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Adjoint methods have found applications in several key areas of computational

fluid dynamics (CFD), namely, shape optimization and goal based adaptive solutions.

CFD has become an essential tool in the design process by enabling the rapid testing

of multiple designs, and currently it is normal practice to use CFD in conjunction with

optimization algorithms for design improvement. In the context of shape optimization

problems based on CFD, adjoint methods offer the significant advantage of computing

sensitivity derivatives of the optimization cost function with respect to the set of

design parameters, at a cost that is essentially independent of the number of design

parameters. Adjoint methods reduce the cost of obtaining the complete gradient

vector at any point in the design space equivalent to that of a single flow solution at

the same point in the design space. This immediately enables the use of all gradient

based optimization algorithms and lifts any restrictions on the number of design

parameters required for the adequate definition of the optimization problem.

Adaptive techniques in CFD constitute the other aspect where adjoint methods

have have made great inroads. Typical adaptive solutions of the governing flow equa-

tions rely on estimating the local error in an evolving solution to target regions of the

computational mesh for increased discrete resolution. The main goal of any adaptive

solution method is the overall increase in solution accuracy with minimal increase in

computational cost. However, targeting local error in the solution does not translate

into efficient use of computational resources, since ultimately it is the accurate es-

timation of boundary integrated functional quantities such as load coefficients that

are of importance to the user. Contrary to local error-based methods, adjoint meth-

ods allow the adaptation of the computational mesh specifically for the improvement

of functionals such as load coefficients. This is achieved by mathematically estab-

lishing a clear relationship between the functional of interest and the regions of the
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computational mesh that are most relevant to it.

The current work extends the use of adjoint methods to multiple governing dis-

ciplines that are tightly coupled, and more importantly unsteady in nature. The

adjoint method is derived in a very general form for the purpose of computing the

gradient vector for use in shape optimization in the context of coupled multidis-

ciplinary unsteady equations. It is shown that computing the gradient vector in

unsteady problems involves solving the analysis problem forward in time and then

solving the adjoint problem backward in time. While adjoint methods have been

used successively to drive spatial mesh adaptation, the current work extends the

use of the computed unsteady adjoint variables for estimating temporal discretiza-

tion error, which is then applied to temporal mesh adaptation. Additionally, the

computed adjoint variables are also used for the estimation of algebraic error in the

solution arising due to intentional or nonintentional partial convergence of the gov-

erning equations. Results indicate that the adaptation of the temporal resolution and

convergence tolerance limits using adjoint-based error estimates is able to outperform

traditional adaptation methods such as uniform refinement and those based on local

error estimates. All of the development is carried out in a fully unstructured mesh

framework with dynamic deformation of the computational spatial mesh.
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Chapter 1

Introduction

Advances in numerical simulations of complex fluid flows over the past two decades

have firmly established the field of computational fluid dynamics (CFD) as an integral

part of aerodynamic analysis and design. In the early years, the lack of computational

resources and robust algorithms limited the overall impact of CFD on the design pro-

cess. For a while, challenges in accurately predicting fluid dynamic phenomena within

reasonable amounts of time were considered to be the foremost shortcoming hindering

the widespread use of numerical simulations. However, with computational capability

increasing by leaps and bounds, some of these issues present less of a problem nowa-

days. It is now possible to numerically solve the steady-state Reynolds-Averaged-

Navier-Stokes (RANS) equations around complex two-dimensional geometries within

a couple of hours on an inexpensive mainstream desktop computer. While large three-

dimensional steady-state solutions of the RANS equations may take a couple of days

on a desktop computer running a single threaded process, parallelization of the same

problem on a small compute-cluster reduces this time to a matter of hours.

Unsteady or time-dependent solutions are inherently more expensive than steady-

state solutions. Much work has been done on improving the efficiency of time-

dependent simulations of the RANS equations, particularly for high Reynolds number

aerodynamic flows. High Reynolds number aerodynamic flows have large differences
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between the spatial and temporal scales of the flow features of interest. Such prob-

lems are typically solved implicitly at each time step with the total cost of a single

unsteady simulation being the cost of the nonlinear solution at each time step multi-

plied with the number of time steps chosen to represent the time domain of interest.

The advent of convergence acceleration methods such as multigrid [1,2], and the par-

allelization of larger problems on compute-clusters has addressed the first component

of the total cost by reducing the computational expense associated with the nonlin-

ear solution at each implicit time step. Reducing the temporal resolution (i.e. the

number of required time steps) without loss in overall temporal accuracy is another

necessary step for the reduction of the total unsteady simulation cost. To this end,

stable and robust higher-order time-integration schemes [3,4] have been investigated

that permit similar temporal error levels with fewer time steps to represent the time

domain. The high cost of unsteady simulations has also prompted the development

of frequency-domain approaches [5,6], which have been shown to be more economical

for problems with periodic behavior. Although time domain methods may be more

expensive for such problems, they can be expected to be more suitable in the general

case for problems with no dominant periodic behavior, and the two approaches should

be considered complimentary to one another.

1.1 Background

1.1.1 Dynamic Meshes

While unsteady fluid flow phenomena such as vortex shedding from blunt bodies may

not involve motion of the geometry, most interesting problems involve motion and/or

deformation of the geometric boundaries. Rigid body motion of geometries can the-

oretically be modeled using rigid computational mesh rotations and translations or

by the appropriate variation of the boundary conditions. However, geometric defor-
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mations can be handled only via the deformation of the computational mesh. Good

examples of such problems include control surface deflections on aircraft undergo-

ing maneuvers, relative motion problems such as armament detachment, and forward

flight in rotorcraft. Dynamic mesh algorithms [7–11], which deform the computational

mesh based on prescribed displacements of geometric boundaries become necessary

for such problems. The governing flow equations, which are typically solved in an

Eulerian framework also have to be modified into a Lagrangian-Eulerian framework

to handle mesh motion and include mesh velocity terms. It is also important that

the mesh velocities be determined in accordance with the Geometric-Conservation-

Law [12] so as to not introduce conservation errors into the flow solution, which in

simpler terms implies the preservation of a uniform flow in the presence of mesh de-

formation. Another aspect is the recovery of the formal temporal accuracy of the

chosen temporal discretization in the presence of mesh deformation [12, 13]. This is

particularly important in the context of retaining computational savings achieved by

the use of higher-order time-integration schemes when dynamic meshes are involved.

1.1.2 Unstructured Methodology

Numerical simulations performed on structured meshes rely on a body conforming

mapping of a uniformly spaced cartesian mesh onto the geometry of interest. Most

of the computational methods such as higher-order finite-difference based spatial dis-

cretizations [14] were developed assuming solutions were to be obtained on structured

meshes with the ordered availability of large stencils. The complexity of geometries

that can be represented by structured meshes is however somewhat limited. Multi-

block and overset methodologies alleviate the problem but require sophisticated data

management and coding practices. Unstructured meshes by definition do not require

any blocking strategy and offer the flexibility of meshing virtually any type of geom-

etry beginning with a surface triangulation of the geometry. However, unstructured

meshes do not have implied connectivity between neighboring points and require the
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explicit storage of such information. While they may offer ease of meshing complex

geometries, they have higher memory requirements.

1.1.3 Coupled Multidisciplinary Equations

With improvements to unsteady simulation capabilities over complex geometries along

with the inclusion of dynamic mesh effects, analysis involving the coupling between

disciplines such as that in aeroelasticity between fluid flow and structures is a natural

extension. Large scale aeroelastic simulations in CFD are becoming more and more

commonplace [15]. Aeroelastic simulations involve the simultaneous solution of the

flow, mesh motion and structural equations in a fully coupled manner. The solution

of the flow equations results in aerodynamic loads acting on the geometry, which

is then deformed or displaced as a consequence. The coupling arises from the fact

that any displacements or deformations of the geometry in turn affects the flow field

around it thus changing the loads. The solution to the overall coupled system must

therefore be obtained iteratively going back-and-forth between the coupled disciplines

until the solutions of all disciplines have converged. Aeroelastic simulations tend to

be more expensive than purely unsteady simulations of uncoupled disciplines because

of the added computational expense of a fully-coupled nonlinear solution at each

time step. Aeroelastic solutions may be steady or unsteady in nature. Steady-state

aeroelasticity problems involve the deformation or displacement of geometries from

some neutral position to a strained position as a reaction to the loads generated

by the flow field. Such situations arise in jetliners operating at cruise conditions,

where the wings attain a steady deflected state from their neutral position. Unsteady

aeroelasticity typically involves a periodic response of the geometry to aerodynamic

loads acting on it. Common situations for unsteady aeroelasticity include flutter in

aircraft wings, and periodic rotor blade deformations in helicopters.
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1.1.4 Adaptive Solvers

Adaptive methods for the solution of the governing flow equations are a means of re-

ducing the overall cost of simulations. The basic principle behind adaptive solutions

is the efficient deployment of computational resources. Adaptation of the computa-

tional domain takes on several different forms such as h, p, or r adaptation. The most

common form is h-adaptation [16–18] where the discretization resolution is increased

through the addition of points or elements to the computational mesh wherever nec-

essary. p-adaptation [19, 20] is more commonly used in variational frameworks such

as Discontinuous-Galerkin discretizations, which use a high-order polynomial rep-

resentation of the solution within each element. In this method, the degree of the

polynomial used within each element is allowed to vary throughout the computational

domain based on some criteria. r-adaptation [21] involves the moving of mesh points

in order to change the clustering without the addition of new points or elements.

In the case of finite-volume or finite-difference discretizations of the governing

flow equations, the computational expense of obtaining a solution is directly propor-

tional to the resolution of the mesh. However for two different meshes that have

the same number of points, it is possible to obtain different error levels in the overall

solution due to different distributions of the mesh points. Non-adaptive solutions rely

on user judgment for the clustering of mesh points in various regions of the compu-

tational domain in order to capture flow phenomena. The normal practice consists

of using some predetermined clustering of points in high gradient regions such as

boundary layers, wakes, stagnation points, shock waves and contact discontinuities.

Since the flow field being solved for is unknown, the user has to rely on engineering

judgment for the determination of regions where clustering may be required. Adap-

tive solvers approach this problem by starting with a coarse resolution mesh and then

add points on-the-fly during the solution process in relevant regions of the computa-

tional domain. The core of any adaptation algorithm is the determination of relevant

regions to target for increased resolution. A common adaptation method is to use
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the spatial gradients of the evolving flow solution to refine regions of high gradients

in the hopes that the overall solution error level is reduced. While the approach may

capture interesting flow phenomena such as vortices and shock waves, there is no

guarantee that the solution obtained in this manner necessarily results in improved

estimates for specific objective values of interest such as lift or drag. To this end,

goal-based methods for the adaptation of the computational domain have been de-

veloped to specifically target the error in objective scalars of interest. Goal-based

methods use a posteriori estimates of the error in a functional computed using a flow

solution to identify regions in the computational domain that are most relevant to

the accuracy of the functional. For different scalars of interest computed using the

same flow solution (i.e. identical flow conditions and geometry), it is entirely possible

that goal-based adaptation produces significantly different adaptations.

1.2 Design Optimization

One of the fundamental purposes of aerodynamic simulations is that of shape design.

Before the advent of numerical simulations, aerodynamic design solely relied on engi-

neering judgment and experimental investigation. Numerically solving the governing

equations however opens up the means to study multiple designs without expensive

experiments. In the early days of CFD, design methodologies utilized in conjunction

with experiments were simply carried over to the computational world, with CFD

supplementing or substituting for the wind tunnel. Over time, design methodologies

specific to computational methods have been developed and used quite effectively in

aerodynamic design. Currently there is a whole field devoted to design optimization

algorithms and software packages [22,23].
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1.2.1 Gradients for Optimization

Typical optimization problems involve the determination of the minimum of a given

function. The goal is to identify the values for parameters that are inputs for the

function such that the output of the function is a minimum. If the slope (or gradi-

ent) of the function at any point is known, it becomes possible to move toward the

minimum by moving in the direction of negative slope. The gradient can also be

interpreted as the sensitivity of the functional output to the parameters that control

the function. In the context of aerodynamic shape design, functional quantities of

interest are usually surface integrated values such as the lift, drag, or moment. Design

parameters usually are the variables that control the shape of the geometry and the

governing flow equations form the function relating the design variables to the output

functional. If gradient-based optimization is to be employed for the purpose of reduc-

ing the output functional, the goal then is to determine the gradient or sensitivity of

the output with respect to the design variables.

The obvious choice for determining such sensitivities is to perturb the design

variables individually and run the numerical simulation (evaluation of the function)

for each perturbation in order to determine the effect of the perturbation on the

quantity of interest. The method, known as finite-differencing, becomes inefficient

as the number of design variables increases since the number of times the simulation

has to be performed is directly dependent on the number of design variables. The

sensitivity or the gradient determined in this manner is also highly dependent on the

magnitude of the perturbation, since for large perturbations the wrong slope may be

predicted due to nonlinear effects, while very small perturbations are susceptible to

machine precision related issues. In a perfect world using a computer with infinite

precision, an infinitesimally small perturbation would recover the analytically exact

value of the gradient.

Alternative optimization methods such as the genetic algorithm (GA) [24] that

do not require gradient information have been developed and partially address such
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problems. GA type methods also offer the benefit of being able to navigate through

highly nonlinear, noisy and discontinuous design environments. However, such meth-

ods usually require very large numbers of function evaluations and present their own

set of difficulties. For situations involving aerodynamic simulations where the cost

of evaluating the function is very high, gradient-based optimization is usually the

only feasible approach. Also, for problems with smooth design spaces and a single

extremum or where only local optima are important, gradient-based optimization is

the ideal choice. The primary problem then becomes the rapid determination of the

gradient vector and not the optimization process itself.

1.2.2 Adjoint Method

In the recent past, the use of adjoint equations has become a popular approach for

solving aerodynamic design optimization problems based on CFD [11,25–29]. Adjoint

equations are a very powerful tool in the sense that they enable the computation of

sensitivity derivatives of an objective functional to a set of given inputs at a cost that

is essentially independent of the number of inputs. Adjoint methods rely on direct

differentiation of the governing equations in order to obtain an analytic form of the

sensitivity derivative to avoid the accuracy issues presented by the perturbation in

the finite-difference method. Also, the sensitivity equations are transposed and solved

for the gradient by introducing an adjoint variable in order to remove dependence on

the number of input variables. It is possible to differentiate the continuous form of

the governing flow equations to obtain a continuous form of the sensitivity derivative

which may then be discretized appropriately and solved to obtain the gradient. This

is the continuous linearization approach and results in a discrete approximation to the

exact analytic derivative of the continuous governing equations. It is also possible to

differentiate the discretized form of the governing equations in order to directly obtain

the discrete version of the sensitivity derivative. For consistent discretizations, the

gradient computed using both methods asymptotically converge to the same answer
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as the discretization resolution is increased. Both methods possess their own set of

advantages and disadvantages. The continuous linearization approach offers flexibil-

ity in the discretization stage while the discrete linearization approach traditionally

follows the discretization of the governing equations. The determination of boundary

conditions for the analytically differentiated continuous governing equations may pose

challenges and rely more on the fundamental mathematical behavior of the governing

PDEs, whereas in the discrete approach they simply are discrete derivatives of the

boundary conditions of the governing equations. The discrete approach also provides

exact sensitivities for the discretized governing problem and is more relevant in the

context of using CFD for design optimization. This is because it is the discretely eval-

uated objective functional that is always the target of the optimization. Figure 1.1

compares the paths of the two approaches beginning with the continuous governing

equations to the final computed gradient.

Solutions of the steady-state aerodynamic optimization problem utilizing ad-

joint methods [11, 30–33] are now fairly well established. However, relatively little

work has been done in applying these methods for unsteady time-dependent prob-

lems [34–36]. More recently, unsteady time-domain adjoint methods have been inves-

tigated by Rumpfkeil et al. [36], although this work is in the context of structured

meshes using relatively simple mesh deformation strategies. While only recently ad-

joint methods have begun gaining ground in the aerodynamics community especially

for time-dependent problems [37, 38], they have been well established in the field of

structural optimization for some time now [39]. The coupling between the fluid and

structure equations and the use of sensitivity analysis on such a system has been ad-

dressed but again primarily from a steady-state standpoint [40–42]. Unsteady aeroe-

lastic optimization has been attempted but only using reduced order [43] or other

simplistic models for the flow equations [44, 45]. Optimization based on the fully-

coupled unsteady aeroelastic equations with no simplifying assumptions has not been

tackled thus far mainly due to prohibitive cost and complexities in the linearization
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Figure 1.1: Comparison of continuous and discrete linearization approaches and the advantage of
the discrete method for CFD based design.
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of coupled time-dependent systems.

1.3 Error Estimation and Adaptation

The purpose of adaptation is to reduce the overall error in the solution without in-

curring severe increases in computational expense. The contributions to the overall

error in a solution include the discretization error (which can be tied to the error due

to lack of resolution) and algebraic error. Algebraic error arises from the incomplete

solution of the discretized governing equations irrespective of the discretization error.

Given a computational mesh with a certain number of elements with some arbitrary

distribution of element sizes, the accuracy of the solution may be improved by increas-

ing the order-of-accuracy of the discretization of the governing equations. Conversely,

it is also possible to improve the solution accuracy by increasing the resolution of the

computational mesh while utilizing some fixed order-of-accuracy for the discretiza-

tion of the governing equations. In the case of a finite-volume method applied on

unstructured meshes, it is often difficult to construct higher-order discretizations of

the governing equations due to the lack of a simple data structure for the large com-

putational stencils required. In most cases the equations are discretized for only

second-order accuracy. Combined with the inherent challenge of clustering points in

unstructured mesh generation, this necessitates the adaptation of the computational

mesh.

The concept of adaptation is easier to visualize in the context of steady-state

simulations since only the spatial domain exists. However the arguments presented

above regarding error apply to the temporal domain also. In addition to the spatial

discretization error and the algebraic error, unsteady simulations are also affected by

the temporal discretization error. For iterative solution methods, the algebraic error

can be reduced by performing more iterations during the solution process.
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1.3.1 Adaptation for the Reduction of Discretization Error

Adaptation of the spatial domain has existed in various forms for well over a decade.

The most popular adaptation methods such as those based on spatial gradients are

still local methods in the sense that they refine the spatial resolution in regions of

the computational domain where the local discretization error is high. Considering

that output functionals such as surface integrated loads are most often the goal of

an aerodynamic simulation, such local methods cannot guarantee improved estimates

for the functional. There may be little or no correlation between the local error

distribution and the functional of interest. However, goal-based or adjoint-based

adaptation directly targets the discretization error that is relevant to the functional

of interest by applying the adjoint variable as a functional relevant weight on the local

error in the solution. The functional relevance in the adjoint variable is introduced

through its definition in terms of the Taylor expansion of the functional between two

spatial meshes of different resolutions. The overall method is a posteriori since the

solution to the flow problem on a spatial mesh of some arbitrary resolution is required

before the error can be estimated. For steady-state problems, adjoint methods have

been used quite successfully to drive adaptive spatial mesh refinement for reducing the

spatial discretization error relevant to output functionals [16,17,46–51]. The method

has matured to the point where it is now employed in a production level cartesian

mesh based steady-state solver [52,53].

For unsteady flow problems, the time-integration process is typically carried out

using a uniform time step which is applied throughout the time domain of interest.

The limitation on the size of the time step is mainly governed by the temporal reso-

lution required to capture essential unsteady flow features and deliver acceptably low

temporal error. The traditional approach is to use a uniform time-step of a size that

by engineering knowledge is known to be sufficient to capture essential flow features.

However, the inherent temporal nonlinearity of the flow equations makes it difficult to

determine the temporal scales of the flow features that are relevant to the functional
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output of interest from the unsteady simulation. There are no obvious high gradient

features analogous to boundary layers and shock waves in the temporal domain, and

the user must rely on the computed temporal gradient of the solution for identifica-

tion of such features. However, using a uniform time-step due to the lack of such

knowledge results in unnecessarily high computational expense. Uniform time-steps

result in unnecessarily high resolution in certain regions of the time domain and low

resolution in other regions that may be important.

Much work has been done on temporal adaptation and error control in the ab-

sence of spatial adaptation for ordinary differential equations [54, 55]. The most

common approach consists of using local temporal error estimation to drive time-

step size selection, where the temporal error at a given time-step is estimated by

discretizing the time derivative with different orders-of-accuracy and comparing the

corresponding results [56]. Also, such methods assume that any solutions obtained

at each implicit time step are numerically exact, or at least converged to levels below

the local temporal discretization error, and do not consider the effect of partially

converged solutions. While local error estimation has been used successfully for tem-

poral refinement, a more appealing approach would be one that targets the global

temporal error for a functional of interest directly. As in the case of the purely spatial

problem, there is no guarantee that a gradient-based or any other local error-based

adaptation of the time domain would necessarily lead to an improved estimate of the

functional. Analogous to the spatial argument, there may be little or no correlation

between the flow solution gradients in the time domain and the functional of interest.

While adjoint methods have been used in the spatial domain for goal oriented error

estimation and control, their use in the time domain has mostly been confined to sim-

pler problems such as those involving ordinary differential equations [57,58], although

their use for partial differential equations has recently been demonstrated [59–61].

The total error incurred in time-dependent simulations can be broken down into

spatial error, temporal error, and algebraic error. For time-dependent solutions, the
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use of adaptive spatial mesh refinement techniques requires the construction of a new

refined mesh at each time-step, which results in discontinuous processes in time, as

new grid points are added and deleted between time-steps. The full error reduction

and control problem for time-dependent problems must involve simultaneous adap-

tation in time and in space.

1.3.2 Algebraic Error for Unsteady Problems

While the overall cost of a simulation may be correlated against the resolution of

the computational domain (space and/or time), the primary cost of obtaining the

solution of the flow equations arises from the nonlinear iterative solution procedure.

In the case of steady-state solutions only a single nonlinear solution is required, while

unsteady solutions necessitate a nonlinear solution at each time-step for an implicit

time discretization. Typically the equations are never solved to machine precision

unless the spatial resolution of the problem under consideration is relatively coarse.

Convergence to small tolerance levels can become time consuming for stiff problems

particularly in the presence of anisotropic mesh effects. A sensible guideline for deter-

mining suitable implicit system convergence levels is that the algebraic error resulting

from incomplete system convergence at each time-step be reduced to levels below the

local temporal discretization error at each time-step [62, 63]. However, this requires

a good measure of the local temporal error as well as some estimate of the algebraic

error due to incomplete system convergence, and is seldom enforced. The end result is

that, as in the case of temporal resolution, some predetermined constant convergence

limit is set based purely on engineering judgment such that the resulting solution has

acceptably low overall error at practical computational expense. It is quite possible

that the equations converged to limits set by such ad-hoc methods could result in

unnecessarily restrictive convergence in some regions of the time domain and insuf-

ficient convergence in others. Under most circumstances the effect or error due to

insufficient convergence becomes difficult to quantify and even harder to remedy.
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1.3.3 Separation of Error Components

An additional advantage of adjoint-based approaches is that they also permit the

distinct identification of the contributions to the estimated error as arising from the

two primary sources, namely the discretization error and the algebraic error due

to partial convergence of the equations. The method also permits the separation

of the discretization and algebraic errors into disciplinary components and further

breaks it down into a distribution in time. This provides the criteria necessary to

target specifically the set of governing equations and the time-steps that influence

the functional the most. This is uniquely different from common adaptation or time-

step control schemes which are based on estimates of the local temporal error at each

time-step, in that the global temporal error in the functional can be estimated and

adapted on.

1.4 Overview of Thesis

1.4.1 Objectives

The main goals of this work can be summarized as follows:

• Develop a unified framework for the computation of sensitivity derivatives in the

context of steady, unsteady and multidisciplinary coupled unsteady governing

equations using adjoint variables.

• Demonstrate the use of the adjoint-based sensitivity derivatives for shape opti-

mization in steady, unsteady and multidisciplinary coupled unsteady flow prob-

lems.

• Extend the utility of the computed adjoint variables for the purpose of estimat-

ing functional relevant temporal discretization error and algebraic error.
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• Demonstrate adaptation of the temporal domain and adaptation of convergence

tolerances for temporal and algebraic error reduction in functional outputs using

the adjoint-based error estimates.

