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With the growing of computational resources within the last decades, the desire to

develop scalable and faster algorithms has increased notably. One of the most computa-

tional costly category of Computational Fluid Dynamic (CFD) problems is unsteady flow

problems, and periodic flow problems are one extensive category of unsteady problems.

The time-spectral method is a fast and efficient scheme for computing this sub category

of unsteady problems. Compared to traditional backward difference implicit time-stepping

methods, time-spectral methods incur significant computational savings by using a temporal

Fourier representation of the time discretization and solving the periodic problem directly.

Exponential convergence trend is another advantage of time-spectral method over the time-

accurate methods, which means that the rate of error decrease of this method accelerates as

more time-instances are added. Therefore, convergence can become faster than any polyno-

mial order. In the time-spectral discretization, all time instances are fully coupled to each

other, resulting in a dense temporal discretization matrix, the evaluation of which scales as

O(N2), where N denotes the number of time instances. This implementation of time-spectral

method that is based on discrete Fourier transform (DFT) results in significant computa-

tional costs and wall-clock time especially in problems with large number of time instances.

The goal of this dissertation is to provide a new parallel implementation of time-spectral

methods that decreases computational expenses significantly. In this work the time-spectral

method is implemented based on the fast Fourier transform (FFT) for power of two and

three numbers of time-instances. The computational cost of this implementation can be

reduced to O(NlogN). Furthermore, in parallel implementations, where each time instance

is assigned to an individual processor, the wall-clock time necessary to solve time-spectral

problems is reduced to O(logN) using the FFT-based approach, as opposed to the O(N)

weak scaling incurred by previous dense matrix or discrete Fourier transform (DFT) parallel

time-spectral solver implementations.

Additionally, this work addresses an extension of the proposed parallel FFT-based

time-spectral method to quasi-periodic problems. The backward-difference time-spectral
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(BDFTS) method can be applied to problems with a slow transient in addition to a strong

periodic behavior in time. This method is based on a collocation method that makes use of

a combination of spectral and polynomial basis functions in time. The FFT-based BDFTS

scheme is implemented as a rank-1 modification of the FFT-based time-spectral scheme.

Significant efficiency is gained in implementing the FFT-based BDFTS method compared

to its original implementation which was based on the discrete Fourier transform (DFT)

since the computational cost of implementing the spectral part of this method reduces from

O(N2) to O(NlogN).

Different parallel FFT-based solvers are developed and studied for periodic and quasi-

periodic problems. An FFT-based approximate factorization (AF) scheme is used to solve

time-spectral problems with large numbers of time instances. Subsequently, this solution

strategy is reformulated as a preconditioner to be used in the context of a Newton-Krylov

method applied directly to the complete non-linear space-time time-spectral residual. The

use of the Generalized Minimal Residual Method (GMRES) Krylov method enables addi-

tional coupling between the various time instances running on different processors resulting

in faster overall convergence. The GMRES/AF scheme is shown to produce significantly

faster convergence than the AF scheme used as a solver alone, and achieves orders of magni-

tude gains in efficiency compared to previous DFT-based implementations of similar solution

strategies for large numbers of time instances.
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Chapter 1

Introduction

Modern computing capabilities and numerical techniques have been refined over the years.

With that, Computational Fluid Dynamics (CFD) plays a big role in giving outstanding

insight to complex engineering problems, and yet many simulations exists that require more

efficient CFD methods, in order to gain the desirable accuracy. The simulation of unsteady

phenomena typically demands large computational investments to achieve suitable accuracy.

Temporally periodic problems are one of the sub-categories of unsteady problems that have

broad range of applications in industry, such as turbomachinery flows, rotorcraft problems,

etc. Traditionally, time-marching methods were employed for unsteady flow problems includ-

ing temporally periodic problems. This requires that the unsteady governing equations must

be integrated forward in time for several periods until the initial transient part is resolved

and a periodic steady state is obtained. In most realistic problems, solving the transient

part is very time consuming, making time-marching methods inevitably expensive. There-

fore, frequency-domain methods that directly solve for the periodic solution and avoid the

initial transient parts are more favorable in these problems.

1.1 Previous Research

The earliest frequency-domain methods approached temporal periodic problems by split-

ting the flow variables into steady and unsteady parts. The steady set of flow equations
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are solved first and then used in the solution of the unsteady set of flow equations. The

unsteady equations lead to a set of uncoupled equations for each mode that can be solved

independently [1, 2]. Although this treatment has a very low computational cost and re-

quires negligible storage, it does not predict accurate results for problems with significant

nonlinear content. Another method was developed by Adamczyk that included some por-

tion of the nonlinear effects [3]. In this method the flow variations were decomposed into a

time-averaged part and an unsteady part. The time-average part creates deterministic stress

terms, due to the non-linear nature of the Euler equations. The non-linear harmonic method

was proposed by He [4] for aeroelastic applications [5,6] and blade-row interactions [7]. This

method resolves all the non-linear effects. Similar to the method proposed by Adamczyk,

this method decomposes the flow variables into a time-averaged part and an unsteady part.

However, unlike Adamczyk’s method, the deterministic stress terms were not modeled in

this method. In this method the two inter-dependent equations were solved iteratively until

the whole system is converged. Subsequently, the Harmonic Balance (HB) method has been

developed by Hall et al.. This method linearizes the governing equations (potential, Euler

or NavierStokes) about a nonlinear steady or mean operating condition. The result is a

set of linearised equations in which time derivatives have been replaced by the operator jω.

The resulting linearised equations can be discretised and solved very efficiently using con-

ventional steady solution acceleration techniques. This method has evolved over the years.

Initially this method was developed for the linearized unsteady Euler equations [8–10], while

later development of this method could resolve the full nonlinear effects and time domain

techniques [11,12].

Thereafter, the Non-Linear Frequency Domain(NLFD) method was proposed by Mc-

Mullen et al. [13,14], which solves the full nonlinear Euler/RANS equations in the frequency

domain. Although this method accounts for all the non-linear effects of the flow, it is compu-

tationally expensive as two Fourier transforms are required in each iteration and it requires

large storage since the solution at all time levels must be stored. The Time-Spectral method

is an extension of the NLFD method, with the difference that it solves the governing equa-

tions in the time domain, and recasts the frequency domain equations back to the time

2



domain. The time-spectral derivative term can be added to any spatial solver, which enables

the use of any state-of-the-art solver for the spatial part. In many cases, the time-spectral

method, using small number of time-instances per period, without the need to evolve through

the transient part of the solution, shows the same or even better accuracy than traditional

time-stepping methods with a much higher number of time steps.

To discretize the time domain, similar to the harmonic balance method [13–15], a dis-

crete Fourier analysis is used in time-spectral methods where unsteady equations in the

time domain are first transferred to a set of steady equations in the frequency domain.

The steady equations in the frequency domain are then transformed back to the physical

domain by a time discretization operator which, couples each time instance to all other time-

instances [16]. Higher order accuracy and lower computational cost are two main advantages

of the time-spectral method compared to traditional time-stepping. In the time-spectral

method spectral accuracy can be achieved since Fourier representations are used for the

time discretization [16]. In addition to having high accuracy, the time-spectral method has

been shown to be computationally more efficient than dual-time stepping implicit methods

(using backward difference in time) for various time periodic problems such as helicopter

rotors [17, 18], oscillatory pitching airfoils [19], turbomachinery flows [20, 21], and flapping

wings [22]. The time-spectral method based on the discrete Fourier transform has been

implemented in the past in parallel by assigning each time instance to an individual proces-

sor. Simple implicit solvers such as block-Jacobi and Gauss-Seidel were initially employed

but found to produce slow convergence. Therefore, a Newton solution strategy was adopted,

where a Generalized Minimal Residual method (GMRES) was used to solve the linear system

at each Newton step, and the aforementioned linear iterative solvers were used as precondi-

tioners for GMRES. Examining different preconditioning strategies, an approximate factor-

ization (AF) scheme solves the temporal and spatial components in two successive steps was

found to be the most efficient approach overall, particularly for problems with large numbers

of harmonics and/or high reduced frequency [16,23–25].

However, the cost of all these methods scales as O(N2) where N denotes the number

of time-instances, due to the fully coupled nature of the time-spectral discretization. When

3



implemented in parallel, using one time-instance per processor, the wall-clock time of these

methods scales as O(N) due to the O(N2) communication.

A principal disadvantage of time-spectral methods is that they are only applicable to

purely periodic problems. A hybrid backward-difference time-spectral (BDFTS) approach

has been proposed for solving problems with slow transients combined with a relatively fast

periodic content in time [24]. The idea is to separate the periodic content from the quasi-

periodic function and to obtain accurate resolution of the periodic component by making

use of the properties of the spectral basis functions. Furthermore, the remaining transient

portion of the quasi-periodic function is represented with polynomial basis functions [24].

The formulation is based on a collocation method which combines spectral and polynomial

basis functions that are required to solve multiple successive periods to capture the transient

behavior, while the fully coupled time-instances within each individual period are solved

simultaneously. The aeroelastic flutter problem is an example of a coupled fluid/structure

problem with strong periodic content and a slow transient motion.

1.2 Dissertation Overview

The objective of this thesis is to develop the time-spectral method based on the parallel fast

Fourier transform (FFT) for solving periodic and quasi-periodic problems. This approach

offers a significant improvement in computational savings, reducing the cost of computations

and wall-clock time from O(N) for each processor to O(logN) [26]. Through the course

of this work, different TS solvers that are suggested by previous researches are developed

based on the parallel FFT. The AF scheme is implemented based on the parallel FFT and

its performance is studied in solving different periodic and quasi-periodic problems. In

many realistic problems, large numbers of time-instances are needed to resolve both low and

high frequency periodic content. As the number of time-instances becomes larger or the

period of the flow becomes shorter, the non-linear system associated with the time- spectral

method becomes larger and stiffer to solve. Achieving superior efficiency with the time-

spectral method requires a robust solver strategy that solves the large non-linear space-time
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system rapidly. The AF scheme is suggested to be used as a preconditioner for GMRES

in previous studies [23]. In the present work the FFT-based AF scheme is reformulated as

a preconditioner for GMRES, which is used in turn to solve the fully coupled space-time

system at each non-linear step in the Newton Method. The performance of the parallel

FFT-based GMRES/AF solver is investigated in periodic and quasi-periodic problems. In

what follows the primary contributions of the research are highlighted:

1.2.1 An Order of NlogN Parallel Time Spectral Method for Pe-

riodic Problems

In this work, the time-spectral method is derived using a parallel base-2 and -3 fast Fourier

transform (FFT). In this new implementation the wall-clock time necessary to converge

time-spectral solutions is reduced to O(logN), for N number of time-instances as opposed to

O(N) weak scaling incurred by previous DFT parallel time-spectral solver implementations.

The parallel FFT implementation devised in this work allows for the efficient computation of

time-spectral problems with large numbers of time instance for increased temporal accuracy.

Although in many cases time-spectral methods are used for problems where only a small

number of harmonics are of interest, there exist many practical applications for which larger

numbers of time instances are required in order to deliver the temporal accuracy that is com-

petitive with traditional implicit time-stepping methods. These most often involve periodic

problems with a rapid localized change in time, for which spectral basis functions are less

efficient. Practical examples include dynamic stall on the retreating blade of a helicopter

rotor [27], or periodic interactions of a rotor as it passes close to a stationary object such as

a wind turbine tower, or a rotor-stator interaction in turbomachinery. The new implemen-

tation of TS method accomplished in this work, made this method competitive with implicit

time-stepping methods in this categories of problems.
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1.2.2 An Order of NlogN Parallel BDF/Time-Spectral method for

Quasi-Periodic Problems

As discussed previously, the hybrid BDF/time-spectral (BDFTS) approach can be used to

simulate flows with a strong periodic content in addition to a slow mean transients, such

as fixed-wing flutter problems. This work attempts to develop a FFT-based algorithm for

quasi-periodic problems. The BDFTS formulation is shown to be equivalent to a rank-1

modification of the original periodic time-spectral matrix. Using the Sherman-Morrison

formula, it is shown how the modified matrix can be inverted efficiently based on the parallel

FFT-based approach for the temporal part of the AF algorithm. Using N time-instances

per period, the overall approach scales as O(NlogN) and requires O(logN) wall-clock time

when implemented in parallel using one processor per time instance.
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1.2.3 Dissertation Outline

Chapter 2 Provides the mathematical formulations involved in spatial and temporal dis-

cretization of the Euler equations. The backward-difference formulas are pro-

vided as well as TS and BDFTS methods and the parallel implementation of

FFT-based TS and BDFTS methods are presented.

Chapter 3 Covers all the solution methods that are used in this thesis, including imple-

menting FFT-based AF algorithm in periodic and quasi-periodic problems and

the GMRES method.

Chapter 4 Presents the results of solving periodic pitching airfoil problems using FFT-

based TS solvers. First the performance of TS solvers are examined in a

problem with a single frequency prescribed motion and then in a problem

with Gaussian bump prescribed motion. At the end of this chapter the perfor-

mance of FFT-based TS method is studied in a simple second-order derivative

problem.

Chapter 5 Examines the results of solving a quasi-periodic pitching airfoil problems using

FFT-based quasi-periodic TS solvers.

