Kang Model)

kf ,r = Cf ,rT
ηf ,r
a e

−
Ef ,r
kBTa kb,r = Cb,rT

ηb,r
a e

−
Eb,r
kBTa

17 reactions total, 34 parameters: log10(kr/ko) = ξr
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CFD Solver

Equations solved numerically in two dimensions using in-house
developed finite-volume solver

Capable of solving on unstructured triangles/quadrilaterals

Solution marched to steady state using implicit pseudo-time stepping

J(Un,Un−1) =
Un −Un−1

∆t
+ R(Un)

Newton’s Method used to solve nonlinear equation at each time-step:

δUk = − [P]−1 J(Uk ,Un−1)

Uk+1 = Uk + λδUk

Jacobi or line-preconditioned GMRES used to invert Jacobian

B.A. Lockwood (U. of WY.) Gradient-based SA & UQ for Hypersonics April 10, 2012 12 / 62



Spatial Discretization

Gradient reconstruction of primitives

Green-Gauss contour integration used to calculate gradients

Smooth Van Albada Limiter with Pressure Switch used:

Ψk = max(0, 1− Kνk)
1

∆−
(∆+2

+ ε2)∆− + 2∆−
2
∆+

∆+2 + 2∆− + ∆−∆+ + ε2

νi =

∑
k |PR − PL|∑
k PR + PL

Face based Gradients calculated using averaging and correction term:

∇Vk = ∇̃V +
VR − VL − ∇̃V ·∆~T

|∆~T |
∆~T

|∆~T |

Inviscid Flux Calculated Using AUSM+UP flux function with Frozen
Speed of Sound
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Real Gas Results

5 km/s cylinder test case

Fixed Wall temperature

Super-catalytic Wall

Results compared with
LAURA (Same Mesh)

Park Chemical Kinetics
Model

Table: Benchmark Flow Conditions

V∞ = 5 km/s
ρ∞ = 0.001 kg/m3

T∞ = 200 K
Twall = 500 K
M∞ = 17.605
Re∞ = 753,860
Pr∞ = 0.72
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Solver Results
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Solver Results

θ (deg)
2q

"/
ρ ∞

V
3 ∞

0 30 60 90
0

0.002

0.004

0.006

0.008

0.01 LAURA
FV code

B.A. Lockwood (U. of WY.) Gradient-based SA & UQ for Hypersonics April 10, 2012 16 / 62



Sensitivity Derivation

Let the objective (L) and constraint (R = 0) have following functional
dependence

L = L(D,U(D))

R = R(D,U(D)) = 0

Objective and Constraint may be differentiated using the Chain rule

dL

dD
=
∂L

∂D
+
∂L

∂U

∂U

∂D
dR

dD
=
∂R

∂D
+
∂R

∂U

∂U

∂D
= 0

Solve Constraint Equation for ∂U
∂D (Independent of L):

∂U

∂D
=
∂R

∂U

−1 ∂R

∂D

B.A. Lockwood (U. of WY.) Gradient-based SA & UQ for Hypersonics April 10, 2012 17 / 62



Sensitivity Derivation

Forward Sensitivity Equation Given by (Tangent Linear Model):

dL

dD
=
∂L

∂D
− ∂L

∂U

∂R

∂U

−1 ∂R

∂D

Transpose Equation (Adjoint Sensitivity Equation)

dL

dD

T

=
∂L

∂D

T

− ∂R

∂D

T ∂R

∂U

−T ∂L

∂U

T

Flow Adjoint (Independent of D):

Λ = −∂R

∂U

−T ∂L

∂U

T

Solved Using Defect Correction combined with line-preconditioned
GMRES:

[P]T δΛk = − ∂L

∂U

T

− ∂R

∂U

T

Λ = −RΛ(Λk)

Λk+1 = Λk + λδΛk
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Flow Adjoint

Single Adjoint gives derivative of one output w.r.t. all inputs

Because linear, Adjoint about 40 times faster than flow solve

Implemented with Automatic-differentiation (Tapenade)

Approximately 100 vectors per GMRES restart, 527 total Mat-vec.
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Local Sensitivity Analysis

Using derivative values, the local effect of each parameter can be
determined directly

Integrated Surface heating used as objective:

L = −
∫
∂Ω k∇T · ~n + kv∇Tv · ~ndA

1
2ρ∞V 3

∞

Effect of Collision integrals, reaction rate coefficients and freestream
values analyzed (66 total)