1.4.2 Approach

All of this is accomplished using a two-dimensional finite-volume discretization of the

governing equations on fully unstructured meshes with the inclusion of dynamic mesh

effects. The unsteady inviscid Euler equations are used to simulate the flow compo-

nent of the problem, while the aeroelastic response of an airfoil with two degrees-

of-freedom (pitch and plunge) is used to demonstrate coupling between disciplines.

Direct differentiation of the discretized governing equations is used to construct the

equations whose solution yield the adjoint variables.

Optimization cost considerations

In general, the total cost of an optimization is equal to the number of design itera-

tions required to reach an optimum solution multiplied by the cost of a single design

iteration. The cost of a single design iteration can be broken down into the cost of an

analysis solution and the cost of obtaining the gradient vector. Reduction of the total

number of design cycles to obtain an optimum solution can be achieved by utilizing

sophisticated optimization algorithms. In this work the gradient-based reduced Hes-

sian LBFGS-B optimization algorithm with bounds developed in references [64,65] is

used. Considering the fact that unsteady analysis solutions themselves are inherently

expensive, all possible methods to improve efficiency both in the case of the flow

solver and the sensitivity solver must be exploited to the fullest extent. This neces-

sitates the use of multigrid methods to reduce dependency on mesh resolution and

also the use of high-order time-integration schemes to obtain high quality unsteady

solutions with a minimal number of time-steps [66]. Conversely, it is important that
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adjoint methods developed be general enough such that they are applicable to any

order of time-integration scheme. Also, convergence acceleration methods such as

multigrid must be easily extendable to the developed algorithms. The adjoint for-

mulation presented here partially addresses both of these concerns. The algorithm

takes into account higher-order BDF (Backward-Difference-Formula) time-integration

schemes and can be extended to higher-order implicit Runge-Kutta schemes without

severe additional cost. The algorithm also utilizes the linear multigrid method [1] for

convergence acceleration.

Note regarding adjoint-based error estimates

An adjoint-based approach permits the estimation of error relevant to a functional,

and the corresponding distribution of this error in the time domain. The method

relies on applying time-dependent discrete adjoint equations on a Taylor expansion

of the functional. A linear approximation of the error in the functional between

temporal meshes of two different resolutions can be estimated by solving the flow

problem and the adjoint problem on the coarser temporal mesh, and then projecting

the flow and adjoint solutions to the finer temporal mesh. It should be noted that in

this particular formulation, only the change in the functional between two different

temporal resolutions is predicted by the adjoint equations, and not the total error de-

fined as the difference between the current and exact analytic value of the functional.

The current work is restricted to adaptation in the time domain, in order to reduce

temporal discretization error, with no attempt to reduce spatial discretization error.

However, algebraic error due to incomplete convergence of the governing equations

at each time-step is also targeted in this work.

Modularity

Modularity is a key aspect in the development of the framework to compute adjoint

variables for coupled governing equations. The method is modular in the sense that
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multiple sets of governing equations from various disciplines that are coupled may

be addressed in a unified manner independent of the number of disciplines. Also,

the choice of solution technique employed for the individual disciplines should have

little impact on the overall framework. This is particularly important from a cost

standpoint since efficient solution techniques for the purpose of reducing overall costs

inherent in coupled unsteady aeroelastic simulations should carry over to the adjoint

computations. It should also be noted that no approximations in the process of

linearization have to be made and all components contributing to the solution of the

multidisciplinary analysis problem are taken into account.
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Chapter 2

Formulation of the Analysis

Problem

2.1 Governing Equations

2.1.1 ALE Integral Form of the Unsteady Euler Equations

The conservative form of the Euler equations is used in solving the flow problem.

The current work is limited to inviscid flow problems since the primary focus is the

development and verification of the adjoint method for computation of functional

sensitivity to design variables and the estimation of functional relevant temporal and

algebraic error. Extension of the algorithm to viscous flow problems with the inclusion

of turbulence models should prove to be relatively straightforward. The differences

arise only in the linearization of the additional flux contributions and not in the base

formulation presented.

In vectorial form the conservative form of the Euler equations may be written as

∂U(x, t)

∂t
+∇ · F(U) = 0, (2.1)

where the state vector U of conserved variables and the cartesian inviscid flux vector
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F = (Fx,Fy) are defined as

U =


ρ

ρu

ρv

Et

 , Fx =


ρu

ρu2 + p

ρuv

u(Et + p)

 , Fy =


ρv

ρuv

ρv2 + p

v(Et + p)

 . (2.2)

Here ρ is the fluid density, (u, v) are the cartesian fluid velocity components, p is the

pressure and Et is the total energy. For an ideal gas, the equation of state relates the

pressure to total energy by

p = (γ − 1)

[
Et −

1

2
ρ(u2 + v2)

]
(2.3)

where γ = 1.4 is the ratio of specific heats. Applying the divergence theorem and

integrating over a moving control volume A(t) that is bounded by the control surface

B(t) yields: ∫
A(t)

∂U

∂t
dA+

∫
B(t)

F(U) · ndB = 0 (2.4)

Using the differential identity

∂

∂t

∫
A(t)

UdA =

∫
A(t)

∂U

∂t
dA+

∫
B(t)

(ẋ · n)dB (2.5)

equation (2.4) is rewritten as

∂

∂t

∫
A(t)

UdA+

∫
B(t)

[F(U)− ẋU] · ndB = 0 (2.6)

or when considering cell-averaged values for the state U as

dAU

dt
+

∫
B(t)

[F(U)− ẋU] · ndB = 0 (2.7)

This is the Arbitrary-Lagrangian-Eulerian (ALE) finite-volume form of the Euler

equations. The equations are required in ALE form since the presented work involves

deforming meshes where mesh elements change in shape and size at each time-step.

Here A refers to the area or volume of the element, ẋ is the vector of mesh face or

20



edge velocities, n is the unit normal of the face or edge, and B refers to the area or

length of the bounding surface or edge.

The method presented for the estimation of global temporal error involves pro-

jections of the flow and adjoint solutions from a given temporal mesh onto a temporal

mesh of higher resolution as will be discussed later. In order to remove the depen-

dence of the order-of-magnitude of the computed adjoint variables on the temporal

mesh resolution the time-integrated form of equation (2.7) is utilized as∫
T

{
dAU

dt
+

∫
B(t)

[F(U)− ẋU] · ndB
}
dt = 0 (2.8)

or in a discrete sense when considering a temporal element of size ∆t as{
dAU

dt

}
∆t+

{∫
B(t)

[F(U)− ẋU] · ndB
}

∆t = 0 (2.9)

2.1.2 Linear Mesh Deformation Equations

Deformation of the mesh is achieved through the linear tension spring analogy [7,30],

which approximates the mesh as a network of interconnected springs. The spring

coefficient κ is assumed to be inversely proportional to the square of the edge length.

Two independent force balance equations are formulated for each node based on

displacements of neighbors. This results in a nearest neighbor stencil for the final

linear system to be solved. Referring to Figure 2.1, the displacement of an arbitrary

node i in the mesh can be computed based on displacements of neighbors j as

δxi =

jmax∑
j=1

(κijδxj)

jmax∑
j=1

κij

(2.10)

The linear system of equations for the overall computational mesh that relates the

interior node displacements to known displacements on the boundaries is given as:

[K]δxint = δxsurf (2.11)
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Figure 2.1: Approximation of the computational mesh as a network of springs.

where [K] is the stiffness matrix assembled using the spring coefficients of each of the

edges in the computational mesh. The spring coefficient for each edge is precomputed

using the baseline computational mesh and remains constant throughout the solution

process. As in the case of the governing flow equations, the mesh motion and the

mesh adjoint solutions have to be projected between temporal meshes of different

resolutions, and in order to avoid projection related scaling issues the mesh motion

equations are redefined in the form of a discrete time-integrated mesh residual as:

G(x) = ∆t {[K]δxint − δxsurf} = 0 (2.12)

2.1.3 Nonlinear Aeroelastic Structural Equations

For the purpose of demonstrating the discrete adjoint method on multidisciplinary

coupled unsteady governing equations, a two-dimensional aeroelastic model based on

the response of an airfoil with two degrees-of-freedom, namely pitch and plunge is

used. Referring to Figure 2.2, the equations of motion for such a system can be
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summarized as

mḧ+ Sαα̈ +Khh = −L (2.13)

Sαḧ+ Iαα̈ +Kαα = Mea

where

m: mass of airfoil

Sα: static imbalance, positive for c.g. aft of mid-chord, Sα = mbxα

Iα: sectional moment of inertia of airfoil

Kh: plunging spring coefficient

Kα: pitching spring coefficient

h: vertical displacement (positive downward)

α: angle-of-attack

L: sectional lift of airfoil

Mea: sectional moment of airfoil about elastic axis (positive nose up)

Non-dimensionalizing equations (2.13) and (2.14) yields

[M ]{q̈}+ [K]{q} = {F} (2.14)

where

[M ] =

 1 xα

xα r2
α

 , [K] =

 (ωhωα)2

0

0 r2
α

 ,
{F} =

1

πµk2
c

 −Cl2Cm

 , {q} =

 h
b

α


(2.15)

are the non-dimensional mass matrix, stiffness matrix, load vector and displacement

vector and
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b: semichord of airfoil

kc: reduced frequency of pitch, kc = ωc
2U∞

µ: airfoil mass ratio, µ = m
πρb2

ωh, ωα: uncoupled natural frequencies of plunge and pitch

xα: structural parameter defined as Sα
mb

r2
α: structural parameter defined as Iα

mb2

Cl, Cm: section lift coefficient and section moment coefficient about the elastic axis

The reduced frequency kc is typically written in terms of the flutter velocity Vf

as:

kc =
ωαc

2U∞
=

1

Vf
√
µ

(2.16)

where c is the chord length of the airfoil, U∞ is the freestream velocity, and the flutter

velocity Vf is defined as

Vf =
U∞

ωαb
√
µ

(2.17)

2.2 Spatial Discretization

The flow solver uses a cell-centered finite-volume formulation where the inviscid flux

integral S around a closed control volume is discretized as

S =

∫
dB(t)

[F(U)− ẋU] · ndB =

nedge∑
i=1

F⊥ei(Vei ,U,nei)Bei (2.18)

where Be is the edge length, Ve = ẋ · n is the normal edge velocity, ne is the unit

normal of the edge, and F⊥e is the normal flux across the edge. The normal flux across

the edge (Figure 2.3) is computed using the second-order accurate matrix dissipation

scheme [67] as the sum of a central difference and an artificial dissipation term as
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Figure 2.2: Two-dimensional aeroelastic model of an airfoil with pitch and plunge degrees-of-freedom.

shown below.

F⊥e =
1

2

{
F⊥L(UL, Ve,ne) + F⊥R(UR, Ve,ne)

+ κ(4)[X]|[λ]|[X]−1
{

(∇2U)L − (∇2U)R
}} (2.19)

where UL, UR are the left and right state vectors and (∇2U)L, (∇2U)R are the left

and right undivided Laplacians computed for any element i as a sum over neighbors

as

(∇2U)i =

neighbors∑
j=1

(Uj −Ui) (2.20)

The matrix [λ] is diagonal and consists of the eigenvalues (adjusted by normal edge

velocity Ve) of the flux Jacobian matrix ∂F⊥

∂U
, and the matrix [X] consists of the

corresponding eigenvectors. The scalar parameter κ(4) is empirically determined and

controls the amount of artificial dissipation added to the centrally differenced flux.

For transonic problems this is usually taken as 0.1. The advantage of using the
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Figure 2.3: Convention for the computation of convective flux across an edge between two triangular
elements in an unstructured mesh

difference of the undivided Laplacians in the construction of the convective flux is

that it offers second-order spatial accuracy without the need for mesh metrics and

state reconstruction required by MUSCL type schemes [68]. The normal native flux

vector is computed as

F⊥ =


ρ(V ⊥ − Ve)

ρ(V ⊥ − Ve)u+ n̂xp

ρ(V ⊥ − Ve)v + n̂yp

Et(V
⊥ − Ve) + pV ⊥

 (2.21)

where the fluid velocity normal to the edge V ⊥ is defined as un̂x + vn̂y, with n̂x and

n̂y representing the components of the unit edge normal vector, and Ve is the physical

velocity of edge itself in the normal direction.

2.3 Temporal Discretization

2.3.1 Uniform Time-Step Size

The time derivative term in both the flow and structural governing equations are

discretized using a second-order accurate BDF2 (Backward-Difference-Formula-2)

scheme. The standard BDF2 scheme for the flow equations using a uniform time-
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step size of ∆t is given as

dAU

dt
=

3
2
AnUn − 2An−1Un−1 + 1

2
An−2Un−2

∆t
(2.22)

2.3.2 Non-Uniform Time-Step Size

One of the objectives of the current work is to adapt the temporal mesh using the

estimated functional relevant error. Adaptation of the temporal mesh leads to differ-

ent time-step sizes in different regions of the temporal domain and therefore the base

scheme requires modification to handle non-uniform temporal mesh spacing. This

can be done by deriving a second-order accurate backward finite-difference formula

using Taylor expansions of the solution over a three point stencil and relaxing the

assumption of uniform mesh spacing. The modified BDF2 scheme for non-uniform

temporal meshes is given as

dAU

dt
= c0A

nUn + c1A
n−1Un−1 + c2A

n−2Un−2 (2.23)

c0 =
2∆t1∆t2 + ∆t22

∆t1∆t2(∆t1 + ∆t2)

c1 =
−(∆t1 + ∆t2)2

∆t1∆t2(∆t1 + ∆t2)

c2 =
∆t21

∆t1∆t2(∆t1 + ∆t2)

∆t1 = T n − T n−1

∆t2 = T n−1 − T n−2

Although not a sufficient test, it can be seen that substituting (∆t = ∆t1 = ∆t2)

recovers a standard second-order accurate backward difference with uniform mesh

spacing.
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2.4 Geometric Conservation Law

The discrete geometric conservation law (GCL) requires that a uniform flow field be

preserved when equation (2.7) is integrated in time. In other words, the deformation

of the computational mesh should not introduce conservation errors in the solution

of the flow problem. This translates into U = constant being an exact solution of

equation (2.7). For a conservative scheme, the integral of the inviscid fluxes around

a closed contour goes to zero when U = constant. Applying these conditions to

equation (2.7) results in the mathematical description of the GCL as stated below:

∂A

∂t
−
∫
dB(t)

ẋ · ndB = 0 (2.24)

For the second-order BDF2 time-integration scheme utilized in this work, this can be

discretely represented using equations (2.18) and (2.23) as:

(
c0A

n + c1A
n−1 + c2A

n−2
)
−

nedge∑
i=1

VeiBi = 0 (2.25)

where as described earlier, the integral of the convective flux over a closed contour goes

to zero for a uniform flow. The edge velocities Vei for each of the edges encompassing

the element must be chosen such that equation (2.25) is satisfied. While various

methods for computing the edge velocities satisfying the GCL have been developed

for different temporal discretizations [12, 66], a unifying approach applicable to first,

second and third-order backwards differencing schemes (BDF) as well as higher-order

accurate implicit Runge-Kutta (IRK) schemes has been developed in reference [13].

Following the procedure outlined in reference [13], the edge velocity V n
ei

at time-step

n can be written as a linear combination of the area swept by the edge between three

temporal locations n,n− 1 and n− 2 as:

V n
ei

= k1(∆Ωn) + k2(∆Ωn−1) (2.26)

Here ∆Ωn refers to the area swept by the edge between time-steps n and n − 1,

while ∆Ωn−1 is the area swept between n − 1 and n − 2 as shown in Figure 2.4.
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Figure 2.4: A deforming triangular element at three temporal locations n, n− 1, n− 2, and the area
swept between those locations by a single edge belonging to the element.

The coordinates of the nodes belonging to an edge are known quantities at all three

temporal locations, and therefore the areas ∆Ωn and ∆Ωn−1 swept by the edge can

be computed using Green-Gauss integration. The coefficients k1 and k2 are functions

of the time-step sizes ∆t1 and ∆t2 and are given by:

k1 =
2∆t1∆t2 + ∆t22

∆t1∆t2(∆t1 + ∆t2)
(2.27)

k2 =
−∆t21

∆t1∆t2(∆t1 + ∆t2)
(2.28)

The GCL compliant edge velocity V n
e at an arbitrary time-step n for any edge in the

computational domain is therefore a function of the mesh coordinates belonging to

the edge from time indices n, n− 1 and n− 2.

2.5 Parametrization of the Geometry

Modification of the baseline geometry is achieved through displacements of the sur-

face nodes defining the geometry. In order to ensure smooth geometry shapes, any

displacement of a surface node is controlled by a bump function which influences

neighboring nodes with an effect that diminishes moving away from the displaced

node. The bump function used for the work presented here is the Hicks-Henne Sine

bump function [69]. The design variables or inputs for the optimization examples pre-
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Figure 2.5: Hick-Henne Sine bump functions.

sented form a vector of weights controlling the magnitude of bump functions placed at

various chordwise locations. The bump function, although a function of x, does not

have any influence in the x direction. The Hicks-Henne bump functions are defined

as

bi(x) = amax · sintb(πxmi) (2.29)

mi = ln(0.5)/ ln(xMi
) (2.30)

Here xMi
refers to the location where the bump is to be placed. bi(x) are the dis-

placements of points with x coordinates ranging from 0 to 1 as a result of the bump

placed at xMi
in accordance with the sine bump function. amax is the magnitude of

the bump placed at xMi
and tb is a parameter that controls the width of the bump.

In most situations a value of 4 is used for tb. The bump function is valid in the

range of 0 ≤ x, xMi
< 1, and is ideally suited for airfoil problems. For geometries

extending beyond this range, the bump function may be mapped locally over some

predetermined radius about the surface node of interest. The superposition of bump

functions is used to augment the existing shape of the baseline airfoil in order to

deform its surface. Figure 2.5 shows a series of bumps with a magnitude of 0.1 placed

between 0 ≤ x < 1.
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2.6 Transformation of the Structural Equations

The aeroelastic equations as shown in Equation (2.14) are second-order partial differ-

ential equations. These are transformed into two first-order linear equations in order

to facilitate a direct solution procedure. The transformation is given as [70]

r1 = {q} (2.31)

r2 = ṙ1

The resulting first-order equations are then

ṙ1 = r2 (2.32)

ṙ2 = −[M ]−1[K]r1 + [M ]−1{F}

which in matrix notation can be expressed as ṙ1

ṙ2

 =

 0 [I]

−[M ]−1[K] 0

 r1

r2

+

 0

[M ]−1{F}

 (2.33)

or in general form as

ṙ = [Ψ]r + {Φ} (2.34)

The matrix [Ψ] is a constant and can be precomputed and stored for use during the

time-integration process. The time derivative term ṙ is discretized using the second-

order accurate BDF2 scheme as in the case of the time derivative term in the flow

equations. It should be noted that the time-step ∆τ appearing in the denominator

of the discretized version of the structural equations is different from the time-step of

the flow equations, and their relation is ∆τ = 2kc∆t, where ∆t is the non-dimensional

time-step used for the flow equations. This is due to the non-dimensionalization of

time in the structural equations by the uncoupled natural frequency in pitch ωα. Once

the vector rn at a time-level n has been solved for, the displacement vector {q} is

known and the configuration of the newly deformed mesh (i.e. xn) can be computed

using the mesh deformation equations (2.11) where xsurf is now a function of r.
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2.7 Solution of the Analysis Problem and General

Implementation Details

The analysis solver consists of three specific parts namely, the steady-state flow

solver, the unsteady flow solver, and the coupled unsteady aeroelastic solver. The

solver requires the baseline computational mesh and the flow parameters such as the

freestream Mach number and the angle-of-attack of the airfoil in order to begin the

solution process. The solution sequence begins by obtaining a steady-state solution

of the Euler equations for the given flow parameters and then utilizes the steady-state

solution as the initial condition for the unsteady solution process. Aeroelastic solu-

tions typically require a period of forced unsteady motion of the airfoil before the free

aeroelastic response to loads is allowed to evolve. The prescribed unsteady motion

in the second part of the solver provides the necessary initial condition for the third

component which is the aeroelastic solver. The flow and structural equations are

coupled through the mesh deformation equations and the aeroelastic solver obtains

the solution using a fully coupled iterative strategy.

2.7.1 Implicit Flow Solution Procedure

The flow equations are solved implicitly by defining an implicit flow residual as

R(U,x) =

∫
B(t)

[F(U)− ẋU] · ndB = 0 (2.35)

for the steady-state problem and as

Rn(Un,Un−1,Un−2,xn,xn−1,xn−2) =
dAU

dt
+

∫
B(t)

[F(U)− ẋU] · ndB = 0 (2.36)

for the unsteady problem based on the BDF2 time-integration scheme at an arbitrary

implicit time-step n. The dependence of the residual on flow solutions at time indices

n − 1 and n − 2 appear due to the time derivative term discretized using the BDF2

scheme and the dependence on the mesh coordinates at previous time indices appears
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through the GCL compliant mesh edge velocities and the element volume terms in the

time derivative. The implicit residual is then linearized with respect to the unknown

solution U in order to construct a Newton scheme as[
∂R(Uj)

∂Uj

]
δUj = −R(Uj) (2.37)

Uj+1 = Uj + δUj (2.38)

where once the update δU → 0, the unknown steady-state solution U or unknown

unsteady solution Un is available and satisfies the corresponding implicit residual

equation. The intermediate linear systems in the Newton scheme are solved using

either Gauss-Seidel iterations or the linear agglomeration multigrid [1] approach.

2.7.2 Mesh Deformation Solution Procedure

For both steady and unsteady problems the displacement of the geometry of interest

is a prescribed quantity. In the case of steady-state problems, the angle-of-attack is

given, while in unsteady problems the angle-of-attack is a time-dependent quantity. In

either case, surface mesh coordinates defining the airfoil or geometry of interest have

to be rotated and/or translated from the baseline computational mesh configuration.

These prescribed displacements are used to construct the right-hand-side of the mesh

motion equations shown in equation (2.11). The system is linear and elliptic in

nature and is solved using Gauss-Seidel iterations or by an agglomeration multigrid [1]

technique employing Gauss-Seidel iterations as an error smoother. In the case of

aeroelasticity, the displacement of the geometry is provided by the structural response

to aerodynamic loads, which can then be used to drive the interior mesh deformation.

2.7.3 Coupled Aeroelastic Solution Procedure

The governing equations in the case of aeroelasticity are fully coupled. The flow

equations predict the loads acting on the geometry, while the structural equations
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deform or displace the geometry based on the loads. The mesh motion equations

are used to deform the mesh based on the displacements predicted by the structural

equations. The deformed mesh however changes the flow solution thus resulting in

changes to the loads. The equations have to be solved in a coupled iterative manner,

where each discipline is solved partially while the source terms coupled with the

remaining disciplines are constantly updated. As in the case of the flow equations, the

structural equations are solved implicitly by defining an implicit structural residual

at any time-step n as

Jn(rn, rn−1, rn−2,Un,xn) =
∂r

∂τ
− [Ψ] rn − {Φ} = 0 (2.39)

which when linearized with respect to the structural state rn enables the construction

of a Newton scheme as [
∂J(rj)

∂rj

]
δrj = −J(rj) (2.40)

Although derived from a Newton scheme, the above equation can be solved linearly

since the Jacobian matrix is a constant. The coupling between the three disciplines,

i.e. flow, structure and mesh becomes apparent when summarizing the respective

residual equations as shown below.

Rn(Un,Un−1,Un−2,xn,xn−1,xn−2) = 0 (2.41)

Jn(rn, rn−1, rn−2,Un,xn) = 0 (2.42)

Gn(xn,xsurf (r
n,xdsurf )) = 0 (2.43)

Here xdsurf refers to the surface coordinates of the baseline airfoil deformed using the

shape functions. The flow equations depend on the mesh coordinates, but the mesh

coordinates depend on the structural state, which in turn depends on both the flow

solution and the mesh coordinates. Figure 2.6 shows the coupled iterative strategy

employed in the aeroelastic solver to advance from time-step n to time-step n + 1.