Chapter 6 Summarizes the entire thesis, draws conclusions and suggests future directions

of this work.
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Chapter 2

Mathematical Formulations

2.1 Governing Equation

Since this work studies inviscid compressible flows, the Euler equations are the governing

equations. The two dimensional conservative form of the Euler equations can be written as:

∂U

∂t
+∇ · F (U) = 0 (2.1)

in which U is the vector of conserved variables (mass, momentum and energy) and F (U)

represents the conservative fluxes. Equation (2.1) can be written as:
ρ

ρu

ρv

E


t

+


ρu

ρu2 + p

ρuv

(E + p)u


x

+


ρv

ρuv

ρv2 + p

(E + p)v


y

= 0 (2.2)

where ρ, p, and E denote the density, pressure and total energy and u, and v indicate the

Cartesian velocity components of the flow. Since many computational fluid dynamics prob-

lems are discretized over unstructured meshes, finite volume method which is a conservative

method is easier to be formulated to allow for unstructured meshes. Finite volume refers to
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the small volume surrounding each node point on a mesh. In the finite volume method, vol-

ume integrals in a partial differential equation that contain a divergence term are converted

to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes

at the surfaces of each finite volume. The integral form of the Euler equations over a moving

control volume in two dimensions can be written as:

∫
Ω(t)

(
∂U

∂t

)
dV +

∫
∂Ω(t)

(F (U) · ~n)) dS = 0 (2.3)

in which Ω(t) is the control volume, ~n is the normal vector of each surface and S is the

surface of each control volume. The first term in the left hand side of equation (2.3) can be

rewritten as:

∫
Ω(t)

∂U

∂t
dV =

∂

∂t

∫
Ω(t)

UdV −
∫
∂Ω(t)

U(ẋ.~n)dS (2.4)

where ẋ is the velocity of each surface of each control volume cell which varies with time. Us-

ing equation (2.4) the Euler equations can be written in a form that the temporal derivation

is taken outside the integral. then Equation (2.3) can be represented as:

∂

∂t

∫
Ω(t)

UdV +

∫
∂Ω(t)

(F (U)− Uẋ).~ndS = 0 (2.5)

The second term of the above equation can be written as:

R(U, ẋ, ~n) =

∫
∂Ω(t)

(F (U)− Uẋ).~ndS (2.6)

where U is assumed to be a cell-centered variable. Therefore, equation (2.5) is then given as

follows:

∂(UV )

∂t
+R(U, ẋ, ~n(t)) = 0 (2.7)

In this equation, R contains the integrated convective fluxes in arbitrary Lagrangian-Eulerian

(ALE) form and represents the spatial discretization, and V denotes the cell volume. In this

work we employ a cell-centered discretization with added artificial dissipation on unstruc-

tured triangular meshes similar to that used in previous work [16, 28]. In the cell-centered

9



Figure 2.1: Analysis of fluxes through the surfaces of a cell-centered control volume

finite volume method the cells serve directly as control volumes containing the degrees of

freedom stored on a per-cell basis as shown in Figure 2.1.

2.2 Spatial Discretization

The spatial part of the Euler equations are discretized by a cell-centered central-difference

finite-volume scheme. All the problems in this work are two dimensional and are solved

on unstructured grids. To evaluate fluxes at the cell faces, computing the convective and

diffusive fluxes is required. For control volume ”i”, with its closest neighbors ”k” and the

neighbors of neighbors ”q”, as shown in Figure 2.1, the total flux is calculated from:

Fik = Fconv,ik + FDiff,ik (2.8)

In this work, the convective term at the cell face are computed using central approximation.

Fconv,ik =
1

2
[Fi(Ui) + Fk(Uk)] (2.9)

and the diffusive flux can be obtained from the matrix dissipation model of:

FDiff,ik = κT |Λ|T−1(Ui − Uk) (2.10)
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In this evaluation, the dissipative terms of each discrete equation are scaled by the appro-

priate eigenvalues of the flux Jacobian matrix. Since the Euler equations are a strongly

hyperbolic system, the Jacobian matrix can be diagonalized. T is a matrix that contains the

eigenvectors of the Jacobian matrix normal to the control-volume face between i and k, and

matrix |Λ| is the diagonal matrix containing the absolute values of the eigenvalues associated

with the Euler equations, which are the forward acoustic, backward acoustic, and convective

eigenvalues. Since one eigenvalue is repeated, there are three distinct eigenvalues: un − ẋn,

un − ẋn + c, un − ẋn − c where un is the fluid velocity normal to the control volume face,

ẋn is the grid velocity normal to the control volume face and c is the speed of sound at the

face. One of the eigenvalues approaches zero, near stagnation points or near sonic lines. A

zero artificial viscosity would create instabilities. To solve this problem, the eigenvalues are

modified as:

|un − ẋn| = max[|un − ẋn| , δ(|un − ẋn|+ c)]

|un − ẋn + c| = max[|un − ẋn + c| , δ(|un − ẋn|+ c)]

|un − ẋn − c| = max[|un − ẋn − c| , δ(|un − ẋn|+ c)]

(2.11)

where |un − ẋn| + c is the maximum eigenvalue and δ is an empirical factor with a value

between zero and one [23].

2.3 Temporal Discretization

There are many ways to discretize the temporal derivative term in equation (2.7). In explicit

methods, the size of the time steps is limited by the stability criteria, which depends on

the size of the computational cell and the speed of wave. On the other hand, implicit

methods are unconditionally stable and are not limited by the stability criteria. However,

implicit methods require information that has not been computed yet. Although the focus

of this thesis is to look at the efficiency and accuracy of spectral discretization of the time-

derivative term of equation (2.7), the implicit time discretization is also described here for

the comparison purposes. In this section, first the most popular time marching methods are

described, later DFT and FFT discretizations of the time-spectral method are presented.
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Finally, the implementations of linear and quadratic BDFTS for quasi-periodic problems are

shown.

2.3.1 Backward Difference Formula

The first-order backward difference formula (BDF1) requires the values of the conserved

vectors in each control volume at the current time step and the previous time step. This

method treats the time derivative term in the following way:

∂(V U)

∂t
=

(V U)n − (V U)n−1

∆t
(2.12)

where n denotes the values of the conserved vectors in the current time step, and n − 1

denotes the values of the same vectors from the previous time steps. The accuracy of the

temporal error obtained by this method is first-order, O(∆t). For accuracy purposes second-

order backward difference (BDF2) formula is more favorable in most of the studies. This

formula gives the temporal error accuracy of O(∆t2). The BDF2 formula is given as follows:

∂(V U)

∂t
=

3(V U)n − 4(V U)n−1 + (V U)n−2

2∆t
(2.13)

Observe that in this formula, the time derivative at time step n depends on the solution at

the previous two time steps (n−1, n−2) as well as the solution at the current time step (n).

Using BDF2 as the time scheme for descritizing the Euler equations changes the equation

(2.7) to:

3(V U)n − 4(V U)n−1 + (V U)n−2

2∆t
+R(U, ẋ, ~n(t))n = 0 (2.14)

Higher-order backward difference formulas require variables from further previous time steps.

Although these methods give higher accuracies, they are not stable [29]. This instability is

proved by the theorem known as the Second Dahlquist barrier. This theorem says that the

highest order of an A-stable multi-step method is 2. Therefore, in this study the BDF2

time-stepping scheme is used where comparisons are needed.
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2.3.2 Time Spectral Method

For problems with temporal periodic content, the time-spectral method is a strong alternative

for calculating the temporal derivative term. Some properties of the time-spectral method

make this method favorable to study. This method achieves spectral accuracy in time and

solves for all the time-instances simultaneously. Also, an important property of this method

is that it can be achieved in parallel both in space and time. The time-spectral derivation

can be implemented in two ways that will be explained in the following sections. But before

that it is useful to briefly review a few mathematical ideas.

Mathematical Preliminaries: Periodicity

In general, the function U(t) is said to be periodic with period T if:

U(t+ T ) = U(t) ∀t (2.15)

where T refers to the smallest possible value that satisfies equation (2.15).

Discrete Fourier Transform Implementation

Taking the Fourier transform of a signal U(t) returns information about its spectrum. If

U(t) happens to be a discrete signal of length N :

U = [U0, U1, ..., UN−1] (2.16)

and if T is the period of U , the kth component of its discrete Fourier transform (DFT) is

given by: [16,30]

Ûk =
1

N

N−1∑
n=0

Une−ikn∆t 2π
T (2.17)

where k is the frequency or wave number, i is the imaginary unit, and ∆t = T/N . The

definition of the DFT is slightly different in different sources. Some authors define the DFT

including the factor of 1
N

, others include this factor in the definition of inverse of the DFT.

It is important to mention that this computation can be conceptualized as a matrix-vector
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multiplication. Considering U as a vector of size N , the DFT of vector U which is the result

of the operations in equation (2.17) also can be found by multiplying it with an N by N

matrix whose elements are given by:

DFTMatrix(n, k) =
1

N
e

−2πink
N (2.18)

and the complete Fourier transform of vector U , which has been represented by Ûk earlier

is:

Û = [Û0, Û1, Û2, ..., ÛK , Û−K , ..., Û−1]T (2.19)

K is the highest wave number that N number of time instances can accommodate, which is

called the Nyquist frequency and when N is odd, it is obtained from:

KNyquist =
N − 1

2
(2.20)

for odd values of N and

KNyquist =
N

2
(2.21)

for even values of N. The frequency corresponding to each wavenumber is given by:

fk = k
2π

T
(2.22)

Therefore, there are only K frequencies, represented by N = 2K + 1 time-instances. The

original samples in the time domain can be recovered by the inverse discrete Fourier transform

(IDFT). For even number of samples the IDFT becomes:

Un =

N
2
−1∑

k=−N
2

Ûke
ikn∆t 2π

T (2.23)

Taking the derivative of Un with respect to t in equation (2.23), the derivative becomes:

∂

∂t
Un =

2π

T

N
2
−1∑

k=−N
2

ikÛke
ikn∆t 2π

T (2.24)
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The time-derivative formulation is most easily constructed when all the terms in the above

equation are written in the time domain. Therefore, equation (2.17) is used to substitute

Ûk, in the above equation. The derivation of time-spectral formulations for odd and even

number of samples are slightly different, in this work the steps of the derivation of time-

spectral formulation for odd number of time-instances is shown.

Rewriting equation (2.24) for odd number of time-instances and by applying the chain rule,

the following is obtained [31]:

∂

∂t
Un =

2π

T

N−1
2∑

k=−N−1
2

ikÛke
ikn∆t 2π

T (2.25)

Using the definition of the DFT for Ûk, in the above equation:

∂

∂t
Un =

2π

T

N−1
2∑

k=−N−1
2

ik(
1

N

N−1∑
j=0

U je
−2πikj∆t

T )e
2πikn∆t

T (2.26)

By rearranging the terms, equation (2.26) becomes:

∂

∂t
Un =

2π

T

1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikU je
−2πikj∆t

T e
2πikn∆t

T (2.27)

Considering:

∆tj

T
=

j

N
(2.28)

and by properties of exponentiation, equation (2.27) becomes:

∂

∂t
Un =

2π

T

1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikU je
2πik(n−j)

N (2.29)

and finally by interchanging the order of summation:

∂

∂t
Un =

N−1∑
j=0

(
2π

T

1

N

N−1
2∑

k=−N−1
2

ike
2πik(n−j)

N )U j (2.30)

In other words:
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∂Un

∂t
=

N−1∑
j=0

djnU
j (2.31)

where

djn =
2π

T

1

N

N−1
2∑

k=−N−1
2

ike2πik
(n−j)
N (2.32)

The coefficients, djn for odd number of time-instances can be represented as:

djn =


2π
T

1
2
(−1)n−jcsc(π(n−j)

N
) if n 6= j

0 if n = j

(2.33)

Following the same steps for even number of time-instances, the coefficients of time-spectral

derivative matrix, for even number of time-instances are obtained as:

djn =


2π
T

1
2
(−1)n−jcot(π(n−j)

N
), if n 6= j

0 if n = j

(2.34)

The summation in equation (2.31) describes a matrix-vector multiplication. By substituting

this derivative into equation (2.7), the discretized governing equations reduce to a coupled

system of N non-linear equations for N different time-instances:

N−1∑
j=0

djnU
jV j +Rn(U, ẋ, ~n(t)) = 0 n = 0, 1, 2, .., N − 1 (2.35)

where Rn denotes the spatial residual for the nth time instance. The time-spectral method

affects only the temporal part of these equations while the spatial discretization part remains

unchanged. Additionally, in order to implement equation (2.35) in parallel, each time-

instance, n, is assigned to an individual processor. Therefore, N processors are needed to

solve the entire time-spectral system. It is assumed that there is no parallelism in the spatial

domain for this argument, since each processor needs information from all other processors

at each non-linear iteration, O(N2) communication takes place between the N processors.
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There are three different ways to implement the spectral matrix vector multiplication

to obtain the temporal derivative term. In the first approach, while the coefficients of the

spectral matrix is stored in all the processors, the data of each processor is broadcast to all

other processors, and then the data is multiplied by its corresponding spectral coefficient,

and summed together. The following algorithm describes the implementation of the first

approach:

Algorithm 2-1: Broadcast implementation of time-spectral derivative

1 Given Un for 0 ≤ n < N

2 Set dUn = 0

3 Store spectral matrix coefficients, (D(0 : N − 1, 0 : N − 1) from equation (2.34) and (2.33))

4 for n = 0, ..., N − 1 do, (where N is the number of time instances or processors)

5 Broadcast Un from processor n to all other processors

6 dUn = dUn +D(my − rank, n)× Un

7 end for

In the second approach, similar to the first approach, while the coefficients of the spectral

matrix is stored in all the processors, first, data in each processor is multiplied to its cor-

responding spectral coefficient, and then the results are Reduced and summed in all the

processors. The computational cost of this approach is the same as the first approach. The

implementation of this approach is shown in the following algorithm:

Algorithm 2-2: Reduce implementation of time-spectral derivative

1 Given Un for 0 ≤ n < N

2 Set dUn = 0

3 Store spectral matrix coefficients, (D(0 : N − 1, 0 : N − 1) from equation (2.34) and (2.33))

4 for n = 0, ..., N − 1 do, (where N is the number of time instances or processors)

5 dUn = D(n,my − rank)× Un

6 Reduce and sum dUn from all the processors in the processor n

7 end for
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In the third implementation, instead of calculating the spectral matrix-vector multiplication,

the derivative is calculated by taking the steps that are explained in equations (2.23) and

