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The use of high-order discontinuous Galerkin (DG) discretizations has become

more widespread over the last decade for solving convection-dominated computa-

tional fluid dynamics problems. The appeal of these methods relates to their favor-

able asymptotic accuracy properties, combined with compact stencils and favorable

scalability properties on parallel computing architectures. This work covers advances

in several areas of high-order DG discretizations, including the development of im-

plicit solvers, discrete adjoint methods for shape optimization, and output-based error

estimation and mesh and time-step adaptation.

For time-dependent problems, high-order implicit time-integration schemes are

considered exclusively to avoid the stability restrictions of explicit methods, with par-

ticular emphasis on balancing spatial and temporal accuracy of the overall approach.

In order to make the high-order schemes competitive, efficient solution techniques

consisting of a p-multigrid approach driven by element Jacobi smoothers are inves-

tigated and developed to accelerate convergence of the non-linear systems, in which

the results demonstrate h independent convergence rates, while remaining relatively

insensitive to time-step sizes.

A framework based on discrete adjoint sensitivity analysis has also been devel-

oped for applications in shape optimization and goal-oriented error estimation. An

adaptive discontinuous Galerkin algorithm driven by an adjoint-based error estima-

tion procedure has been developed, which incorporates both h-, p- and combined hp-

adaptive schemes, for producing accurate simulations at optimal cost in the objective

functional of interest. Current results show superior performance of these adaptive

schemes over uniform mesh refinement methods, as well as the potential of the hp

refinement approach to capture strong shocks without limiters. Finally, the adjoint-

based error estimation strategy is successfully extended to unsteady flow problems,

where the time-dependent flow solution is solved in a forward manner in time but the

corresponding unsteady adjoint solution is evaluated as a backward time integration.
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Results demonstrate that this methodology provides accurate global temporal error

prediction, and may be employed to drive an adaptive time-step refinement strategy

for improving the accuracy of specified time-dependent functionals of interest.
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Chapter 1

Introduction

The continuous growth of computer resources has led to the emergence of Computa-

tional Fluid Dynamics (CFD) as an indispensable technology for the analysis of real

flow problems, often encountered in many engineering analysis and design problems.

While numerical simulations allow the study and analysis of complex flow processes

without resorting to expensive and time-consuming experimental measurements, ex-

perimental methods continue to play an important role in fluid mechanics due to

inaccuracies and uncertainties in many numerical simulations. Therefore, the focus

in current CFD technology improvement has concentrated on the development and

improvement of computational methods and numerical techniques to make modern

numerical simulations more accurate, efficient, stable and robust.

Early CFD approaches concentrated on finite-difference methods [1–3] for solving

the governing partial differential equations of flow fields and these became widely used

in the context of structured meshes for simple geometries. However, one of the main

drawbacks of these methods lies in difficulties involved in extending these discretiza-

tions to unstructured meshes, which are critical for handling problems with complex

geometries. Finite volume methods [4–6], on the other hand, can be used for arbitrary

geometries, using structured or unstructured meshes, and furthermore, can easily be

formulated to be discretely conservative [7], which makes these methods highly desir-

able for modeling problems where conservation is important, such as problems with

shock waves or problems which must conserve a particular property exactly such as
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mass or energy transfer. However, most finite-volume discretizations have tradition-

ally relied on low-order accurate (at most second-order) formulations, which in turn

result in either low accuracy, or require extensively refined computational meshes for

achieving high accuracy.

Over the last decade, much effort in the computational fluid dynamics commu-

nity has concentrated on developing higher-order accurate discretizations [8–16] in

order to improve the accuracy and efficiency of simulations with demanding accu-

racy requirements. The advantage of high-order discretization approaches is that

they alter the asymptotic relationship between solution accuracy and resolution in

a beneficial manner. On the other hand, these methods are more computationally

expensive, and thus the increase in delivered accuracy must outweigh the additional

computational expense to make these techniques practical [16–20]. At the same time,

the incorporation of sensitivity analysis techniques [21–23] has become the subject

of increased interest in many numerical simulations. The calculation of the sensi-

tivities of specific simulation outputs with respect to simulation inputs can be used

to deliver important information in a simulation which in turn can be used to drive

an optimization process, or to estimate simulation error in the outputs [24–27], thus

enabling an adaptive refinement strategy for reducing simulation error.

This thesis is focused on the investigation and development of novel techniques

for advancing the state-of-the-art of computational fluid dynamics through the com-

bination of both high-order discretizations and sensitivity analysis techniques. The

thesis work relies exclusively on the use of higher-order discontinuous Galerkin dis-

cretizations, due to their ability to maintain discrete conservation in the presence

of high-order discretizations on unstructured meshes about complex configurations.

For sensitivity analysis techniques, this work relies exclusively on discrete adjoint

techniques, which can be implemented in a relatively straight-forward manner, and

through which sensitivities and/or error estimates can be computed in a robust and

efficient manner.
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1.1 Higher-order Methods

The original discontinuous Galerkin method was first introduced and analyzed through

the work of Reed and Hill [28] as a technique to solve the scalar hyperbolic neutron

transport equation. Lesaint and Raviart [29] presented the first numerical analysis

for the method for linear hyperbolic problems. They showed that the L2 norm of

the error convergence in the DG method with an assumption of a smooth exact so-

lution is O(hp) for interpolating polynomials of order p and an average element size

h. More numerical analysis on convergence rates was further studied by Johnson and

Pitkaranta [30], Richter [31] and Peterson [32] for linear equations. The optimal con-

vergence rate of O(hp+1) was proved to be achievable for structured two-dimensional

non-Cartesian grids where the characteristic direction is not exactly aligned with the

grids. The first extension of DG methods to nonlinear hyperbolic problems was at-

tributed to the work of Chavent and Salzano [33], based on the use of a Riemann

solver to evaluate fluxes across elemental interfaces. More fundamental work for DG

methods applied to non-linear hyperbolic equations was further made by Cockburn

and Shu through a series of works [12,34–37] using explicit time-integration schemes

to achieve high-order accuracy in space and in time. These methods also have been

recently applied to second-order elliptic problems [9, 38–41] notably with extensions

to the Navier-Stokes equations. More recently, efficient solution strategies [16–20,42]

have been investigated for improving the performance of high-order DG methods.