Only partial solutions of each discipline are required during the coupled iterations.

Although converging each discipline completely within the coupled iterative strategy
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Figure 2.6: Coupled iterative loop for advancing from time-step n to time-step n+1 in the aeroelastic
solver.

does not change the final answer, this is unnecessary and imposes severe additional

cost. Figure 2.7 compares the typical convergence of the flow, mesh and structural

equations when employing the coupled iterative strategy.

2.8 Damped Newton Solver

In many cases, the Jacobian matrix used to drive the nonlinear Newton method for

the flow equations is ill conditioned causing difficulties in the solution of the linear

system. For this reason, damping is added to the Jacobian matrix by augmenting the

diagonal terms with a damping factor as[
∂R

∂U

]
damped

=
A

kdamp
[I] +

[
∂R

∂U

]
(2.44)
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Figure 2.7: Typical convergence of the coupled aeroelastic equations. For this particular example,
each coupled iteration consists of 1 Newton iteration for the flow, 200 Gauss-Jacobi iterations for
the mesh, and 3 Gauss-Seidel iterations for the structure. A single Newton iteration for the flow
consists of 2 multigrid cycles over 4 levels with 10 Gauss-Jacobi smoothing cycles at each multigrid
level.
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where A refers to the local element area and kdamp refers to an empirically determined

damping parameter. Smaller values of kdamp add more damping to the Jacobian

matrix, slowing down the overall nonlinear convergence but increases robustness in

the linear solutions. As the damping parameter goes to infinity, no damping is added

to the Jacobian matrix and the nonlinear solver recovers the exact Newton method.

Typically the solution process is started with a small empirically determined value

for the damping parameter and is progressively increased at every nonlinear update

to the solution.

2.9 Overall Solution Procedure

The overall solution procedure involves starting with a steady-state solution, followed

by an unsteady solution with prescribed motion of the geometry, and then initiating

a coupled aeroelastic solution with the prescribed unsteady solution. The process of

obtaining a solution to the described set of governing equations can be broken down

as follows:

1. Read in baseline computational mesh of airfoil and freestream flow parameters.

2. Deform surface coordinates defining airfoil to change its shape as per current

design variables and construct right-hand-side of mesh motion equations.

3. Solve linear mesh motion equations to obtain distribution of interior mesh co-

ordinates.

4. Rotate surface coordinates xdsurf to the prescribed steady-state angle of attack.

5. Solve mesh motion equations to obtain interior mesh coordinate distribution.

6. Initialize all elements in the spatial mesh with freestream conditions.

7. Obtain steady-state solution using Newton iterations operating on the steady-

state residual R(U,x) = 0.
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8. If only a steady-state solution is required, stop at this point and compute func-

tionals based on U and x.

9. Begin time-integration process by using steady-state solution as the initial con-

dition.

10. Rotate surface coordinates of airfoil xdsurf to the correct angle-of-attack for the

current time-step n to determine xnsurf .

11. Solve mesh motion equations to obtain interior mesh coordinate distribution xn

for time-step n.

12. Compute GCL compliant edge velocities for current time-step.

13. Obtain flow solution Un for time-step n using Newton iterations operating on

the residual Rn(Un,Un−1,Un−2,xn,xn−1,xn−2) = 0.

14. Keep integrating forward in time until solution at all time-steps representing

the time domain of interest has been obtained.

15. If only an unsteady solution with prescribed motion of the airfoil is required,

stop at this point and compute functionals based on the unsteady flow solution

set (U1,U2, · · · ,Un) and the unsteady set of mesh coordinates (x1,x2, · · · ,xn).

16. Begin coupled unsteady aeroelastic solution procedure using the unsteady solu-

tion of the prescribed motion as the initial condition.

17. Partially solve flow equations using Newton iterations and obtain an estimate

for the loads on the airfoil.

18. Partially solve structural equations using Newton iterations and estimate a dis-

placement vector for the airfoil.

19. Construct right-hand-side of mesh motion equations using the estimated dis-

placement vector and partially solve mesh motion equations.
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20. Return to flow equations and continue solving with updated computational

mesh.

21. Keep iterating until residuals for all disciplines have converged, indicating that

the solution set satisfying all disciplines has been obtained. The solution has

advanced one time-step at this point.

22. Continue integration in time until aeroelastic solution set spanning all time-

steps representing the time domain of interest has been obtained.

23. Compute functionals based on aeroelastic solution set (U, r,x), spanning the

spatial and temporal domains.
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Chapter 3

Linearization for Functional

Sensitivity Computation

3.1 Generalized Sensitivity Analysis

Consider a nonlinear function F operating on set of arbitrary independent variables

D resulting in a scalar functional L. In the context of computational fluid dynamics,

for a steady-state inviscid flow problem, the nonlinear operator F represents the Euler

equations and the set of independent variables D represents design input parameters

that control the shape of the geometry under consideration. The output functional

for such problems are typically surface integrated quantities such as the lift or drag.

If the shape of the geometry is to be modified in order to achieve some target value

of the functional, the vector of sensitivity derivatives of the functional with respect

to the set of design inputs is required. The sensitivity derivatives can be obtained

via finite-differencing where each of the design input variables in the vector D is

perturbed by some appropriate value ∆D and the nonlinear function F is evaluated

in order to determine the corresponding change in the functional ∆L. The sensitivity

of the functional to the design input D can then be approximated as ∆L
∆D

. In this

procedure the number of nonlinear function evaluations is directly proportional to the
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number of design inputs in the vector D. Additionally, the accuracy of the estimated

sensitivity derivative is dependent on the size of the perturbation ∆D. From theory

it is known that the analytically exact derivative is obtained as ∆D → 0. Discrete

computational operations however require a finite value for the perturbation and

choosing the appropriate value poses certain challenges. Too small of a perturbation

can result in inaccuracies arising from machine precision limitations, while larger

values could potentially estimate the wrong slope if the function is highly nonlinear.

The other approach to estimate the sensitivity derivative is to directly differen-

tiate the analytic nonlinear function F (Euler equations) with respect to the design

inputs D in order to obtain an analytic form for the sensitivity derivative. The re-

sulting analytic or continuous form of the sensitivity derivative may be discretized

and solved for numerically. This is the continuous linearization method and results

in a discrete approximation to the exact analytic sensitivity derivatives of interest.

Alternatively, each discrete operation used to evaluate F (D) numerically may be

sequentially differentiated with respect to the design inputs D. In this work, this

involves the direct differentiation of the code used to solve the discretized Euler equa-

tions which takes in D as the input and computes L as the functional output. This

represents the discrete linearization method, which results in an exact linearization

of the discrete equations and forms the core of the presented work.

While the computation of the functional L may be expressed in general form as

L = F (D), the nonlinear function F may involve several sub functions sequentially

operating on one another. Also, it may be possible that the nonlinear operator F

produces multiple functionals L. A good example in the context of this work is the

computation of multiple load coefficients such lift, drag and moment coefficients using

the solution of the Euler equations. Expressing the overall evaluation procedure with

all intermediate dependencies, the functionals L may be expressed as

L = Fi(Fi−1(Fi−2(· · ·F2(F1(F0(D)))))) (3.1)
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Note that the bold font used for L now indicates a vector of functionals and not a

scalar. The sensitivity of the functionals L to the set of design inputs D now forms

a matrix and can be determined by differentiating using the chain rule as:

dL

dD
=
∂L

∂Fi

∂Fi
∂Fi−1

∂Fi−1

∂Fi−2

· · · ∂F2

∂F1

∂F1

∂F0

∂F0

∂D
(3.2)

Assuming that the derivative of a function with respect to another function forms

a matrix, for multiple design inputs nD the product at the right extreme of equa-

tion (3.2) represents a matrix-matrix product operation. As a general rule in com-

putational work, matrix-matrix products are to be avoided since they are O(n2)

operations. However matrix-vector products are considered acceptable since they re-

sult in vectors and require O(n) operations. For the case of a single design input

(nD = 1) and single or multiple functional outputs L, the total sensitivity dL
dD

can

be evaluated by a series of efficient matrix-vector or vector-vector products. This

is a direct consequence of the rightmost term in equation (3.2) being a vector for

the case of a single design input. Equation (3.2) represents the forward or tangent

linearization of the functional(s) L with respect to the design input(s) D. Practical

design problems in aerodynamics however typically involve multiple design inputs

and a single functional of interest. The forward linearization becomes inefficient for

such cases since for multiple inputs this results in matrix-matrix product operations.

This problem can be elegantly circumvented by simply transposing equation (3.2) to

obtain the reverse or adjoint linearization of the functional with respect to the design

inputs. The transpose of the forward linearization reverses the multiplication order

and can be expressed as

dL

dD

T

=
∂F0

∂D

T ∂F1

∂F0

T ∂F2

∂F1

T

· · · ∂Fi−1

∂Fi−2

T ∂Fi
∂Fi−1

T ∂L

∂Fi

T

(3.3)

For a single functional of interest, the last term in equation (3.3) is now a vector,

and the resulting sequence of product operations again consists of either matrix-

vector or vector-vector products. To summarize, it is efficient to invoke the forward
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linearization for cases with multiple outputs L and a single or few inputs D, while

the adjoint or reverse linearization is more economical for cases with a single or few

outputs L and multiple inputs D. Although the forward linearization of the governing

equations is presented in the current work, it is only for the purpose of clarifying the

derivation of the corresponding adjoint linearization. The adjoint linearization is used

exclusively for applications presented in this work.

3.2 Generalized Gradient Formulation for Multi-

disciplinary Coupled Unsteady Equations

3.2.1 Forward Linearization

Consider an arbitrary number of m coupled unsteady disciplines, where the solution

of each discipline is given by the state variable U . The state variables for each of

the disciplines span both the spatial and temporal domains since it is assumed that

the governing equations of every discipline are unsteady in nature. For the general

case, a scalar functional L evaluated using the multidisciplinary solution set can be

expressed as

L = L(D,U1,U2, · · · ,Um) (3.4)

where in addition to an explicit dependence on the design inputs D, there exists an

implicit dependence through the state variables U of each discipline. Differentiating

with respect to the design inputs using the chain rule, the total sensitivity or gradient

vector dL
dD

can be expressed as

dL

dD
=
∂L

∂D
+
∂L

∂U1

∂U1

∂D
+
∂L

∂U2

∂U2

∂D
+ · · ·+ ∂L

∂Um
∂Um
∂D

(3.5)

which can also be expressed in terms of the inner product between the vector of

functional sensitivities to state variables and the vector of state variable sensitivities
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to the design inputs as

dL

dD
=
∂L

∂D
+

[
∂L

∂U1

∂L

∂U2

· · · ∂L

∂Um

]


∂U1

∂D

∂U2

∂D

...

∂Um
∂D


(3.6)

Now assume that the spatial domain is represented by ncells discrete elements while

the temporal domain consists of nsteps discrete time-steps. The linearization of the

functional with respect to the disciplinary state variables (i.e ∂L
∂Ui ) then forms vectors

of dimension [1 × nsteps], where each element in the vector is a vector by itself of

dimension [1 × ncells]. These vectors are easily computable since the functional L is

a scalar quantity. The linearization of the disciplinary state variables with respect to

the design inputs (i.e. ∂Ui
∂D

) form matrices of dimension [nncells×nD] at each time-step

for the case of nD design inputs. For each discipline, there are nsteps number of such

matrices. The state variable sensitivity matrices are unknown quantities at this point

and an expression for their evaluation must be determined. The governing nonlinear

equations of each discipline may be cast in residual form as

R1(D,U1,U2, · · · ,Um) = 0

R2(D,U1,U2, · · · ,Um) = 0

...

Rm(D,U1,U2, · · · ,Um) = 0

(3.7)

where it is important to note that the residual equation of each discipline is depen-

dent not only on its own state but also on the states of the remaining disciplines due

to the assumption of coupling between disciplines. For the general case, the residual

equations also have explicit dependence on the design inputs D and an implicit depen-

dence through the state variables U . For a fully converged solution set U , the residual
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equations have to evaluate identically to zero at all spatial and temporal points in

the domain within which the solution was obtained. For this reason the derivatives of

the residual for a fully converged solution set also have to evaluate to zero at all spa-

tial and temporal points within the domain. Differentiating the disciplinary residual

equations with respect to the set of design inputs D then yields:

∂R1

∂D
+
∂R1

∂U1

∂U1

∂D
+
∂R1

∂U2

∂U2

∂D
+ · · ·+ ∂R1

∂Um
∂Um
∂D

= 0

∂R2

∂D
+
∂R2

∂U1

∂U1

∂D
+
∂R2

∂U2

∂U2

∂D
+ · · ·+ ∂R2

∂Um
∂Um
∂D

= 0

...

∂Rm

∂D
+
∂Rm

∂U1

∂U1

∂D
+
∂Rm

∂U2

∂U2

∂D
+ · · ·+ ∂Rm

∂Um
∂Um
∂D

= 0

(3.8)

which can further be combined into matrix form by extracting the vector of unknown

state variable sensitivity matrices as:

∂R1

∂U1

∂R1

∂U2

· · · ∂R1

∂Um
∂R2

∂U1

∂R2

∂U2

· · · ∂R2

∂Um
...

∂Rm

∂U1

∂Rm

∂U2

· · · ∂Rm

∂Um





∂U1

∂D

∂U2

∂D

...

∂Um
∂D


=



−∂R1

∂D

−∂R2

∂D

...

−∂Rm

∂D


(3.9)

The Jacobian matrices ∂Ri
∂Uj (i = 1,m : j = 1,m) span both spatial and temporal

domains, however time being purely hyperbolic in nature implies that the discrete

residual Rn at an arbitrary time-step n can only depend on quantities at time in-

dices ≤ n. Consequently, for the general case, any Jacobian matrix when discretely

expanded in time for a temporal domain consisting of n time-steps is block lower

triangular as shown below, where each of the blocks is a matrix spanning the spatial
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domain.

∂R
∂U

=



. . . 0 0 0

· · · ∂Rn−2

∂Un−2
0 0

· · · ∂Rn−1

∂Un−2

∂Rn−1

∂Un−1
0

· · · ∂Rn

∂Un−2

∂Rn

∂Un−1

∂Rn

∂Un


(3.10)

As an example, for two coupled disciplines (m = 1, 2) and a temporal domain consist-

ing of two time-steps n and n− 1, equation (3.9) can be rewritten using the discrete

temporally expanded form of the Jacobian matrices as

∂Rn−1
1

∂Un−1
1

0
∂Rn−1

1

∂Un−1
2

0

∂Rn
1

∂Un−1
1

∂Rn
1

∂Un1
∂Rn

1

∂Un−1
2

∂Rn
1

∂Un2

∂Rn−1
2

∂Un−1
1

0
∂Rn−1

2

∂Un−1
2

0

∂Rn
2

∂Un−1
1

∂Rn
2

∂Un1
∂Rn

2

∂Un−1
2

∂Rn
2

∂Un2





∂Un−1
1

∂D

∂Un1
∂D

∂Un−1
2

∂D

∂Un2
∂D


=



−∂R
n−1
1

∂D

−∂R
n
1

∂D

−∂R
n−1
2

∂D

−∂R
n
2

∂D


(3.11)

Swapping rows and columns, the overall system may be rearranged as a block lower

triangular matrix of the form shown below, where each diagonal block represents a

single time-step.

∂Rn−1
1

∂Un−1
1

∂Rn−1
1

∂Un−1
2

0 0

∂Rn−1
2

∂Un−1
1

∂Rn−1
2

∂Un−1
2

0 0

∂Rn
1

∂Un−1
1

∂Rn
1

∂Un−1
2

∂Rn
1

∂Un1
∂Rn

1

∂Un2
∂Rn

2

∂Un−1
1

∂Rn
2

∂Un−1
2

∂Rn
2

∂Un1
∂Rn

2

∂Un2





∂Un−1
1

∂D

∂Un−1
2

∂D

∂Un1
∂D

∂Un2
∂D


=



−∂R
n−1
1

∂D

−∂R
n−1
2

∂D

−∂R
n
1

∂D

−∂R
n
2

∂D


(3.12)
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For the limiting case of a single design input D, this forms a block lower triangular

linear system where the unknown state variable sensitivities and the right-hand-side

form vectors rather than matrices. The system can be solved using forward substi-

tution, i.e. a forward sweep in time beginning at time-step n − 1 and progressing

to time-step n. At each time-step, a fully coupled linear system is solved iteratively

to obtain the sensitivity of the state variables at that time-step to the single design

input. For the case of multiple design inputs D, the forward sweep in time along with

the coupled linear solution at each time-step has to be performed for each input in

order to construct the state variable sensitivity matrix for each discipline one column

at a time. Once the state variable sensitivity matrices are available, they can substi-

tuted into equation (3.6) where the inner product can be evaluated and the complete

gradient vector dL
dD

becomes available.

3.2.2 Adjoint Linearization

In the case of the forward linearization, the number of solutions of equation (3.12)

that are required is directly dependent on the number of design inputs D. This issue

can be circumvented by switching to the adjoint or reverse linearization of the same

problem by transposing equation (3.6). The transpose of the forward linearization

can be expressed as

dL

dD

T

=
∂L

∂D

T

+

[
∂U1

∂D

T ∂U2

∂D

T

· · · ∂Um
∂D

T
]


∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


(3.13)

where the goal now is to avoid explicit computation of the unknown state variable

sensitivity matrices. A convenient expression for the vector of state variable sensitivity
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matrices can be obtained by transposing and rearranging equation (3.9) as[
∂U1

∂D

T ∂U2

∂D

T

· · · ∂Um
∂D

T
]

=

[
∂R1

∂D

T ∂R2

∂D

T

· · · ∂Rm

∂D

T
]


∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T



−1

(3.14)

Substituting into the transposed total sensitivity equation (3.13) yields,

dL

dD

T

=
∂L

∂D

T

+

[
∂R1

∂D

T ∂R2

∂D

T

· · · ∂Rm

∂D

T
]


∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T



−1 

∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


(3.15)

48



Now defining a vector of adjoint variables per discipline spanning the spatial and

temporal domains as


ΛU1

ΛU2

...

ΛUm

 =



∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T



−1 

∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


(3.16)

a block coupled linear adjoint system of equations can be recovered as

∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T




ΛU1

ΛU2

...

ΛUm

 =



∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


(3.17)

Following the same example presented in the derivation of the forward linearization,

for a problem with two disciplines (m = 2) and two time-steps n and n−1 representing

the temporal domain, the adjoint system can be discretely expanded in time and

expressed as
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∂Rn
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T ∂Rn−1
1

∂Un−1
2

T
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2
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2

T
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T

0
∂Rn

2
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T





Λn−1
U1

Λn
U1

Λn−1
U2

Λn
U2


=


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T


(3.18)
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which can be rearranged into block upper triangular form as shown below by swapping

rows and columns.

∂Rn−1
1

∂Un−1
1

T
∂Rn−1

1

∂Un−1
2

T
∂Rn

1

∂Un−1
1
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2

T
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2
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1

T
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2
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2

T
∂Rn

2

∂Un−1
1

T ∂Rn
2
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2

T

0 0
∂Rn

1

∂Un1

T ∂Rn
1
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T

0 0
∂Rn

2
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T ∂Rn
2

∂Un2

T





Λn−1
U1

Λn−1
U2

Λn
U1

Λn
U2


=



∂L

∂Un−1
1

T

∂L

∂Un−1
2

T

∂L

∂Un1

T

∂L

∂Un2

T


(3.19)

The system can be solved through back substitution, i.e. a backward sweep in time,

where a coupled linear system is solved at time-step n before progressing backward

to time-step n − 1. At each time-step a coupled iterative linear solution is required

in order to determine the vector of unknown disciplinary adjoint variables at that

time-step. Once the vector of disciplinary adjoint variables spanning the spatial and

temporal domains is available, it may be substituted into the total sensitivity equation

as

dL

dD

T

=
∂L

∂D

T

+

[
∂R1

∂D

T ∂R2

∂D

T

· · · ∂Rm

∂D

T
]

ΛU1

ΛU2

· · ·
ΛUm

 (3.20)

where the effect of the number of design inputs D has been confined to a series of

matrix-vector products at the end of the computation. The elegance of the method

lies in the fact that only a single backward sweep in time with coupled linear solutions

at each time step is required in order to compute the total gradient vector, contrary to

the forward linearization. The determination of the gradient vector therefore involves

a single forward integration in time to obtain the solution to the coupled unsteady

analysis problem, and a single backward sweep in time to obtain the necessary adjoint

variables.
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3.3 Gradients for the Unsteady Aeroelasticity Prob-

lem

It is now possible to apply the general formulation specifically to the unsteady aeroe-

lasticity analysis problem. The three state variables for this case are the flow U,

mesh x and structure r. All three disciplines are coupled and additionally unsteady

in nature, implying that the state variables for each discipline span the spatial and

temporal domains. Following the derivation presented in the previous section, a gen-

eral time-integrated functional L evaluated using the unsteady aeroelastic solution

set can be defined as

L = L (U, r,x) (3.21)

where there is only an implicit dependence on the design inputs through the state

variables and no explicit dependence. Linearizing the functional with respect to the

set of design inputs D and transposing the result, the total sensitivity vector dL
dD

can

be written as the inner product of the vector of state sensitivities to design inputs

and the vector of functional sensitivities to state variables as

dL

dD

T

=
∂U

∂D

T ∂L

∂U

T

+
∂r

∂D

T ∂L

∂r

T

+
∂x

∂D

T ∂L

∂x

T

=

[
∂U

∂D

T ∂r

∂D

T ∂x

∂D

T
]


∂L

∂U

T

∂L

∂r

T

∂L

∂x

T


(3.22)

The three disciplinary residual equations with state variables for each spanning both

the spatial and temporal domains can be summarized as

R (U,x) = 0 (3.23)

J (r,U,x) = 0 (3.24)

G
(
x,xsurf

(
r,xdsurf

))
= 0 (3.25)
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where R, J and G refer to the flow, structure and mesh residual equations respectively.

These may now be linearized with respect to the design inputs using the chain rule

yielding

∂R

∂U

∂U

∂D
+
∂R

∂x

∂x

∂D
= 0 (3.26)

∂J

∂r

∂r

∂D
+
∂J

∂U

∂U

∂D
+
∂J

∂x

∂x

∂D
= 0 (3.27)

∂G

∂x

∂x

∂D
+

∂G

∂xsurf

(
∂xsurf
∂r

∂r

∂D
+
∂xsurf
∂xdsurf

∂xdsurf
∂D

)
= 0 (3.28)

Now combining the linearized residual equations into matrix form as

∂R

∂U
0

∂R

∂x

∂J

∂U

∂J

∂r

∂J

∂x

0

(
∂G

∂xsurf

∂xsurf
∂r

)
∂G

∂x





∂U

∂D

∂r

∂D

∂x

∂D


=


0

0

−

(
∂G

∂xdsurf

∂xdsurf
∂D

)
 (3.29)

and transposing, yields an expression for the vector of state variable sensitivity ma-

trices as:[
∂U

∂D

T ∂r

∂D

T ∂x

∂D

T
]

=

 0 0 −

(
∂xdsurf
∂D

T
∂G

∂xdsurf

T
) 



∂R

∂U

T ∂J

∂U

T

0

0
∂J

∂r

T (
∂xsurf
∂r

T ∂G

∂xsurf

T)
∂R

∂x

T ∂J

∂x

T ∂G

∂x



−1

(3.30)
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Substituting the above expression into equation (3.22), the total sensitivity equation

becomes

dL

dD

T

=

 0 0 −

∂xdsurf
∂D

T
∂G

∂xdsurf

T






∂R
∂U

T ∂J
∂U

T

0

0
∂J
∂r

T
(

∂xsurf
∂r

T ∂G
∂xsurf

T
)

∂R
∂x

T ∂J
∂x

T ∂G
∂x



−1 

∂L

∂U

T

∂L

∂r

T

∂L

∂x

T


(3.31)

Now introducing a vector of adjoint variables per discipline, the recovered coupled

adjoint system can be expressed as

∂R

∂U

T ∂J

∂U

T

0

0
∂J

∂r

T (
∂xsurf
∂r

T ∂G

∂xsurf

T)
∂R

∂x

T ∂J

∂x

T ∂G

∂x

T




ΛU

Λr

Λx

 =



∂L

∂U

T

∂L

∂r

T

∂L

∂x

T


(3.32)

where ΛU, Λx and Λr are the flow, mesh and structural adjoint variables spanning

both the spatial and temporal domains. The next step is to determine the forms of the

various Jacobian matrices appearing in the adjoint system. The implicit flow residual

equation based on the BDF2 temporal discretization at an arbitrary time-step n is

given as

Rn
(
Un,Un−1,Un−2,xn,xn−1,xn−2

)
= 0 (3.33)

53



indicating that the linearization of the flow residual with respect to the flow variables

∂R
∂U

, is a block tridiagonal matrix in time of the form

[
∂R

∂U

]
=



. . . 0 0 0 0

. . . . . . 0 0 0

∂Rn−2

∂Un−4

∂Rn−2

∂Un−3

∂Rn−2

∂Un−2
0 0

0
∂Rn−1

∂Un−3

∂Rn−1

∂Un−2

∂Rn−1

∂Un−1
0

0 0
∂Rn

∂Un−2

∂Rn

∂Un−1

∂Rn

∂Un


(3.34)

Similarly, the linearization of the flow residual R with respect to the mesh coordinates

in time also forms a block tridiagonal matrix as shown below.