(2.24). In this approach first the direct application of the DFT is used, then the Fourier

transform of the data is multiplied by their corresponding coefficients that are introduced

in equation (2.24). Later the results are brought back to the time domain using the inverse

of the DFT. The cost of this approach is about twice that of the last two approaches. This

is due to the fact that while the cost of broadcast and reduce functions are the same, in

the third approach the broadcast function is used twice. It is used once in applying the

DFT routine and next in applying inverse of the DFT routine. In the next section, it is

shown that the steps taken to calculate the FFT-based time-spectral derivative are similar

to the third implementation of the spectral matrix-vector multiplication. Thus, in order to

be consistent in comparison, the third approach is used in solving the problem using the

DFT based time-spectral solver. The algorithm of the third approach is shown here:

Algorithm 2-3: DFT-IDFT implementation of time-spectral derivative

1 Given Un for 0 ≤ n < N

2 Calculate Ûk using DFT in which 0 ≤ k < N

3 Calculate dÛk by multiplying Ûk by iωk in which ω = 2π/T

4 Obtain dUn by transferring dÛk to the time domain using the inverse of DFT

Fast Fourier Transform Implementation for Even Number of Samples

For data sets with power of 2 numbers of samples, while the discrete Fourier transform

of a variable with N samples requires O(N2) operations, the same result can be achieved

with only O(N log2N) operations using the fast Fourier transform (FFT). The difference

is significant especially for large numbers of time-instances [32, 33]. The idea is that the

discrete Fourier transform of length N can be written as the sum of two discrete Fourier

transforms of length N/2, in which the first consists of all even numbered time instances,

and the second comprises all odd numbered time instances. This splitting into odd and even

groups is applied recursively until the length of the final subdivision is one. For N samples,
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Figure 2.2: Recursive subdivision of N = 8 sample set and corresponding bit-reversal order-
ing

log2N divisions are required and in each division N operations take place. Therefore, the

total cost will be O(N log2N). In each level, the Fourier transform is computed as:

Ûk =
1

N

N
2
−1∑

n=0

U2ne−ik2n∆t 2π
T +

1

N

N
2
−1∑

n=0

U2n+1e−ik(2n+1)∆t 2π
T (2.36)

In other words:

Ûk = even-indexed part +W kodd-indexed part (2.37)

where:

W = e−i
2π
N (2.38)

Successive subdivision of the samples into odd and even parts changes the order in which

the samples must be considered. This is illustrated in Figure 2.2 for a recursive subdivision

of N = 8 samples. The Danielson-Lanczos lemma provides a method to find the odd-even

reordering pattern of each sample [33,34]. Letting the samples be denoted as Un, the lemma

shows that the new ordering is obtained by bit-reversal of the original sample index n as

shown in Figure 2.2.

In order to take the derivative of U with respect to time, we make direct use of equations

(2.17) and (2.24). The forward FFT is applied to the variable Un and the obtained Ûk

19



are multiplied by their corresponding ik in which i is the imaginary unit and k is the

corresponding frequency. Next, the inverse FFT (IFFT) is applied to the results of this

multiplication. The result is the exact evaluation of equation (2.31) at a reduced cost afforded

by the use of the FFT.

In order to implement the FFT in parallel, similar to the DFT parallel implementa-

tion, each time-instance is assigned to an individual processor. The difference is that the

FFT divides the calculations into log2N levels and in each level, each processor requires

the information of just one other processor to calculate its own portion of the sequence.

Therefore, O(N) communication takes place at each level and hence the total amount of

communications will be O(N log2N). The Cooley-Tukey algorithm is used for the parallel

implementation of the FFT [32]. The following algorithm shows this implementation:

Algorithm 2-4: Parallel Fast Fourier transform for even number of samples

1 Given Un for 0 ≤ n < N

2 for level = 1, ..., NumLevel do

3 each processor finds its partner in the current level

4 Send and receive data to and from partner

5 Ûk = Un + e−i
2πk
N Upartner

6 Ûk+N
2

= Upartner + e−i
2πk
N Un

7 end for

In a traditional FFT implementation, the data is reordered according to the bit-reversal

pattern either at the start or the end of the algorithm [32, 33]. For a parallel FFT imple-

mentation of a time-spectral discretization, this implies significant communication, since the

entire spatial grid data from each time instance on a given processor would need to be trans-

ferred to the corresponding bit-reversed processor location. However, since the time-spectral

implementation always requires the application of a forward Fourier transform, followed by

an inverse Fourier transform, as described in equations (2.17) and (2.24), the samples are

brought back to the time domain afterwards via the inverse FFT and the reordering phase

is not required. Rather, all that is required is the specification of the appropriate frequency,

20



Figure 2.3: Pattern of communication for each level of the parallel FFT algorithm for sample
size N = 8

k, on each processor prior to the application of the IFFT, and the knowledge of the address

of each processor to which communication must be done at each level in the FFT and IFFT

process. These frequency values and processor addresses can easily be computed locally

without the need for any additional communication.

At each level of the FFT and IFFT, pairwise communication between processors occurs

and the total volume of communication is the same for all levels. However, the pattern

of communication varies for each level, as shown in Figure 2.3, for the case of the forward

FFT with no data reordering. Application of the forward FFT corresponds to traversing

the levels in Figure 2.2 from the bottom up. Thus in the first level, each processor must

communicate with its neighbor in the bit-reversal ordering, which corresponds to a distant

processor address in the original ordering. On the other hand, in the final level of the FFT,

each processor communicates with its nearest neighbor in the original ordering. This widely

varying communication pattern at each level can have significant effects on the achieved

bandwidth for modern multi-core distributed memory computer architectures, as will be

shown in Chapter 4.

Odd-Even Decoupling

Considering the matrix form of equations (2.33) and (2.34):
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Deven =



0 deven1 ... devenN−1
2

0 −devenN−1
2

... −deven1

−deven1 0 deven1 ... devenN−1
2

0 ... −deven2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

deven1 deven2 ... 0 ... −deven2 −deven1 0


(2.39)

Dodd =



0 dodd1 ... doddN
2
−1
−doddN

2
−1

... −dodd1

−dodd1 0 −dodd1 dodd2 ... ... −dodd2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

dodd1 dodd2 ... ... −dodd2 −dodd1 0


(2.40)

By comparing the even and odd matrices shown in (2.39) and (2.40), it can be seen that

matrix Deven contains two zeros in each row, while each row of Dodd contains only one

zero. Matrix Deven has two zero eigenvalues with eigenvectors e1 = (1, 1, ..., 1)T and e2 =

(1, 0, 1, 0, ..., 0)T . While eigenvector e1 corresponds to a zero time derivative for a constant

solution, eigenvector e2 results in a discrete zero time-derivative, which results in an odd-

even decoupled solution which is not desirable. On the other hand, matrix Dodd has only

one zero eigenvalue with corresponding eigenvector e1 = (1, 1, ..., 1)T , meaning that for Dodd,

a discrete zero time-derivative does not occur as the result of odd-even decoupling.

In problems such as pitching airfoil and wings [30], where the temporal derivative is relatively

small, both Deven and Dodd are stable. However in turbumachinery problems with high RPM,

the odd-even decoupling creates instabilities. For these categories of problems only an odd

number of time instances can be used [21].

Fast Fourier Transform Implementation for Odd Number of Samples

For the reason explained in section 2.3.2, in some problems time-spectral solutions using

even numbers of samples perform suboptimally compared to time-spectral solutions using
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odd numbers of samples [21,35], thus alternative FFT implementations that are not restricted

to power 2 numbers of samples must be considered. For data sets with power of 3 numbers

of samples, similar results can be achieved by using the base-3 FFT instead of the DFT, in

which the number of operations reduces from O(N2) to O(2N log3N). This implementation

also results in significant gains in computational efficiency particularly for large numbers of

time-instances N . The idea is that the discrete Fourier transform of length N can be written

as the sum of three discrete Fourier transforms of length N/3. In these summations the first

term consists of all samples with 3n indices, the second term consists of all samples with

3n + 1 indices, and the last term contains the remaining samples with 3n + 2 indices. This

subdivision is applied recursively until the length of the final individual sets is one. Similar

to the FFT with even number of samples, the ordering of samples after recursive subdivision

can be found by trit-reversing (in base 3) the index n of the samples. For N samples, log3N

divisions are required and in each division 2N operations take place. Therefore, the total

cost will be O(2N log3N). In each level the Fourier transform is computed as:

Ûk =
1

N

N
3
−1∑

n=0

U3ne−ik3n∆t 2π
T +

1

N

N
3
−1∑

n=0

U3n+1e−ik(3n+1)∆t 2π
T +

1

N

N
3
−1∑

n=0

U3n+2e−ik(3n+2)∆t 2π
T (2.41)

The algorithm of parallel fast Fourier transform for numbers of samples that are a power of

3 is given as follows:

Algorithm 2-5: Parallel Fast Fourier transform for odd number of samples

1 Given Un for 0 ≤ n < N

2 for level = 1, ..., NumLevel do

3 each processor finds its partner#1 and partner#2 in the current level

4 Send and receive data to and from partner#1 and partner#2

5 Ûk = Un + e−i
2πk
N Upartner#1 + e−i

4πk
N Upartner#2

6 Ûk+N
3

= Upartner#2 + e−i
2πk
N Un + e−i

4πk
N Upartner#1

7 Ûk−N
3

= Upartner#1 + e−i
2πk
N Upartner#2 + e−i

4πk
N Un

8 end for
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Similar to even numbers of samples, the same steps are done for taking the derivative of

U with respect to time. The parallel implementation is done with the difference that the

FFT-base 3 implementation divides the calculations into (log3N) levels and in each level,

each processor requires the information of two other processors to calculate its own portion

of the sequence. Therefore, O(2N) communication takes place at each level and hence the

total amount of communications will be O(2N log3N). Moreover, for the same reason that

has been explained in the section 2.3.2, the samples do not require reordering prior to or

after application of the FFT. Thus by tagging a new rank to each processor, the extra cost

of communication due to exchanging data for reordering can be avoided. The new rank in

this case can be obtained by trit reversing the rank of the processor.

Fast Fourier Transform Implementation for Values That are Not a Power of 2 or

3

The parallel FFT can be implemented for N values that are not a power of 2 or 3. The

implementations are similar to the Danielson-Lanczos lemma that recursively divides N to

smaller problems. In this case, N is divided into smaller groups based on the smallest prime

number factors of N . The larger the largest prime factor of N is, the slower the resulting

FFT. The worst case is when N is a large prime number, which means no subdivision can

happen, and O(N2) operations are required to calculate the Fourier transform, which is

equivalent to DFT implementation [33].

Optimization for real valued samples

In order to further increase the speed of the code we can take advantage of the fact that both

inputs and outputs of the spectral derivative are real valued. Hence it is possible to treat

N real data using N/2 numbers of complex data. By splitting the N real input data and

putting the first half of the data set into the real locations of the FFT and the second half

into the imaginary locations of a set of N/2 complex numbers, as shown in Figure 2.4. This

way the size of the input as well as the cost of the FFT derivative subroutine can be reduced

substantially. After the application of the forward and inverse FFT, the outputs from the
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Figure 2.4: Splitting the N real valued samples and creating a N/2 complex data

derivative routine are rearranged to match the original set of input data. Theoretically, this

splitting can yield a factor of 2 decrease in communication and computational cost.

2.3.3 Time-Spectral Second-Order Derivative

The steps required to compute the second-order derivative of U with respect to time are

similar to those used in the first-order derivative formulation. Equation (2.42) gives the

second-order differentiation of U in time, using the Fourier transform:

∂2

∂t2
Un = −(

2π

T
)
2

N
2
−1∑

k=−N
2

k2Ûke
ikn∆t 2π

T (2.42)

Algorithm 2 depicts the steps in order to calculate this formulation using the FFT [36]:

Algorithm 2-6: Second-Order Derivative

1 Given Un for 0 ≤ n < N

2 Calculate Ûk using FFT in which 0 ≤ k < N

3 Calculate Û ′′k by multiplying Ûk by −(ωk)2 in which ω = 2π/T

4 Obtain U ′′n by transferring Û ′′k to the time domain using the inverse of FFT
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Parallel implementation in second-order derivative problems is thus analogous to first-

order derivative problems with each time-instance assigned to an individual processor. There-

fore, the method scales O(log2N), which is a significant improvement compared to the DFT

based second-order derivative algorithm which requires O(N) communication. This imple-

mentation is required for structural dynamics equations that contain temporal second-order

derivative terms.

2.3.4 Hybrid BDF/Time-Spectral Method

The time-spectral method can be extended to problems that involve the combination of

periodic motion with a slower transient. The idea of the quasi-periodic time-spectral for-

mulation is to subtract out the non-periodic transient part, which can be modeled using

a polynomial basis set, and approximate the remaining purely periodic component with a

spectral basis [28]. The formulation is based on a collocation method that makes use of a

combination of spectral and polynomial basis functions.