The general appeal of DG methods is due to their favorable properties for de-

livering higher accuracy at reasonable computational cost. Over the last decade,

significant growth in computational resources and increasing requirements of high

accuracy levels have made high-order accurate discontinuous Galerkin methods a

popular choice for many current CFD simulations [8–18, 42]. DG methods rely on a

set of polynomial basis functions defined only on each individual mesh element. The

resulting accuracy order of these methods depends only on the approximating order

of the polynomial basis functions. However, because these basis functions are only

defined on individual elements, the solution approximation is discontinuous across
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elements. The resulting discontinuities can be handled using approximate Riemann

solver techniques [43–47], which are now well understood and have been developed

extensively in the context of finite-volume methods. Furthermore, a very attractive

property of DG methods lies in the fact that the increase of the degree of approx-

imating polynomials does not affect the numerical stencils since each element only

communicates with its direct neighbors, regardless of the order of discretizations. The

compactness of DG methods has clear advantages in boundary condition treatment

and parallel computing [48]. In addition, the communication at shared element in-

terfaces can easily be formulated to accommodate different discretization orders in

neighboring elements, which makes DG methods ideally suited for implementing h-p

adaptive refinement strategies [49–51].

For time-dependent problems, high-order time-integration schemes are required

to work in conjunction with high-order spatial schemes to achieve an overall high

error tolerance. While most current implementations focus on the use of explicit

schemes, such as explicit Runge-Kutta discontinuous Galerkin (RKDG) methods [13,

18, 52], relatively little work has been done with regards to implicit time-integration

schemes for DG methods, particularly higher-order implicit schemes, such as implicit

Runge-Kutta schemes. Explicit schemes are well suited for problems with similar

spatial and temporal scales, however, they are notoriously inefficient for problems

with disparate temporal and spatial scales, such as low reduced frequency problems

and for steady-state problems. The CFL stability limit of explicit schemes applied

to high-order spatial discretizations becomes more restrictive as the order of the

spatial discretization increases [13, 53]. As a consequence, implicit time-integration

strategies, which are unconditionally stable and allow the selection of the time-step

size based purely on temporal accuracy considerations [54–56], can be expected to

provide a more effective approach for problems with disparate length and time scales

or stiff problems. The use of high-order implicit time-integration methods [55,57,58]

has been recently investigated for finite-volume methods. Thus, one of the goals of

this work is to implement high-order implicit schemes for DG discretizations and to

develop efficient solution strategies to make these schemes competitive.
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1.2 Adjoint-based Sensitivity Analysis

In addition to the development of CFD analysis capabilities, sensitivity analysis capa-

bilities have become indispensable in modern research areas related to aerodynamic

design optimization and error estimation for functional outputs. Adjoint-based shape

optimization for elliptic systems was first introduced by Pironneau [59] and was ap-

plied to transonic flow by Jameson [23]. Subsequently, Jameson et al. [21,22] pioneered

this method for Euler and Navier-Stokes problems. In the context of unstructured

meshes, a discrete adjoint approach was developed for shape optimization by Newman

and Taylor [60, 61] and Elliot and Peraire [62, 63] for compressible inviscid flows and

laminar viscous flows, respectively. In addition, Anderson and Venkatakrishman [64]

developed a continuous adjoint approach using unstructured grids. While the ma-

jority of work in aerodynamic shape optimization has been focused on the design of

aerospace vehicles in a steady flow environment, unsteady shape optimization tech-

niques [65–68] have been developed as well for time-dependent flow problems. Addi-

tionally, adjoint-based sensitivity analysis strategies initially developed for design op-

timization have been extended to enable error estimation for quantifying solution error

in specific simulation outputs. Practical formulations for output-based a posteriori

error estimation based on adjoint techniques have been developed and demonstrated

successfully, initially within the context of a variational framework [27,49,69–72], and

more recently for finite-volume discretizations [24–26,73]. Mani and Mavriplis [74,75]

further extended this methodology to temporal error estimation in conjunction with

adaptive time-step refinement to reduce errors in time-dependent functionals in the

context of finite-volume methods.

This work considers applications of the adjoint technique in the context of dis-

continuous Galerkin discretizations for both shape optimization problems and for a

posteriori error estimation. In the context of design optimization problems, adjoint

methods enable the calculation of the sensitivity of the objective with respect to any

number of design variables at a cost which is essentially independent of the number of

design variables, and roughly equivalent to an additional flow analysis problem. For
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optimization problems, when design variables produce changes in the shape of the

computational domain boundaries, the linearization of the discretized flow equations

with respect to the mesh geometry must be considered. In the case of DG discretiza-

tions, this involves the variation of element and face quadrature points as well as the

element mappings, which may involve geometrically higher-order curved elements.

Techniques for including these effects are formulated in this work and demonstrated

on a simple airfoil optimization problem.