[
∂R

∂x

]
=



. . . 0 0 0 0

. . . . . . 0 0 0

∂Rn−2

∂xn−4

∂Rn−2

∂xn−3

∂Rn−2

∂xn−2
0 0

0
∂Rn−1

∂xn−3

∂Rn−1

∂xn−2

∂Rn−1

∂xn−1
0

0 0
∂Rn

∂xn−2

∂Rn

∂xn−1

∂Rn

∂xn


(3.35)

The mesh residual equation for the aeroelastic problem at an arbitrary time-step

n is given as

Gn
(
xn,xnsurf

(
rn,xdsurf

))
= 0 (3.36)

The surface coordinates xnsurf at an arbitrary time-step n are computed using the

displacement vector rn at that time-step provided by the solution of the structural

equations and the baseline surface mesh coordinates deformed by the shape functions

xdsurf . It can be seen from the mesh residual equation that, at any time-step n,

there is dependence on quantities only within the same time-step. Consequently the
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linearization of the mesh residual with any of the other terms with the exception

of xdsurf , results in block diagonal matrices in time. Referring to equation (2.12), it

can be seen that the linearization of the mesh residual G with respect to the mesh

coordinates x results in the constant mesh stiffness matrix [K], while the linearization

of the same with respect to the surface mesh coordinates xsurf results in the negative

identity matrix −[I].

Lastly, examining the structure residual based on the BDF2 temporal discretiza-

tion at an arbitrary time-step n given as

Jn
(
rn, rn−1, rn−2,Un,xn

)
= 0 (3.37)

it is clear that the Jacobian matrix ∂J
∂r

also forms a block tridiagonal matrix in time

as:

[
∂J

∂r

]
=



. . . 0 0 0 0

. . . . . . 0 0 0

∂Jn−2

∂rn−4

∂Jn−2

∂rn−3

∂Jn−2

∂rn−2
0 0

0
∂Jn−1

∂rn−3

∂Jn−1

∂rn−2

∂Jn−1

∂rn−1
0

0 0
∂Jn

∂rn−2

∂Jn

∂rn−1

∂Jn

∂rn


(3.38)

The structure residual at time-step n depends on the flow and mesh states only at

time-step n and therefore the linearization produces block diagonal matrices in time.

Substituting these definitions into equation (3.32) the adjoint system can be written
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in the temporally expanded form as (shown for three points in time)
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(3.39)

which when rearranged through row and column swapping into upper triangular form

yields
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(3.40)

The solution of the adjoint system now involves a backward sweep in time beginning

at the final time-step n. At each time-step in the backward sweep a coupled linear

solution is required in order to determine the vector of unknown disciplinary adjoint

variables at that time-step. The coupled linear adjoint system at an arbitrary time-
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step n (except the final two time-steps) can be expressed as[
∂Rn

∂Un

]T
Λn

U =
∂L

∂Un

T

− ∂Jn

∂Un

T

Λn
r −

∂Rn+1

∂Un

T

Λn+1
r − ∂Rn+2

∂Un

T

Λn+2
r (3.41)[

∂Jn

∂rn

]T
Λn

r =
∂L

∂rn

T

+
∂xnsurf
∂rn

T

Λn
x −

∂Jn+1

∂rn

T

Λn+1
r − ∂Jn+2

∂rn

T

Λn+2
r (3.42)

[K]T Λn
x =

∂L

∂xn

T

− ∂Rn

∂xn

T

Λn
U −

∂Jn

∂xn

T

Λn
r −

∂Rn+1

∂xn

T

Λn+1
U − ∂Rn+2

∂xn

T

Λn+2
U (3.43)

where the coupling between the disciplinary adjoint equations is clear since adjoint

variables from the same time-step of each discipline appear in the form of source

terms in the adjoint equations of the remaining disciplines.

Comparing the disciplinary adjoint equations above with equations (2.37), (2.40)

and (2.11), it can be seen that linear systems arising in the analysis problem and the

adjoint problem are very similar. The coefficient matrices operating on the vector

of unknowns in both cases are the same with the exception of the transpose. In the

analysis problem, the Jacobian matrices are computed in order to drive the nonlinear

Newton solver and these are readily available for use in the solution of the adjoint

problem. Transpose operations do not change the eigenvalues of the coefficient matrix

and consequently the convergence of the linear adjoint systems are similar to those

appearing as intermediate linear systems in the analysis problem. The solution of

the coupled adjoint system at each time-step follows the same method outlined for

the analysis problem. Partial solutions of the adjoint equations of each discipline

are required while the source terms due to coupling are constantly updated, until

all of the disciplinary adjoint equations converge. Figure 3.1 compares the typical

convergence of the coupled adjoint system at an arbitrary time-step for the coupled

aeroelasticity problem. Once the vector of disciplinary adjoint variables spanning

both the spatial and temporal domains has been solved for in this manner, they can
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Figure 3.1: Typical convergence of the coupled aeroelastic adjoint equations.

then be substituted into the total sensitivity shown in equation (3.31) to obtain

dL

dD

T

=

 0 0 −

(
∂xdsurf
∂D

T
∂G

∂xdsurf

)T




ΛU

Λr

Λx

 = −
∂xdsurf
∂D

T
∂G

∂xdsurf

T

Λx (3.44)

Referring to equation (3.36), it can be seen that the mesh residual G at each time-

step depends on the deformed baseline surface coordinates xdsurf through the surface

coordinates xsurf at that time-step. The total sensitivity can therefore be further

split as

dL

dD

T

=
∂xdsurf
∂D

T
∂xsurf
∂xdsurf

T ∂G

∂xsurf

T

Λx (3.45)

The derivative of the surface mesh coordinates xsurf at any time-step with respect to

the deformed baseline surface coordinates xdsurf can be defined as the transformation

matrix [β] for that time-step. The transformation matrix is used to rotate and/or

translate the baseline surface coordinates defining the airfoil to the correct orientation

at the current time-step. For the aeroelastic case, the transformation matrix is easily
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computable once the displacement of the airfoil is known from the solution of the

structural equations. Based on this definition of the transformation matrix and that

the linearization of the mesh residual Gn with respect to the surface coordinates xnsurf

is the negative identity matrix, the total sensitivity then becomes

dL

dD

T

=
∂xdsurf
∂D

T

[β]T Λx (3.46)

Now expanding the transformation matrix [β] and the vector of mesh adjoint variables

discretely in time, the complete gradient vector can be computed as the matrix-vector

product between the sensitivity of the deformed baseline surface coordinates and the

sum in time of the transformed mesh adjoint variable as

dL

dD

T

=
∂xdsurf
∂D

T
{
nsteps∑
n=1

[βn]T Λn
x

}
(3.47)

3.4 Gradients for the Uncoupled Unsteady Flow

Problem

The uncoupled unsteady problem can be viewed as a subset of the coupled unsteady

aeroelastic problem, where now the functional is dependent only on two states namely

the flow and mesh solutions as:

L = L(U,x) (3.48)

The state variables still span both spatial and temporal domains and the correspond-

ing adjoint form of the total sensitivity can be expressed as

dL

dD

T

=

[
∂U

∂D

T ∂x

∂D

T
]

∂L

∂U

T

∂L

∂x

T

 (3.49)
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The set of residual equations for the non-aeroelastic unsteady case can be summarized

as

R(U,x) = 0 (3.50)

G(x,xsurf (x
d
surf )) = 0 (3.51)

which when linearized, combined into matrix form and transposed following the same

procedure as explained in the previous section yields an expression for the vector of

state variable sensitivity matrices as

[
∂U

∂D

T ∂x

∂D

T
]

=

 0 −

(
∂xdsurf
∂D

T
∂G

∂xdsurf

T
) 


∂R

∂U

T

0

∂R

∂x

T ∂G

∂x

T


−1

(3.52)

The corresponding unsteady adjoint system is then
∂R

∂U

T

0

∂R

∂x

T ∂G

∂x

T


 ΛU

Λx

 =


∂L

∂U

T

∂L

∂x

T

 (3.53)

The Jacobian matrices appearing in the system of adjoint equations take up the same

form as those in the case of aeroelasticity since the respective residual equations are

nearly identical. The flow residual equation for this case remains identical to that

shown in equation (3.33), while the mesh residual at an arbitrary time-step n now

does not have any dependence on the structural state and is given as

Gn
(
xn,xnsurf (x

d
surf )

)
= 0 (3.54)
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Expanding the adjoint system discretely in time, equation (3.53) can be expressed as

(shown for a time domain with three steps)

∂Rn−2

∂Un−2

T
∂Rn−1

∂Un−2

T
∂Rn

∂Un−2

T

0 0 0

0
∂Rn−1

∂Un−1

T
∂Rn

∂Un−1

T

0 0 0

0 0
∂Rn

∂Un

T

0 0 0

∂Rn−2

∂xn−2

T
∂Rn−1

∂xn−2

T
∂Rn

∂xn−2

T

[K]T 0 0

0
∂Rn−1

∂xn−1

T
∂Rn

∂xn−1

T

0 [K]T 0

0 0
∂Rn

∂xn

T

0 0 [K]T





Λn−2
U

Λn−1
U

Λn
U

Λn−2
x

Λn−1
x

Λn
x


=



∂L

∂Un−2

T

∂L

∂Un−1

T

∂L

∂Un

T

∂L

∂xn−2

T

∂L

∂xn−1

T

∂L

∂xn

T


(3.55)

which when rearranged through row and column swapping results in an upper trian-

gular system of linear equations as:

[K]T
∂Rn−2

∂xn−2

T

0
∂Rn−1

∂xn−2

T

0
∂Rn

∂xn−2

T

0
∂Rn−2

∂Un−2

T

0
∂Rn−1

∂Un−2

T

0
∂Rn

∂Un−2

T

0 0 [K]T
∂Rn−1

∂xn−1

T

0
∂Rn

∂xn−1

T

0 0 0
∂Rn−1

∂Un−1

T

0
∂Rn

∂Un−1

T

0 0 0 0 [K]T
∂Rn

∂xn

T

0 0 0 0 0
∂Rn

∂Un

T





Λn−2
x

Λn−2
U

Λn−1
x

Λn−1
U

Λn
x

Λn
U


=



∂L

∂xn−2

T

∂L

∂Un−2

T

∂L

∂xn−1

T

∂L

∂Un−1

T

∂L

∂xn

T

∂L

∂Un

T


(3.56)
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The solution is obtained again through a backward sweep in time beginning at the fi-

nal time-step n, but the difference is that the temporal diagonal blocks are themselves

upper triangular for this case. This indicates that there is no coupling between the

disciplinary adjoint equations, namely the flow and mesh, and is expected since there

is no coupling between the two in the analysis problem. The vector of disciplinary

adjoint variables can be obtained by sweeping back in time while at each time-step,

first the unknown flow adjoint is solved for before the mesh adjoint solution is ob-

tained. At any arbitrary time-step n (except the final two time-steps), the linear flow

and mesh adjoint equations take up the form shown below.[
∂Rn

∂Un

]T
Λn

U =
∂L

∂Un

T

− ∂Rn+1

∂Un

T

Λn+1
U − ∂Rn+2

∂Un

T

Λn+2
U (3.57)

[K]T Λn
x =

∂L

∂xn

T

− ∂Rn

∂xn

T

Λn+2
U − ∂Rn+1

∂xn

T

Λn+1
U − ∂Rn+2

∂xn

T

Λn+2
U (3.58)

The total sensitivity equation now becomes

dL

dD

T

=

 0 −

(
∂xdsurf
∂D

T
∂G

∂xdsurf

T
)  ΛU

Λx

 =
∂xdsurf
∂D

T

[β]T Λx (3.59)

The transformation matrix is constructed using the prescribed motion in time of the

surface coordinates defining the airfoil. As in the case of the aeroelastic problem,

the complete gradient vector simply becomes a matrix-vector product between the

sensitivity of the deformed airfoil to the design inputs and the sum in time of the

transformed mesh adjoint variables as shown in equation (3.47).

3.5 Steady-State Flow Problem

The steady-state problem is a subset of the unsteady problem in general, with the only

difference being the span of the solution. For the steady-state case, the solutions span

only the spatial domain, however the problem itself may be coupled or uncoupled in

nature. The discrete temporal expansion of the system of adjoint equations in the case
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of the unsteady flow problem or the coupled unsteady aeroelastic problem is absent

for steady-state problems. However, the formulation of the adjoint system remains

identical. For the case of a steady-state flow problem with no coupling between

disciplines (non aeroelastic solution), referring to equation (3.53), the steady-state

flow adjoint variable can be obtained through a single spatial solution of the form[
∂R

∂U

]T
ΛU =

∂L

∂U

T

(3.60)

followed by the solution for the mesh adjoint variable as

[K]T Λx =
∂L

∂x

T

− ∂R

∂x

T

ΛU (3.61)

The mesh residual for the steady-state problem is simply

G(x,xdsurf ) = 0 (3.62)

indicating that the complete gradient can be determined through the matrix-vector

product of deformed surface coordinates sensitivity to design inputs directly with the

mesh adjoint variable as:

dL

dD

T

=
∂xdsurf
∂D

T

Λx (3.63)

3.6 Linearization for Second-Order Spatial Accu-

racy

Computation of the flow adjoint variable requires the linearization of the flow residual

equation with respect to the flow state variables. Such a linearization results in the

flow Jacobian matrix ∂R
∂U

and is also used in the Newton solver employed for the

flow solution. In the case of a spatially first-order accurate discretization, the flow

Jacobian matrix is constructed using a nearest neighbor stencil where, for any element

in the mesh, the flow residual R is a function of its own state variables and the

state variables of its immediate neighbors. On triangular unstructured meshes this
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translates into the flow Jacobian matrix being sparse with each row consisting of a

dominant diagonal block element and three off-diagonal block elements. A simple

edge-based data structure is sufficient for the purpose of constructing and storing the

elements of the Jacobian matrix. In the case of second-order spatial accuracy, the flow

residual of each element is no longer restricted to a nearest neighbor stencil since the

residual R depends not only on the state variables but also their undivided Laplacian.

This is can be seen in equation (2.19) describing the matrix dissipation scheme used

to construct the fluxes with second-order accuracy, where (∇2U) is the undivided

Laplacian of the state vector U. Since the residual is a now a function of element states

extending beyond the nearest neighbor stencil, constructing and storing an exact flow

Jacobian matrix quickly becomes impractical due to large memory requirements and

the lack of a simple data structure. For the flow solver, it is not required that an exact

linearization of the flow residual R be available since only the solution of R(U) = 0 is

necessary. In order to achieve second-order accuracy, it is only required that the flow

residual itself be constructed for second-order accuracy of U. An inexact Newton’s

method is employed where the first-order accurate flow Jacobian matrix is used in

solving second-order accurate residual equations R2(U). The method being inexact

no longer exhibits the quadratic rate of convergence typical of a Newton solver but

greatly simplifies the solution procedure.

In the case of the adjoint solver, it has been shown that approximating a second-

order accurate flow Jacobian matrix with a first-order accurate matrix leads to sig-

nificant errors in the computed sensitivities [71]. The linear systems that involve the

flow Jacobian matrix are equations (3.41), (3.57), and (3.60). Although computing

and storing the exact second-order Jacobian is impractical, it is quite straightforward

to construct the product of the second-order Jacobian and a vector using a two-pass

approach [30,31]. This property is taken advantage of and a defect correction method

is used to solve the linear system involving the second-order flow Jacobian matrix.

For example, consider the left-hand-side of the linear system shown in equation (3.60).
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In the case where the flow Jacobian matrix is second-order accurate, this can be split

into the sum of two matrix-vector products as follows:[
∂R

∂U

]T
2

ΛU =

{[
∂R

∂U

]
1

+

[
∂R

∂(∇2U)

] [
∂(∇2U)

∂U

]}T
ΛU

=

[
∂R

∂U

]T
1

ΛU︸ ︷︷ ︸
(1)

+

[
∂(∇2U)

∂U

]T [
∂R

∂(∇2U)

]T
ΛU︸ ︷︷ ︸

(2)

(3.64)

where [∂R
∂U

]
1

is the first-order Jacobian. Term (1) can be easily computed since the

first-order Jacobian is already stored for the solution of the analysis problem. Term

(2) can be computed via a series of matrix-vector products on the fly if ΛU is avail-

able. The defect correction method is a pseudo nonlinear solution method and for

equation (3.60) can be expressed as

[P]δΛk
U = −

{[
∂R

∂U

]T
2

Λk
U −

[
∂L

∂U

]T}
(3.65)

Λk+1
U = Λk

U + δΛk
U

Here [P] refers to the preconditioner and δΛU the correction for ΛU. When the correct

value for ΛU has been achieved, the right-hand-side of equation (3.65) goes to zero.

In order for the system to converge, the preconditioner [P] must be closely related

to the second-order flow Jacobian matrix. Typically the preconditioner is taken to

be the transpose of the first-order flow Jacobian matrix [31,72]. The right-hand-side

of equation (3.65) includes the effect of the second-order flow Jacobian matrix and is

evaluated as described by equation (3.64).

3.7 Optimization Algorithm

The simplest approach for solving the optimization problem is to use steepest-descent

or some form of a line-search algorithm, but it has been determined in previous

work [37] that these methods perform poorly on stiff nonlinear optimization prob-

lems particularly when the number of design parameters is large. The optimization
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examples presented use the LBFGS-B bounded reduced Hessian algorithm developed

in reference [64]. The algorithm not only uses gradient information but also builds

an approximate Hessian matrix (2nd derivative of the functional with respect to de-

sign parameters) on-the-fly using the optimization history in order to speed up the

overall convergence to minimum. The bounded rather than the unbounded LBFGS

algorithm was chosen in order to prevent the generation of invalid or non-physical

geometries during the optimization process. The actual bounds themselves are estab-

lished a priori by manually exploring the effect of the design variables on the shape

of the airfoil and limiting them to regions which do not collapse the geometry.

3.8 Sensitivity Solver Implementation Details

The analysis solver and the sensitivity solver form two separate codes that share

several subroutines in the implementation. The analysis code is second-order accurate

both spatially and temporally, while the adjoint code is a discretely exact linearization

of all aspects of the analysis code. Both codes run in parallel on multi-core hardware

architectures with commonly addressable memory using OpenMP parallelization. All

results presented were run on a quad-core Intel desktop with 4 gigabytes of memory

using 4 OpenMP threads. Both codes exhibit good scaling between 1,2 and 4 cores,

with the adjoint code scaling slightly better than the analysis code. This is most

likely due to the linear nature of the adjoint code where, once the coefficient matrices

have been setup, only a single linear solution of a coupled system per time-step

is required. On the contrary, the nonlinear nature of the analysis problem requires

repeated construction of coefficient matrices for multiple linear solutions at each time-

step. Figures 3.2(a) and 3.2(b) compare the performance scaling between 1,2 and 4

cores for the analysis and adjoint problems respectively. It should also be noted that

the solution of the adjoint problem typically consumes less time than the analysis

problem. Again, this is attributed to the fact that only linear solutions are required
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in the adjoint problem while the analysis problem requires both nonlinear and linear

solutions. The analysis code performs the forward integration in time and writes the

solution of the coupled system at each time-step to the hard-drive, which is then read

by the adjoint solver sweeping backward in time. It is necessary that the unsteady

solution set be written to disk and read-in by the adjoint solver since the adjoint

code involves a backward sweep in time. Holding the entire solution set in memory

would quickly become impractical for large problems. However, disk I/O operations

consume trivial computational resources especially when done in a piecewise manner

(i.e. at each time-step) as in this case.
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Figure 3.2: Performance scaling of analysis and adjoint codes using OpenMP parallelization.
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Chapter 4

Functional Relevant Error

Estimation

4.1 Generalized Error Formulation for Coupled Mul-

tidisciplinary Unsteady Equations

In this section, an adjoint based approach for estimating functional relevant temporal

discretization error and algebraic error due to partial convergence is presented. It is

shown that the adjoint variables obtained in the process of computing the sensitivity

of a functional with respect to design inputs can be used for the additional purpose

of estimating functional relevant error, provided the functional in both cases is the

same.

4.1.1 Discipline Specific Temporal Discretization Error

As in the case of the derivation of the gradient, consider an arbitrary number of

m coupled unsteady disciplines, with the solution represented by the set of state

variables U spanning the spatial and temporal domains. For a solution obtained on a

temporal domain of arbitrary resolution h, a functional computed using the coupled
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solution set can be represented as

Lh = Lh(Uh) = Lh {(U1,U2, · · · ,Um)h} (4.1)

It is possible to express the functional as a Taylor expansion about the same functional

evaluated using a fully converged solution obtained on a coarser temporal domain of

resolution H projected onto the finer resolution temporal domain h as

Lh(Uh) = Lh(UHh ) +

[
∂L

∂U1

]
UHh

(U1h − U1
H
h )

+

[
∂L

∂U2

]
UHh

(U2h − U2
H
h )

...

+

[
∂L

∂Um

]
UHh

(Umh − UmHh )

+O
(
Uh − UHh

)2
+O

(
Uh − UHh

)3 · · ·

(4.2)

where UHh refers to the state variables (all disciplines) from the coarse resolution

temporal solution projected onto the finer temporal domain. Ignoring higher-order

terms in the Taylor expansion, the linear approximation of the error in the functional

evaluated on the fine temporal domain using projected solutions from the coarse

temporal domain can be written as the inner product between the vector of functional

sensitivities to states and the vector of error in the states as

Lh(Uh)− Lh(UHh ) =

[
∂L

∂U1

∂L

∂U2

· · · ∂L

∂Um

]
UHh



(U1h − U1
H
h )

(U2h − U2
H
h )

...

(Umh − UmHh )


(4.3)

where it is important to note that the error is relative to the functional evaluated

using a fully converged solution obtained on the fine temporal domain h and not

the exact analytic solution of the governing equations. The vector of differences in

the disciplinary state variables between the fine temporal domain solution and the
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projection of the coarse temporal domain solution onto the fine temporal domain can

be computed if both the fine and coarse temporal domain solutions were available.

However, the goal is to to estimate the fine temporal domain functional using only

coarse level information so as to avoid any computations directly on the fine temporal

domain.

In order to determine the vector of differences between the fine level solutions

and the coarse level solutions projected onto the fine level, the property that a fully

converged fine temporal domain solution must satisfy the fine temporal domain resid-

uals exactly is exploited. The disciplinary residual equations have to evaluate to zero

if the true fine level solution were available, however no solutions are to be obtained

directly on the fine temporal domain. It is possible to write the fine level disciplinary

residuals as Taylor expansions about the fine level residuals evaluated on the fine tem-

poral domain, using solutions projected from the coarse temporal domain. In general,

for any discipline j, the Taylor expansion of the residual up to a linear approximation

can be written as

Rjh(Uh) = Rjh(U
H
h ) +

[
∂Rj

∂U1

]
UHh

(U1h − U1
H
h )

+

[
∂Rj

∂U2

]
UHh

(U2h − U2
H
h )

...