We separate the periodic part and the slowly varying mean flow part of a temporal

quasi-periodic problem as:

Un(t) =

k=N
2∑

k=−N
2

Ûke
ikn∆t 2π

T + Ū(t) (2.43)

in which the slowly varying mean flow for a linear variation is approximated by a collocation

method using a polynomial basis set as:

Ū(t) = Φ12(t)Um+1 + Φ11(t)Um (2.44)

and for a quadratic variation in time, it is approximated as:

Ū(t) = Φ23(t)Um+1 + Φ22(t)Um + Φ21(t)Um−1 (2.45)

in which Um and Um+1 represent discrete solution instances in time usually taken as the

beginning and ending points of the considered period in the quasi-periodic motion, and
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Um−1 corresponds to the beginning point of the previous period. In the first case, Φ12(t) and

Φ11(t) correspond to the linear interpolation function given as:

Φ11(t) =
tm+1 − t

T
(2.46)

Φ12(t) =
t− tm

T
(2.47)

with the period given as T = tm+1 − tm. Similarly for quadratic interpolation, the Φ23(t),

Φ22(t), Φ21(t) are given as:

φ21(t) = 0.5[−(t− tm)

T
+

(t− tm)2

T 2
] (2.48)

Φ22(t) = 1− (t− tm)2

T 2
(2.49)

φ23(t) = 0.5[
(t− tm)

T
+

(t− tm)2

T 2
] (2.50)

Note that in this case, the collocation approximation leads to the determination of the Fourier

coefficients as:

Ûk =
1

N

N−1∑
n=0

Ũne−ikn∆t 2π
T (2.51)

with Ũn = Un − Ūn defined as the remaining periodic component of the function after

polynomial subtraction. Differentiating equation (2.43) and making use of equation (2.31)

and (2.51) we obtain the following expression for the time derivative:

∂Un

∂t
=

N−1∑
j=0

djnŨ
j + Φ′12(tn)Um+1 + Φ′11(tn)Um (2.52)

for the case of a linear polynomial functions in time. The Φ′12(tn) and Φ′12(tn) represent the

time derivatives of the polynomial basis functions (resulting in the constant values −1
T

and

1
T

in this case), and the various time instances are given by:
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tj = tm +
j

N
(tm+1 − tm) (2.53)

We also note that Ū(tm) = Um = U(tm), and thus we have Ũ0 = 0. In other words, the

constant mode in the spectral representation must be taken as zero, since it is contained in

the polynomial component of the function representation. Therefore, the j = 0 component

in the summation can be dropped, and rewriting equation (2.52) in terms of the original

time instances Un we obtain:

∂Un

∂t
=

N−1∑
j=1

djnU
j − (

N−1∑
j=1

djnΦ12(tj)− Φ′12(tn))Um+1 − (
N−1∑
j=1

djnΦ11(tj)− Φ′11(tn))Um (2.54)

Finally, the above expression for the time derivative is substituted into equation (2.35)

which is then required to hold exactly at time instances j = 1, 2, ..., N −1 and j = N (which

corresponds to the m+ 1 time instances):

N−1∑
j=1

djnV
jU j−

(
N−1∑
j=1

djnΦ12(tj)− Φ′12(tn))V m+1Um+1−

(
N−1∑
j=1

djnΦ11(tj)− Φ′11(tn))V mUm+

R(Un, x̄n, ~nn) = 0

(2.55)

with n = 1, 2, .., N . As previously, N coupled equations are used for the N unknown time

instances, although in this case the j = 0 time instance which corresponds to Um values

are known from the solution of the previous period, whereas the j = N or Um+1 values are

unknown. The reason is that the values at j = N are not equal to the j = 0 values as they

would be in a purely periodic flow. In the case of vanishing periodic content, summation

involving the djn coefficients vanish by virtue of equation (2.52) with Ũ j = 0 and it is

easily verified that the above formulation reduces to a first-order backward difference scheme

with a time step equal to T . On the other hand, for purely periodic motion, we have
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Um+1 = Um which results in cancellation of the polynomial derivative term Φ′12(tn) and

Φ′11(tn). Furthermore, using the identities Φ21(tj) + Φ11(tj) = 1, and
∑N−1

j=0 djn = 0, it can

be seen that the remaining polynomial terms reduce to the missing j = 0 equation and the

time-spectral method given by equation (2.35) is recovered.

In this description, the accuracy of the implementation based on linear polynomials

corresponds to a BDF1 time-stepping scheme. For accuracy purposes, the transient part of

the derivative can be implemented based on a quadratic polynomial which gives the accuracy

of a BDF2 time-stepping approach in the absence of the periodic component. In this case,

equation (2.55) becomes [23]:

N−1∑
j=1

djnV
jU j−

(
N−1∑
j=1

djnΦ23(tj)− Φ′23(tn))V m+1Um+1−

(
N−1∑
j=1

djnΦ22(tj)− Φ′22(tn))V mUm−

(
N−1∑
j=1

djnΦ21(tj)− Φ′21(tn))V m−1Um−1+

R(Un, x̄n, ~nn) = 0

(2.56)

with n = 1, 2, .., N . The quasi-periodic derivatives described in equations (2.55) and (2.56)

can be rewritten in the following form:

[Dqp]~U = [Dpp]~U + [qp]~U + ~const. (2.57)

where [Dqp]~U is the quasi-periodic derivative, and [Dpp]~U is the periodic derivative of U

which is obtained from:
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[Dpp]~U =



d0
0 d1

0 . . . dN−1
0

d0
1 d1

1 . . . dN−1
1

.

.

.

d0
N−1 d1

N−1 . . . dN−1
N−1


N×N



UN

U1

.

.

.

UN−1


(2.58)

As mentioned, while U0 in each period is known and obtained from the previous period, UN

which is equal to Um+1 is unknown. Since the coefficients of the time-spectral derivative

matrix are the same for U0 and UN , the U0 term is replaced by UN in equation (2.58) in

order to avoid changing the structure of the derivative routine. Furthermore, the matrix [qp],

is a rank-1 matrix and represents the contribution of Um+1 in equations (2.55) and (2.56).

This matrix-vector product is given as:

[qp]~U =



αN − d0
0 0 . . . 0

α1 − d0
1 0 . . . 0

.

.

.

αN−1 − d0
N−1 0 . . . 0


N×N



UN

U1

.

.

.

UN−1


(2.59)

in which the αn are obtained for equation (2.55) as:

αn =
N−1∑
j=1

djnΦ12(tj)− Φ′12(tn) (2.60)

and for equation (2.56) as:

αn =
N−1∑
j=1

djnΦ23(tj)− Φ′23(tn) (2.61)

Moreover, the constant vector in equation (2.57) is given as:

~const. = (
N−1∑
j=1

djnΦ11(tj)− Φ′11(tn))Um (2.62)

30



for equation (2.55) and in equation (2.56) can be calculated as follows:

~const. = (
N−1∑
j=1

djnΦ22(tj)− Φ′22(tn))Um − (
N−1∑
j=1

djnΦ21(tj)− Φ′21(tn))Um−1 (2.63)

Noting that the volume terms V m have been removed for simplicity. Therefore, the quasi-

periodic time-spectral derivative corresponds to a rank-1 modification of the original periodic

time-spectral derivative matrix, and can be evaluated in parallel using the FFT-based ap-

proach which incurs O(NlogN) communications, followed by a rank-1 update which itself

requires one additional broadcast operation.
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Chapter 3

Solution Methods

This research attempts to seek the best solution strategy in solving periodic and quasi-

periodic problems. The solution strategies are studied and compared based on the efficiency

and accuracy of the overall solver. For this purpose, this section describes the development

of different solvers.

3.1 Explicit and Implicit Schemes

In compressible Euler calculations, the most popular method for solving unsteady problems

is adding a pseudo-time stepping scheme to sufficiently reduce the unsteady residual at each

physical time step. The pseudo-time stepping is approximated by adding the first-order

backward difference formula to the existing Euler equations as:

(V U)s+1 − (V U)s

∆τ
+
∂(V U)

∂t
+R(U(t), xṫ, ñ(t)) = 0 (3.1)

where the first term in the left hand side of equation (3.1) is the pseudo-time derivative

that is discretized using BDF1 and ∂(V U)
∂t

is the actual time derivative term that can be

obtained using any time derivative scheme based on the nature of the problem. If the Euler

equations’ spatial residual terms in equation (3.1) are evaluated from the iteration s + 1,

then the scheme is implicit. While the implicit dual-time stepping approach is stable using

any size of pseudo-time step, the explicit schemes have limitations in choosing the pseudo-
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time step, for stability reasons. These limitations results in convergence degradation as the

number of time instances or time steps increase or the length of the period of the problem

decreases. It has been shown that if BDF2 is used for calculation of the real time derivative

term, then the maximum size of the pseudo-time term is restricted by [23,37,38]:

∆τn = CFL
V n

‖ λ ‖ +V n

∆t

(3.2)

in which index n represents the index of each cell, V is the volume of the cell, ‖ λ ‖ is the

spectral radius of the largest absolute eigenvalue of spatial discretization matrix, and ∆t is

the real time-stepping size. If the real time-stepping derivative term is evaluated with either

time-spectral or BDFTS discretization, then the size of pseudo-time step is limited by the

following:

∆τn = CFL
V n

‖ λ ‖ +V nk′
(3.3)

As equation (3.3) shows, the restriction on the size of the pseudo-time step is determined by

the largest wave number k′, that is defined as:

k′ =

 πN
T

for even N

π(N−1)
T

for odd N
(3.4)

where T is the length of the period of the problem [21,23]. In order to avoid these restrictions

and consequently convergence degradation, the implicit approach can be used as implemented

in reference [39] and discussed in the next section.

3.2 Newton-Raphson Method

The non-linear unsteady flow equations are linearized using Newton-Raphson method where

the linear system is solved approximately at each Newton step using linear solvers that will

be discussed later in this chapter. The set of fully coupled non-linear equations are linearized

using the Newton-Raphson method as:
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[
∂RT

∂U
]n∆Un+1 = −RT (U(t), xṫ, ñ(t)) (3.5)

In the above equation RT is the total residual including spatial and temporal residuals, which

is a vector with the size of spatial grid for each n and the matrix [∂RT
∂U

] is the Jacobian of the

entire system, including the Jacobian of the spatial and temporal parts. If the BDF2 scheme

is used for discretization of the temporal derivative term, then the complete Jacobian matrix

over all the time and space is given as:

[
∂RT

∂U
] =



V 0

∆τ0 I + 3V 0

2∆t
I + J0 0 ... 0

0 V 1

∆τ1 I + 3V 1

2∆t
I + J1 ... 0

.

.

.

0 0 ... V N−1

∆τN−1 I + 3V N−1

2∆t
I + JN−1


(3.6)

Matrix (3.6) is a diagonal block-matrix, in which each block element of the diagonal corre-

sponds to one time step over all the grids. The V j

∆τ j
are pseudo-time terms that are discretized

using BDF1 scheme, and are added to enhance the diagonal dominance of the Jacobian ma-

trix. Furthermore, matrices Jj correspond to the Jacobian of the spatial part at time step

j, and I is the identity matrix with the same size as spatial Jacobian matrix.

In cases that the temporal derivative term is obtained from the time-spectral formula-

tions, the complete Jacobian matrix is not diagonal anymore. In these cases the Jacobian

matrix is given as follows:

[
∂RT

∂U
] =



V 0

∆τ0 I + J0 V 1d1
0I ... V N−1dN−1

0 I

V 0d0
1I

V 1

∆τ1 I + J1 ... V N−1dN−1
1 I

.

.

.

V 0d0
N−1I V 1d1

N−1I ... V N−1

∆τN−1 I + JN−1


(3.7)
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In matrix (3.7), matrices J and I and the term V j

∆τ j
are the matrix of Jacobian of the spatial

part, identity matrix and pseudo-time term. The terms dji are the coefficient of the spectral

matrix that have been derived in (2.33) and (2.34). The full Jacobian matrix of the linear

BDFTS (BDF1TS) discretization is similar to matrix (3.7). The only difference is in the

first column:

[
∂RT

∂U
] =



V 0

∆τ0 I + J0 + αN V 1d1
0I ... V N−1dN−1

0 I

V 0d0
1I + α1

V 1

∆τ1 I + J1 ... V N−1dN−1
1 I

.

.

.

V 0d0
N−1I + αN−1 V 1d1

N−1I ... V N−1

∆τN−1 I + JN−1


(3.8)

where αj are obtained from equation (2.60). In all the cases studied in this work and

Reference [23], the Jacobian matrices are complete, meaning that the temporal term is

included in the structure of the Jacobian as well as the pseudo-time and spatial discretization

terms. In all the above full Jacobian matrices, matrix J which is the Jacobian of the spatial

discretization, can be calculated with first-order or higher order accuracies. In the first-order

accurate implementation of the Jacobian, the value of each cell is influenced by the values of

its closest neighbor, as in Figure 3.1, the value of cell ”i” is influenced by cells labeled ”k”. In

second-order accurate spatial discretization schemes, the value of each cell is influenced by

both the closest neighbors and the neighbors of its neighbors. Using this scheme, the value

of the same cell in Figure 3.1 depends on the values of cells named ”k” and ”q”. In this

sense, equation (3.5) can be obtained when the right hand side is evaluated using a second-

order spatially accurate scheme and the Jacobian is chosen to correspond to a first-order

spatially accurate scheme. The right-hand-side can also be written as a combination of a

first-order scheme and second-order correction terms [40]. If the full Jacobian is evaluated

with second-order accuracy, it may not be practical to store it explicitly. In this case, the

calculation of the exact Jacobian-vector product is possible in each linear-solver iteration

by storing three sets of diagonal and off-diagonal blocks, as shown in reference [23]. In all

the cases studied in this work, both the left and right hand side of the equation (3.5) are

35



Figure 3.1: Cell ”i”, its neighbors and its neighbors of neighbors

obtained using first-order spatially accurate schemes.

3.3 Approximate Factorization Scheme

One of the most effective solution technique for solving time-spectral problems with large

numbers of time-instances and/or high reduced frequencies is approximate factorization. In

this section the implementations of this solver in purely periodic and quasi-periodic problems

are demonstrated [16,25,28,39].