Requires a single flow and adjoint solution
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Local Sensitivity Analysis
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Local Sensitivity Analysis
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Global Sensitivity Analysis

Local analysis gives effect to infinitesimal change in parameters
Does not account for interference effects or large perturbations
Global sensitivity analysis gives average effect over design space
Calculated via Monte Carlo sampling (6,331 for this case)

ri =
cov(Di , y)

σDi
σy

Design space given by the uncertainty space of 66 parameters:
(Assumed normal distribution)

Number Variable Mean Standard Deviations

1 ρ∞ (kg/m3) 1× 10−3 5%
2 V∞(m/s) 5000 15.42

3-17 A1
s−r 1 5%

18-32 A2
s−r 1 5%

33-49 ξf 0 0.25
50-66 ξb 0 0.25
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Local vs. Global

Importance ranking and contribution to variance compared

Variance contribution given by square of correlation coefficient

Local and Global show significant disagreement

Rank Variable Local Global Local
1 ρ∞ 1 0.60055 0.43230
2 O2 + O � 2O + O (f) 2 1.0610× 10−1 1.7490× 10−1

3 NO + O � N + 2O (b) 3 5.1914× 10−2 7.7560× 10−2

4 O2-N2 (k=1) 7 4.2121× 10−2 2.4524× 10−2

5 N2-N2 (k=1) 10 3.1617× 10−2 1.6956× 10−2

6 O2 + O2 � 2O + O2 (b) 13 2.1621× 10−2 1.3120× 10−2

7 N2 + O � NO + N (f) 4 2.0647× 10−2 7.2017× 10−2

8 N2-N2 (k=2) 11 1.9019× 10−2 1.6354× 10−2

9 O-N2 (k=2) 12 1.3874× 10−2 1.3714× 10−2

10 N2 + O � NO + N (b) 5 1.2155× 10−2 6.8076× 10−2
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Gradient-based Global Sensitivity Analysis

Sampling-based GSA too expensive for complex simulation

Build function approximating output based on small number of results
(regression):

y(D) =
∑
s

βsΨs(D)

Requires simulation data for each term in regression:

S =
(d + p)!

d!p!

Gradients included to reduce required number of simulations (provides
d + 1 pieces of information)

N ≥ d (d + p)!

d!p!(d + 1)
e
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Gradient-based Global Sensitivity Analysis

Limiting to p = 2 gives linear growth with dimension (d + 2 typical)

Derivative matching included in collocation matrix

Ψ1(D1) Ψ2(D1) · · · Ψs(D1)
∂Ψ1(D1)
∂D1

∂Ψ2(D1)
∂D1

· · · ∂Ψs(D1)
∂D1

...
. . .

. . .
...

∂Ψ1(D1)
∂Dd

∂Ψ2(D1)
∂Dd

· · · ∂Ψs(D1)
∂Dd

...
. . .

. . .
...

Ψ1(DN) Ψ2(DN) · · · Ψs(DN)
∂Ψ1(DN)
∂D1

∂Ψ2(DN)
∂D1

· · · ∂Ψs(DN)
∂D1

...
. . .

. . .
...




β1

β2
...
βs

 =



y(D1)
∂y(D1)
∂D1

...
∂y(D1)
∂Dd

...
y(DN)
∂y(DN)
∂D1

...


Coefficients determined using least squares
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Gradient-based Global Sensitivity Analysis

Global Sensitivity using 68 function/gradients

Hermite Polynomial basis with maximum order 2

Correlation calculated by sampling from regression

Better agreement in terms of ranking and contribution

Used for dimension reduction for uncertainty quantification

Rank Variable Global Regression Global
1 ρ∞ 1 0.56879 0.60055
2 O2 + O � 2O + O (f) 2 1.0002× 10−1 1.0610× 10−1

3 O2 + O2 � 2O + O2 (b) 6 5.7669× 10−2 2.1621× 10−2

4 NO + O � N + O + O (b) 3 4.0057× 10−1 5.1914× 10−2

5 N2-N2 (k=1) 5 3.7461× 10−2 3.1617× 10−2

6 O2-N2 (k=1) 4 3.3299× 10−2 4.2121× 10−2

7 N2-N2 (k=2) 8 2.1163× 10−2 1.9019× 10−2

8 O-N2 (k=2) 9 1.7395× 10−2 1.3874× 10−2

9 V∞ 14 1.3497× 10−2 4.8401× 10−3

10 O2 + O � 2O + O (b) 13 1.1734× 10−2 7.4280× 10−3
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Uncertainty Quantification