+

[
∂Rj

∂Um

]
UHh

(Umh − UmHh ) · · · = 0

(4.4)

The Taylor expansions for all m disciplines can be expanded in the same manner and

71



be written in a unified matrix form as


R1h(Uh)

R2h(Uh)
...

Rmh(Uh)

 ≈


R1h(UHh )

R2h(UHh )

...

Rmh(UHh )


+



∂R1

∂U1

∂R1

∂U2

· · · ∂R1

∂Um
∂R2

∂U1

∂R2

∂U2

· · · ∂R2

∂Um
...

∂Rm

∂U1

∂Rm

∂U2

· · · ∂Rm

∂Um


UHh



(U1h − U1
H
h )

(U2h − U2
H
h )

...

(Umh − UmHh )


= 0

(4.5)

which can then be rearranged to obtain an expression for the vector of differences

between the true fine temporal domain solution set represented by the state variables

Uh, and the projection of the state variables from the coarse temporal domain solution

onto the fine temporal domain UHh as



(U1h − U1
H
h )

(U2h − U2
H
h )

...

(Umh − UmHh )


= −



∂R1

∂U1

∂R1

∂U2

· · · ∂R1

∂Um
∂R2

∂U1

∂R2

∂U2

· · · ∂R2

∂Um
...

∂Rm

∂U1

∂Rm

∂U2

· · · ∂Rm

∂Um



−1

UHh



R1h(UHh )

R2h(UHh )

...

Rmh(UHh )


(4.6)

The expression may now be substituted into the functional error equation (4.3) yield-
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ing

Lh(Uh)− Lh(UHh ) =

−

[
∂L

∂U1

∂L

∂U2

· · · ∂L

∂Um

]
UHh



∂R1

∂U1

∂R1

∂U2

· · · ∂R1

∂Um
∂R2

∂U1

∂R2

∂U2

· · · ∂R2

∂Um
...

∂Rm

∂U1

∂Rm

∂U2

· · · ∂Rm

∂Um



−1

UHh︸ ︷︷ ︸
ΛTUh



R1h(UHh )

R2h(UHh )

...

Rmh(UHh )



(4.7)

where a vector of disciplinary adjoint variables ΛT
Uh on the fine temporal domain is

introduced in order to recover a system of coupled adjoint equations as

∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T


UHh



ΛT
U1h

ΛT
U2h

...

ΛT
Umh


=



∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


UHh

(4.8)

This is a coupled linear system of adjoint equations nearly identical to equation (3.17)

with the only difference being that it is to be solved on the fine level temporal domain

using the solution from the coarse temporal domain projected onto the fine domain.

The procedure to solve the system of adjoint equations is identical to that presented

in the derivation of the adjoint based gradient. However, direct solutions on the

fine temporal domain are to be avoided since the goal is to predict the fine domain

functional without actually solving for anything on the fine domain. For this reason,
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an approximation is made where the system of adjoint equations is recast on the

coarse temporal domain as

∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T


UH



ΛT
U1H

ΛT
U2H

...

ΛT
UmH


=



∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


UH

(4.9)

where UH refers to the fully converged solution set on the coarse temporal domain,

and ΛUH refers to adjoint variables on the coarse temporal domain. Once the adjoint

variables have been determined on the coarse temporal domain, the fine temporal

domain adjoint variables are estimated through some appropriate projection operator

IHh as

ΛUh = IHh ΛUH (4.10)

The vector of disciplinary adjoint variables can then be substituted back into the

functional error equation to obtain the temporal discretization error as

εdisc = Lh(Uh)− Lh(UHh ) = −
[

ΛT
U1h

ΛT
U2h

· · · ΛT
Umh

]


R1h(UHh )

R2h(UHh )

...

Rmh(UHh )


(4.11)

which can be interpreted as the sum of the inner products of the disciplinary adjoint

variables and their corresponding residuals as:

εdisc = Lh(Uh)−Lh(UHh ) =

−
{

ΛT
U1h
R1h(UHh ) + ΛT

U2h
R2h(UHh ) + · · ·+ ΛT

UmhRmh(UHh )
} (4.12)

The residuals are nonzero since they are evaluated on the fine temporal domain us-

ing solutions projected from the coarse temporal domain. It can be seen that the
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difference in the functional L evaluated using a solution obtained directly on the fine

temporal domain h and the functional evaluated using the projection of the solution

set from the coarse temporal domain H, has contributions from each discipline. The

contribution from any discipline is equal to the negative of the inner product between

the nonzero residual of that discipline and the disciplinary adjoint variable. While

the nonzero residuals constructed on the fine temporal domain are an estimate of

the local discretization error between the two temporal meshes, the application of

the adjoint variable as a weight acting on the local error results in the conversion

of the local error into a functional relevant error. The inner product within each

discipline yielding a contribution to the total functional relevant error can further be

discretely expanded in time to obtain a temporal distribution of the error. As an

example, for any particular discipline j, on a fine level temporal domain represented

by n time-steps, the inner product may be expressed as the sum of inner products at

each time-step as

ΛT
Ujh
Rjh(U

H
h ) = ΛT

Ujh
1Rj

1
h(U

H
h ) + ΛT

Ujh
2Rj

2
h(U

H
h ) · · ·+ ΛT

Ujh
nRj

n
h(UHh ) (4.13)

The distribution in time of the temporal discretization error provides the criteria

necessary for the adaptation of the temporal domain (i.e. refinement of the time-

steps) specifically to improve the functional L. The method presents two advantages,

namely the estimation of a linear error correction term for the functional evaluated

on the fine temporal domain using coarse level solutions and also the disciplinary and

temporal distribution of the error which can be used for adaptation.

4.1.2 Discipline Specific Algebraic Error

The next step is to formulate a similar error estimation procedure to target the

algebraic error in the solution due to partial convergence of the governing equations.

Consider a temporal domain of some arbitrary resolution H. It is possible to write

a functional evaluated using a fully converged solution on this mesh as a Taylor
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expansion about the same functional evaluated using a partially converged solution

on the same mesh as

LH(UH) = LH(UH) +

[
∂L

∂U1

]
UH

(U1H − U1H)

+

[
∂L

∂U2

]
UH

(U2H − U2H)

...

+

[
∂L

∂Um

]
UH

(UmH − UmH)

+O
(
UH − UH

)2
+O

(
UH − UH

)3 · · ·

(4.14)

where UH refers to the fully converged solution set spanning all disciplines on the

temporal domain of resolution H, and UH refers to the partially converged version of

the same solution. The error due to partial convergence of the governing equations

is the algebraic error in the solution, and the goal is to obtain an estimate of this

error without actually fully converging the system of coupled governing equations.

Similar to the case of temporal discretization error, the expression may be rewritten

in terms of the inner product between the vector of functional sensitivities to partially

converged disciplinary solutions and the vector of differences between fully converged

and partially converged disciplinary solutions as

LH(UH)− LH(UH) =

[
∂L

∂U1

∂L

∂U2

· · · ∂L

∂Um

]
UH



(U1H − U1H)

(U2H − U2H)

...

(UmH − UmH)


(4.15)

As in the case of temporal discretization error, the disciplinary residual equations are

tapped to obtain an expression for the vector of differences between fully converged

and partially converged disciplinary solutions. In the case of temporal discretization

error, the argument regarding the residuals was that they would evaluate to zero on

the fine temporal domain if the solution was directly obtained on the fine temporal
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domain. For the case of partial convergence on the temporal domain with resolution

H, the equivalent argument is that the disciplinary residuals evaluate to zero on H

if the solution is fully converged. Expressing the fully converged residual for any

discipline j as the Taylor expansion about the partially converged residual yields

RjH(UH) = RjH(UH) +

[
∂Rj

∂U1

]
UH

(U1H − U1H)

+

[
∂Rj

∂U2

]
UH

(U2H − U2H)

...

+

[
∂Rj

∂Um

]
UH

(UmH − UmH) · · · = 0

(4.16)

The Taylor expansion when applied to all disciplines and simplified into combined

matrix form yields an expression for the unknown difference vector as



(U1H − U1H)

(U2H − U2H)

...

(UmH − UmH)


= −



∂R1

∂U1

∂R1

∂U2

· · · ∂R1

∂Um
∂R2

∂U1

∂R2

∂U2

· · · ∂R2

∂Um
...

∂Rm

∂U1

∂Rm

∂U2

· · · ∂Rm

∂Um



−1

UH



R1H(UH)

R2H(UH)

...

RmH(UH)


(4.17)

Substituting the above expression for the vector of solution differences into the func-

tional error equation (4.15) and defining a vector of disciplinary adjoint variables, a

coupled adjoint system is recovered as

∂R1

∂U1

T ∂R2

∂U1

T

· · · ∂Rm

∂U1

T

∂R1

∂U2

T ∂R2

∂U2

T

· · · ∂Rm

∂U2

T

...

∂R1

∂Um

T ∂R2

∂Um

T

· · · ∂Rm

∂Um

T


UH



ΛT
U1H

ΛT
U2H

...

ΛT
UmH


=



∂L

∂U1

T

∂L

∂U2

T

...

∂L

∂Um

T


UH

(4.18)
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The system of adjoint equations shown above is nearly identical to the adjoint system

shown in equation (4.9), with the only difference being that all terms appearing in

the system are evaluated using the partially rather than fully converged solution set

on the coarse level temporal mesh H. Substituting the vector of adjoint variables

back into the functional error equation (4.15), the algebraic error in the functional

can be evaluated as

εalg = LH(UH)−LH(UH) =

−
{

ΛT
U1H
R1H(UH) + ΛT

U2H
R2H(UH) + · · ·ΛT

UmHRmH(UH)
} (4.19)

where the disciplinary contributions to the total algebraic takes the form of the sum

of inner products between the disciplinary adjoint variables and the corresponding

nonzero residuals on the coarse temporal domain. The disciplinary residuals are

nonzero in the case of algebraic error due to the partial convergence of the governing

equations. As in the case of the temporal discretization error, the algebraic error

can be further split into the sum of inner products between the adjoint variable and

the nonzero residual at each time-step in the temporal domain, thus providing a

distribution of the error which can be used for adaptation.

4.2 Total Error and Separation of Error Compo-

nents

At this point, the derivation makes it possible to independently compute the temporal

discretization error and the algebraic error for multidisciplinary coupled equations.

Additionally, each type of error can further be separated into components from each

discipline and within each discipline separated into contributions from each time-step.

It should also be noted that, in addition to breaking down the error components all

the way to each time-step, one further possibility exists. Since both the adjoint vari-

able and the residual span the temporal and spatial domains, it is possible to expand
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the inner product between the adjoint variable and the residual at each time-step in

the spatial domain. That is to say, the inner product between the adjoint and the

residual at each time-step is actually a sum of inner products between the same over

all of the elements representing the spatial domain. This provides a spatial distri-

bution of the temporal discretization error at each time-step in the time domain. It

is in theory possible to adapt the time-step size for each spatial element based on

the distribution of the estimated temporal error in the spatial domain. This however

creates discontinuities where neighboring spatial elements may be at different tem-

poral locations thus creating difficulties in computing discretely conservative fluxes.

This is a problem that is yet to be addressed and remains beyond the scope of this

thesis. The current work is limited to adaptation of the temporal domain equally for

all spatial elements.

In the case of the error due to temporal discretization, the adjoint variables were

obtained on the coarse temporal domain using the fully converged coarse time domain

solution UH . The coarse adjoint variables and the fully converged coarse solution

set were then projected onto the fine temporal domain, where the projected adjoint

variables were multiplied with the corresponding nonzero residuals. The residuals on

the fine temporal domain were nonzero since the coarse temporal domain solutions

projected onto the fine time domain do not satisfy the fine temporal domain residual

equations. In the case of algebraic error, there are no projections involved and all

operations are performed on the coarse temporal domain. The coarse residuals are

nonzero since a partial solution of the governing equations on the coarse temporal

domain do not satisfy the coarse residual equations. Relaxing the assumption of

a fully converged coarse time domain solution for the temporal discretization error

does not affect the error estimated by that procedure. The important realization is

that the error computed as temporal discretization error by relaxing this assumption

includes the error due to the partial convergence of the governing equations on the

coarse temporal domain. The temporal discretization error in reality is blind to what
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solution is projected from the coarse time domain, since the only assumption in the

derivation is that Rh(UHh ) 6= 0, which may also occur as Rh(U
H

h ) 6= 0. Projecting a

partially converged solution from the coarse to the fine temporal domain includes the

error due to the projection and the error due to partial convergence. The error due

to temporal discretization can be separated from the total error by subtraction of the

error due to partial convergence computed on the coarse time domain as:

εdisc = εtotal − εalg

=
(
IHh ΛT

UH

)
Rh(U

H

h )− ΛT
UH
RH(UH)

(4.20)

4.3 Error Estimates in the Unsteady Aeroelastic

and Unsteady Uncoupled Flow Problems

The estimation of temporal discretization and algebraic errors in the unsteady aeroe-

lastic or the uncoupled unsteady problem follows the same procedure outlined up to

this point. The main component is the computation of the adjoint variables in either

problem for the functional of interest. Once the adjoint variables are known, the

necessary residuals, either due to solution projection onto a finer temporal mesh or

due to partial convergence are computed and weighted with the adjoint variable to

determine the relevant error components.

4.4 Error Estimation Solver Implementation De-

tails

The adaptive solver is essentially the same as the optimization solver consisting of two

parts namely the forward flow solver and backward adjoint solver. The projection and

error computation routines are built into the adjoint solver. The flow solver performs

the forward integration in time and writes out the flow solution, mesh solution and
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partially converged residual values to the hard drive in a piecewise manner (i.e. at

each time-step). The adjoint solver reads in the flow and mesh solutions and performs

the backward sweep in time to compute the flow and adjoint variables at each time

level. The adjoint solver also reads in the nonzero partially converged flow and mesh

residuals written out by the flow solver and multiplies them with the corresponding

adjoint variables to determine the algebraic partial convergence error at each time-

step. A simple linear interpolation of the flow solution, mesh coordinates and the

adjoint variables on the coarse time domain is used as the projection operator to

determine unknown values on the fine time domain. A refinement ratio of 2-to-1

is used where each temporal element in the coarse level temporal mesh is divided

into two. Although more advanced interpolation techniques such as third- and fifth-

order splines may be used as the projection operator, it has been determined through

testing that they do not offer any significant advantages in terms of gain in accuracy

compared to a simpler linear interpolation. This is a useful finding since a linear

interpolation is much easier to construct and there are fewer file I/O operations and

flop operations resulting in faster code. Figure 4.1 clarifies the projection of coarse

temporal domain variables onto the fine temporal domain using either a linear or

cubic-spline interpolant. Further discussion regarding different projection operators

and the advantage of using linear interpolation is presented toward the end of the

following chapter. The adjoint solver also constructs the nonzero residuals resulting

from the projected solutions from the coarse to the fine time domains and multiplies

them with the corresponding projected adjoint variables to determine the total error

(discretization+algebraic) at each time level. The algebraic or partial convergence

error at each time-step is then subtracted out of the total error in order to obtain the

temporal discretization error.
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Figure 4.1: Linear and 3rd-order spline interpolation of temporal data from coarse to fine temporal
domains. The solid points indicate coarse level temporal elements, while the clear points indicate
the division of the coarse level elements with a ratio of 2-to-1 in order to create a fine temporal
domain with twice the resolution.

4.5 Adaptation Strategy

The adjoint based adaptation method involves the forward integration in time to

determine the solution to the analysis problem and a backward sweep in time to

compute the time-dependent adjoint variables and the corresponding necessary error

distributions (discretization and algebraic). The sum of the individual error distribu-

tions provides an estimate of the correction from each type of error. The temporal

elements are first sorted in decreasing order by their contribution to the total error of

each type. Then parsing down each of the lists, elements are flagged for refinement

or tolerance tightening until 99% of the total error of the type under consideration

is reached. The method assures that only the most offending elements are targeted

in the case of an extremely non-uniform error distribution. The method also assures

that near uniform refinement or tolerance tightening is requested once the error in

the temporal domain has been equidistributed. Elements flagged for refinement are

subdivided into two, while elements flagged for algebraic error have their convergence

tolerances tightened by a factor of three.
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Chapter 5

Validation

5.1 Validation of the Analysis Solver

The analysis solver consists of the steady-state solver, the unsteady solver with pre-

scribed motion and the aeroelastic solver with coupling between the flow, mesh and

structural equations. The validation of the overall analysis solver must therefore be

performed in steps beginning with the steady-state solver. The steady-state solver

only depends on the spatial discretization of the governing equations, and therefore

can be used to validate all spatial aspects of the code such as spatial order-of-accuracy

and predicted steady-state loads. Once the spatial discretization has been validated,

the unsteady solver can be utilized to assure that the temporal discretization follows

expected trends and that the predicted time-dependent loads match results from

other well established codes. Since the current work is based on the inviscid Euler

equations, it is not possible to validate predicted loads directly with experimental

data. The final step is to validate the aeroelastic solver following the same principle

of comparing against other established numerical results.
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5.1.1 Steady-State Solver Validation

Design Accuracy of the Spatial Discretization

The spatial fluxes constructed using the matrix dissipation scheme are free of mesh

metric terms since they use the undivided Laplacians of the flow state variables. Al-

though it was mentioned that this offers second-order spatial accuracy, this is strictly

true only on uniform meshes. However, for a high quality unstructured inviscid mesh,

there usually are no abrupt changes in the sizes of neighboring spatial elements, and

the matrix dissipation scheme should offer near design accuracy. The accuracy con-

vergence with respect to uniform spatial refinement was studied using the problem

of inviscid flow over a Gaussian bump with a freestream Mach number of 0.2. It

is known from theory that such a problem is shock free and that there is no other

mechanism for the generation of entropy with the exception of spatial discretization

error. Measurement of the global entropy L2 norm defined as

L2|ds| = ‖ s− s∞ ‖2 (5.1)

offers a convenient measure of the spatial discretization error in the solution. An

initial mesh consisting of 1215 elements shown in Figure 5.1 was used as the starting

point for the convergence study, where subsequent higher resolution spatial meshes

were constructed through nested subdivision of the coarse elements. A total of five

meshes with 1215, 4860, 19440, 77760 and 311040 elements were used in the study.

Figures 5.2 and 5.3 show the computed density and change in entropy contours for

problem solved on a mesh with 77760 elements. The appearance of a boundary layer

and a wake in the entropy plot indicates the presence of spatial discretization error.

Figure 5.4 shows the reduction in the global entropy norm with increase in spatial

resolution for both a first-order and second-order spatial discretization. Observing

the asymptotic slopes of the convergence curves in the figure, it can be seen that near

design accuracy is achieved in both cases.
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Figure 5.1: Computational mesh consisting of 1215 elements for the Gaussian bump flow problem
used to validate spatial accuracy of the analysis solver.
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Figure 5.2: Density contours for the Gaussian bump problem at a Mach number of 0.2 solved on a
mesh consisting of 77760 elements with a second-order accurate spatial discretization.
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Figure 5.3: Contours of entropy generated in the Gaussian bump problem at a Mach number of 0.2
solved on a mesh consisting of 77760 elements with a second-order accurate spatial discretization.
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Figure 5.4: Verification of second-order spatial accuracy of the matrix dissipation scheme using the
Gaussian bump entropy test problem.

88



X

Y

0 0.5 1

-0.5

0

0.5

Figure 5.5: NACA0012 mesh consisting of approximately 10,000 elements used for the validation of
steady-state loads, temporal discretization accuracy, and unsteady time-dependent loads.

Predicted Steady-State Loads

The case of transonic flow over a NACA0012 airfoil operating at a Mach number of

0.8 and an angle-of-attack of 1.25o was chosen as the test case for validating predicted

steady-state loads. The resulting force coefficients (lift, drag and moment) were com-

pared against results from the existing in-house solver, NSU2D [73], a well established

CFD code routinely used by the aircraft industry. Figure 5.5 shows the computational

mesh consisting of approximately 10,000 elements used for the steady-state and sub-

sequent unsteady load validation cases. Table 5.1 compares the results from the

developed solver against values from NSU2D and indicates excellent agreement in

the integrated coefficients. Figure 5.6 compares the pressure coefficient distributions

from both solvers, showing good agreement.
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Load Coefficient Developed Solver NSU2D
CL 0.3385 0.3375
CD 0.0217 0.0218
CM -0.0357 -0.0358

Table 5.1: Comparison of steady-state loads computed by current solver and NSU2D for transonic
flow over a NACA0012 airfoil at a Mach number of 0.8 and an angle-of-attack of 1.25o. The com-
putational mesh consisted of approximately 10,000 elements.
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Figure 5.6: Comparison of computed pressure coefficient distribution between the developed solver
and NSU2D. Both solutions were obtained on the same computational mesh around a NACA0012
airfoil with a freestream Mach number of 0.8 and an angle-of-attack of 1.25o.
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5.1.2 Unsteady Flow Solver Validation

Having validated the spatial discretization accuracy and the predicted steady-state

loads, the next step is to validate the temporal discretization accuracy and the pre-

dicted time-dependent loads.

Design Accuracy of the Temporal Discretization

The method for validating the temporal accuracy of the solver involves obtaining time-

dependent solutions on temporal meshes of different resolutions (i.e. different number

of time-steps to represent the same time domain) and comparing the solution at the

end of the time-integration process against a reference solution. The reference solution

is obtained by solving the same time dependent problem on a temporal mesh with

at least one order-of-magnitude more number of time-steps than the finest temporal

mesh used in the study. Beginning with a coarse temporal mesh consisting of 16 time-

steps, successive higher resolution meshes were constructed by dividing each time-step

by two. The L2 norm of the difference between computed and reference solutions

at the end of the time-integration was used as the measure of the temporal error.

The BDF2 temporal discretization was modified for nonuniform mesh spacing, and

therefore the temporal meshes used in the study must have nonuniform spacing. For

this reason, the coarsest temporal mesh was constructed using an arbitrarily chosen

uniform stretching factor of 1.01 and a total of 16 time-steps. Higher resolution meshes

were constructed by uniformly refining the coarsest mesh using a ratio of 2-to-1. The

time domain under consideration ranged from 0 to 10 in non-dimensional time and

the time dependent flow problem involved the sinusoidal pitching of a NACA0012

airfoil operating in a freestream Mach number of M∞ = 0.6. The sinusoidal time

variation of the angle-of-attack is given by the formula

α = α0 + αmaxsin(2kct) (5.2)
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Figure 5.7: Verification of second-order temporal accuracy of the BDF2 scheme modified for nonuni-
form temporal mesh spacing in the presence of mesh deformation.

where the pitch parameters consisted of a reduced frequency of pitch of kc = 0.05,

an amplitude of pitch of αmax = 5o, and a mean angle-of-attack of α0 = 0o with

the center of pitch located at the quarter-chord of the airfoil. Figure 5.7 shows the

result of the study and indicates near design accuracy of the temporal discretization

on nonuniform meshes with mesh deformation.

Time-Dependent Load Predictions

The problem chosen for the verification of time dependent loads is the AGARD test

case No.5 [74]. The problem involves a NACA0012 airfoil sinusoidally pitching at

a transonic Mach number of M∞ = 0.755. For AGARD test case No.5, the airfoil

pitches around its quarter-chord with a mean angle-of-attack α0 = 0.016o, pitch

amplitude of αmax = 2.51o at a reduced frequency of kc = 0.0814. The computational

mesh consisting of approximately 10,000 elements, shown in Figure 5.5, was used for
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the unsteady load validation. Figures 5.8(a) and 5.8(b) show the time varying lift

and moment coefficients computed by the solver which match well with results from

references [7, 70, 74, 75], thus establishing confidence in the non-aeroelastic unsteady

aspect of the solver.