3.3.1 AF Algorithm in Purely Periodic Problems

Considering the linearized Euler equations given in equation (3.5) and assuming that the

temporal derivative term is calculated using time-spectral method, equation (3.5) yields:

[A]∆U = −RT (U, ẋ, ~n(t)) = −
N−1∑
j=0

djnU
jV j −R(U, ẋ, ~n(t)) (3.9)

where RT is the total residual of the time-spectral space-time system, R is the residual of

the spatial part and matrix [A] which is obtained from:
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[A] =

[
V

∆τAF
+ J + V [Dpp]

]
(3.10)

is the complete time-spectral Jacobian matrix. In this equation, ∆τAF denotes the pseudo-

time step, J refers to the Jacobian of the spatial discretization, and [Dpp] corresponds to the

time-spectral matrix. Approximate factorization is an efficient algorithm that factors the

Jacobian into the following form [16,41–43]:

[A] ≈ [
V

∆τAF
I + J ][I + ∆τAFDpp] (3.11)

which separates the contribution of the spatial and temporal parts in the Jacobian. This

algorithm is implemented in two steps. In the first step, the spatial matrix is solved to find

an intermediate value ∆∆U :

∆∆U = [
V

∆τAF
I + J ]−1(−R(U, ẋ, ~n(t))) (3.12)

This can be achieved using any existing direct or iterative solver previously implemented for

steady-state problems. In this work, for all the cases, a block Jacobi iterative solver is used

to solve the spatial part. In the second step, using the previously computed intermediate

value, the temporal matrix is inverted to find ∆U :

∆U = [I + ∆τAFDpp]
−1∆∆U (3.13)

When solving this part of the equation using the DFT approach, the spectral matrix is usu-

ally inverted or factorized directly. However, for the FFT implementation, by transforming

the equation to the frequency domain, the spectral matrix becomes diagonal and subse-

quently the system of coupled equations changes to N decoupled equations. Equation(3.13)

is transferred to the frequency domain using the FFT:

[FT ](I + ∆τAF [Dpp])∆U = [FT ]∆∆U (3.14)

where [FT ] denotes the Fourier transform operation. Matrices I and Dpp can be written as:
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[Dpp] = [IFT ][D̃pp][FT ] (3.15)

[I] = [IFT ][Ĩ][FT ] (3.16)

where [IFT ] is the inverse of Fourier transform operation, and both [D̃pp] and [Ĩ] are diagonal

matrices. By substituting equation (3.15) and (3.16) into equation (3.14), the following is

obtained:

([Ĩ] + ∆τAF [D̃pp])[FT ]∆U = [FT ]∆∆U (3.17)

In other words:

([Ĩ] + ∆τAF [D̃pp])∆Ûk = ∆∆Ûk (3.18)

Therefore, the ∆Ûk is calculated as:

∆Ûk =
1

1 + ikω∆τAF
(∆∆Ûk) (3.19)

where i is the imaginary unit and ω is the angular frequency (ω = 2π/T ). Next ∆Ûk is

transferred back to the time domain by use of the inverse fast Fourier transfer (IFFT) to

obtain ∆U .

The AF inversion is not exact and includes an error which depends on the size of ∆τAF .

By choosing a small ∆τAF , the error can be reduced although the approximately factorized

system must be solved iteratively. Also, the sequence of the factorization determines the

magnitude of error. Depending on whether the spatial part or the temporal part is solved

first, the factorization error is either ∆τAF [J ][Dpp] or ∆τAF [Dpp][J ]. The magnitude of the

error resulting from these two implementations depends on the problem. In this work, by

examining both implementations, we realized that it is more efficient if the spatial part is

solved first. Therefore, in our implementation, the spatial component is solved first (approx-

imately) followed by the direct solution of the temporal component as discussed above.
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3.3.2 AF Algorithm for Quasi-Periodic Problems

Proceeding along the same steps as in purely periodic problems, for quasi-periodic problems

equation (3.5) is recovered with some differences as:

[A]∆U = −Res(U, ẋ, ~n(t)) = −[Dqp]U
jV j −R(U, ẋ, ~n(t)) (3.20)

in which Dqp is the quasi-periodic derivative term that is obtained from the temporal terms

of equations (2.55) or (2.56). Matrix [A] in equation (3.20) is now given as:

[A] =

[
V

∆τAF
+ J + V

[
D∗qp
]]

(3.21)

where

[D∗qp] = [Dpp] + [qp] (3.22)

and the matrix [qp] is given by equations (2.57) and (2.59), noting that the constant vector

in the equation (2.57) drops out during the process of Newton-Raphson linearization. The

factorization process in this case is the same as in the previous section which leads to the

following approximation:

[A] ≈ [
V

∆τAF
I + J ][I + ∆τAFD

∗
qp] (3.23)

Solving the spatial matrix in order to find the intermediate solution proceeds exactly as in

equation (3.12), except that the residual is obtained from the right hand side of equation

(3.20). In this work we employ a simple block-Jacobi iterative spatial solver, as the focus

of the current work is on the efficient inversion of the temporal operator. By following the

same steps as in purely periodic problems for solving the temporal component of the AF

scheme, equation (3.13) for a quasi-periodic problem becomes:

[I + ∆τAFD
∗
qp]∆U = ∆∆U (3.24)

or
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[I + ∆τAF ([Dpp] + [qp])]∆U = ∆∆U (3.25)

Equation (3.25) is transferred to the frequency domain in order to benefit from the fact that

the spectral matrix is diagonal in the frequency domain:

[FT ]([D∗pp] + ∆τAF [qp])∆U = [FT ]∆∆U (3.26)

where [FT ] denotes the Fourier transform matrix and [D∗PP ] is given as:

[D∗pp] = (I + ∆τAF [Dpp]) (3.27)

which is the temporal component of the AF scheme in purely periodic problems. Matrices

[D∗PP ] and [qp] can be written as:

[D∗pp] = [IFT ][D̃∗pp][FT ] (3.28)

and

[qp] = [IFT ][q̃p][FT ] (3.29)

where [IFT ] represents the inverse Fourier transform matrix, [D̃∗pp] and [q̃p] are diagonal

matrices corresponding to [D∗pp] and [qp]. Therefore, equation (3.26) simplifies:

[D̃∗qp](∆Ûk) = [[ ˜D∗PP ] + ∆τAF [q̃p]](∆Ûk) = (∆∆Ûk) (3.30)

Here we have named the summation of [D̃∗pp] and [q̃p], [D̃∗qp]. The next step is taking the

inverse of matrix [D̃∗qp]. In this case, since matrix [q̃p] is a rank-1 matrix, it can be written

as:

∆τAF [q̃p] = ~̂uk
~̂vTk (3.31)

Here, matrix [D̃∗qp] corresponds to a rank-1 modification of the matrix [D̃∗pp], and it is no longer

diagonal in the frequency domain. Therefore, it is not possible to calculate the inverse of
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the temporal matrix using equation (3.19). However, since the inverse of the matrix, [D̃∗pp],

is easy to obtain in the frequency domain, following equation (3.19) and matrix [q̃p] is a

rank-1 matrix, it is possible to calculate the inverse of the temporal matrix efficiently, using

the Sherman-Morrison formula [44]. The Sherman-Morrison formula gives the inverse of the

matrix [D̃∗qp] as follows:

[D̃∗qp]
−1 = ([D̃∗pp] + ~̂uk

~̂vTk )−1 = [D̃∗pp]
−1 −

[D̃∗pp]
−1 ~̂uk

~̂vTk [D̃∗pp]
−1

1 + ~̂vTk [D̃∗pp]
−1 ~̂uk

(3.32)

We note that the term in the denominator is a constant scalar that can be precomputed and

we name it SC, and one instance of the [D̃∗pp]
−1 matrix can be factored out in the overall

expression as:

[D̃∗qp]
−1 = [D̃∗pp]

−1([I]−
~̂uk
~̂vTk [D̃∗pp]

−1

SC
) (3.33)

Thus, ∆Ûk is obtained from:

∆Ûk = [D̃∗pp]
−1([I]−

~̂uk
~̂vTk [D̃∗pp]

−1

SC
)(∆∆Ûk) (3.34)

As can be noted, this formula requires two matrix-vector products of [D̃∗pp]
−1, which can be

obtained as previously, using the parallel FFT approach. Finally, ∆Ûk is transferred back

to the time domain by use of the inverse fast Fourier transform (IFFT) to obtain ∆U . In

this case, similarly to the AF implementation for purely-periodic problems, the AF inversion

error depends on the size of ∆τAFJD
∗
qp, and the sequence of solving the temporal and spatial

part.

3.4 Generalized Minimal Residual Method

Although the approximate factorization scheme is relatively effective and can be implemented

efficiently using an FFT approach as described above, this scheme still suffers from the

requirement of using a small pseudo-time step or CFL number due to the limitations of the

factorization error incurred by the scheme. One way to overcome these limitations is to
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use the approximate factorization scheme as a preconditioner for a GMRES solver within

the context of a Newton-Krylov method. In this approach, the entire non-linear space-time

system of equations resulting from the time-spectral method is linearized and solved using

this Newton method. The linear system arising at each step of the Newton solution procedure

is solved using the GMRES approach with the FFT-based approximate factorization solver

used as a preconditioner. The linear system of equations obtained in equation (3.5) is written

as:

[A]x = b (3.35)

where A is the Jacobian obtained by linearizing the full space-time residual, x is the Newton

update and b is the negative of the space-time residual. GMRES seeks to minimize the least

squares norm of the residual of the linear system that is obtained from:

r = [A]x− b (3.36)

over the space span
{
r0, [A]r0, [A]2r0, .., A

k−1r0

}
. For a right preconditioning system the

system is solved as:

[A][P ]−1y = b (3.37)

where

x = [P ]−1y (3.38)

P is the preconditioner in the above equation. The Krylov subspace in this case is the

span
{
r0, [A][P ]−1r0, ([A][P ]−1)2r0, .., (A[P ]−1)k−1r0

}
. Preconditioning consists of solving

the following linear system in order to compute the Krylov subspace:

[P ]z = q (3.39)

in which q is a Krylov vector and z is the preconditioned Krylov vector. The flexible GM-

RES algorithm that allows the use of an iterative method as a preconditioner is used here,
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as described by Saad and shown here in Algorithm 1 [16,45].

Algorithm 1: Flexible GMRES (FGMRES)

1 Given Ax = b

2 Compute r0 = b− Ax0 , β = ‖r0‖ and v1 = r0
β

3 for j = 1, ...,m do

4 compute zj = P−1vj

5 compute w = Azj

6 for i = 1, ..., j do

7 hi,j = (w, vi)

8 w = w − hi,jvj
9 Compute hj+1,j = ‖w‖2 and vj+1 = w

hj+1,j

10 end for

11 Define Zm = [z1, ...zm], Hm = hi,j , 1 ≤ i ≤ j + 1; 1 ≤ j ≤ m

12 end for

13 Compute ym = argminy ‖βe1 −Hmy‖2 = and xm = x0 + Zmym

14 if satisfied Stop, else set x0 = xm

In the given algorithm, A is the time-spectral Jacobian matrix that includes both the

temporal and spatial parts, as defined in the following:

[A] =

[
V

∆τNewton
+ J + V [DTS]

]
(3.40)

A well-known characteristic of Krylov methods is that only Jacobian-vector products are

required. In this case, exact Jacobian-vector products are performed for the above space-time

Jacobian by first computing the spatial Jacobian-vector product, followed by the temporal

Jacobian-vector product, and then adding together these two resulting vectors. For the

spatial product, the exact Jacobian-vector product is obtained through exact differentiation

of the spatial discretization. A pseudo-time step term, ∆τNewton, is included in A. The right

hand side of the equation in the first line of the algorithm, b, corresponds to the negative of
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the residual and x is the non-linear update of ∆U . The FFT-AF scheme is applied in line

4 of the algorithm as the preconditioner. In this case a pseudo-time step must be applied

to guarantee the diagonal dominance of the system and to limit the AF factorization error.

Also, Given’s rotation is used in order to solve the minimization problem in line 13 of the

algorithm [45].

Aside from the pseudo-time term in the preconditioner, ∆τAF , another pseudo-time step

is used in the GMRES algorithm, which is denoted as ∆τNewton. Unlike ∆τAF , which is the

constant pseudo-time step inside the approximate factorization, the FGMRES pseudo-time

step, ∆τNewton, is allowed to grow as the non-linear residual decreases. Therefore, two CFL

values are involved in this algorithm. The first is used in the calculation of ∆τNewton. A

geometric progression is used to control the growth of this CFL value. When the non-linear

residual decreases, the CFL is increased using a constant factor of 1.5, otherwise it is held

constant. The resulting CFL in the FGMRES algorithm is increased to very large values

O(1015) so that quadratic convergence of the non-linear problem can be achieved. The

second CFL, which is used in the calculation of ∆τAF is constant and always smaller than

or equal to the first one. This CFL is used to manage the factorization error and guarantee

diagonal dominance in the preconditioner (FFT-AF). The pseudo-time step in the FGMRES

algorithm, ∆τNewton, grows rapidly so that an exact Newton method can be recovered after

several orders of magnitude decrease in the non-linear residual, provided the linear system

is solved exactly. However, for efficiency reasons, we generally employ an inexact Newton

approach where the linear system is only solved approximately, as discussed in the Results

section [23].

44



Chapter 4

Purely Periodic Flow Results

4.1 First-Order Derivative Problem Results

4.1.1 Single Frequency Prescribed Motion

A two-dimensional inviscid pitching airfoil case is studied using NACA0012 airfoil at a Mach

number of 0.755 and a mean incidence angle of α0 = 0.016◦. The pitching motion is pre-

scribed about the quarter chord of the airfoil with the following formula:

α(t) = α0 + αAsin(ωt) (4.1)

in which ω is the frequency of the pitch motion and is obtained from the reduced frequency,

kc as:

ω =
2U∞kc
c

(4.2)

The reduced frequency for this problem is 0.1628 and the pitching amplitude αA is equal

to 2.51◦. This test case corresponds to the AGARD (Advisory Group for Aerospace Re-

search and Development) test case No.5 [46]. The periodic solution is obtained with various

numbers of time instances on an unstructured spatial mesh of 15573 triangles, as shown in

Figure 4.1(a). The airfoil pitching motion is prescribed as a solid body rotation applied

to the entire mesh. The Mach number, computed using the time-spectral solution with 64
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(a) Unstructured mesh (b) Computed Mach contours

Figure 4.1: Computational mesh and computed Mach contours at t = 25.7s, for time-spectral
solution of pitching airfoil problem using 64 time instances

time instances at a given location, in time shown in Figure 4.1(b). Figures 4.2 show the

comparison of the lift and drag coefficients versus angle of attack between the second-order

backward difference time-accurate method using 64 time steps per period, and the time-

spectral method with 8, 16, and 32 number of time instances. For this case, the results from

the time-spectral method using 16 time instances shows equivalent accuracy, compared to

the results obtained from the time accurate method.