In addition to shape optimization problems, global error estimates for specified

functionals of interest can be quantified by using the adjoint method. Furthermore,

the resulting functional error estimates can also be divided into elemental contribu-

tions, which serve as a guide for automated mesh adaptation in an attempt to decrease

and equidistribute the functional error. Since functional accuracy in discontinuous

Galerkin methods can be improved by subdividing elements or by increasing the dis-

cretization order, an h-refinement scheme, or a p-enrichment scheme or a combined

hp-refinement scheme can be employed to improve the quality of a computational

mesh. This work develops a framework for estimating spatial functional error and

implementing h-p refinement strategies, particularly for difficult problems such as hy-

personic flow problems with strong shock waves. Finally, the framework is extended to

unsteady problems for temporal error estimation [74, 75], in which a time-dependent

adjoint problem must be solved, and a global temporal error estimate is divided into

localized error contributions in the time domain and is used to guide an adaptive

time-step refinement approach.

1.3 Thesis Overview

The objective of this work is to develop efficient solution strategies for high-order

adaptive discontinuous Galerkin methods for steady-state and higher-order accu-

rate time-implicit schemes, and to develop discrete adjoint sensitivity techniques for

gradient-based shape optimization, output-based error estimation and mesh refine-

ment algorithms, as well as demonstrating the performance of the methods in two-
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dimensional compressible flow test cases. The primary contributions of this thesis are

as follows:

• Extension of solution methods for high-order steady-state discontinuous Galerkin

discretizations to unsteady time-implicit problems, with emphasis on the devel-

opment of a p-Multigrid approach driven by element-Jacobi solver variants and

verification of temporal error convergence for various orders of implicit schemes.

• Derivation of a discrete adjoint sensitivity formulation for DG discretizations

and application to shape optimization.

• Development of an adjoint-based spatial error estimation technique for steady-

state flows.

• Investigation of h-refinement, p-refinement and hp-refinement schemes and ap-

plication of an hp-adaptive refinement scheme to hypersonic flow problems.

• Extension of the adjoint-based spatial error estimation technique to temporal

error estimation for unsteady flows, including the derivation of an unsteady

discrete adjoint formulation for the first-order backwards difference scheme and

the fourth-order implicit Runge-Kutta scheme in the context of discontinuous

Galerkin discretizations.

While the contributions are intended to be general, this work is restricted to

the application of these methods to discontinuous Galerkin discretizations of the

compressible Euler equations. The outline of this thesis is illustrated in Fig. 1.1.

Chapter 2 reviews the compressible Euler equations and details the DG discretiza-

tion formulation, as well as the h-p multigrid approach for steady-state problems. In

Chapter 3, the discrete adjoint formulation for computing sensitivity derivatives in

shape optimization problems is derived using the steady-state DG discretization, with

particular emphasis on the treatment of high-order curved surface elements and the

resulting sensitivities in the design optimization problem. Chapter 4 develops and in-

vestigates the adjoint-based error estimation procedure and implements various mesh
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adaptation schemes, consisting of an h-refinement, a p-refinement and a combined

hp-refinement schemes. Special attention is given to comparing the performance of

the adaptation schemes with uniform mesh refinement methods, and to applying the

application of hp-adaptation strategies for hypersonic flow problems. Chapter 5 fo-

cuses on the implementation of high-order time-implicit schemes in conjunction with

high-order DG methods for achieving an overall high level of accuracy, with particular

emphasis on the development of efficient implicit non-linear solvers. In Chapter 6,

attention turns towards the extension of the adjoint-based spatial error estimation to

unsteady problems, the first of which is an unsteady discrete adjoint formulation for

the first-order backwards differencing scheme (BDF1) and the second of which is the

unsteady adjoint method for the fourth-order implicit Runge-Kutta scheme (IRK4).

Finally, conclusions and directions of future work are given in Chapter 7.
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Figure 1.1: Guide to this thesis.
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Chapter 2

High-order Steady-state Discontin-

uous Galerkin Discretizations

This chapter presents high-order discontinuous Galerkin discretizations for steady-

state non-linear hyperbolic systems of equations, represented by the two-dimensional

compressible Euler equations. Efficient solution strategies consisting of an hp-multigrid

approach driven by element Jacobi smoothers are investigated and developed to make

the overall high-order methods competitive. Results show that a p-order DG dis-

cretization scheme achieves a p + 1 rate of spatial error convergence for steady-state

flow problems, demonstrating the favorable asymptotic accuracy properties of high-

order discontinuous Galerkin methods. In addition, the hp-Multigrid approach ex-

hibits p and h independent convergence rates in achieving steady-state solutions.

2.1 Governing Equations

The governing equations that we consider exclusively in this work are the two-

dimensional compressible Euler equations that can be written in the following con-

servative form:

∂u(x, t)

∂t
+
∂f1(u(x, t))

∂x
+
∂f2(u(x, t))

∂y
= 0 in Ω (2.1)
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where Ω is a two-dimensional bounded domain. The vector of conservative flow

variables u and the inviscid Cartesian flux components f1 and f2 are defined by

u =



ρ

ρu

ρv

ρe


, f1 =



ρu

ρu2 + p

ρuv

(ρe+ p)u


, f2 =



ρv

ρuv

ρv2 + p

(ρe+ p)v


(2.2)

respectively, where the notations ρ , p, and e denote the fluid density, pressure and

specific total energy per unit mass, respectively. u and v represent the flow veloc-

ity components in the x and y coordinate directions. This system of equations is

completed by the perfect gas equation of state given as,

p = (γ − 1)

[
ρe− 1

2
ρ(u2 + v2)

]
(2.3)

where γ is defined as the ratio of specific heats, which is 1.4 for air.