Different Forms of Uncertainty:
1 Aleatory:

Due to inherent randomness
Specified with probability distribution
Quantified using Monte Carlo Sampling (∼ 103 − 104)

2 Epistemic:

Due to lack of knowledge about exact value
Specified by interval
Quantified using Latin Hypercube sampling (∼ 3d)

3 Mixed:

Inputs have different forms
Quantified using Mixed Sampling (∼ 3d+8)
Output distribution has interval

Each form extremely expensive to quantify for complex simulations
(Aleatory ≪ Epistemic ≪ Mixed)

Different Gradient-based strategies used for each
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Gradient-based Aleatory Uncertainty

Goal: Determine simulation output distribution based on input
distributions

For limited number of outputs, replace simulation with inexpensive
surrogate based on small number of results

Linear Extrapolation
Least-squares regression
Gaussian process regression (Kriging)

Amount of data required to train accurate surrogate increases
exponentially fast with dimension. Address by:

Utilizing SA to reduce dimension
Incorporating Gradient information into surrogate construction

Surrogates tested by comparing with Monte Carlo results

Uncertainty of integrated surface heating for 5km/s cylinder predicted
based on 66 inputs
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Kriging Model

Assumes data obey Gaussian Process

y = N(m(x),K (x , x ′; θ))

Training based on simulation results Y (~X )

Output predictions given by sampling from conditional distribution:

y∗|~X ,Y ,m(x) = m(x) + kT
∗ K−1(Y −m(x))

Gradients included by extending covariance matrix:

K =

[
cov(Y ,Y ) cov(Y ,∇Y )

cov(∇Y ,Y ) cov(∇Y ,∇Y )

]
Dimension reduction based on SA employed to limit required number
of training points

Mean function,m(x), given as p = 2 regression or constant
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Kriging Model

Flight Envelope Calculations* - Function Only
*(courtesy of Wataru Yamazaki)
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Kriging Model

Flight Envelope Calculations - Gradient Enhancement
*(courtesy of Wataru Yamazaki)
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Kriging Model

Dimension reduced to 15 based on Monte Carlo GSA

Surrogate Performance measured based on Statistic prediction

Constant mean function used
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Kriging Model

Dimension reduced to 17 based on regression GSA
Regression used as Kriging Mean function
68 function/gradient evaluations
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Method Comparison

Methods compared based on cost and statistic predictions

Kriging Methods give most accurate results

Significant Cost reduction possible (6331 f vs. 68 f/g)

Method Mean Variance 95% CI F/G Cost
Moment Method 1.0370E-002 1.3790E-007 ±7.1616% 1

Linear Extrapolation 1.0369E-002 1.3412E-007 ±7.0638% 1
P=1 Regression 1.0497E-002 8.8273E-008 ±5.6610% 10
P=2 Regression 1.0370E-002 8.6692E-008 ±5.6786% 68

Kriging-Trunc.-17D 1.0446E-002 1.0227E-007 ±6.1228% 68
Kriging-Reg.-17D 1.0384E-002 9.2394E-008 ±5.8543% 68
Monte Carlo-L 1.0393E-002 9.3979E-008 ±5.8994%

6331
Monte Carlo-U 1.0409E-002 1.0106E-007 ±6.1083%
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Gradient-based Epistemic Uncertainty Quantification

Represents lack of knowledge about parameter, only interval can be
specified

Goal: Determine Output Interval based on input intervals

Dominant form of uncertainty for hypersonic flow, need methods for
high dimension

Typically quantified by sampling (LHS) over variable combinations
(∼ 3d)

Gradient-enhanced surrogates can be employed for sampling
approaches

Can also be cast as constrained optimization problem

ymin = min
x∈I

f (x)

ymax = max
x∈I

f (x)

Gradient-based Optimization can be used to reduce cost
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Gradient-based Epistemic Uncertainty Quantification

Linear method for interval calculation possible with single
function/gradient

yo = f (xo)

∆y =
d∑

i=1

∣∣∣∣∣ ∂f

∂xi

∣∣∣∣
xo

∆xj

∣∣∣∣∣
[ymax , ymin] = [yo + ∆y , yo −∆y ]

Quasi-Newton Method for optimization (namely L-BFGS)

Requires function/gradient for each iteration
Can give optimal scaling as dimension expands
Hessian matrix approximated using previous gradient values
Local in Nature

Epistemic UQ requires global min/max; however, local optimization
appears sufficient for hypersonic problem
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Epistemic UQ results - 8 dimensions

Collision integrals treated as epistemic (20% interval width)