In a first set of runs, the performance of the approximate-factorization (AF) scheme

used directly as an iterative solver for the time-spectral problem is examined. In this and

all subsequent cases (except the mesh study test cases), an iteration of the AF scheme

includes 20 block Jacobi sweeps to approximately invert the spatial factor, followed by the

direct inversion of the time-spectral factor. Figure 4.3 depicts the convergence rates of the

DFT and FFT-based AF implementations for even and odd numbers of time instances. As

expected, the DFT and the FFT implementations result in identical convergence rates as

measured by the computed residuals at each iteration [26, 47]. However, when measured in

terms of wall-clock time, the FFT solver is significantly more efficient than the DFT based

solver.
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(a) Lift coefficient versus alpha (b) Drag coefficient versus alpha

Figure 4.2: Comparison of time histories of the flow coefficients using the time-spectral
method and BDF2

(a) 256 time instances (b) 243 time instances

Figure 4.3: Comparison of residual history versus number of iterations for different numbers
of time instances, using the FFT- and DFT-based AF solvers
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(a) Log of wall-clock time for up to 2048 number of
samples

(b) Wall-clock time for small number of samples

Figure 4.4: Wall-clock time versus number of time instances for even numbers of samples
using FFT- and DFT-based AF solvers

This is illustrated in Figures 4.4 and 4.5, where the wall-clock time to achieve a fully con-

verged solution is plotted versus the number of time instances used in the time-spectral

discretization for even and odd numbers of time instances, respectively. For even numbers of

time instances the code was run for N equal to different powers of 2 up to 2048, and for odd

numbers of time instances the code was run for N equal to different powers of 3 up to 2187.

These figures demonstrate the significant efficiency gains of the FFT-based method over the

DFT-based method, noting that the FFT approach is more efficient even for low values of

N, as seen in Figures 4.4(b) and 4.5(b) [26,47]. Furthermore, as mentioned in the previous

chapter, the TS method based on parallel base-2 FFT implementation scales as O(logN2),

while it scales as O(2logN3) in parallel base-3 implementation of the FFT. Therefore, solving

the problem using even number of samples shows slightly more efficiency in terms of running

wall-clock time compared to solution of the problem using odd number of samples.

Figure 4.6 depicts the wall-clock time versus the number of time instances for the FFT-

based approach as originally coded, and for the version optimized for real valued data,

by splitting the data into two groups which are used as real and imaginary inputs to the

FFT routine, as described previously. The figure illustrates the O(logN) complexity of the
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(a) Log of wall-clock time for up to 2187 number of
samples

(b) Wall-clock time for small number of samples

Figure 4.5: Comparison of wall-clock time versus number of time instances for odd numbers
of samples, using the FFT- and DFT-based AF solvers

algorithm and indicates that the real data splitting optimization provides a speedup which

asymptotes to just under a factor of 2 at high processor counts.

The performance of the GMRES/AF scheme is examined next. In this case, the full

space-time non-linear system is solved using a Newton-Krylov approach, using the previous

FFT-based AF scheme as a preconditioner for GMRES. Figure 4.7 compares the non-linear

convergence obtained by the GMRES/AF scheme versus that produced by the AF scheme

used directly as a solver, for a case using 8 time instances, and for a case using 1024 time

instances. In both cases, convergence is plotted as the L2 norm of the space-time residual

versus the number of iterations for the AF solver, and versus the cumulative number of Krylov

vectors for the GMRES/AF scheme, since in the latter case the cost of a Krylov vector is

roughly equivalent to an iteration of the AF scheme. As seen from these results, using the

AF scheme as a preconditioner for GMRES results in significantly faster convergence than

using the AF scheme directly as a solver, requiring 3 to 4 times fewer iterations or Krylov

vectors to reach the final convergence tolerance. In these results, the same CFL value is

used for the AF scheme when used either as a solver or as a preconditioner for GMRES.

On the other hand, for the GMRES/AF scheme, the CFL in the Newton linearization used

49



Figure 4.6: Wall-clock time versus number of time instances for original complex FFT and
real-data split FFT implementations.

for GMRES is increased at each nonlinear iteration using a simple geometric progression,

with the growth factor of 0.01 and reaches a maximum of 1015 after roughly 10 non-linear

iterations. At each non-linear iteration, multiple Krylov vectors are used in the GMRES

algorithm in order to solve the resulting linear system.

An important consideration for the overall efficiency of the solver is the determination

of the precision to which the linear system is solved at each non-linear step in the GMRES

algorithm. In the previous results, the linear system solution tolerance was set to 0.1, based

on the experience and recommendations from previous work [35]. This effect of the linear

system solution tolerance is studied in more detail for this case in Figure 4.8, where the same

problem using 256 time instances has been solved using tolerances of 0.5, 0.1 and 0.01. In

this figure, the L2 norm of the space-time residual is plotted versus the cumulative number of

Krylov iterations for all three cases. Figure 4.9, provide more detail for each case by showing

the residual convergence in terms of non-linear updates, the number of Krylov vectors at each

non-linear update, and the CFL evolution as a function of non-linear updates. For this case,
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(a) (b)

Figure 4.7: Comparison of the non-linear residual versus iterations for the AF solver and
versus Krylov vectors for the GMRES/AF solver with 8 number of time instances (a), and
1024 number of time instances (b).

the linear tolerance of 0.5 is the most efficient, achieving full convergence in approximately

1300 Krylov vectors compared to over 2000 Krylov vectors for the case using the lowest linear

system tolerance of 0.01, and with the tolerance case of 0.1 falling in between these two cases.

As seen from Figure 4.9, the tighter linear tolerance cases result in fewer non-linear iterations

overall, but this must be balanced by an increase in the number of Krylov vectors required

at each non-linear step in order to satisfy the prescribed linear system solution tolerance.

Figure 4.10 compares the required wall-clock time to solve the same problem using different

numbers of time instances for the three values of the linear system tolerance. This plot

shows that the wall-clock time for linear tolerance settings of 0.5 and 0.01 are similar, where

they are both higher than the time required by the tolerance case of 0.1. This admits the

above statement that linear tolerance is balanced by number of Krylov vectors. Therefore,

the linear system tolerance is set to 0.1 for the remainder of the cases presented in this

work, since this represents the best compromise between consistent convergence behavior

and efficiency over a wide range of test cases. Figure 4.11 compares the wall-clock time

required to converge the pitching airfoil problem for various numbers of time instances using

51



the GMRES/AF scheme and the AF scheme alone. The wall-clock time is plotted versus

the log of the number of time instances, and for both schemes, the wall-clock time varies

roughly linearly with the log of the number of time instances, at least up to N = 1024.

This is the expected behavior, since the FFT scheme, which dominates the cost of either

solver scales as O(NlogN). A very slight decrease appears in the trend of the wall clock time

of GMRES/AF scheme, by increasing the number of time-instances for N equals to 8, 16

and 32. This is due to the fact that the solver requires moderately more number of Krylov-

vectors to solve the problem for 8 and 16 number of time-instances compared to N = 32

to reach the required accuracy, and consequently results in slightly longer running time.

However, the GMRES/AF scheme is seen to be consistently over 2 times more efficient than

the AF scheme alone over the entire range of the number of time instances up to N = 4096.

To further illustrate the efficiency of the current approach, Figure 4.12 plots the required

wall-clock time for the solution of the same problem versus the number of time instances for

the GMRES/AF solver implemented using the FFT approach and the DFT approach. This

latter case corresponds closely to the solution scheme reported in references [16,43], and the

current approach shows significant improvement over the DFT approach, particularly for

large numbers of time instances where up to two orders of magnitude improvement in the

wall-clock time can be obtained.

Figure 4.13 compares the wall-clock time versus the number of time instances for differ-

ent reduced frequencies using either the FFT-based GMRES/AF solver or the FFT-based

AF solver alone. This plot indicates that the performance of both solvers is relatively insen-

sitive to the reduced frequency of the problem while the GMRES/AF solver retains a factor

of 2 to 3 speed-up compared to the AF solver.

To further study the behavior of the GMRES/AF solver, the portion of wall-clock time

due to the computation and communication phases of the solver are examined. In this case,

there is no spatial partitioning, and each time instance runs on a single individual processor or

core. Thus the majority of the communication occurs in the FFT routines. These are invoked

in the computation of the time-spectral residual evaluation, and also in the time-spectral

portion of the Jacobian-vector product that occurs in the GMRES routine. Additionally,
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Figure 4.8: Residual versus cumulative Krylov vectors for different linear tolerances for
N = 256

solution of the approximate factorization problem in the preconditioner involves the use of

the FFT routines. Finally, additional communication is required in the GMRES routine

for forming inner products over Krylov vectors which span all time instances. Figure 4.14

depicts the total wall-clock time, as well as the time due to communication and computation,

versus the logarithm of the number of time instances for the same test case. As the costs are

dominated by the FFT algorithm, both communication and computation time are expected

to scale as O(logN). This trend is observed approximately, although the costs increase more

rapidly for larger numbers of time instances. This is attributed in past to a slight growth in

the number of Krylov vectors required for the solution of cases above N = 512.

To examine the performance of the solver in more detail, the parallel FFT routine is

isolated and the wall-clock time for the communication and computation parts are monitored.

Figure 4.15 shows the same plot for the parallel FFT routine alone. This figure shows that the

computation component of the FFT scales optimally as log(N), whereas the communication

component grows faster than log(N), particularly for higher processor counts. Referring
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back to Figure 2.3, the communication time required for the first and last level in the parallel

FFT routine are compared in Figure 4.16 as a function of the number of time instances or

processors N . Keeping in mind that both levels involve the same volume of communication

data but across significantly different communication schedules, the increase in time for the

first level can be attributed to the non-local nature of the communication, as illustrated in

Figure 2.3. These results were run on the NCAR-Wyoming Yellowstone supercomputer, for

which the intra-node communication bandwidth has been measured to be 60GBps, while the

peak one-way network speed (inter-node) is about 6GBps [48]. Note that the communication

time for both levels is nearly identical for N = 16, when all MPI ranks are within a single

shared memory node. Thus, the additional communication time of the first level of the FFT

routine for cases with more than 16 time instances can be attributed to the non-local nature

of this schedule, which results in increased inter-node versus intra-node communication as

N increases.
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4.1.2 Mesh Resolution Study

While the previous results have been obtained on a mesh of relatively coarse spatial resolution

(15,573 cells), in order to examine the effect of grid size on the convergence behavior of the

FFT-based GMRES/AF time-spectral solver, an additional finer mesh with over four times

the number of cells (85,974 cells) is introduced. Figure 4.17(a) provides a comparison of the

convergence histories obtained by the GMRES/AF time-spectral solver on the coarse and

fine meshes using 64 time instances in both cases. As can be seen, the finer mesh produces

somewhat slower overall convergence. However, in both cases a total of 20 Jacobi iterations

were used in the AF preconditioner and it is well known that simple smoothers such as

block Jacobi do not scale optimally with grid size. As a numerical experiment, the same

problem is recomputed on both meshes using a large number of Jacobi iterations in the AF

preconditioner such that the spatial problem within the AF scheme is converged to machine

zero for each Krylov vector. These results are depicted in Figure 4.17(b) and show that

similar asymptotic rates of convergence are achieved on both the fine grid and coarse grid

in this case. These results provide evidence that the spatial scaling of the solver is governed

by the spatial solver component of the AF scheme, and that a GMRES/AF time-spectral

solver that is both optimal in space and time can be constructed provided an optimal spatial

solver (i.e. multigrid) is employed in the AF preconditioner.

4.1.3 Gaussian Bump Test Case

The previous test cases were based on a relatively simple prescribed pitching motion. In this

section we examine the performance of the TS solver for a periodic Gaussian bump pitching

motion. In this case the prescribed pitching motion as a function of time is given as:

α(t) =
1√
20π

e−
(t−10)2

2 (4.3)

where α(t) represents the angle of attack of the airfoil, and the period is set to T = 20,

corresponding to a reduced frequency of 0.208. Here the maximum pitch angle occurs at

the middle of the period at t = 10, and the width of the Gaussian is determined by the
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denominator in the exponential function. The signal of the pitching motion is shown in

the time domain and in the frequency domain in Figure 4.18. This example provides a

more stringent test case for the time-spectral solver, since the prescribed motion contains

significant spectral content over a range of frequencies and the rapid variation near the

middle of the period mimics more realistic important temporal events such as dynamic stall

or gust response events, which in turn can be expected to require a larger number of time-

instances for achieving good temporal accuracy. Therefore, this test case demonstrates the

importance of using larger numbers of time-instances, while provides a more realistic test bed

for comparing the efficiency of time-spectral methods versus implicit time-domain methods

such as BDF2.

Figure 4.19 depicts the time history of the airfoil lift coefficient obtained using the time-

spectral solver for different numbers of time instances. As can be seen from the figure, using

N = 8 time instances for this case results in significant under-resolution with associated poor

accuracy. At N = 16, although the peak CL values are better approximated, lower frequency

oscillations are visible in the tails of the time history. However, using N = 32 or more time

instances results in good accuracy over the entire period for this case and Figure 4.19(b)

shows very small differences between the solutions obtained using N = 64 and N = 256.

The parallel FFT-based AF/GMRES solver is employed in all cases, and the convergence as

a function of cumulative Krylov vectors is shown in Figure 4.20. In this case, convergence

is seen to degrade slightly with larger N values, using the same solver settings as described

in the previous section.

In order to compare the performance of time-spectral and implicit time domain (i.e.

BDF2) solvers, time-to-solution for both approaches for equivalent accuracy levels is needed

to be compared. For this purpose, we use the TS solution with N = 256 time-instances as

the reference solution, and calculate the error as the RMS difference between the computed

TS or BDF2 solutions and this reference solution. For the BDF2 solutions, the integration

must be carried out through an appropriate number of periods in order to reduce the effect of

the non-periodic start-up transients. Figure 4.21 depicts the calculated error for the BDF2

solutions over the first and fifth periods, using different number of time-steps per period.
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As the figure shows, the BDF2 solver requires more than one period to accurately solve

the periodic problem as the error over the first period stalls out with increasing numbers

of time-steps. However, the solution error obtained solving the problem for 5 periods drops

consistently with a slope approximately equal to 2 with increasing numbers of time-steps.