2.2 Discontinuous Galerkin Discretizations

The computational domain Ω is partitioned by a triangulation TH , of average element

size H, into an ensemble of non-overlapping elements, such that Ω =
⋃

k∈TH
Ωk,

where Ωk refers to the volume of an element k (k ∈ TH). The discontinuous Galerkin

discretization proceeds by formulating a weak statement of the governing equations,

by multiplying Eq. (2.1) by a set of test functions, {φj, j = 1, · · · ,M}, with the

maximum polynomial order of p, and integrating within each element, e.g. k, as:

∫
Ωk

φj

[
∂u

∂t
+
∂f1(u)

∂x
+
∂f2(u)

∂y

]
dΩk = 0 (2.4)

Integrating this equation by parts, the weak statement of the problem becomes:

∫
Ωk

φj
∂uH

∂t
dΩk −

∫
Ωk

[
∂φj

∂x
f1(uH) +

∂φj

∂y
f2(uH)

]
dΩk

+

∫
∂Ωk\∂Ω

φjH(u+
H ,u

−
H ,n)dS +

∫
∂Ωk∩∂Ω

φjH
b(u−H(u+

H ,n),n)dS = 0 (2.5)
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where the unit normal vector n = (nx, ny) is outward to the boundary and points into

the computational domain. uH represents the Galerkin finite-element approximation

for u and the notations of u+
H and u−H refer to interior and exterior solution approxima-

tions at shared inter-element interfaces, respectively. Current implementations of the

interior boundary flux function H(u+
H ,u

−
H ,n) include the Riemann flux approximation

of HLLC [45, 46] and Lax-Friedrichs [47]. For edges coinciding with physical bound-

aries of the computational domain, the approximate flux function, Hb(u−H(u+
H ,n),n),

is required to be explicitly dependent on exterior traces to satisfy the dual-consistency

condition [76]. Here we set Hb(u−H(u+
H ,n),n) = f1(u

−
H)nx + f2(u

−
H)ny, where u−H is

determined by the interior flow approximation, u+
H , as well as the given boundary

conditions. In particular, total temperature and pressure are prescribed on the inflow

boundary and static pressure is prescribed on the outflow boundary, and at solid walls

u−H is set to have the same density, total energy and tangential velocity (u, v)t
‖ as u+

H ,

given by:

(u, v)t
‖ = (u+, v+)t − (u+nx + v+ny)(nx, ny)

t (2.6)

2.2.1 Solution Expansion and Geometry Mapping

The discrete solution in the local discontinuous Galerkin formulation can be expanded

as a series of basis functions {φi, i = 1, · · · ,M} and solution expansion coefficients

ũH , written as:

uH(x, t) =
M∑
i=1

ũHi
(t) φi(x) (2.7)

where M is the number of modes determined by the degree of the basis functions.

Note that the set of test functions selected for the discrete form of Eq. (2.5) is

identical to the set of basis functions, since this corresponds to a Galerkin method. In

order to simplify the implementation of the subsequent spectral multigrid approach,

the particular choice of the basis functions in the current work involves a set of

hierarchical basis functions defined on a standard isoparametric triangle Ω̄ spanning
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between {0 < ξ, η < 1} [16, 77]. To briefly summarize, the first-order Lagrange

polynomials are defined as,

L1 = 1− ξ − η, L2 = ξ, L3 = η (2.8)

then, the hierarchical basis set, {φ}, is fully described by vertex,

φv
1 = L1, φv

2 = L2, φv
3 = L3 (2.9)

edge,

φe1
n = L1L2ψn−2(L2 − L1)

φe2
n = L2L3ψn−2(L3 − L2)

φe3
n = L3L1ψn−2(L1 − L3) (2.10)

and bubble,

φb
n1,n2 = L1L2L3ψn1−1(L2 − L1)ψn2−1(L1 − L3) (2.11)

shape functions, where 2 ≤ n ≤ pe, n1 + n2 = pb − 1 and n1, n2 ≥ 1. The kernel

functions ψ(z) are given as,

ψn−2(z) =
−2σ

n− 1
P 1,1

n−2(z) (2.12)

where Pα,β
n represents the Jacobi polynomial of order n, with weights α and β. In

our discretization, the edge order pe and the bubble order pb, are set to be the dis-

cretization order within the element (i.e. pe = pb = p). For p ≥ 2 the basis functions

within the standard triangle, {φi, i = 4 . . .M}, are normalized Lobatto functions [77]

(i.e. φn≥2 = σ
∫ x

−1
P 0,0

n−1(z)dz) , which take zero values at the end of their definition

interval. The normalization factor, σ, can be used to condition the mass or convection

matrices. Fig. 2.1 illustrates the basis functions up to p = 4.

Since the set of basis functions is defined in the standard triangle, a coordinate

mapping from the reference to a physical triangle is required for the computation

of the first-order derivatives and integrals. The reference-to-physical transformation

and the corresponding Jacobian associated with each element k are given by:
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Figure 2.1: Illustration of the basis set used for high-order DG discretizations up to
p = 4 (i.e. fifth-order accurate).
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Figure 2.2: Volume and edge quadrature points on the standard triangle for various
discretization orders. Green diamond symbols: Volume; Red circle symbols: Edge.

xk =
M∑
i=1

x̃ki
φi(ξ, η) Jk =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 (2.13)

In the simple case of straight-sided elements the transformation is linear thus the

geometric mapping can be evaluated just by using the element vertex coordinates.