Methods tested using 8 uncertain parameters

Validated using LHS with 3 points per dimension (6,561 samples)

Linear (1 f/g) and optimization (∼ 40 f/g) produce more accurate
interval

Linear Method LHS interval Optimization
Center 1.0370E-002 1.0449E-002 1.0506E-002
Interval Half Width 8.6634E-004 7.1266E-004 8.8912E-004
Upper 1.1237E-002 1.1161E-002 1.1395E-002
Lower 9.5040E-003 9.7361E-003 9.6168E-003
Percentage 8.35% 6.82% 8.46%
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Epistemic UQ results - 8 dimensions

Optimization more correct result as it satisfies problem statement

More extensive sampling gives bounds approaching optimization
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Epistemic UQ results - 30 dimensions

Optimization/Linear analysis can be applied to large dimension

Number of parameters expanded to all collision integrals (30 total)

Methods produce similar interval estimates

Linear Method Optimization
Center 1.0370E-002 1.0543E-002
Half Width 1.1787E-003 1.2031E-003
Upper 1.1549E-002 1.1746E-002
Lower 9.1916E-003 9.3400E-003
Percentage 11.37% 11.41%
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Gradient-based Mixed Aleatory/Epistemic

Variables have either aleatory or epistemic uncertainty

Goal: Determine range containing output with specified probability
(P-Box) and separate the contribution from each source

Typical situation for simulation as complete knowledge rare

Nested sampling traditionally used; however,

For hypersonic flows, number of epistemic variables much greater than
number of aleatory variables
Expensive of nested sampling increases rapidly with number of
epistemic variables
Prohibitively expensive for all but explicit functions

Combine surrogate approaches with gradient-based optimization for
rapid mixed UQ
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Nested Sampling

Define:

α are aleatory variables

β are epistemic variables

L(α, β) is simulation output

Nested Sampling:

Extract β realization for i = 1,Nr

Sample over α for j = 1,Ns

Run simulation
Compute L(α, β)

Characterize output distribution associated with varying α

Examine statistics over all realizations (determine worst-case)
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Cost-Reduction Strategies

Nested sampling can be performed inexpensively based on surrogate

Optimization/Surrogate should scale to higher dimension for large
number of epistemic variables

Two choices for ordering

Use optimization to determine min/max of statistic
Use sampling to determine statistic of min/max

Statistics-of-Intervals
Solve multiple optimization problems for different α samples:

Lmin(α) = min
β

L(α, β)

Lmax(α) = max
β

L(α, β)

Construct surrogate (Kriging model) for Lmin(α) and Lmax(α)
Calculate statistics based on sampling over α from surrogate model
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Fay-Riddell Heating Results

Fay-Riddell Stagnation Heating Correlation:

q” = 0.76(Prw )−0.6(ρwµw )0.1(ρeµe)0.4

√(
dUe

dx

)
(ho,e − hw )

[
1 + (Le0.52 − 1)

(
hD

ho,e

)]
(
dUe

dx

)
=

1

RN

√
2
pe − p∞

ρe

hD =
∑
i

Ci,e∆hof ,i

Properties at boundary layer edge determined by normal shock relations

Composition determined with statistical thermodynamics

Transport Quantities calculated from collision integrals

5 km/s flow over cylinder considered
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Fay-Riddell Heating Results

Uncertain Parameters:

Variable Type Uncertainty

ρ∞ (kg/m3) Aleatory ±10% (σ = 5%)
V∞(m/s) Aleatory ±30.84 (σ = 15.42)

Ω1,1
N2−N2,Ω

2,2
N2−N2 Epistemic ±20%

Ω1,1
N2−N ,Ω

2,2
N2−N Epistemic ±20%

Ω1,1
N2−O ,Ω

2,2
N2−O Epistemic ±20%

Ω1,1
N2−O2,Ω

2,2
N2−O2 Epistemic ±20%

10 total uncertain parameters (2 aleatory, 8 epistemic)

Nested Sampling used for Validation

3 samples per dimension for epistemic variables (6,561 total)

5000 samples used for aleatory variables
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Fay-Riddell Heating Results

Each β realization has associated CDF curve (30 million samples)

Bounding CDF curves determined by optimization over β for fixed α

Kriging model built from 4 pairs of optimization results

30 million function evaluations reduced to 157 function/gradient

Stagnation Heating (2q"/ ρ∞V3
∞)

C
D

F
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Stagnation Heating (2q"/ ρ∞V3
∞)