Figure 4.22 shows a comparison between the solutions obtained from solving the problem

using BDF2 for 5 periods, using different number of time-steps per period with the reference

TS N = 256 solution.

Figure 4.23 compares the accuracy of the solutions obtained using BDF2 for 5 periods

with the solutions obtained by the TS method, using different numbers of time-instances N .

As expected, the error convergence of the TS method is much faster than the BDF2 scheme,

which is second-order accurate in time, resulting in about 5 orders of magnitude lower error

in the solution of the TS method at N = 128 compared to the BDF2 method using 128 time

steps per period. We note that the TS method does not achieve spectral accuracy since the

Gaussian profile is only C0 continuous at the start and end of each period.

Table 4.1 depicts the wall-clock run time for solving this problem using BDF2 with dif-

ferent numbers of time steps per period for 5 periods and using the TS solver with different

numbers of time-instances. The most obvious characteristic of these timing results is the fact

that the wall-clock time for the TS method is much lower than that for the BDF2 method in

all cases. The wall-clock time for the TS method grows slightly faster than logarithmically

with N , while the wall-clock time for the BDF2 method grows slightly slower than linearly

with the number of time steps (due to the faster convergence per time-step obtained with

smaller time steps). Thus, in terms of wall-clock time, the TS method is clearly superior

to the BDF2 method. However, the TS method makes use of larger numbers of parallel

hardware cores at higher N values. In terms of total computational resources required, (i.e.

core-hours), the TS solver is seen to require more resources when compared with the BDF2

method using the same number of time steps per period as TS time-instances. (This cam be

seen by multiplying the TS timings by the value of N for each case). However, the TS method

is significantly more accurate when compared on this basis. For example, from Figure 4.23

the TS solution at N = 32 is seen to be more accurate than the BDF2 solution using 256
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time steps but only requires approximately half the total number of core hours of this BDF2

solution, demonstrating superior overall efficiency for a given accuracy level.

N wall-clock time of BDF2 for 5 periods wall-clock time of TS Core hours for TS

8 2155.04 275.84 2206.72

16 3985.31 533.49 8535.84

32 7866.85 757.30 24233.6

64 14932.49 906.58 58021.1

128 28164.49 978.86 125286.4

256 52678.29 1129.60 289177.6

Table 4.1: Run time for solving the Gaussian bump problem using BDF2 solver for 5 periods,

and TS solver for 8 to 256 time-steps per period or time-instances

Finally, the efficiency and accuracy comparisons of TS versus BDF2 schemes must be

qualified. In this example, the implicit problems at each time step for the BDF2 scheme

were converged to the same level (10 orders of magnitude reduction) as the TS space-time

residuals. In general lower convergence tolerances may be used, although a proportional

decrease in run time for both schemes can be expected and the overall conclusions should

hold. On the other hand, the relative width of the Gaussian signal (as determined by the

denominator in the exponent and the overall length of the period) will significantly affect this

efficiency comparison. For example, a faster (more narrow) Gaussian within a longer period

will result in the need for more time-instances N in the TS method for equivalent accuracy,

while this will reduce the number of periods required by the BDF2 scheme to achieve a

fully periodic solution. Therefore, a more narrow Gaussian pulse favors the BDF2 scheme.

Overall, the ability of the proposed TS solver to handle large numbers of time-instances

represents a significant step forward in the competitiveness of time-spectral methods for

problems with sharp transients.
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4.2 Second-Order Derivative Problem Results

The following second-order ODE has been studied as an example of second-order problems

to investigate the efficiency of the FFT-based time-spectral method for computational struc-

tural dynamics problems.

y′′ − y′ − y = sin(ωt) (4.4)

The forcing term is periodic with a period of T = 2π/ω, which enables the use of the

time-spectral method. In order to solve the above equation we define the residual Res as:

y′′ − y′ − y − sin(ωt) = Res (4.5)

The derivatives are discretized using the time-spectral approach and the resulting Newton

scheme is written as:

[DDTS −DTS − I] ∆y = −Res (4.6)

with

y = yinitial + ∆y (4.7)

Here [DDTS] and [DTS] are the matrices containing the time-spectral coefficients for the

second and first-order derivative terms of y, respectively, and yinitial is the initial value for

y. Applying the same idea used previously in the approximate factorization algorithm, ∆y

can be found by taking equation (4.6) to the frequency domain. Therefore the system of

coupled equations changes to N decoupled equations since the spectral matrices are strictly

diagonal in the frequency domain. Denoting ∆ŷk and R̂esk as the Fourier transforms of ∆y

and Res, respectively, the solution update in frequency space is computed as:

∆ŷk =
R̂esk

−1− (ωk)2 − iωk
(4.8)

where i is the imaginary unit. Next ∆ŷk is transferred back to the time domain using the

inverse Fourier transform (IFFT) to obtain ∆y.
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In order to simulate the computation and communication pattern for the solution of

a partial differential equation with a corresponding spatial discretization, a total of 20,000

ODEs are solved simultaneously for each time-instance and processor. Figure 4.24 shows

the wall-clock time required for the solution of these equations when the temporal derivative

terms are implemented based on the FFT and the DFT approaches. The solutions of y(t)

obtained from these two implementations are shown in Figure 4.25. These figures illustrate

that identical solutions are obtained in both cases, while the FFT-based solver is signifi-

cantly more efficient than the DFT-based solver, particularly for large values of N, just as in

the previous computational fluids dynamics (CFD) results based on a first-order temporal

derivative. The temporal second-order derivative term appears in all the aero-structural

problems where inertia or mass effects are not negligible. In problems with periodic excita-

tion where the modes of acceleration are the same as displacement modes, the second-order

temporal derivative terms can be calculated using the time-spectral implementation. Ex-

amples include modal analysis of vibration of buildings in the occurrence of earthquakes,

aeroelastic flutter problems, analysis of flow around oscillating blades, etc.
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(a) (b)

(c)

Figure 4.9: Non-linear convergence, CFL history, and number of Krylov vectors in each
iteration for linear tolerance of 0.5 (a), 0.1 (b) and 0.01 (c) for 256 number of time instances.
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Figure 4.10: Wall-clock time versus number of time instances for different linear tolerances

Figure 4.11: Wall-clock time versus number of time instances for FFT-based GMRES/AF
and FFT-based AF solver
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Figure 4.12: Wall-clock time for DFT- and FFT-based GMRES/AF solvers

Figure 4.13: Wall-clock time versus log of number of time instances for FFT-based GM-
RES/AF and FFT-based AF solver for different reduced frequencies
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Figure 4.14: Breakdown of wall-clock time for computation and communication of the solver
running on NCAR- Wyoming Yellowstone supercomputer using up to 2048 processors

Figure 4.15: Breakdown of wall-clock time for computation and communication of parallel
FFT routine running on NCAR- Wyoming Yellowstone supercomputer using up to 4096
processors
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Figure 4.16: Comparison of communication time for first and last level of parallel FFT
routine using up to 4096 processors

(a) (b)

Figure 4.17: Non-linear residual versus cumulative Krylov vectors of the fine and coarse grids
using 64 number of time instances and linear tolerance of 0.1, with: 20 block-Jacobi sweeps
in the preconditioner(a) solving Jacobi to machine zero in the preconditioner(b)
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(a)

(b)

Figure 4.18: (a) Time history of Gaussian bump prescribed pitching motion and (b) fre-
quency content of prescribed motion signal

66



(a)

(b)

Figure 4.19: (a) Computed lift coefficient history using TS solver with different number of
time instances and (b) details of differences between TS solutions for N = 32, 64 and 256
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Figure 4.20: Convergence histories for TS solver as measured by residual versus cumulative
number of Krylov vectors, using different number of time-instances
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Figure 4.21: Temporal error of BDF2 solution for the first and fifth periods using different
number of time-steps
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(a)

(b)

Figure 4.22: (a) Computed lift coefficient time histories using the BDF2 scheme over last of
5 periods for different numbers of time steps and (b) detail of time histories near peak CL
value.
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Figure 4.23: Temporal error of TS and BDF2 solutions as a function of the number of
time-instances or time steps

(a) Wall-clock time for up to 2048 number of samples (b) Wall-clock time for small number of samples

Figure 4.24: Comparison of wall-clock time versus number of time-instances using the FFT-
and DFT- based solvers for the solution of second-order problem
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(a) solution of y for 2048 number of time-instances (b) solution of y for 32 number of time-instances

Figure 4.25: Comparison of solutions of y versus time for different numbers of time-instances/
processors
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Chapter 5

Quasi-Periodic Flow Results

The quasi-periodic two dimensional inviscid flow over a pitching NACA0012 airfoil test case

is studied in this section. The solution is obtained with various numbers of time-instances

on an unstructured spatial mesh of 15573 triangles, as shown in Figure 4.1(a). The quasi-

periodic motion is constructed as a periodic pitching motion prescribed at the quarter chord

point of the airfoil, and the mean angle of attack varies over a sequence of five periods. The

prescribed angle of attack is given as:

α(t) = α0 + ᾱ(t) + α1sin(ω1t) (5.1)

in which the mean angle of attack is:

ᾱ(t) =

0 if t < t1

αm
1
2
(1− cos(ωm(t− t1))) if t ≥ t1

(5.2)

where t1 is the time when the transient motion begins. Here, we assume t1 = T . This

condition is set in a way that the quasi-periodic motion begins at the end of the first period.

The constants are assumed as:

α0 = 0.016◦, αm = 2◦, α1 = 2.51◦, ω1 = 0.1628, ωm = 0.1ω1 (5.3)

Figure 5.1 compares the computed lift coefficients of BDFTS solution in the first five periods

using different number of time-instances per period. From the figure, it can be seen that

73



the BDF1TS scheme has poor accuracy using only 8 time-instances. However, the accuracy

improves for greater number of time instances.

Figure 5.1: Lift coefficient versus time for the first 5 periods using different numbers of
time-instance per period, using BDFTS solver

In the first set of runs, the AF scheme is used directly as an iterative solver for the solution

of the BDF1TS equations for this problem. For all of the runs performed for this test case,

the AF scheme employed 50 Jacobi iterations for inverting the spatial matrix followed by

the direct inversion of the temporal matrix. Figure 5.2 shows the convergence history of

the DFT and FFT-based AF scheme using 16 time instances, for the first five periods of

this quasi-periodic problem. Both of the implementations show identical convergence rates

as expected. The first period represents the solution of the corresponding purely periodic

problem (ᾱ(t) = 0). The solution of the purely periodic problem is required for initializing

the solution of the quasi-periodic motion.

While both implementations (DFT and FFT) produce exactly the same convergence histo-

ries, the convergence wall-clock time is significantly improved for the FFT-based implemen-

tation as shown in Figure 5.3. This plot shows the total wall-clock time of the solution of 5

periods using even numbers of time instances up to 512 for both the DFT and FFT-based

solvers. Since the same spatial solver is used in both cases, the difference in the wall-clock

74



Figure 5.2: Residual versus number of iterations for DFT and FFT-based AF solver using
16 time instances per period for 5 periods of a quasi-periodic airfoil problem

time is entirely due to the solution of the temporal part.

Table 5.1 compares the convergence rates of the quasi-periodic AF scheme for solving the

problem to the residual level of 10−8 with different numbers of time instances. From this

table it can be seen that the convergence rate provided by this scheme is relatively insensitive

to the number of time instances, as the number of iterations required for convergence changes

only slightly with increasing number of time instances.
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Number of Time Instances Number of Iterations

8 80791

16 82868

32 81256

64 80012

128 81998

256 87322

512 92164

Table 5.1: Comparison of convergence rate of the quasi-periodic AF scheme over first five

periods for different number of time instances per period for the BDF1TS scheme

Figure 5.3: Log of total wall-clock time versus number of time instances for FFT and DFT-
based AF solution for quasi-periodic airfoil problem

In the previous chapter it has been shown that, for purely-periodic problems, using AF

as a preconditioner for GMRES, within the context of a Newton-Krylov method, results

in a more effective solver compared to using AF directly [47]. Therefore, the performance

of the FFT-based GMRES/AF scheme in solving the quasi-periodic problem is examined

next. In this case, the full space-time non-linear system is solved for each period, using a
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Newton-Krylov approach, using the previous FFT-based AF scheme as a preconditioner for

GMRES. The same CFL value is used for the AF scheme when used either as a solver or

as a preconditioner for GMRES. On the other hand, for the GMRES/AF scheme, the CFL

in the Newton linearization used for GMRES is increased at each nonlinear iteration using

a simple geometric progression, and reaches a maximum of 1015 after about 20 non-linear

iterations.

Figure 5.4 shows the convergence rate of the quasi-periodic problem obtained using

the DFT-based GMRES/AF and the FFT-based GMRES/AF solvers, with the exact same

settings in both cases. The plot shows that the convergence history is identical in both cases.

Figure 5.4: Residual versus iterations for DFT and FFT based GMRES/AF solvers using
16 time instances per period

An important consideration for the overall efficiency of the solver is the determination

of the precision to which the linear system is solved at each non-linear step in the GMRES

algorithm. In the previous chapter for solving the purely-periodic problem, a linear tolerance

of 0.1 was found to be the best in terms of number of iterations and wall-clock time [47]. The

effect of the linear system solution tolerance is studied in more detail for the quasi-periodic

problem. Figure 5.5 shows the convergence history for solving the quasi-periodic problem

using 16 time instances per period with different linear tolerances of 0.1, 0.01 and 0.001.
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Figure 5.5: Non-linear residual versus number of iterations for different linear tolerance of
0.1, 0.01 and 0.001, using N=16

As seen from this figure, the tighter linear tolerance cases result in fewer non-linear iterations

overall and also the convergence history becomes more monotone. Figure 5.6 compares the

required wall-clock time to solve the same problem using different numbers of time instances

for the three values of linear tolerance of 0.05, 0.1 and 0.5. This plot shows that the wall-clock

time for the linear tolerance of 0.1 is lower than the wall-clock time for the other two linear

tolerances for cases with greater number of time instances. Therefore, the linear tolerance is

set to 0.1 for the remainder of the cases presented in this paper.