However, in the more complex cases of high-order curved elements, which are typi-

cally required at curved boundaries, additional physical nodes [48] are required for

determining the higher-order modes (p > 1) of the geometric mapping coefficients, x̃,

obtained by:

x̃k = Φ−1x̂pk
(2.14)

where x̂pk
= {xck

,xqk
} consists of the coordinates of element vertices, xck

, as well
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as additional quadrature points, xqk
, for the element k. Φ denotes the projection

mapping matrix which is constituted by the basis functions evaluated at the corre-

sponding points (ξk ← x̂k ) in the reference triangle. The evaluation of the volume

integrals in Eq. (2.5) is computed by use of Gauss quadrature rules [78,79] which are

exact for polynomial degree 2p, and the surface integrals use Gauss-Legendre-Lobatto

quadrature rules [77] which are exact for polynomial degree of 2p + 1 [16, 20]. Fig.

2.2 illustrates the volume and edge quadrature points on the standard triangle for

various discretization orders ranging from p = 1 to p = 4. Neglecting the temporal

derivative term (i.e. the first term) in Eq. (2.5), the spatially discretized system of

equations for steady-state problems becomes:

RHj(ũH) = −
∫

Ωk

[
∂φj

∂x
f1(ũHi

φi) +
∂φj

∂y
f2(ũHi

φi)

]
dΩk +

∫
∂Ωk\∂Ω

φjH(ũ+
Hi
φi, ũ

−
Hi
φi,n)dS

+

∫
∂Ωk∩∂Ω

φjH
b(u−H(ũ+

Hi
φi,n),n)dS = 0 (j = 1, 2, · · · ,M)

(2.15)

where RH(ũH) = {RHj(ũH)} represents the non-linear steady-state residual and the

repeated index i implies summation over the range of 1 to M . Chapter 5 will revisit

the spatially discretized equations of Eq. (2.5) for the solution of unsteady flow

problems, where additional temporal discretizations will be considered.

2.2.2 Single Level Solution Method

In this section, we seek an efficient solution strategy for accelerating convergence of

the non-linear equations (Eq. (2.15)) to steady state. We first describe a single level

solution method including an approximate Newton linearization method and various

element Jacobi smoothing schemes. Then, in the next section, the emphasis is placed

on applying the same techniques used in the single level method to each level of a

multigrid approach.
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Element Jacobi Smoother

A Newton linearization scheme for solving the non-linear system (2.15) is taken as,

ũk+1
H = ũk

H −
[
∂RH

∂ũH

]−1

RH(ũk
H) (2.16)

where k refers to the iteration index. Instead of directly computing the inverse of the

Jacobian matrix,
[

∂RH

∂ũH

]
in Eq. (2.16), we consider the use of approximate Newton

schemes, consisting of a non-linear element Jacobi (NEJ), a quasi-non-linear element

Jacobi (qNEJ), a linearized element Jacobi (LEJ) and a linearized element Gauss-

Seidel smoother. First, the full Jacobian entries are decomposed into diagonal, [D],

and off-diagonal, [O], block components, i.e. [∂RH/∂ũH ] = [D] + [O]. Each diagonal

block corresponds to the modal coupling between all modes within a given element,

which can be easily inverted using a lower-upper (LU) factorization at each block

level and treated implicitly in the element Jacobi smoothers. The off-diagonal com-

ponents arise from the inter-element flux computation between neighboring elements

and are treaty explicitly in a given element Jacobi smoother. In particular, the present

procedure for implementing the solver variants can be explained as follows:

I Outer iteration (with iteration index k): ũk
H

Inner iteration (with iteration index m, m = 1, · · · ,M): û1
H = ũk

H

B NEJ : ∆ûm+1
H = [D]−1

ûm
H
[−RH(ûm

H)]

B qNEJ: ∆ûm+1
H = [D]−1

ũk
H
[−RH(ûm

H)]

B LEJ : ∆ûm+1
H = [D]−1

ũk
H
[−RH(ũk

H)− [O]ũk
H
∆ûm

H ]

B LGS : ∆ûm+1
H = [D + L]−1

ũk
H
[−RH(ũk

H)− [U ]ũk
H
∆ûm

H ]

Model solution update: ûm+1
H = ûm

H + α∆ûm+1
H

I Residual vector and diagonal/off-diagonal block updates:

ũk+1
H = ûMH , RH(ũk+1

H ), [D]ũk+1
H

, [O]ũk+1
H

or [O]ũk+1
H

= [L+ U ]ũk+1
H

I The procedure is performed repeatedly until RH(ũk+1
H ) = 0.
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In the NEJ solver, the off-diagonal blocks are discarded, and the residual vector and

diagonal components are updated using the latest available solution approximation

at each inner iteration; The qNEJ approach represents a modified NEJ solver where

the diagonal block Jacobians are frozen over a certain number of subiterations and

thus only the steady-state residual is updated at each smoothing iteration. On the

other hand, the LEJ method requires the storage of both diagonal and off-diagonal

blocks, which are frozen in the inner iterations. The LGS smoothing strategy further

splits the off-diagonal components of the Jacobian matrix into lower, [L], and upper,

[U ], contributions (denoted as [O] = [L] + [U ]), treats [U ] explicitly and [L] implicitly

through forward substitution, and thus follows an ordered sweep across elements using

the latest available neighboring information. Additionally, α is a relaxation parameter

designed to keep ‖α∆ũm+1
H ‖L∞/‖ũm+1

H ‖L∞ ≤ 10%. The number of smoothing passes

(i.e. the inner iterations) is generally set equal to 5 in the current work. The per-

formance of these solver variants for steady flow problems is demonstrated in Section

2.3.2. More detailed comparisons pertaining to unsteady flow problems are discussed

in Chapter 5.