5.1.3 Coupled Aeroelastic Solver Validation

The final step is the validation of the aeroelastic aspect of the solver for which the two-

dimensional swept wing model exhibiting the transonic dip phenomenon suggested

by Isogai [76] was chosen as the test case. The structural parameters for this case are

xα = 1.8

r2
α = 3.48

ωh, ωα = 100 rad/s

µ = 60

a = −2.0

The quantity a is the non-dimensional elastic axis location along the chord of the

airfoil measured from the midchord of the airfoil when it is in the neutral position.

Since it is non-dimensionalized by the semi-chord of the airfoil, the elastic axis is

located half a chord length ahead of the leading edge of the airfoil in this particular

case. The airfoil under consideration is the NACA64A010 (Ames) airfoil operating

with a mean angle-of-attack α0 of zero and an amplitude of forced pitching αmax of 1o.

The computational mesh used for this case consists of approximately 6,600 elements

and is shown in Figure 5.9. The solution process involves obtaining a steady-state

solution at the mean angle-of-attack and then forcing the airfoil in pitch for three

periods at the natural frequency of pitch before allowing it to respond aeroelastically.

The goal of the validation procedure is to compute and compare a flutter boundary

against existing data. Computation of the flutter boundary is performed by man-

ually modifying the flutter velocity at various Mach numbers with the objective of
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(a) Time variation of lift coefficient for unsteady solver validation
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(b) Time variation of moment coefficient for unsteady solver validation

Figure 5.8: Unsteady load coefficients computed for the transonic pitching NACA0012 airfoil de-
scribed in AGARD test case No.5.
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Figure 5.9: NACA64A010 mesh consisting of approximately 6,600 elements used for the aeroelastic
solver validation. The same mesh is also used in the first aeroelastic optimization example and the
first temporal adaptation examples.

obtaining a neutral aeroelastic response. Although the aeroelastic solver was not di-

rectly validated against experimental data, the predicted flutter boundary matches

well with computational results from references [70,75] as indicated by the flutter di-

agram in Figure 5.10. The aeroelastic response of the airfoil in both pitch and plunge

degrees-of-freedom at various locations (stable and unstable) in the flutter diagram

are shown in Figure 5.11 and follow expected trends.

5.2 Validation of Adjoint-Based Gradients

The procedure to validate the adjoint based sensitivity is twofold. The forward lin-

earization is typically more intuitive to construct since it follows a framework very

similar to that of the analysis code (i.e. forward in time). Issues with the discrete

derivatives of the different pieces of the code contributing to the total linearization can
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Figure 5.10: Comparison of the predicted flutter boundary against data from other references.

be tracked down far more easily using the forward linearization than with the adjoint

or backward linearization. For this reason, the forward linearization is first verified

against finite-difference values, and then the adjoint linearization is validated by ver-

ifying the property of dual consistency [29] with respect to the forward linearization.

The principle of duality in the case of transpose operations can be summarized by

the following example. Consider a primal operation of a matrix operating on a vector

and the transposed dual of the same operation, both given as

[A]ξ = f (5.3)

[A]Tη = g

where the vectors ξ and η are arbitrary. The principle of duality establishes equiva-

lence between the primal and dual operations as

ξTg = ηT f (5.4)

96



Structural Time

D
is

p
la

ce
m

en
t

0 20 40 60
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

h/b
α

(a) Damped response (M∞ = 0.82, Vf = 0.4)
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(b) Neutral response (M∞ = 0.82, Vf = 0.71)
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(c) Divergent response (M∞ = 0.85, Vf = 0.8)
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(d) 2nd mode response (M∞ = 0.875, Vf = 2.6)

Figure 5.11: Aeroelastic response of NACA64A010 airfoil at various points in the flutter diagram
for Isogai’s test case exhibiting the transonic dip phenomenon.
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Sections of the code where transpose operations are performed are validated by using

arbitrary input vectors ξ and η to determine the corresponding outputs f and g

and establishing that equation (5.4) is satisfied. For correctly transposed operations,

equation (5.4) should match to machine precision. Although duality using a particular

set of input vectors is a necessary test to ensure accuracy of the transpose operation,

it is by no means sufficient. As a consequence the duality test is performed using

several random input vectors in order to validate the operation.

Once the issues with the general framework of the adjoint linearization have been

worked out in this manner, minor modifications to the analysis code can typically be

directly carried over to the adjoint code and verified directly against finite-difference.

The physical aspects of the test problem are not relevant for validating the adjoint-

based gradient. It is more important that all aspects of the analysis solver which

have been linearized to develop the sensitivity solver be verified for accuracy. For this

reason, the aeroelastic test case presented earlier, but using only 5 uniform time-steps

of size 0.1 for the forced pitching and 5 additional time-steps of the same size for the

aeroelastic response, was used. The design variables for the test case formed a vector

of weights controlling the magnitude of bump functions placed at every single surface

node location. Table 5.2 compares adjoint-based and finite-differenced sensitivity

values for a few design variables, while Figure 5.12 shows the comparison over all

design variables. The adjoint-based sensitivity values typically match to a minimum

of 4 digits against finite-difference values as indicated by Table 5.2, and are virtually

indistinguishable from one another when overlaid on a plot as shown in Figure 5.12.

5.3 Validation of Adjoint-Based Error Estimates

The final step in the validation process before the methodology can be applied to

example problems is that of verifying the accuracy of adjoint-based error estimates.

The case of uncoupled unsteady disciplines with only the flow and mesh equations
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Design Variable ID Adjoint Sensitivity Finite-difference
183 6.36845285306436 6.36825832067700
184 6.79732288068724 6.79734654118747
185 7.49093700072817 7.49087240015101
186 8.83156670890565 8.83124061656915
187 12.2612224955801 12.2613669883975
188 19.4222465094799 19.4224766714157

Table 5.2: Comparison of the computed adjoint sensitivities against values obtained through finite-
difference. Matching digits between the two are shown in bold font.
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Figure 5.12: Comparison of gradients computed by the adjoint linearization against finite-difference
based values.
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along with prescribed motion in time of an airfoil is used for this purpose.

5.3.1 Validation of Temporal Discretization Error Estimate

Since the method developed in the current work computes a linear approximation

of the error between temporal meshes successively refined using a ratio of 2-to-1, it

would be wise to choose a test problem that exhibits minimum nonlinear behavior

with respect to increasing temporal resolution for the purpose of validation. The

approach is to consider a sinusoidally pitching NACA64A010 airfoil and zoom into

a small temporal window in the pitch cycle to use as the time domain of interest.

The purpose of this is to reduce the effect of nonlinear behavior as the temporal

resolution is increased. The conditions chosen for the problem include a freestream

Mach number of 0.8, a zero mean angle-of-attack, an amplitude of pitch of 5o, a

reduced frequency of 0.1 and a pitch center located two chord lengths ahead of the

leading edge of the airfoil. The time domain considered is the first quarter of the first

pitch period starting from a steady-state solution. The functional of interest is the

time-integrated lift coefficient given as

L =

nsteps∑
n=1

∆tnCL
n (5.5)

The coarsest temporal mesh consists of 8 time-steps of uniform size and fine meshes

are constructed by successive nested subdivision of these 8 elements. The finest

mesh consists of 128 elements. In order to remove the effect of partially converged

solutions and to validate only the error due to temporal resolution, all of the equations

(governing and corresponding adjoint) are converged to machine precision. At each

temporal resolution the comparison is made against the exact functional computed

directly on the next temporal mesh that has twice the resolution (i.e. twice the

number of time-steps with half the time-step size). Table 5.3 shows the results from

this study and indicates the expected trends. As the temporal resolution is increased,

the ratio between the predicted and exact errors asymptotically approaches unity.
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Flow/Mesh H/h Lh(Uh, xh) Lh(UH
h , xH

h ) Exact Predicted Ratio
Convergence Error Error
Tolerances
2e-14/1e-15 8/16 4.7627748 4.7419952 0.02077960 0.02222993 1.06979621
2e-14/1e-15 16/32 4.6769170 4.6602314 0.01668557 0.01616314 0.96868998
2e-14/1e-15 32/64 4.6352466 4.6257924 0.00945421 0.00945039 0.99959626
2e-14/1e-15 64/128 4.6149705 4.6097293 0.00524124 0.00524024 0.99980920

Table 5.3: Validation of the predicted temporal discretization error without the effect of algebraic
error

Flow/Mesh H LH(UH , xH) LH(ŪH , xH) Exact Predicted Ratio
Convergence Error Error

Tolerance
1e-5/1e-15 8 4.9477907 4.9335132 0.0142775 0.0143015 0.9983222

Table 5.4: Validation of the algebraic error due to the partial convergence of the flow equations. All
computations are performed with the same temporal mesh resolution along with full convergence of
the mesh equations.

5.3.2 Validation of Algebraic Error Estimate

Flow Partial Convergence Error

In order to validate the error only due to partial convergence of the flow, the mesh

motion equations are fully converged and the flow equations partially converged (to

a tolerance of 1e−5) while performing all computations on a single temporal mesh of

some arbitrary resolution. This is done in order to remove the effect of mesh partial

convergence and temporal resolution. The chosen temporal mesh resolution consists

of 8 uniform time steps. The comparison is made against a functional computed on the

same temporal mesh by fully converging both the flow and mesh equations. Table 5.4

shows the results from the study. The predicted error due to partial convergence is

very close to the exact error as indicated by the near unity of the ratio between the

two.
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Flow/Mesh H LH(UH , xH) LH(UH , x̄H) Exact Predicted Ratio
Convergence Error Error

Tolerance
2e-14/1e-5 8 4.9477907 4.9477703 2.0380075e-5 2.0631192e-5 1.0123217

Table 5.5: Validation of the algebraic error due to the partial convergence of the mesh equations.
All computations are performed with the same temporal mesh resolution along with full convergence
of the flow equations.

Mesh Partial Convergence Error

The method for validating the mesh partial convergence error is nearly identical to

that of validating the flow partial convergence error, except now the flow equations

are fully converged while the mesh equations are partially converged to a tolerance of

1e−5. Table 5.5 shows the results from the study and once again the near unity of the

ratio between the predicted and exact errors establishes confidence in the method.

5.3.3 Validation of Combined Total Error Estimate

In this study the temporal resolution is successively refined and the convergence

tolerances are tightened from loosely set values in order to validate the total predicted

error. The coarsest temporal mesh consists of 2 equally sized temporal elements while

the finest mesh consists of 128 elements. The convergence tolerances for the flow

equations and mesh equations begin at 1e−5 and 1e−4 respectively on the coarsest

temporal mesh and are tightened by an order-of-magnitude during each refinement

of the temporal resolution. These starting limits were chosen such that the algebraic

and resolution errors are roughly the same order-of-magnitude so as to not mask

any discrepancies from either. The comparison at each temporal resolution is made

against the functional computed using full convergence of flow and mesh equations

on the next temporal mesh of double the resolution. It is important that the method

be validated for the total combined error prediction since it is to be applied in this

form to adaptation problems in general. Table 5.6 shows the results from this study
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Flow/Mesh H/h Lh(Uh, xh) Lh(ŪH
h , x̄H

h ) Exact Predicted Ratio
Convergence Error Error

Tolerance
1e-5/1e-4 2/4 5.3287125 5.2361864 0.0925261 0.0897410 0.9699000
1e-6/1e-5 4/8 4.9477907 4.9142574 0.0335332 0.0364249 1.0862345
1e-7/1e-6 8/16 4.7627748 4.7419952 0.0207796 0.0222299 1.0697962
1e-8/1e-7 16/32 4.6769170 4.6602314 0.0166855 0.0161631 0.9686899
1e-9/1e-8 32/64 4.6352466 4.6257924 0.0094542 0.0094503 0.9995962
1e-10/1e-9 64/128 4.6149042 4.6097293 0.0051749 0.0051738 0.9997898

Table 5.6: Validation of the predicted total combined error which includes temporal discretization
error and the algebraic error due to partial convergence of the governing equations.

and indicates the expected trend of more accurate predictions as the resolution is

increased while simultaneously convergence tolerances are tightened.

5.4 Effect of Initial Condition and Change of Or-

der During Startup

An unsteady solution procedure that involves a higher-order multi-step time-integration

scheme typically starts up with a lower-order scheme. In the case of second-order

temporal accuracy, the first time-step is normally treated using a first-order accurate

scheme. This is due to the unavailability of a stencil large enough to accommodate

the BDF2 scheme at the first time-step. Since the adjoint computation is based sim-

ply on the linearization of the governing flow equations, this change in order during

startup gets carried over to the adjoint solution process. In most circumstances, ad-

joint variables vary smoothly throughout the entire time domain irrespective of the

temporal resolution. The exception to this is when there is a change in the order-

of-accuracy of the temporal discretization between consecutive temporal elements.

Since this does happen at the very first time-step for the BDF2 scheme, there is a

discontinuity in the adjoint variable distribution at the first time-step. The method

for error estimation used in this work relies on computing the adjoint variables on a
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coarse temporal temporal mesh and then projecting these onto a finer temporal mesh

rather than directly computing the adjoint variables on the finer temporal mesh. Al-

though the Taylor expansion requires that the adjoint variables be computed directly

on the fine temporal mesh, it is assumed that computing and projecting the adjoint

variables from the coarser level will suffice for the purpose of error estimation. How-

ever, the discontinuity in the time variation of the adjoint variables due to change

in discretization order occurs at different temporal locations in the coarse and fine

meshes. In the case of 2-to-1 refinement between fine and coarse temporal meshes,

the fine level discontinuity occurs at the midpoint of the first temporal element on

the coarse level. Figure 5.13 clearly shows the difference in the location of the discon-

tinuity when comparing adjoint variables computed on the fine and coarse meshes.

The implication is that using a coarse level adjoint projected onto the fine level leads

to significant inaccuracies in the predicted error. It is virtually impossible for a linear

or any higher-order projection operator to shift the location of this spike when going

from the coarse to the fine levels. As per theory, the correct location for the spike is

that captured when the adjoint variables are computed directly on the fine level. Such

a trend has also been observed in other work on spatial adjoint-based error estimates

where the boundaries are to be treated with care due to fluctuations in the computed

coarse mesh adjoint spatial distribution [77].

Two different methods, namely the application of a second-order accurate initial

condition and the direct solution of the fine level adjoint at only the startup loca-

tion were investigated to remedy this problem. The second-order initial condition is

analogous to a second-order boundary condition in space. A ghost temporal point is

introduced with a spacing equal to that of the first time-step on the coarse level and

the explicit first-order backward Euler formula is used to determine the state at this

point. Referring to Figure 5.14, the solution state vector at the ghost point can be
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Ratio against exact
Exact functional - 32 steps BDF2 0.0182487 -
Exact functional - 16 steps BDF2 0.0182499 -

Exact error between 32 and 16 time-steps -1.1969778e-06 -
Using coarse level adjoint -5.2181473e-07 0.43594

Using coarse level adjoint and 2nd-order initial condition -1.1694744e-06 0.97702
Using coarse level adjoint + fine level adjoint for first step -1.2120836e-06 1.01262

Using fine level adjoint at all time steps -1.1949466e-06 0.99830

Table 5.7: Error due to change in temporal discretization order of accuracy during startup and
mitigation using various treatment methods.

determined starting with a BDF1 temporal discretization at steady-state (n = 0) as

A(0)

(
U(0) −U(−1)

∆t1

)
+ S = 0 (5.6)

where the surface integral of spatial fluxes S, the element area at steady-state A(0) and

the steady-state solution state U(0) are known quantities, allowing the factorization

of the ghost state U(−1) as

U(−1) = U(0) +
∆t1
A(0)

S (5.7)

Although the integral of the spatial fluxes S is zero at steady-state conditions (n =

0), the incorporation of mesh velocities due to the presence of the ghost temporal

point converts this to a nonzero quantity. A change in the order of the temporal

discretization within the time domain of interest is avoided since a stencil for the

BDF2 scheme is now available at time-step n = 1. Table 5.7 shows the inaccuracy

in the predicted error between two levels due to this issue and the gains in accuracy

using the two different methods proposed. It is also evident from the table that

both methods perform reasonably well. For the current work, the adjoint variable

is computed directly on the fine level at only the first time-step. Although this is a

solution on the fine level, the cost incurred in doing so corresponds exactly to that

of two additional time-steps in the coarse level temporal mesh. As the temporal

resolution increases, the cost of this additional computation becomes negligible.
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Figure 5.13: Comparison of the spike locations due to the change in the temporal discretization
order of accuracy during startup between the adjoint variable computed on the coarse temporal
domain and adjoint variable computed on the fine temporal domain of twice the resolution. (Shown
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Figure 5.14: Introduction of a ghost temporal point outside the time domain of interest for the
purpose of avoiding a change of temporal discretization order of accuracy within the time domain.
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5.5 Shortcomings of Adjoint Variable Projection

5.5.1 Profile Dissimilarity between Coarse and Fine Adjoint

Distributions

In the case of a first-order BDF1 time-integration scheme, the difference between

coarse and fine level adjoint solutions is minimal allowing a linear interpolant to cap-

ture the details of the fine level using the coarse level adjoint time history. Increasing

the order-of-accuracy of the temporal discretization however may create differences

in the adjoint variable distribution between the two levels that cannot be captured

effectively by any interpolating operator due to the lack of profile similarity between

the coarse and fine level adjoint distributions. For highly nonlinear analysis prob-

lems, the profile dissimilarity is further exacerbated as the resolution of the coarse

level temporal mesh increases. Figure 5.15 shows the difference in the time variation

of the fine temporal domain adjoint and the coarse temporal domain projected (third-

order spline interpolant) adjoint for an arbitrary spatial location between temporal

resolutions of 32 and 16 time-steps. The test problem was based on the unsteady

prescribed pitching of a NACA0012 airfoil, where the functional of interest was the

lift coefficient at the end of the time-integration process. While the details of this

particular test problem are not important, it should be noted that this problem has a

tendency to surface mostly when dealing with non-time-integrated functionals. Two

different methods were investigated to improve the accuracy of the adjoint variable

as described below.

Utilizing Fine Level Information in Coarse Adjoint Solution

From a cost standpoint, it is important that fine level solutions of the adjoint equations

be avoided, but solving only the coarse level adjoint equations and projecting the

adjoint variable to the fine level leads to significant inaccuracies in the predicted
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error under certain conditions. Accuracy gains while keeping costs similar to that

of solving the coarse level adjoint can be achieved by attempting a solution of the

fine level adjoint equations but only at points on the fine level temporal mesh that

coincide with the coarse level mesh. The main difficulty is the construction of source

terms for the adjoint equations from fine level temporal mesh points that do not

coincide with those on the coarse level, since no adjoint variable is available at these

locations. This problem can be addressed by combining the projection operation

with the adjoint solution process. The unknown adjoint variables on the fine level

temporal mesh are written as functions of known adjoint variables located at points

that coincide with the coarse level mesh and solved simultaneously. As an example,

when solving equation (3.57) on the fine temporal domain, but only at coarse level

coincident points, the adjoint variable Λn+1
U is unknown. Referring to Figure 5.16,

the unknown adjoint variable is written in terms of known adjoint variables as

Λn+1
U = C1Λn

U + C2Λn+2
U + C3Λn+3

U + C4Λn+4
U (5.8)

where the coefficients C1, C2, C3,and C4 are determined based on a cubic spline in-

terpolation. Substituting the above expression for Λn+1
U into equation (3.57), the fine

level adjoint variable Λn
U can be solved for without the explicit presence of Λn+1

U .

Both linear and third-order operators chosen to represent the unknown adjoint vari-

ables indicate improvements although the third-order spline operator fairs better.

However, implementation of this method involves coding complexities that result in

increased computational cost thus rendering it only marginally cheaper than actu-

ally solving the adjoint variable distribution directly at all fine level temporal mesh

points. This method does significantly reduce the difference between a coarse level

adjoint projected to the fine level and the true fine level adjoint solution since it does

not completely ignore fine level information during the solution process on the coarse

level. Figure 5.17 indicates significant improvement at least in the qualitative sense.
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Figure 5.16: Combination of projection and adjoint solution processes in order include fine level
information during the adjoint solution process. The arrows indicate the time-steps from which
source terms arise for the adjoint equation at time-step n.
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Direct Smoothing of Error in Adjoint Variable on Fine Level

While fine level solutions are to be avoided, the projection of the coarse level adjoint

variable onto the fine level temporal mesh provides a good initial guess for the fine

level adjoint equations. If the error between the coarse and fine level adjoint solutions

are in the high frequency range in the context of the fine level temporal mesh, solution

of the fine level adjoint equations starting with the coarse level estimates should in

theory converge very rapidly using conventional smoothing techniques such as Gauss-

Seidel iterations. Although this is an increase in the overall cost of the process and

is actually a partial solution directly on the fine level temporal mesh, the gain in

accuracy somewhat justifies the increase in cost. Current work indicates a typical

increase anywhere between 20% to 30% in cost compared to solving only the coarse

level equations.

General Note Regarding Projected Adjoint Variables

In general it is not necessary that the computed adjoint distribution match exactly

with the true fine level adjoint distribution. Since the overall error estimation ap-

proach relies on a linearization, exact corrections between successively refined tempo-

ral meshes cannot be guaranteed. While it is desirable to obtain accurate corrections

to the functional, for the method to be useful it is important that it be able to at least

provide a good estimate of the error distribution relevant to our functional of inter-

est, even if the magnitude of the total error is not accurate. Based on the proposed

adaptation strategy, it is the relative error distribution amongst temporal elements in

the domain that is used to drive adaptation rather than the magnitude of the error

itself. The magnitude of the error manifests its importance when summed over all

time-steps in the domain to obtain an estimate for the functional correction.

111



5.5.2 Projections of Discontinuous Solutions

Discontinuities in the solution present problems in the accurate estimation of errors.

It has been shown that reconstruction of spatial solutions from coarse to fine spatial

meshes while estimating spatial discretization error in the presence of shock waves or

other discontinuities results in oscillations that contaminate the error estimate [78].

Discontinuities in the temporal variation of the solution can occur in problems in-

volving moving shock waves or impulsive motion of geometries. The choice of the

projection operator in such scenarios greatly influences the accuracy of the error esti-

mates. It is important that monotone reconstruction procedures be employed in the

reconstruction of the fine temporal domain solution using the coarse temporal domain

solution regardless of the problem being solved. While the coarse temporal domain

solution may exhibit smooth behavior, there is always the possibility that an increase

in temporal resolution will lead to capturing of smaller scale temporal features that

may exhibit highly nonlinear variations between the two levels. Figure 5.18 compares

the linear and 3rd-order spline based projections of a hypothetical discontinuous so-

lution in time. It can be seen that the spline interpolant produces oscillations ahead

and behind the discontinuity while the linear operator remains monotone.
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Figure 5.18: Comparison of projecting a discontinuous solution from the coarse temporal domain to
a fine temporal domain with twice the resolution using a linear and a 3rd-order spline interpolation
operators.
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Chapter 6

Results

The results of applying the adjoint-based gradients and the adjoint-based error esti-

mates to examples problems are presented in this chapter. Firstly, the adjoint-based

gradients are demonstrated for the purpose of shape optimization in the context

of steady-state, uncoupled unsteady and coupled unsteady aeroelasticity problems.

The second set of examples demonstrate the use of adjoint-based error estimates for

adapting the temporal resolution and the convergence tolerances to reduce temporal

discretization and algebraic errors.

6.1 Steady-State Lift Constrained Drag Minimiza-

tion

The first optimization example is that of shape optimization using adjoint-based

gradients for the reduction of drag on a transonic airfoil with a lift constraint. The

airfoil under consideration for this problem is the NACA0012 and the flow parameters

consist of a freestream Mach number of M∞ = 0.8 and an angle-of-attack of α = 1.25o.

Under these flow conditions, the NACA0012 airfoil exhibits a strong transonic shock

wave on the upper surface at roughly 0.65 chord and a weak transonic shock wave on
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the lower surface at roughly 0.35 chord. The objective functional for the optimization

problem is defined as

L = (CL − CLtarget)2 + 10C2
D (6.1)

where the target lift coefficient is that of the NACA0012 airfoil at the same flow con-

ditions. The weight on the drag coefficient is introduced for the purpose of equalizing

the typical order-of-magnitude difference between the lift and drag coefficients. The

functional is formulated such that any decrease in the functional is due principally

to reductions in the value of the drag coefficient. The lift coefficient term provides

an excellent constraint since any deviations from the target lift coefficient lead to an

increase in the value of the functional. A total of 32 bump functions, 16 on the upper

surface and 16 on the lower surface with equal spacing in the chordwise direction of the

airfoil and the corresponding weights controlling the magnitudes of these bumps form

the set of design variables for the problem. The LBFGS-B optimization algorithm

described earlier is used for the current and subsequent optimization examples.