C
D

F
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Sampling Bound
Optimization Bound
Kriging Bound
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Real Gas CFD Mixed Results

CDF for bounds can be created from Kriging Model

CDF created with Kriging model based on 8 (∼ 500 f/g) and 104
(6176 f/g) pairs of optimizations

CDF curves virtually identical, implying convergence of Kriging
predictions
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Real Gas CFD Mixed Results

Multiple Optimizations used to approximate combined results

Kriging model constructed for min and max values

Monte Carlo performed on Kriging surrogate

99th percentile of Min/Max predicted

Training Data Size F/G Evaluations 99th percentile of Min 99th percentile of Max
8 ∼ 500 1.017556× 10−2 1.206949× 10−2

15 ∼ 900 1.016681× 10−2 1.207132× 10−2

23 ∼ 1400 1.018928× 10−2 1.207939× 10−2

52 ∼ 3000 1.020232× 10−2 1.210513× 10−2

104 6176 1.020243× 10−2 1.210416× 10−2

Statistic converges with handful of optimization results

SOI method allows mixed UQ when nested strategy prohibitively
expensive
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Conclusions and Contributions

Developed a two-dimensional hypersonic flow solver with adjoint
capability

Five species, two temperature non-equilibrium real gas model
Adjoint implemented with automatic differentiation (Tapenade)

Utilized gradient information for sensitivity analysis to identify most
important model parameters and contributions to uncertainty

Derivative allows rapid localized sensitivity analysis
Global sensitivity analysis accelerated with sampling from
gradient-enhanced regression

Demonstrated gradient-based uncertainty quantification for
hypersonic simulation
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Conclusions and Contributions

Each type of uncertainty addressed with gradient-enhanced method
1 Aleatory:

Applied gradient-enhanced surrogate models for aleatory uncertainty
Dimension reduction based on global sensitivity analysis
Factor of 100 savings compared to Monte Carlo sampling

2 Epistemic:

Gradient-based optimization used to determine output interval
Assuming local sufficient, optimization moves scaling from exponential
to linear

3 Mixed:

New combined surrogate-optimization approach developed
Optimizations performed for epistemic variables, surrogate created over
aleatory

For each scenario, significant cost savings compared with traditional
approaches

Gradient-based Epistemic/Mixed approaches enabled quantification
when sampling is impossible.
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Future Work

Methods should be applied to a wider variety of simulations and test
cases

Extend proposed methods to higher dimension and multiple outputs

Explore Hessian for hypersonic flow due to extremely low cost of
linear solution

Incorporate Hessian into surrogate construction
Apply more sophisticated optimization algorithms

Kriging-based efficient global optimization for epistemic uncertainty

Explore strategies to account for other types of uncertainty, such as
model discrepancy and numerical errors.

Utilize uncertainty information within optimization and solution
adaptation

B.A. Lockwood (U. of WY.) Gradient-based SA & UQ for Hypersonics April 10, 2012 51 / 62



Questions?
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Supplemental Material

B.A. Lockwood (U. of WY.) Gradient-based SA & UQ for Hypersonics April 10, 2012 53 / 62



Kriging Models

Built upon assumption of gaussian process:

y(x) = N(m(x),K (x , x ′; θ)) (1)

m(x) is the mean function

Can be explicitly defined and combined with zero mean GP
Form can be assumed and included into construction (Universal
Kriging)

K (x , x ′; θ) is the covariance between data points

For Kriging, function of distance between points
Optimal parameters θ determined by based on simulation observations
and likelihood equation

Kriging output is a GP and predictions have associated distributions

B.A. Lockwood (U. of WY.) Gradient-based SA & UQ for Hypersonics April 10, 2012 54 / 62



Gradient Enhancement

Covariance Matrix extended to block matrix

K =

[
cov(Y ,Y ) cov(Y ,∇Y )

cov(∇Y ,Y ) cov(∇Y ,∇Y )

]
Function/Function

cov(y , y ′) = k(~x ,~x ′).

Derivative/Function

cov(
∂y

∂xk
, y ′) =

∂

∂xk
k(~x ,~x ′).

Derivative/Derivative

cov(
∂y

∂xk
,
∂y ′

∂x ′l
) =

∂2

∂xk∂x ′l
k(~x ,~x ′).