2.2.3 V-Cycle p-, hp-Multigrid Approach

Implementation of the element Jacobi smoother variants on the highest discretization

order level results in a single-level solution method, which can be further accelerated

by employing a V-cycle p- or hp-Multigrid approach [16–18,20,42,80,81]. This section

is concerned with the use of efficient multigrid methods for solving the spatially

discretized non-linear problem denoted in Eq. (2.15) to a final steady-state solution.

Chapter 5 will reconsider this approach to obtain solutions for the corresponding

unsteady problem for a series of arbitrarily large time-step sizes.

General Description

The motivation for the multigrid approach stems from an examination of the error

of the numerical solution in the frequency domain. A multigrid scheme begins by
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eliminating the high-frequency errors associated with local variations in the solution

on the fine grid, and then transferring the fine grid solution to a coarse grid, where

the low-frequency errors of the fine grid manifest themselves as high-frequency errors

and thus can be eliminated efficiently using the same smoothing method [82, 83].

Therefore, the basic idea behind all multigrid strategies is to accelerate the solution

of a fine grid problem by computing corrections on coarser grids and then interpolating

them back to the fine grid problem. Here we briefly summarize the principal procedure

[82–84] to formulate a two-level multigrid scheme and this procedure can be used

recursively for multiple levels of a multigrid scheme. First consider a discrete problem

denoted as:

Jhuh = fh (2.17)

where Jh represents the discretization of the continuous problem with a mesh size of

h, and uh represents the exact solution for the corresponding discretization scheme.

If ūh refers to an approximation to the exact solution solved by using an iterative

scheme, then Eq. (2.17) becomes:

Jhūh − fh = rh (2.18)

Since ūh does not satisfy the discrete problem exactly, we have a residual term, rh. If

rh = 0, then ūh = uh. Subtracting Eq. (2.18) from Eq. (2.17), we obtain:

Jhuh − Jhūh = −rh (2.19)

If Jh denotes a linear operator, Eq. (2.19) can be written as:

Jh(uh − ūh) = −rh or Jhvh = −rh (2.20)

where vh represents the required solution correction, uh − ūh, on the fine mesh. As-

suming high frequency errors in the solution have been eliminated by using an efficient

local solution or error smoothing strategy, we next transfer the solution correction to

a coarse mesh. Thus the problem on the coarse mesh reads:
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JHvH = −IH
h rh (2.21)

where vH denotes the solution corrections on the coarse mesh, obtained by solving

Eq. (2.21) either exactly or approximately. IH
h refers to the restriction operator for

transferring the residual vector from a fine mesh to a coarse mesh. The fine level

solution is then updated as:

u∗h = ūh + Ih
HvH (2.22)

where Ih
H refers to the prolongation operation for interpolating the solution corrections

from the coarse mesh back onto the fine mesh, and u∗h denotes new solution updates.

If the operator Jh is non-linear, Jhuh−Jhūh is no longer equal to Jh(uh− ūh) and

thus Eq. (2.20) is not valid. To modify the above multigrid scheme, a new variable

on the coarse mesh is introduced, written as:

ūH = ĪH
h ūh + vH (2.23)

where ĪH
h denotes an operator which restricts the solution from the fine mesh to

the coarse mesh. Note that, in the traditional h-Multigrid approach [82, 83], this

operator may be distinct from the aforementioned restriction residual operator IH
h

which transfers the fine level residual variables to the coarse mesh, whereas in the

spectral or p-Multigrid approach, these operators may be identical. The coarse grid

problem equivalent to Eq. (2.21) is thus expressed as:

JH ūH = SH where SH = JH Ī
H
h ūh − IH

h rh (2.24)

where SH is often called the defect correction for the coarse grid problem. ūH is

obtained by solving Eq. (2.24) either exactly or approximately on the coarse mesh.

Then the fine level solution is updated as:

u∗h = ūh + Ih
H(ūH − ĪH

h ūh) (2.25)
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Figure 2.3: Illustration of a five level V-cycle p-Multigrid algorithm.

This constitutes one two-level multigrid cycle and can be used recursively on multiple

coarser levels. Moreover, the multigrid solution procedure is performed repeatedly

until u∗h satisfies Eq. (2.17). The current work makes use of the non-linear multigrid

approach and concentrates on the use of a spectral multigrid (i.e. p-Multigrid) strat-

egy [17,18,20,81] or a combined spectral-and-geometric multigrid (i.e. hp-Multigrid)

approach [16]. More details are given in the following sections.

p-Multigrid

The p-Multigrid algorithm is based on the standard geometric multigrid method [84],

but instead of using physically fewer elements on coarser levels, lower-order approxi-

mations serve as “coarse” levels while the same spatial grid elements are used on all

levels, as illustrated in Fig. 2.3(a). Therefore, in this methodology, no additional grid

information needs to be stored. Fig. 2.3(b) shows an example of a five-level V-cycle

p-Multigrid approach. Here, the highest level consists of the original p = 4 spatial

discretization, while the intermediate levels consist of lower p = 3, p = 2 and p = 1

discretizations, while a p = 0 (i.e. first-order accurate) scheme is employed at the

lowest level. The procedure of a simplified two-level V-cycle p-Multigrid scheme used

21



for solving the spatially discretized Euler equations (2.15) is described as follows:

• Step 1: PerformM subiterations on the high-order approximation level (p) to

solve the problem: Rp(ũ
m
p ) = Sp, using one of the element Jacobi smoothers

described previously; Calculate residual: rp = Sp −Rp(ũ
M
p ).

• Step 2: Restrict both solution and residual to the low-order approximation

level (p− 1): ũp−1 = Īp−1
p ũMp ; Sp−1 = Rp−1(ũp−1) + Ip−1

p rp.