Figure 6.1 shows the computational mesh around the NACA0012 airfoil consist-

ing of approximately 20,000 elements used in this optimization example. Figure 6.2

shows the convergence of the optimization problem. There is at least an order-of-

magnitude reduction in the functional and in the norm of the gradient vector after

just eight design iterations, however the convergence flattens out beyond this. It is

not possible for the functional to converge to zero even if the shock wave is eliminated

due to dissipative errors in the solution. The gradient vector however should in theory

reach zero when the optimization reaches a local minimum. This however is not the

case for the optimization example presented here, since the design space is bounded

a priori in order to prevent the occurrence of degenerate geometries. Figure 6.3 il-

lustrates nonzero gradients at the determined optimum when bounds on the design

space exist in the optimization problem. It was determined at the termination of the

optimization that several design variables were indeed on the established boundary of

the design space. Figure 6.4 shows the convergence of the lift and drag coefficients
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Figure 6.1: Computational mesh of approximately 20,000 elements used in steady-state and unsteady
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Figure 6.2: Convergence of the steady-state lift constrained drag minimization optimization example.
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Figure 6.3: The existence of a nonzero gradient at the optimum design point determined by the
optimization algorithm.

during the course of the optimization. An approximate reduction of 160 counts in

the drag coefficient is seen while no change is seen in the lift coefficient. Figure 6.5

compares the baseline NACA0012 airfoil with the final optimized airfoil and it can

be seen that the optimization has significantly flattened the upper surface in an at-

tempt to weaken the upper surface shock wave. This is evident from the comparison

of the Cp distribution between the NACA0012 and the optimized airfoils shown in

Figure 6.6. The lower surface shock wave has been eliminated while the pressure

jump across the upper shock wave is significantly smaller. The wave drag is the most

significant component of the drag coefficient in this example, and any reduction of

the shock strength leads to significant reduction in drag. Figures 6.7(a) and 6.7(b)

compare the entropy generated by the shock waves occurring on the NACA0012 and

the optimized airfoils.
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Figure 6.5: Comparison of the NACA0012 airfoil used as the starting point in the case of steady-state
lift constrained drag minimization and the final optimized airfoil.
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Figure 6.6: Comparison of the pressure coefficient distributions between the NACA0012 airfoil and
the optimized airfoil for the steady-state lift constrained drag minimization example.
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(a)

(b)

Figure 6.7: Comparison of the entropy generated in the flow field for the baseline NACA0012 airfoil
and the optimized airfoils for the case of lift constrained drag minimization.
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6.2 Shape Optimization in Unsteady Flow Prob-

lems

Three example cases are presented to demonstrate the use of adjoint-based gradients

for shape optimization in unsteady problems with prescribed motion of the airfoil. All

three involve the sinusoidal pitching of a NACA0012 airfoil about its quarter-chord

location. The flow and pitch conditions are identical for all cases with a free-stream

Mach number of 0.755 combined with a mean angle-of-attack of 0.016o. The time

dependent pitch criteria consists of an amplitude of 2.51o and a reduced frequency of

0.0814. These flow parameters result in the generation of a moving shock wave on the

upper surface during the upward pitching motion of the airfoil and a moving shock

wave on the lower surface during the downward pitching motion. The computational

mesh used in the steady-state optimization example was used for the unsteady cases

as well. The first 11
4

pitch cycles of the airfoil beginning with a steady-state solution

at the mean angle-of-attack was taken to be the time domain of interest for all of

the examples. Although frequency domain methods may be better suited for highly

periodic problems, a periodic problem with initial transient behavior was chosen in

this case for demonstration purposes. As described earlier, the design variables form

a vector of weights that control the magnitude of bump functions placed at various

chordwise locations of the airfoil, which is to be deformed. In order to demonstrate

the advantage of using the adjoint method for optimization problems with a large

numbers of design variables, bump functions were placed at x-coordinate locations

corresponding to all points defining the surface of the airfoil. The computational

mesh used for this example consisted of 290 surface mesh points, thus translating

into a equal number of design variables.
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6.2.1 Time-Dependent Load Matching

The goal of this test case is to optimize the shape of a NACA0012 airfoil such that

the time-dependent load profile matches that of a sinusoidally pitching NACA64210

airfoil. This is an inverse design problem but different from the normal approach

of matching some target pressure distribution in that the time dependent loads are

targeted. The time integration for this example is carried out from a steady-state

solution to a non-dimensional time of 48.2431, which again corresponds to the first

11
4

periods of pitch for the airfoil. The temporal resolution consists of 40 time-steps

and the time-integrated “global” objective functional is defined as the mean of local

functionals evaluated at each time-step as

Lg =

(
1

nf + 1

)n=nf∑
n=0

Ln (6.2)

where nf refers to the total number of time-steps chosen to represent the time domain.

The local objective functional at each time-step is the linear combination of the

differences between target and computed loads defined as:

Ln =
1

2

(
Cn
L − Cn

Ltarget

)2

+
10

2

(
Cn
D − Cn

Dtarget

)2

(6.3)

where the factor of 10 for the drag coefficient is introduced to equalize the difference in

order-of-magnitude between the lift and drag coefficients. Figures 6.8(a) and 6.8(b)

clarify how the functional is constructed as differences between the computed and

target time dependent loads at each time-step. Note that there is no constraint in the

functional that controls the shape of the optimized airfoil. The only guarantee based

on the formulation is that, when the functional goes to zero, the target and computed

time dependent load profiles match. The shape is constrained in a loose sense only

through the bounds placed on the design variables such that degenerate geometries

do not result during the course of the optimization. As in the case of the steady-state

problem, these are computed a priori and are read-in by the optimization routine at

the onset of the optimization process. It is not necessary that the optimized airfoil
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Figure 6.8: Illustration of the difference between computed and target time-dependent loads in the
objective functional used for the time-dependent load matching optimization example.
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match the shape of the NACA64210 airfoil although it is one of the possible solutions

to the optimization problem. The convergence of the time-integrated functional and

the norm of the gradient vector are shown in Figure 6.9. Figure 6.10 shows the

optimized airfoil for this case. A pronounced hook shape close to the trailing edge of

the optimized airfoil is visible from the figure. Since the target airfoil has finite lift

at zero angle-of-attack, the baseline symmetric airfoil must be deformed such that

it gains some degree of camber. The trailing-edge flow exit angle being the most

influential on turning the flow from the freestream direction (i.e. camber) has pushed

the optimization in that direction. In reality, a severely curved trailing edge will

typically lead to flow separation and loss of lift with increase in drag. This is not the

case for the presented example since the flow and adjoint solvers are based on the

Euler equations and do not include the effect of viscosity. It should be interesting to

observe the results of a shape-unconstrained optimization based on the Navier-Stokes

equations in comparison with those presented here. Figures 6.11 and 6.12 compare

the computed and targeted time-dependent lift and drag profiles at various stages in

the optimization. The drag comparison figure indicates what appears to be a slightly

larger error between the optimized and target values than the lift curves at the final

design iteration due to the different scales of these coefficients. There is approximately

a two order-of-magnitude reduction in the functional and gradient within the first

five design iterations, beyond which the convergence rate greatly diminishes. No

convergence specific stopping criteria was used except for total computational time

in order to terminate the optimization. For this particular example, the optimization

was terminated after 15 wall-clock hours and this corresponded to 58 calls of the flow

solver and the adjoint code.

6.2.2 Time-Dependent Pressure Distribution Matching

The second optimization example is that of inverse design from a NACA0012 airfoil

to a NACA64210 airfoil in the context of unsteady flows. The target time-dependent
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Figure 6.9: Convergence of the objective functional and the norm of the gradient vector for the case
of time-dependent load matching.
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Figure 6.10: Optimized airfoil for the case of time-dependent load matching (exaggerated scale).

pressure profile for this example is that of a sinusoidally pitching NACA64210 type

airfoil. Since inverse design is shape constrained, it is important to know a priori

whether the geometric parametrization permits the target airfoil to lie within the

design space of the problem. An optimization utilizing only the shape parametrization

independent of the flow equations was performed in order to check if this were true.

It was determined that an exact NACA64210 was not achievable based on the current

parametrization. As a consequence the closest possible match from the result of this

exploratory geometric optimization was used as the target since this guarantees an

achievable shape. Figure 6.13 compares the airfoil that was used as the target against

the true NACA64210 airfoil. The objective functional for this example is similar

to that of the previous example, with the difference in computed and target loads

replaced by the difference in computed and target time-dependent pressure profiles.

127



-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Target lift distribution

Alpha (Degrees)

C
L

-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Computed lift distribution

(a) 1st Design Iteration

-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Target lift distribution

Alpha (Degrees)

C
L

-3 -2 -1 0 1 2 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Computed lift distribution

(b) 2nd Design Iteration
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(c) 3rd Design Iteration
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(d) 15th Design Iteration
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(e) 30th Design Iteration
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(f) 58th Design Iteration

Figure 6.11: Comparison of the computed and target time dependent lift coefficient at various stages
in the optimization for the case of time-dependent load matching.
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Figure 6.12: Comparison of the computed and target time dependent drag coefficient at various
stages in the optimization for the case of time-dependent load matching.
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Figure 6.13: Comparison of target airfoil and true NACA64210 airfoil for the case of time-dependent
pressure distribution matching.
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Figure 6.14: Convergence of the objective functional and the norm of the gradient vector for the
case of time-dependent pressure distribution matching using 290 design variables.

The local objective functional at each time-level for this example is defined as

Ln =

nsurf∑
i=1

{
1

2

(
pni − pni target

)2
}

(6.4)

Figure 6.14 shows the convergence of the objective functional Lg and the norm of

the gradient for this case. As in the previous case, the functional drops by about four

orders-of-magnitude before the convergence begins to stall. This is not an acceptable

scenario since it is known that the target airfoil lies within the design space in this

case. Theoretically the functional should be able to reach machine zero while the

gradient attains the squareroot of machine zero. The problem was suspected to be

the complexity of the design space and the inability of the LBFGS-B [64] algorithm

to navigate through it. Since the optimization consists of 290 design variables, the

problem was simplified by reducing the total number of design variables to 14. As

previously described, a new target airfoil was chosen using the parametrization based
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Figure 6.15: Convergence of the objective functional and the norm of the gradient vector for the
case of time-dependent pressure distribution matching using 14 design variables.

on fewer design variables and a second unsteady inverse design optimization was

performed. Figure 6.15 shows the convergence for this case. The results verify the

suspected cause for stalling in the previous case, since the reduction of the total

number of design variables results in the expected trend. The functional reaches

machine zero in 28 design iterations while the gradient approximately reaches square-

root of machine precision. The termination criteria used in this case was a value

of 1e−14 for the functional. Figures 6.16 and 6.17 compare the target and computed

pressure profiles at different design iterations for three temporal locations for both the

290 and 14 design variables cases. Although qualitatively the results look impressive

in both cases, it is clear from the convergence plots that the true optimum has been

achieved only in the 14 design variable case.
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Figure 6.16: Comparison of computed and target pressure profiles at different design iterations for
three time-steps n = 1, n = 11, and n = 32 for the time-dependent pressure distribution matching
optimization example with 290 design variables. (Legend: ID=design iteration number)
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Figure 6.17: Comparison of computed and target pressure profiles at different design iterations for
three time-levels n = 1, n = 13, and n = 27 for the time-dependent pressure distribution matching
optimization example with 14 design variables. (Legend: ID=design iteration number)
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6.2.3 Time-Dependent Lift Constrained Drag Minimization

The last optimization example in this section is that of lift-constrained time-dependent

drag minimization. The objective formulation for this case is the same as that used

for the time-dependent load matching problem. The difference lies in the target loads

used in the formulation. Since this a lift-constrained drag minimization problem, the

target time-dependent lift is set to be that of the baseline NACA0012 airfoil itself,

while the target drag is set to be zero at all temporal locations. The flow condi-

tions and pitch criteria remain identical to the previous two examples. The objective

functional cannot reach zero in this case since the drag acting on a pitching airfoil is

always nonzero due to unsteady effects, the entropy generated by the moving shock

waves and due to dissipative errors in the solution. Figure 6.18 shows the convergence

of the functional and the gradient where the optimization progress is seen to level out

after approximately 20 cycles. Figure 6.19 shows the optimized airfoil in comparison

with the baseline NACA0012 airfoil. Figure 6.20 shows the convergence of the time-

averaged and maximum drag coefficients during the course of the optimization. An

approximate reduction of 85 counts of drag in the peak drag coefficient and 50 counts

in the time-averaged drag coefficient is observed. Figures 6.21 and 6.22 compare the

baseline and optimized time-dependent lift and drag profiles.

6.3 Shape Optimization for Flutter Control

In this section, the adjoint-based gradients obtained in the unsteady coupled aeroe-

lasticity problem are used to optimize the shape of an airfoil for the purpose of

suppressing flutter.
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Figure 6.18: Convergence of the objective functional and the norm of the gradient vector for the
case of time-dependent lift constrained drag minimization.
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Figure 6.19: Comparison of the NACA0012 airfoil used as the starting point and the final optimized
airfoil for the case of time-dependent lift constrained drag minimization.
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Figure 6.21: Comparison of baseline and optimized time-dependent lift profiles for the time-
dependent lift constrained drag minimization optimization example.
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Figure 6.22: Comparison of baseline and optimized time-dependent drag profiles for the time-
dependent lift constrained drag minimization optimization example.
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6.3.1 Single Element Airfoil

The goal of this optimization example is to consider a point in the flutter diagram

of the described aeroelastic validation test case where the airfoil exhibits divergent

behavior, and to change the shape of the airfoil such that it produces a damped

aeroelastic response while satisfying a constraint on the steady-state lift of the airfoil.

The time-integration process consisted of 36 uniform time-steps per forced pitch cycle

combined with 3 pitch cycles and 214 time-steps of the same size for the aeroelastic

response to evolve. The chosen number of time-steps for the aeroelastic response

evolution correspond to approximately 51
2

periods in both the pitch and plunge axes

at the starting design point of the optimization. The objective functional for the

optimization was chosen to be

L = rf
T

[W1]rf +W2(CLs − CLstarget) (6.5)

where rf refers to the structural state vector at the end of the time-integration pro-

cess, [W1] is a diagonal weighting matrix with equal weighting parameters of 100,

W2 is a weight on the constraint, chosen to be unity, and CLs is the steady-state lift

coefficient of the NACA64A010 airfoil. Since the airfoil is symmetric and has zero

lift at zero angle-of-attack, the steady-state solution is computed at the maximum

pitch angle of the forced pitch cycles. The forced unsteady pitching of the airfoil

around the elastic axis begins at this point and stops at the neutral position of zero

angle-of-attack (after 3 pitch cycles) at which point the aeroelastic response is allowed

to evolve. The target value for the steady-state lift coefficient was taken to be that

of the baseline NACA64A010 airfoil at the maximum pitch angle of 1o. The objec-

tive formulation is such that a vanishing functional results in zero displacements and

zero velocities in both degrees-of-freedom of pitch and plunge. Since the aeroelastic

time-integration ends fairly quickly (51
2

periods), this in fact creates a stiff objective

formulation. However, it is not necessary to drive the objective to zero and the op-

timization may be stopped once a damped response is observed and the constraint
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on the steady-state lift is satisfied. For the described test case, the airfoil produces a

neutral response for a flutter velocity Vf = 0.65 at a Mach number of M∞ = 0.825.

An unstable point of Vf = 0.75 at this Mach number was chosen to be the starting

design point for the optimization. Figure 6.23(a) shows the aeroelastic response of the

airfoil at the starting design point. The divergent behavior is clearly visible in both

pitch and plunge axes. Prior to running the optimization, the time-integration for

the aeroelastic response was carried out over a temporal domain that was ten times

the size of the chosen domain (214 time-steps) in order to ensure that the divergent

response did not lead to limit-cycle behavior. The shape of the airfoil was controlled

by an equal distribution in the chordwise direction of 16 bump functions on the upper

surface and 16 bump functions on the lower surface resulting in a total of 32 design

variables. As mentioned earlier, the design variables are the weights controlling the

magnitudes of each one of the bump functions. Although in practice any modifica-

tion of the shape of the airfoil would result in changes to the structural parameters

controlling the aeroelastic response, it is assumed that the structural parameters are

constant and independent of the geometry for the optimization example presented

here. The optimization was terminated after 41 design iterations and Figure 6.23(b)

shows the aeroelastic response of the optimized airfoil. While the displacements and

the velocities have not been driven to zero, the plot clearly indicates a rapidly decay-

ing response. Figure 6.24 shows the convergence of the objective functional and the

L2 norm of the gradient vector. During the course of the optimization, a decaying

response was observed after only 11 design iterations, but the optimization was not

terminated at this point since the tolerance on the constraint was not satisfied. The

tolerance was set to be a maximum of 0.25% deviation from the target constraint over

at least two consecutive design iterations. Figure 6.25 indicates that the constraint

satisfies the set tolerance only at 41 design iterations at which point the optimiza-

tion was terminated. Figure 6.26 compares the optimized and the baseline airfoil

geometries using 1:1 and exaggerated scales.
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(a) Diverging aeroelastic response of baseline airfoil
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(b) Decaying aeroelastic response of optimized airfoil

Figure 6.23: Aeroelastic response of baseline and optimized airfoils for the single element airfoil
flutter suppression optimization example.
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Figure 6.24: Convergence of objective functional and the norm of gradient vector for the single
element airfoil flutter suppression optimization example.
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Figure 6.25: Convergence of the constraint on the objective functional.

6.3.2 Two-Element Slotted Airfoil

The purpose of the second aeroelastic optimization example is to demonstrate the

advantage of using an unstructured mesh framework. The problem remains identical

to the first optimization example in that the goal is to suppress divergent flutter

behavior of an airfoil using gradient based optimization. However, the airfoil under

consideration contains two elements separated by a slot and is thus easier to treat

using unstructured methods. Figure 6.27 shows the unstructured computational mesh

consisting of approximately 7,800 elements around the slotted airfoil for this problem.

Since the primary focus of this optimization example is the demonstration of the

advantage of using unstructured meshes for complex geometries in conjunction with

the derived linearization, the physical aspects of the aeroelastic problem itself are not

very important. With this in mind, the structural parameters from the aeroelastic

validation test case used in the previous optimization example are carried over to this
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Figure 6.26: Comparison of the baseline and the optimized airfoils for the single element airfoil
flutter suppression optimization example.
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example. A suitable starting point where the airfoil exhibits a divergent aeroelastic

response was chosen by trial and error to be a flutter velocity of 1.85 at a Mach

number of 0.6. The response of the slotted airfoil at this point in the flutter diagram

is shown in Figure 6.28(a). The offsets in the mean of the oscillations of both the

pitch and plunge axes from zero indicate that for the given structural and aerodynamic

parameters there exists a nontrivial steady-state aeroelastic solution. The objective

functional for this example was chosen to be

L =

nf∑
n=nf−10

rnT [W1]rn +W2(CLs − CLstarget) (6.6)

In contrast to the first optimization example, the aeroelastic term in the objective

functional has been converted to a summation over the last ten time-steps. The

reasoning being that, in addition to the case of flutter free behavior, zero velocities

and zero displacements can occur at the peaks of the oscillations. Considering the

offset in the oscillatory mean values from zero, this change in the objective formulation

effectively constrains the optimization from moving to a shape that produces an

oscillatory peak at zero once the time-integration process terminates. The weights

in the objective remain identical to the first example and the target steady-state lift

coefficient again is that of the baseline slotted airfoil at the maximum pitch angle

of the forced pitching cycles. The forced pitch parameters are also identical to the

first example, with the exception of the number of forced pitch cycles. For this

example the forced pitching occurs only over three-quarters of a period before the

aeroelastic response is allowed to evolve. Since the overall size of the time domain

remains identical to the previous example, this modification to the forced pitching

cycles allows more time for the aeroelastic response evolution. Four sets of eight

bump functions corresponding to the upper and lower surfaces of both the main

airfoil element and the flap result in a total of 32 design variables that control the

overall shape of the airfoil. Figure 6.28(b) shows the aeroelastic response of the

optimized airfoil and clearly indicates neutral behavior. Figures 6.29 and 6.30 show
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Figure 6.27: Slotted airfoil mesh consisting of approximately 7,800 elements used for the two-element
slotted airfoil flutter suppression optimization example.

the convergence of the objective, the norm of the gradient and the constraint. The

optimization was terminated after 21 design iterations. Figure 6.31 compares the

baseline and optimized airfoil shapes.

6.4 Error Estimation and Adaptation of the Time

Domain

This section presents the second set of example problems where the adjoint-based er-

ror estimates are used for adaptation. The distribution of the temporal discretization

error is used to drive the adaptation of the temporal resolution, while the temporal

distribution of the algebraic error from each discipline is used to adapt the conver-

gence tolerances for each set of governing equations. The adjoint variables computed

for the uncoupled unsteady problem with prescribed motion of the airfoil are used for
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(a) Diverging aeroelastic response of baseline slotted airfoil
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(b) Neutral aeroelastic response of optimized slotted airfoil

Figure 6.28: Aeroelastic response of the baseline airfoil and the optimized airfoil for the two-element
slotted airfoil flutter suppression optimization example.
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Figure 6.29: Convergence of objective and the norm of the gradient for the two-element slotted
airfoil flutter suppression optimization example.
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Figure 6.30: Convergence of the constraint on the objective functional for the two-element slotted
airfoil flutter suppression optimization example.
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Figure 6.31: Comparison of baseline and optimized airfoils for the two-element slotted airfoil flutter
suppression optimization example.
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both examples.

6.4.1 Description of Comparative Methods

Two example problems, one where the functional of interest is a non-time-integrated

quantity measured at the end of the time-integration process and the other where the

functional is a time-integrated quantity are presented. The purpose of the examples

presented is to demonstrate the advantage of using goal/adjoint-based adaptation of

the temporal domain over traditional adaptation methods. To this end the results are

compared against the more commonly used but basic method of uniform temporal

refinement, and the more sophisticated method of utilizing temporal discretizations of

different orders-of-accuracy for estimating local temporal error and adaptively refining

the time-step.

The uniform refinement method employed involves the doubling of the temporal

mesh resolution at each adaptation cycle using a 2-to-1 nested subdivision of temporal

elements, while simultaneously tightening the convergence tolerances by a factor of

three for all disciplines at all time-steps. As for the estimation of local temporal

error, the method proposed in reference [79] is used. The solution to the analysis

problem obtained using the second-order accurate BDF2 scheme is used to determine

the temporal derivative term discretized based on a third-order accurate BDF3 time-

integration scheme. The estimate of the local error at each time-step is then computed

as

elocal =

∣∣∣∣∣
∣∣∣∣∣
[
dAU

dt

]
BDF3

−
[
dAU

dt

]
BDF2

∣∣∣∣∣
∣∣∣∣∣
2

(6.7)

Details of the BDF3 discretization of the time derivative on nonuniform temporal

meshes are shown in Appendix A. The adaptation for this method is based on re-

fining temporal elements that have local error higher than the computed mean of

the local error distribution in the time domain. The convergence tolerances at each

time-step are set to be equal to that of the local temporal error in order to ensure
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that the algebraic error is less than or equal to the temporal discretization error.

Computational cost is measured using the systemclock intrinsic function built into

FORTRAN95. As a convention, the cost shown in the comparative plots at any par-

ticular adaptation cycle regardless of the adaptation method employed includes the

cost of all preceding adaptation cycles. All adaptation methods are compared in refer-

ence to numerically exact results computed using a uniform time domain of resolution

at least two orders-of-magnitude higher than those achieved through adaptation.