Figure 5.7 plots the required wall-clock time for the solution of the problem using the FFT-

and DFT-based implementation of GMRES/AF. The FFT-based approach shows significant

savings in wall-clock time over the DFT-based approach. In cases with a larger number of

time instances, the efficiency gained by the FFT-based approach becomes more remarkable.

Figure 5.8 compares the wall-clock time versus number of time instances using the FFT-

based AF solver used directly as the non-linear solver, and used as a preconditioner for

GMRES. This comparison indicates that the GMRES/AF solver provides a factor of 2 to 3

speed-up compared to the AF solver.

Table 5.2 compares the convergence rates of the quasi-periodic GMRES/AF scheme for
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Figure 5.6: Log of wall-clock time versus number of time instances for different linear toler-
ances of 0.5, 0.1 and 0.05

solving the problem to the residual level of 10−8 with different numbers of time instances.

From this table it can be seen that the convergence rate grows slightly with the number of

time instances.

Number of Time Instances Number of Non-Linear Iterations

8 1278

16 304

32 333

64 371

128 387

256 415

512 439

Table 5.2: Comparison of convergence rate of the quasi-periodic GMRES/AF scheme over

the first five periods for different number of time instances per period

For all the cases studied so far, the linear BDF1TS formula has been used for calculating

the temporal derivative term, which corresponds to the accuracy of BDF1 time-stepping for
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Figure 5.7: Log of wall-clock time versus number of time instances for DFT and FFT based
GMRES/AF solvers using linear tolerance of 0.1

the non-periodic content of the problem. For accuracy purposes the problem has also been

solved using the BDF2TS formulation. Figure 5.9 plots the running wall-clock time of the

solution of the same problem using BDF1TS and BDF2TS, for different numbers of time

instances. The FFT-based GMRES/AF is used as the linear solver for the Newton-Raphson

method in both cases. Since the preconditioner CFL in the BDF2TS formulation could only

be set to half the size of that used in the BDF1TS runs, the running wall-clock time for cases

based on the BDF2TS formulation is longer than cases which are based on BDF1TS.

Figure 5.10 compares the temporal error of the computed lift coefficient using linear and

quadratic BDFTS solvers for different number of time instances per period. This error was

computed as the difference between the current solution and a reference solution obtained us-

ing 1024 number of time instances. For smaller number of time instances, the error obtained

in both cases are almost identical, which suggests that the solution is dominated by the

spectral content of the solver. However, for greater numbers of time instances, the BDF2TS

solver has a steeper slope than the BDF1TS, which shows that the accuracy is influenced

by the polynomial basis functions. Given the slower residual convergence of the BDF2TS

scheme, a precise accuracy study of both schemes over a range of practical problems would
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Figure 5.8: Log of total wall-clock time versus number of time instances for FFT-based AF
and GMRES/AF solution for quasi-periodic airfoil problem

be required to determine the overall most efficient approach for a given level of accuracy.

In this test case, if 5 × 10−5 (half count) is considered as the target error level, the desired

accuracy can be obtained using the BDF2TS scheme with N = 256 or the BDF1TS scheme

using 512 (or more ) number of time instances. By comparing the run times of these two

methods, we can see that the BDF2TS scheme is the more efficient choice.
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Figure 5.9: Log of wall-clock time versus number of time instances using BDF1TS and
BDF2TS

Figure 5.10: Comparison of temporal error in computed lift versus log of number of time
instances using BDF1TS and BDF2TS solvers
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Chapter 6

Conclusions

6.1 Summary

In the present work a new approach for parallel solution of the time-spectral discretization

has been developed that drastically decreases the amount of computation and communication

required for the parallel solution of time-periodic and -quasi-periodic problems using large

number of time-instances. Different solution methods have been developed based on this

approach and studied for solving the Euler equations in 2D for pitching airfoil problems.

The new parallel time-spectral algorithm that is developed in this work is based on the

fast Fourier transform and scales as O(NlogN) for N number of time-instances as opposed

to the traditional implementation of this method which was based on the discrete Fourier

transform and scales as O(N2). The new approach results in significant savings compared to

previous implementations in terms of wall-clock time. Furthermore, in order to avoid insta-

bilities caused by odd-even decoupling in problems with high reduced frequencies, a base-3

implementation of this approach is developed in addition to the base-2 implementations.

The proposed approach is a parallel-in-time scheme in which each time-instance is assigned

to one processor, and enables the use of both space and time parallelism.

Following previous work that studied the performance of different solvers in time-

spectral problems [23], in the present work, first an approximate factorization algorithm

is developed based on the fast Fourier transform. AF separates the spatial and temporal
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parts of the solution procedure, providing an effective technique for problems with large num-

ber of time-instances and/or high reduced frequency. This solver is used to solve the Euler

equations for a pitching airfoil problem with single harmonic excitation, which is equivalent

to the AGARD No. 5 test case. It is shown that while the FFT-based AF solver has identical

convergence rate to the previously implemented AF solver, it is significantly more efficient

than the DFT-AF solver in terms of wall-clock time.

In the AF scheme, factorization error is controlled by the size of the pseudo-time step,

and therefore large values cannot be used to accelerate the convergence rate. Furthermore,

this scheme can not sufficiently overcome the stiffness of the non-linear system in problems

with large number of time-instances or short periods. For these reasons, the entire non-linear

space-time system of equations resulting from the time-spectral method is linearized and

solved incorporating GMRES as the linear solver and the FFT-based AF scheme reformulated

as a preconditioner for GMRES. The GMRES/AF scheme is shown to be consistently and

significantly more efficient than the AF scheme alone. Additionally it is shown that scaling

of the overall solution with spatial resolution is mostly dependent on the spatial component

of the AF solver/preconditioner, and optimal scaling should be possible given an optimal

spatial solver. The overall solver performance can be more than an order of magnitude more

efficient than previous DFT-based implementations which scale as O(N2), allowing for the

effective solution of time-spectral problems using large numbers of time-instances.

To investigate the performance of the proposed solvers in problems with prescribed mo-

tion including a wide range of frequency spectrum, the Euler equations are solved for a 2D

pitching airfoil test case based on a Gaussian bump pitching function. The performance of

the parallel FFT-based GMRES/AF scheme is compared with the performance of a time-

accurate scheme in this test case. Previous work has shown that time-spectral methods

can solve periodic problems more efficiently than time-implicit method, especially for prob-

lems with few harmonics content [16]. By comparing the performance of the FFT-based

time-spectral solvers to the BDF2 scheme in solving the aforementioned problem, it can be

seen that by improvements made in time-spectral solvers done in this work, these solvers

can outperform the time-accurate solvers in problems with high frequency content as well,
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which is one of the challenging areas for time-spectral method. However, the viability of

time-spectral methods over time-implicit methods depends on the frequency content of the

problem and remains to be studied in more details.

The new implementation of time-spectral methods for purely periodic problems was

extended to quasi-periodic problems as well. A parallel FFT-based approximate factorization

scheme was developed for this category of problems. The BDFTS equations correspond

to a rank-1 modification of the fully-periodic time-spectral equations, and can be solved

effectively by leveraging the FFT-based periodic AF solver using the Sherman-Morrison

formula. Similar to purely-periodic test cases, the performance of the parallel FFT-based

AF scheme was studied when used directly as a solver and as a preconditioner for a GMRES

solver within the context of a Newton-Krylov method for a quasi-periodic problem. The

results obtained from this test case are compatible with the results from the purely-periodic

test case. Additionally, the BDFTS scheme based on quadratic polynomials is developed and

compared to a BDFTS based on linear polynomials in terms of accuracy and performance.

It has been shown that although BDF2TS requires somewhat longer wall-clock times for

convergence, it provides better accuracy for cases with larger number of time-instances,

compared to the BDF1TS scheme for the simple test case used in this work.

6.2 Contributions

• Implementation of time-spectral method based on parallel FFT

The previously developed parallel time-spectral method was based on the DFT and

scales as O(N) per processor for N number of time-instances [23]. Time-spectral method

has also been implemented based on the FFT in serial in past [25]. This thesis has presented

a parallel base-2 and -3 FFT-based implementation of the time-spectral method. This new

parallel implementation scales as O(logN) per processor which results in significant effi-

ciency in the running wall-clock time compared to the parallel DFT based TS method. The

outstanding improvement in wall-clock time obtained by the new implementation makes

time-spectral method a competitive method in problems with high frequency content as well
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as few harmonic contents. This is a remarkable accomplishment of this work.

• Implementation of BDFTS method based on parallel FFT

The BDFTS method for quasi-periodic problems was previously implemented based on

DFT. Another novelty of this work is presenting a parallel FFT-based implementation of the

BDFTS method. This parallel implementation scales as O(logN) per processor, as opposed

to the former DFT-based implementation of this method that scales as O(N) per processor.

Furthermore in this research, the BDFTS formulation is shown to be equivalent to a rank-1

modification of the original periodic time-spectral matrix. Using Sherman-Morison formula,

the modified matrix is inverted efficiently based on the parallel FFT-based approach for the

temporal part of the AF algorithm.

6.3 Future Work

• Three dimensional parallel in space and time problems

The present work introduced a new parallel solver for time-spectral problems. The

performance of the new approach was tested for 2D problems, and, since the goal was to

study the temporal efficiency of the solvers, in all the test cases the spatial component was

solved in serial. In addition, the 2D test cases studied in the current work with solution of

the spatial part on one core are representative of the size of a spatial portion in a parallel

3D run. Since the 2D test cases were small problems, it was possible to solve the spatial

part in serial. However, in real 3D problems, the spatial component should be implemented

in parallel as well. By combining the temporal parallelism afforded by this approach with

spatial parallelism, it is anticipated that the solution of periodic and quasi-periodic problems

of moderate spatial size can be effectively scaled to hundreds of thousands of cores.

• Extension to other flow regimes

Since the goal of current work is to introduce a new algorithm for implementing time-

spectral solvers, the solution of the Euler equations are presented in all the test cases. Future
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work should attempt to use the proposed solvers in other flow regimes. For turbulent flow

problems, the spatial part becomes harder to solve, and requires more sophisticated spatial

solvers. In all the test cases studied in this work, a block-Jacobi scheme is used to solve the

spatial part of AF, both when it is used as the preconditioner in the Krylov context, and

when it is directly used as the solver. However, this is not an efficient spatial solver for prob-

lems with high complexity. Other elaborate spatial solvers such as multigrid, or other solvers

that do not need diagonal dominance can make the AF scheme a much stronger candidate

as a preconditioner for GMRES in solving the problems with more complex spatial part,

such as turbulence problems. In many realistic problems, most of the solution run time is

due to solving the spatial part. For these categories of problems using even large number of

time-instances can not show the viability of the proposed implementations since the solution

of the spatial part dominates most of the expenses. Furthermore, in many applications it is

enough to obtain the harmonics of interest from a time-accurate solution, and therefore large

number of time-instances are not needed. For these categories of problems the capabilities

of the proposed solvers can not be conveyed. Therefore, applying the proposed solvers is

reasonable in cases with expensive temporal solution and/or when large number of time-

instances are needed to achieve high accuracy.

• Studying the viability of BDFTS

As mentioned, one advantage of the time-spectral method is that it skips the transient

part of the solution whereas in time-accurate methods usually the majority of the CPU re-

sources could be spent resolving the transient part of the solution. This advantage does not

exist for the BDFTS method, since in most cases the problem needs the same number of

periods as required in time-accurate methods to resolve the slow transient content. There-

fore, in the BDFTS method, each period must be solved faster than time-accurate methods,

in order to outperform them. Therefore, the viability of BDFTS remains to be studied in

more details for different applications. In the current work, linear and quadratic BDFTS

are implemented and their performance regarding run time and accuracy are compared for

solving the Euler equations in a 2D problem. The comparison remains to be done for 3D
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problems and for other flow regimes as well.

• Implementing time derivative based on Wavelet Transform

One disadvantage of time-spectral method is that all the time-instances need to be

the same size, which means all the time-instances are solved with the same resolution. In

problems with high frequency content in part of the period, it is not efficient to use small time-

instance size for all the period. Time-spectral method is based on the Fourier transform,

which represents functions by superposing sines and cosines. The Fourier transform of a

function tells us precisely the size of the component of frequency, but loses all control on

the time domain. In other words, the Fourier transform output is localized in frequency, but

has no time localization. The Wavelet transform that have been used in CFD particularly in

solving turbulent flow in the recent years can overcome the deficiencies of Fourier transform

[49]. The basis functions of wavelet transforms are not limited to sines and cosines, they can

be more complicated functions. In wavelet analysis, the scale that we use to look at the data

plays a special role. Wavelet algorithms process data at different scales or resolutions. These

characteristics enable analysis of signals both with very short basis functions and some very

large basis functions at the same time to isolate signal discontinuities and capture detailed

frequency analysis [50]. Another big advantage of wavelet transforms over Fourier transforms

is that wavelet functions are localized both in the time and in the frequency domain, which

means we know about the behavior of a signal locally in time as well as frequency domain.

Furthermore, the fast wavelet transform is an optimal transform which requires only O(N)

operations to transform an N sample vector, as opposed to the fast Fourier transform that

requires O(NlogN) operations. Wavelet transform for discrete-time periodic signals have

been derived in past research [51].

Overall, despite it’s complexity, it looks like wavelet transforms can deal with some

specific problems more efficiently compared to Fourier transforms. However, since the idea

of implementing time derivatives based on wavelet transforms is branching out from the basic

idea of time-spectral methods, it should be studied in more detail and can be considered as

a long term future plan.
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