• Step 3: Solve the low-order approximation level problem, Rp−1(ũ
m
p−1) = Sp−1,

by using the same element Jacobi solver selected on the previous level withM

subiterations; Obtain the low-order level error: ep−1 = ũMp−1 − Īp−1
p ũMp .

• Step 4: Prolongate this low-order level error to correct the high-order approx-

imation level: ũp = ũMp + Ip
p−1ep−1.

• Step 5: Repeat steps 1 through 4 for each V-cycle of the p-Multigrid method

until Rp(ũ
M
p ) = 0 (machine zero or a suitably determined tolerance).

The replacement of the notation RH with Rp is denoted to specify the approximation

level of the p-Multigrid approach. The source term Sp, which represents the residual

restriction term from the finer multigrid levels, vanishes on the finest level (highest-

order approximation level) in the multigrid formulation, but is retained on all levels

in the description for generality. The p-multigrid approach fits naturally with the

present DG discretizations since the use of a hierarchical basis set simplifies the for-

mulation of interpolation operators between high-order and low-order approximation

levels. In particular, the restriction operator (Ip−1
p ) from high-order levels to low-order

levels is obtained by simply deleting the corresponding higher order modal coefficients

and transferring lower order modes exactly. The prolongation operator (Ip
p−1) from

lower-order to high-order levels is obtained by injecting lower order modal coefficients

exactly. The main reason for this simple projection is due to the fact that the lower

order basis functions are a subset of the higher order basis functions. Moreover, the

same restriction operator (i.e. Ip−1
p = Īp−1

p ) is used for both residual and solution
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restriction in the p-Multigrid scheme, although this is not valid in the h-Multigrid

method described subsequently. The two-level multigrid scheme described above is

used recursively to solve the coarse level problem, resulting in the full multilevel al-

gorithm. Furthermore, a constant number of five smoothing sweeps (i.e. M = 5) is

employed at all multigrid levels using one of the element Jacobi smoothers. For the

qNEJ, LEJ and LGS smoothing schemes, this requires only one non-linear Jacobian

(and non-linear residual for the LEJ and LGS schemes) evaluation for each visit to a

given mesh level.

hp-Multigrid

For relatively fine meshes, the coarse problem at the p = 0 level of each multigrid cycle

can be expensive to solve and inadequate solution of the p = 0 sub-problem may result

in deterioration of the overall convergence rate of the multigrid approach. In order

to solve the p = 0 sub-problem more accurately, the traditional h-Multigrid approach

[82–84], which makes use of a sequence of physically coarser agglomerated grids, can

be utilized once the p = 0 approximation level has been reached (as illustrated in Fig.

2.4), thus constituting the hp-Multigrid approach. For the hp-Multigrid approach, five

smoothing passes on each level are still used for the p-Multigrid scheme. However,

note that different operators for restricting the residual and solution variables are

required. In particular, the restriction of the solution variables and the residual to a

coarse level of the h-Multigrid algorithm is obtained as [85]:

uH = ĪH
h uh =

1

AH

Nk∑
k=1

(uhAh)k and RH = IH
h Rh =

Nk∑
k=1

(Rh(uh))k (2.26)

where Nh is the number of elements used in an individual agglomeration cell between

two grid levels, Ah refers to the fine level elemental area, and AH =
∑Nk

k=1(Ah)k is the

coarse level area.
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Figure 2.4: Illustration of a V-cycle hp-Multigrid algorithm.

2.3 Steady-state Results

This section presents results of spatial accuracy and algorithm performance for a

smooth two-dimensional compressible channel flow problem. The hp-Multigrid algo-

rithm described above is employed to accelerate convergence of the flow solver to a

steady-state solution, where a constant 5 smoothing iterations are used on each level

of the hp-Multigrid approach, including the agglomerated (p = 0) levels.

2.3.1 Subsonic Channel Flow over a Gaussian Bump

The computational domain and an intermediate mesh with a mesh size of N = 1248

are depicted in Fig. 2.5(a). This test case involves the compressible flow with free-

stream Mach number of 0.35 passing over a Gaussian bump perturbation. The

boundary nodes are generated using the bump geometry configuration, given by:

y = 1
5
√

2π
e−16(x−x0)2 . Wall boundary conditions are enforced on the top and bottom

of the channel and the initial condition is set to a steady-state solution obtained with

the p = 0 scheme. The approximate Riemann flux function of HLLC [45, 46] is used

to resolve discontinuities at inter-element boundaries and the spatial residual is con-
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Figure 2.5: Illustration of four levels of the h-Multigrid agglomerated mesh configu-
ration for a mesh size of N = 1248 in the two-dimensional channel flow test case.

verged to machine precision of 10−14 for all cases. Fig. 2.5 illustrates four levels of the

h-Multigrid agglomerated mesh configuration for the intermediate mesh (N = 1248).

Numerical Solutions

Figures 2.6(a) and 2.6(b) illustrate the pressure contours of the steady-state solution

using the p = 0 and p = 4 spatial discretizations, respectively, on the mesh of

1248 elements. Due to the low mesh resolution on the top of the bump surface, the

p = 0 discontinuous Galerkin scheme, which corresponds to a first-order accurate

finite volume scheme, fails to obtain a smooth solution for this channel flow test case.