6.4.2 Non-Time-Integrated Functional

The first example consists of a pitching NACA64A010 airfoil, where the angle-of-

attack as a function of time is prescribed. The functional of interest is the lift

coefficient of the airfoil evaluated at the end of the time-integration process. The

computational mesh for this case is the same one used for the aeroelastic validation

test case and is shown in Figure 5.9. The airfoil operates at a Mach number of 0.3

and Figure 6.32(a) shows the prescribed displacement in time. The corresponding

time variation of the lift coefficient of the airfoil is shown in Figure 6.32(b). The

prescribed motion begins at an angle-of-attack of 0.5o and remains undisturbed for

a short period before a spike (albeit continuous) of 0.5o is introduced. The angle-of-

attack then returns to the steady-state value of 0.5o where it remains for an extended

period before a shallow pitch down by 0.5o is followed by a rapid pitch up to 5o. Once

the angle-of-attack reaches the maximum of 5o, the motion of the airfoil is stopped

and only transient effects remain in the flow. The initial temporal mesh consists of

50 uniform time steps and the starting convergence tolerances for the flow and mesh

equations are set at 1e−6 and 1e−5 respectively. The error tolerance used as the ter-

mination criteria for adaptation is set as 1e−6. The problem is well suited for the

demonstration of the advantage in using goal-based adaptation over local error-based

adaptation.

Figures 6.33(a) and 6.33(b) show the convergence of the functional and error in
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the functional using the three different adaptation methods. The plots indicate that

adjoint-based adaptation is able to achieve similar error levels to that of unguided

uniform refinement with fewer time-steps. On average, the method appears to provide

a factor of saving anywhere between 1.6 and 2 when considering only adaptation.

The method however also provides a correction term, which is the sum of all the error

distributions and this can be used to improve the value of the functional computed

using the adapted domain. When including the correction term in the functional,

the method far outperforms uniform refinement at least in terms of the temporal

resolution required for the same error levels. Figures 6.34(a) and 6.34(b) show the

convergence with respect to computational cost. When considering the adjoint-based

adapted curve in the plots, the costs appear similar to that of uniform refinement

for the same error levels. However, the method is competitive when the correction

term is included in the functional. It should be noted that the adjoint-based error

distribution provides the correction term and no additional work is necessary in order

to compute it. Therefore, a fair comparison is that between the corrected functional

convergence and uniform refinement.

It is interesting to note from the plots that local error-based adaptation performs

very poorly for this particular problem. This is expected since the problem was setup

specifically to demonstrate the weakness of local error-based adaptation. Theoreti-

cally it is known that the spike occurring close to the start of the time-integration

process has no effect on the lift coefficient at the end of the time-integration since

there is sufficient time after the spike for the airfoil to recover its steady-state lift.

Local error-based adaptation methods however are blind to this effect and will tar-

get the spike for adaptation since that would be the location of maximum temporal

error. This is quite obvious from Figure 6.35 where the distribution of local error

shows significant differences compared to the adjoint-based error, both evaluated at

the first adaptation cycle. Nearly all of the refinement during the first six adaptation

cycles based on local temporal error occurs at the location of the spike. It is only after
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the local temporal error at this location has been brought down to the same levels

as those closer to the end of the time-integration does the method actually start at-

tacking the correct regions relevant to the functional. As a consequence of this, local

error-based adaptation performs less efficiently than even uniform refinement of the

time domain. Figure 6.36 compares the distribution of the time-step sizes between

adjoint adaptation and local error-based adaptation after the final adaptation cycle.

It is clear from this plot that local error-based adaptation has refined the temporal

mesh significantly in the vicinity of the spike, while the adjoint-based adaptation has

almost completely ignored the spike.

The other aspect of the problem that is tackled by the adaptation procedure is

the algebraic error at each time-step due to partial convergence. Figures 6.37 and

6.38 show the distribution of the error due to partial convergence of the flow and mesh

equations at various adaptation cycles. The algebraic error is dominant in the region

where the airfoil is moving and also close to where the functional is evaluated. As in

the case of temporal resolution, the temporal location where the spike in the angle-of-

attack occurs is irrelevant to the functional. Figure 6.39 shows the final distribution

of the convergence tolerances for the flow and mesh equations after termination of the

adaptation. The tolerances progressively become tighter for both sets of equations as

the time-integration approaches the point of the functional evaluation and this trend

matches closely with intuition.

6.4.3 Time-Integrated Functional

The second example demonstrates the method when the functional of interest is a

time-integrated quantity. The problem considers the interaction of a vortex with

a pitching airfoil. The airfoil is a NACA0012 undergoing very slow pitching at a

reduced frequency of 0.001 in a flow with a freestream Mach number of 0.4225. The

amplitude of pitch is 5o with the pitch center located at the quarter chord of the airfoil.

Figures 6.40(a) and 6.40(b) show the computational spatial mesh and a zoomed in
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Figure 6.32: Prescribed displacement and the corresponding variation of the lift coefficient of the
NACA64A010 airfoil used in the non-time-integrated functional example of temporal adaptation.
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Figure 6.33: Convergence of the functional and the error with respect to the temporal mesh resolution
for the non-time-integrated functional example of temporal adaptation.
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Figure 6.34: Convergence of the functional and the error with respect to cost in terms of wall time
for the non-time-integrated functional example of temporal adaptation.
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Figure 6.35: Comparison of the adjoint-based error distribution and the local temporal error distri-
bution for the non-time-integrated functional example of temporal adaptation. Shown here on the
coarsest temporal mesh consisting of 50 uniform time-steps.
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Figure 6.36: Comparison of the time-step size distribution for adjoint-based and local error-based
adaptation after the final adaptation cycle for the non-time-integrated functional example of tem-
poral adaptation.
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Figure 6.37: Flow partial convergence error distribution for the non-time-integrated functional ex-
ample of temporal adaptation.
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Figure 6.38: Mesh partial convergence error distribution for the non-time-integrated functional
example of temporal adaptation.
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Figure 6.39: Flow and mesh convergence tolerances after the final adaptation cycle for the non-time-
integrated functional example of temporal adaptation.
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view of the airfoil within the mesh used for this example. The mesh consists of

approximately 8,600 elements. The vortex is seeded in the flow 15 chord lengths

ahead and 2 chord lengths below the airfoil, from where it is allowed to convect

with the freestream and interact with the airfoil. Figure 6.41 shows the density

contours of the initial condition for the flow in the spatial domain. Figure 6.42

shows the time variation of the lift coefficient of the airfoil with and without vortex

interaction. The size of the time domain was chosen such that at the end of the time-

integration process the vortex is located approximately 15 chord lengths downstream

of the airfoil. The initial temporal mesh consists of 100 uniform time-steps and the

starting convergence tolerances for the flow and mesh equations are set at 1e−6 and

1e−5 respectively. The functional of interest is the time-integrated value of the lift

coefficient as described in equation (5.5). The effect of the vortex on the airfoil should

in theory increase as it approaches the airfoil and diminish rapidly once it passes the

airfoil. Engineering judgment tells us that, in order to correctly predict the effect

of the vortex on the airfoil load, it must be convected to the region of interaction

with the least amount of dissipation. Both temporal and spatial errors contribute

toward dissipating the vortex as it convects through the domain. The sources of

spatial error include the spatial discretization order-of-accuracy and the resolution

of the spatial mesh. However, since all comparisons are made on the same spatial

mesh with identical spatial discretization, the spatial error can be considered to be

independent of the temporal error. The goal is to identify and reduce the effect of

temporal error on the functional. The temporal error relevant to the functional most

likely occurs in the region of the temporal domain when the vortex is still ahead of

the airfoil, and also in the region when it interacts with the airfoil. It is likely that the

temporal error once the vortex passes the airfoil is not relevant to the functional. The

adaptive time-integration therefore can be expected to use smaller time-steps while

the vortex is still ahead of the airfoil in order to ensure minimal dissipation of the

vortex, and smaller time-steps have to be used during the interaction phase in order
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to ensure that all of the details in the perturbation of the airfoil lift are captured. The

adjoint method being goal based should predict the error distribution in accordance

with this expectation, while local error-based adaptation will likely request refinement

of the entire time domain. This happens as a consequence of the vortex continuing to

convect and dissipate downstream of the airfoil, although its effect is not relevant to

the load on the airfoil. Therefore local error-based adaptation is likely to perform no

better than uniform refinement of the whole time domain. The error tolerance was

set at 1e−4 for the termination of adaptation for this case.

Figures 6.43(a) and 6.43(b) show the convergence of the functional and functional

error with respect to the temporal mesh resolution, while Figures 6.44(a) and 6.44(b)

compare these same quantities with the computational expense. For this particular

case, adjoint-based adaptation is able to achieve similar error levels as uniform refine-

ment and local error-based adaptation with fewer than half the number of time-steps.

From a cost perspective, the plots indicate that initially the expense is similar be-

tween all methods but after two to three adaptation cycles, adjoint-based adaptation

is able to outperform uniform refinement and local error-based adaptation. The plots

also indicate the expected trend of local error-based adaptation performing similarly

to uniform refinement. Figure 6.45 compares the distribution of the temporal error

computed using the adjoint and the local error method after three adaptation cy-

cles. It is quite clear that the local error distribution is fairly uniform throughout

the time domain in contrast to the adjoint-based error where dominance is obvious

prior to the vortex passing the airfoil. Figure 6.46 compares the time-step size dis-

tribution between adjoint-based and the local error-based method after termination

of the adaptation. The adjoint-based method has not touched the region in the time

domain when the vortex has passed the airfoil, while local error-based adaptation has

requested fairly small time-step sizes in this region.

The algebraic error distribution due to partial convergence of the governing equa-

tions is particularly interesting for this problem. From Figures 6.47 and 6.48 it can
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be seen that the maximum algebraic error due to the flow equations at the start of

the adaptation occurs when the vortex interacts with the airfoil, while the maximum

algebraic error due to the mesh equations occurs not only during the interaction of the

vortex with the airfoil but even after the vortex passes the airfoil. By far the most

counterintuitive results are the algebraic error distributions for both the flow and

mesh equations after the termination of adaptation. Both sets of equations continue

to show higher error when the vortex is already downstream of the airfoil although

adaptation of the convergence tolerances has occurred mostly in this region as shown

in Figure 6.49. This is a good example where engineering judgment in lieu of a math-

ematically rigorous procedure to determine convergence tolerances could potentially

lead to poor results.
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Figure 6.40: Computational mesh consisting of approximately 8,600 elements used for the time-
integrated functional example of temporal adaptation.
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Figure 6.43: Convergence of the functional and the error with respect to the temporal mesh resolution
for the time-integrated functional example of temporal adaptation.
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Figure 6.44: Convergence of the functional and the error with respect to cost in terms of wall time
for the time-integrated functional example of temporal adaptation.
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Figure 6.45: Comparison of the adjoint-based error distribution and the local temporal error dis-
tribution for the time-integrated functional example of temporal adaptation. Shown here on the
coarsest temporal mesh consisting of 100 uniform time-steps.
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Figure 6.46: Comparison of the time-step size distribution for adjoint-based and local error-based
adaptation after the final adaptation cycle for the time-integrated functional example of temporal
adaptation.
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Figure 6.47: Flow partial convergence error distribution for the time-integrated functional example
of temporal adaptation.
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Figure 6.48: Mesh partial convergence error distribution for the time-integrated functional example
of temporal adaptation.
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Figure 6.49: Flow and mesh convergence tolerances after the final adaptation cycle for the time-
integrated functional example of temporal adaptation.
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Chapter 7

Conclusions

7.1 Summary

This thesis presented a unified approach to computing adjoint variables in the context

of aerodynamic simulations. The method was shown to be general enough such that

it may be applied to multiple coupled or uncoupled disciplines, which may be steady

or unsteady in nature. The computed adjoint variables were used for the dual purpose

of computing functional gradients with respect to design variables for use in shape

optimization problems and also for the estimation of temporal discretization and

algebraic errors in the numerical solution of the governing equations.

The use of adjoint-based gradients for aerodynamic shape optimization was

demonstrated in the context of coupled unsteady aeroelasticity, uncoupled prescribed

unsteady, and steady-state flow problems. Additionally, the adjoint variables com-

puted using the presented approach were applied as weights on the local residual

errors for the purpose of estimating functional relevant temporal discretization and

algebraic errors. Adaptation of the time-step sizes, the time-step distribution, and

adaptation of the convergence tolerances for all disciplines at each time-step was then

demonstrated for unsteady flow problems with prescribed geometric displacements.

The method was shown to outperform traditional methods in terms of computational
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expense and the number of time-steps by reducing the error in the functional of

interest for both cases of a time-integrated and a non-time-integrated functional.

7.2 Contributions to the Field and Potential Ap-

plications

The contributions to the field made by the current work can be summarized as follows:

• Rapid determination of the gradient vector for multiple disciplines

Although the adjoint method has been used quite successfully to determine

the gradient vector for use in shape optimization especially for steady-state

problems, the work presented in the thesis is likely the first presentation of

a single treatment for all types of problems. The method is general enough

such that coupled or uncoupled and steady or unsteady nonlinear disciplines

can be addressed in a unified manner regardless of the number of disciplines

or the number of design variables. The method taps into the advantage that

adjoint variables reduce the cost of obtaining the complete gradient vector to

approximately that of obtaining the solution to the nonlinear analysis problem.

• Applications in aerodynamic shape design

The presented work is the first attempt to determine gradients using the adjoint

method for coupled unsteady aeroelasticity problems with no simplifying as-

sumptions. Although demonstrated in the context of a simple two-dimensional

flutter model using inviscid flow, this sets the stage for design optimization in

more sophisticated problems such as flutter in aircraft wings, blade deforma-

tions in helicopters and wind turbines, and rotor-stator aeroelastic interactions

in turbo-machines.

• Applications in model parameter sensitivities
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While the general push is toward eliminating the use of simplifying models in

numerical simulations, several multiphysics problems such as reactor simulations

and hypersonic aerodynamic flows still rely on such models to reduce the overall

computational cost. Even with simpler problems such as high Reynolds number

aerodynamic flows, only the RANS equations are solved and a turbulence model

is used to simulate the turbulent characteristics of the boundary layer. There

always remains the question of how much of an effect empirically determined

parameters in such models have on functionals of interest. The computation

of adjoint variables in such problems permits the determination of functional

sensitivity to model parameters and may be used for fine tuning of the model.

• Improved unsteady simulation capability

Much of the previous work in adapting the temporal domain resolution has

been done using local error estimates. Goal-based adaptation of the temporal

resolution has thus far been demonstrated only in the context of simple ODEs

and PDEs. To the author’s knowledge, the estimation of the functional relevant

temporal discretization error, and the decomposition of the error into compo-

nents arising from each discipline at each time-step is novel. This is perhaps

the first attempt at adapting the temporal domain for realistic flow problems.

In many time-dependent simulations, the temporal resolution required for ade-

quately capturing flow details is unknown and the user has to rely on engineering

judgment and repeated restarts with increased resolution in certain regions of

the time domain. Such an approach requires intensive user involvement in the

simulation process while providing very little improvement to functionals of in-

terest. Automatic adaptation of the temporal domain using the adjoint-based

error not only directly targets the functional accuracy, but also reduces the

user involvement in the overall simulation process. The current work provides

the necessary framework to develop “push-button” type unsteady solvers which
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require minimum user interaction.

• Compensation for algebraic error in the solution

Other than the acknowledgment of the existence of algebraic error in numerical

solutions, there has been little effort in developing methods for its quantifica-

tion and reduction. For simpler problems, where solution procedure stiffness

and computational expense are not issues, algebraic error can be avoided by

solving the equations to machine accuracy. However, in several cases this may

either not be feasible or possible. The solution process may be terminated early

due to computational cost, or due to stalling of the convergence rate. The thesis

presents a uniquely rigorous procedure to quantify (up to a linear approxima-

tion) the algebraic error and reduce it by adapting the convergence tolerances,

or compensate for it by providing a functional correction.

7.3 Recommendations for Future Work

• Extension to three-dimensional problems

The use of adjoint equations for steady-state shape optimization has been ex-

plored in three-dimensional problems. However, unsteady and coupled unsteady

optimization in three dimensions remains unpopular due to cost and storage re-

quirements. For unsteady problems, the time history has to be stored and read

in by the adjoint solver since it performs a backward sweep in time.Typical

three-dimensional unsteady flow problems that run in parallel with approxi-

mately 200,000 elements per processor for about 2,000 time steps would require

roughly 75 gigabytes of hard-drive space per processor to hold the solution

history. Such space requirements can be easily accommodated at low cost on

todays computational clusters. Also, since the solution set is written piece-by-

piece at the conclusion of each time-step in the time-integration process, the
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speed of the I/O operation itself has little impact on the overall speed of com-

putation. The other factor weighing in on feasibility when extended to large

cases is the number of design iterations required to reach an optimum design.

To this end, future work will have to explore the use of advanced optimization

algorithms. Similarly, adjoint-based adaptation of the spatial domain has been

performed in three dimensions, but adaptation of the temporal domain in un-

steady simulations has not been addressed for realistic three-dimensional flow

problems. Considering that adjoint-based adaptation of the temporal domain

offers reduction in the overall cost of unsteady simulations, this is an avenue

worth exploring. Also, extension of the aeroelastic sensitivity problem to three

dimensions will require the additional step of linearizing the transfer of forces

and displacements between fluids and structures grids, which is trivial for the

two-dimensional case.

• Analysis of error due to coupling between disciplines

Generally, fully coupled solutions are more expensive than uncoupled simula-

tions due to the iterative strategy employed for such systems. While it may

be known that disciplines are coupled and require a coupled iterative solution

procedure, it is often not known to what extent the coupling is relevant to

functionals of interest. As an example, considering the aeroelasticity problem

presented in this thesis, it may be possible to employ a faster loosely coupled

solution procedure over a tightly coupled iterative method, to solve the flow,

mesh and structure equations at each time step without significantly degrading

the functional accuracy, provided the error due to coupling can be quantified.

While a procedure to estimate such coupling error has not been presented in

this thesis, it is possible to build on the current framework for this purpose.

Preliminary research indicates that the definitions of the adjoint equations re-

quire minimal modifications to reflect the functional relevant coupling error. It
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is expected that the error will continue to take up the form of an inner product

between a nonzero residual and the corresponding adjoint variable.

• Spatially-local temporal domain adaptation

The derivation presented in this thesis for the computation of temporal dis-

cretization error, permits the decomposition of such error into a spatial dis-

tribution at each time step. However, the results presented made no effort to

use such an error distribution to identify regions in the spatial domain where

refinement of the temporal domain could possibly be avoided. That is to say

that, all spatial elements were advanced at each time-step by the same time-

step size, irrespective of the spatially local contribution to the overall temporal

discretization error in the functional. Preliminary research indicates significant

non-uniformity in the the spatial distribution of the temporal discretization er-

ror for the example problems presented. Additional reduction of computational

expense over spatially uniform temporal domain adaptation may be realized by

developing techniques to perform spatially non-uniform temporal domain adap-

tation. In essence this amounts to local time-stepping in unsteady problems,

where spatial elements in the computational mesh are advanced in time at differ-

ent rates. The key issue to be addressed in order to enable such a method is the

computation of the spatial convective flux at the interface between neighboring

spatial elements that are at different temporal locations.

• Combined spatial and temporal domain adaptation

Another area of interest concerns the combination of spatial and temporal adap-

tation for functional outputs. Considering the results demonstrated in the the-

sis combined with existing work that has been done on spatial adaptation, the

machinery now exists to adapt both the spatial and time domains indepen-

dently. The obvious path from this point would be to address issues that arise

from the coupling of spatial and temporal adaptation. The full error control
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problem involves the simultaneous targeting of spatial discretization, temporal

discretization, algebraic, and coupling errors. If simultaneous goal-based adap-

tation using such error estimates is possible, it would ultimately lead to highly

efficient solvers, which could begin with coarse meshes, adapt on-the-fly and

provide an accurate functional to within some error tolerance with almost no

human interaction.
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Appendix A

Third-order accurate BDF3

temporal discretization with

uniform and non-uniform temporal

mesh spacing

A.1 BDF3 with Uniform Spacing

The discretization of the time derivative term in the governing flow equations using

a third-order accurate BDF3 time-integration scheme requires a four-point stencil in

time and is given as:(
dAU

dt

)n
=

(
1

∆t

)[
11

6
(AU)n − 3(AU)n−1 +

3

2
(AU)n−2 − 1

3
(AU)n−3

]
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A.2 BDF3 with Non-Uniform Spacing

The third-order accurate BDF3 time-integration scheme for non-uniform time-step

sizes can be derived starting with different Taylor expansions of the solution at time-

step index n and relaxing the assumption of uniform mesh spacing. Using a four-

point stencil in time, separated by three time-steps of sizes ∆t1,∆t2, and ∆t3, the

discretization is given as:(
dAU

dt

)n
= −

(
C2

C4

)
(AU)n −

(
C3

C4

)
(AU)n−1 +

(
1

C4

)
(AU)n−2 −

(
C1

C4

)
(AU)n−3

C1 =
k2

2(k1 − k2)

k2
3(k1 − k3)

C2 = (1− C1) +
C1k

3
3 − k3

2

k3
1

C3 =
k3

2 − C1k
3
3

k3
1

C4 =
k2(k2

2 − k2
1) + C1k3(k2

1 − k2
3)

k2
1

k1 = ∆t1

k2 = ∆t1 + ∆t2

k3 = ∆t1 + ∆t2 + ∆t3

∆t1 = T n − T n−1

∆t2 = T n−1 − T n−2

∆t3 = T n−2 − T n−3

T = Time
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Appendix B

Linear Multigrid Methodology

A linear geometric agglomeration multigrid [1] strategy is used to accelerate conver-

gence of all linear systems encountered in the solution process, be either, the flow,

mesh motion, flow adjoint or mesh adjoint equations. The linear multigrid method

uses a correction scheme where coarser levels recursively provide corrections to the fine

grid solution. The coarse level meshes are built by repeated agglomeration or merg-

ing of neighboring control volumes to form a single control volume. Figures B.1(a)

through B.1(f) show an unstructured triangular mesh around a four-element airfoil

and the agglomerated coarser levels.

Consider a linear system developed by discretizing and linearizing a non-linear

equation on the fine level mesh.

[A]hxh = bh (B.1)

where as notation for this section of the appendix, the subscripts h and H refer to a

spatial mesh of some arbitrary resolution and an agglomerated coarser spatial mesh.

An approximate solution to the linear system can be obtained by using conventional

iterative methods such as Jacobi or Gauss-Seidel iterations. The residual of the linear

system can then be written as

[A]hx̄h − bh = rh (B.2)
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where x̄h is the approximate solution to the linear system. A correction x′h to the

approximate solution is defined such that the residual of the linear system on the fine

level mesh goes to zero.

xh = x̄h + x′h (B.3)

By taking the difference between the correction equation and the residual equation

on the fine mesh, a new linear system is defined as

[A]hx
′
h = −rh (B.4)

Transferring this equation to a coarse level to form a coarse level correction equation

yields

[A]Hx′h = −IHh rh (B.5)

where the subscript H refers to the coarse level and IHh is the fine-to-coarse level

restriction operator. This system can now be iteratively solved approximately or

exactly if H is coarse enough. Alternatively, if H is not sufficiently coarse, a new

approximate solution is obtained and the residual of this system is then transferred

to a coarser level. This process is repeated until H is sufficiently coarse to obtain

a numerically exact solution to the system using an iterative method. The exact or

approximate solutions obtained from the coarse levels are used to correct the fine grid

solution as

x̄newh = x̄h + IhHx′H (B.6)

where IhH refers to the coarse-to-fine grid prolongation operator. In the analysis

problem of the current work, summation of parent residuals is used as the restriction

operator for the right-hand-side of the linear system. For the flow problem, the

coefficient matrix [A]H (i.e. flow Jacobian matrix) for the coarse levels are constructed

by first restricting the fine level flow solution through a parent element area weighted
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approach, and then using the restricted flow solution to build the flow Jacobian

matrix. For all cases, direct injection of coarse level corrections into parent elements

is used as the prolongation operator.
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure B.1: Agglomerated multigrid levels for an unstructured mesh around a 4-element airfoil.189
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