Covariance Function must now be twice differentiable
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Covariance Functions

Covariance Function product of 1D functions

k(~x ,~x ′; θ) = σ2
d∏

i=1

ki (xi − x ′i ; θi )

One dimensional Functions
Squared Exponential:

ki (xi − x ′i ) = e
−
(

xi−x′i
θi

)2

Matern Function ν = 3
2

:

ki (xi − x ′i ) =

(
1 +
√

3

∣∣∣∣ xi − x ′i
θi

∣∣∣∣) e
−
√

3

∣∣∣∣ xi−x′i
θi

∣∣∣∣

Matern Function ν = 5
2

:

ki (xi − x ′i ) =

(
1 +
√

5

∣∣∣∣ xi − x ′i
θi

∣∣∣∣+
5

3

∣∣∣∣ xi − x ′i
θi

∣∣∣∣2
)

e
−
√

5

∣∣∣∣ xi−x′i
θi

∣∣∣∣
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Covariance Functions

Cubic Spline 1:

ki (xi − x ′i ) =


1− 15

∣∣∣ xi−x ′iθi

∣∣∣2 + 30
∣∣∣ xi−x ′iθi

∣∣∣3 for 0 ≤
∣∣∣ xi−x ′iθi

∣∣∣ ≤ 0.2

1.25
(

1−
∣∣∣ xi−x ′iθi

∣∣∣)3
for 0.2 ≤

∣∣∣ xi−x ′iθi

∣∣∣ ≤ 1

0 for
∣∣∣ xi−x ′iθi

∣∣∣ ≥ 1

Cubic Spline 2:

ki (xi − x ′i ) =


1− 6

∣∣∣ xi−x ′iθi

∣∣∣2 + 6
∣∣∣ xi−x ′iθi

∣∣∣3 for 0 ≤
∣∣∣ xi−x ′iθi

∣∣∣ ≤ 0.5

2
(

1−
∣∣∣ xi−x ′iθi

∣∣∣)3
for 0.5 ≤

∣∣∣ xi−x ′iθi

∣∣∣ ≤ 1

0 for
∣∣∣ xi−x ′iθi

∣∣∣ ≥ 1

Gives sparse covariance matrix/better condition number for Large
sample size
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GEUK Details

Covariance Parameters determined via Maximum Likelihood:

log(p(y |X ; θ)) = −1

2
[Y T δY T ]K−1

[
Y
δY

]
+

1

2
[Y T δY T ]C

[
Y
δY

]
− 1

2
log |P| − 1

2
log |M| − 1

2
log |A| − nd + n − s

2
log2π

Optimization carried out using Pattern search or simplex

Most Expensive and Problematic part of Surrogate Construction

Optimization problem scales with dimension
Covariance Matrix inversion O(n3d3) if dense
Improvements possible with sparse covariance and better optimization
algorithm
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Regression Basis

Hermite Polynomials used as Basis

Basis set is truncated based on sensitivity analysis (High order used
for most sensitive parameters)

Derivatives included in Basis to reduce number of required samples

Parameters assumed to follow GP:

β̂ =

(
[HTGT ]K−1

[
H
G

])−1

[HTGT ]K−1

[
Y
δY

]
Function predictions:

y∗|~X ,Y , δY = [kT
∗ wT
∗ ]K−1

[
Y
δY

]
+

(
h(~x∗)− [kT

∗ wT
∗ ]K−1

[
H
G

])
β̂

Variance Prediction

V [y∗] = cov(~x∗,~x∗)− kT
∗ K−1k∗ + R(~x∗)A−1R(~x∗)

T . (2)
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Linear Methods

Fast statistic approximations possible with single function/gradient:

µ = y(x̄)

σ2 =
d∑

i=1

∂y

∂xi

2

σ2
xi

Taylor series can be used when arbitrary statistic required:

ylin(x) = y(x̄) +
∂y

∂xi

∣∣∣∣
x̄

(xi − x̄i )

Statistic Momnet Linear Monte Carlo Monte Carlo
Method Extrapolation Lower Upper

Mean 1.0370E-002 1.0369E-002 1.0393E-002 1.0409E-002
Variance 1.3790E-007 1.3412E-007 9.3979E-008 1.0106E-007

Std. Deviation 3.7134E-004 3.6622E-004 3.0656E-004 3.1789E-004
95% CI ±7.1616% ±7.0638% ±5.8994% ±6.1083%
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Linear Methods

Given extreme cost savings, accuracy likely sufficient for optimization

Accurate uncertainty predictions require more sophisticated surrogates
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Validity of Optimization

Optimization bounds appear overly conservative
As samples per dimension increases, sampling bounds approach
optimization bounds
Property demonstrated in 6 dimensions (2 aleatory, 4 epistemic)
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