Based on the same mesh resolution, the p = 4 scheme, in contrast, demonstrates the

superior ability of a higher-order scheme in delivering a very smooth and symmetric

solution for this test case.
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(a) First-order accurate scheme with p = 0 boundary elements
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Figure 2.6: Computed pressure contours using the p = 0 and p = 4 schemes on a
unstructured triangular mesh of 1248 elements.
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Spatial Accuracy

A series of four grids, consisting of 573, 1248, 2522 and 5088 unstructured triangular

elements, have been employed to study solution error convergence of the discontinuous

Galerkin discretizations of various orders, ranging from p = 0 to p = 3. The standard

L2 norm of the entropy error, ‖es‖L2 = ‖s− s∞‖L2 , where s∞ denotes the free-stream

entropy, is used to measure the discretization error. Fig. 2.7 depicts the L2 entropy

error norm convergence of the steady-state solution for various discretization orders

as a function of grid spacing (h). For two-dimensional configurations, the number of

elements in the computational domain is inversely proportional to the square of the

grid spacing (i.e. N ∼ 1/h2). Fig. 2.7 indicates that the optimal error convergence

(∼ hp+1) is approximately attained in this study. Specifically, the asymptotic slopes

of the p = 0, p = 1, p = 2 and p = 3 schemes are 0.7, 1.7, 3.0, and 3.8, respectively,

which are close to the respective design values of 1, 2, 3, and 4.

Efficiency Comparison

The results of the mesh refinement study discussed in the section on spatial accuracy

are re-explored in Fig. 2.8 for an efficiency study, where the discretization error is

plotted as a functional of the required CPU time, which is obtained using the V-cycle

hp-Multigrid algorithm driven by the LGS smoothing strategy. The computational

cost for the p = 0 scheme is not included in the figure since the converged p = 0

solutions serve as the initial conditions for higher-order schemes. The spatial residuals

of all discretization schemes are fully converged to machine precision of 10−14, so that

the relative comparisons between CPU time for the various discretizations remain

valid. As illustrated in Fig. 2.8, to achieve a given level of accuracy, the CPU time

decreases when the discretization order is increased, and the benefits of using higher-

order schemes become more significant with higher levels of accuracy.
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Figure 2.7: Convergence of the L2 norm of the entropy error for various discretization
orders (0 ≤ p ≤ 3) as a function of grid spacing in the case of a 2D compressible
channel flow. h0 represents the grid spacing of the coarsest mesh.

CPU Time (s)

||e
s|

| L2

101 102 103

10-7

10-6

10-5

10-4

10-3

p=1
p=2
p=3

Figure 2.8: Convergence of the L2 norm of the entropy error for various discretization
orders (1 ≤ p ≤ 3) as a function of computational cost in the case of a 2D compressible
channel flow.

28



2.3.2 Performance of the hp-Multigrid Approach

As mentioned previously, the use of efficient solution strategies is particularly impor-

tant for the high-order DG discretizations to deliver steady-state flow solutions in

an efficient manner. Therefore, this section is concerned with demonstration of the

performance of the element-Jacobi solver variants and demonstration of the superior

efficiency of the hp-Multigrid approach over the single level method.

Comparison of Element Jacobi Smoothers

The performance of the non-linear element Jacobi (NEJ), the quasi-non-linear element

Jacobi (qNEJ), the linearized element Jacobi (LEJ) and the linearized element Gauss-

Seidel (LGS) smoothing strategies is demonstrated using a p = 4 spatial discretization

and the intermediate mesh with a mesh size of N = 1248 for the 2D channel flow

problem. The single level method described in Section 2.2.2 is used for all runs and the

convergence is measured in terms of overall number of cycles. Recall that the qNEJ,

LEJ and LGS smoothers effectively freeze the non-linear Jacobians (and residuals for

the LEJ and LGS schemes) over five smoothing iterations, as opposed to the NEJ

smoother where both Jacobians and residuals are required to be evaluated at each

iteration.

Fig. 2.9(a) depicts the convergence profiles of the NEJ, qNEJ, LEJ and LGS

solvers in terms of overall number of cycles. The results are consistent with those

obtained in Reference [85]: the NEJ, qNEJ and LEJ solvers converge at similar rates

in terms of numbers of cycles, while the LGS delivers a significantly faster conver-

gence rate. When compared in terms of computational cost, as shown in Fig. 2.9(b),

the LGS, LEJ and qNEJ schemes are seen to be substantially more efficient than the

NEJ scheme. This is because the linearized schemes utilize five iterations between

non-linear updates, and therefore result in five times fewer non-linear Jacobian and

residual evaluations than the non-linear element Jacobi scheme. The qNEJ scheme

is shown to be similar in terms of computational efficiency as the LEJ scheme, how-

ever, since the off-diagonal blocks of the Jacobian matrix are not stored in the qNEJ
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(a)

(b)

Figure 2.9: Comparison of convergence of non-linear element-Jacobi (NEJ), quasi-
non-linear element-Jacobi (qNEJ), linearized element-Jacobi (LEJ) and linearized
element Gauss-Seidel (LGS) smoothers on a mesh size of N = 1248 and discretiza-
tion order of p = 4. (a) Convergence vs. number of cycles. (b) Convergence vs.
computational cost.
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scheme, the qNEJ scheme may be an appropriate compromise for cases where memory

limitations are dominant.

Efficiency of the hp-Multigrid Approach

First, the performance of the hp-Multigrid scheme as a function of discretization order

is considered, and then the behavior of the hp-Multigrid scheme for various mesh sizes

is examined. Specifically, the mesh sizes vary from N = 573, N = 1248, N = 2522

and N = 5088, and discretization orders range from p = 1 to p = 4, for the two-

dimensional compressible channel flow problem. The linearized element Gauss-Seidel

smoother with 5 smoothing passes is used at each hp-Multigrid level in the following

test cases.

Fig. 2.10(a) illustrates the hp-Multigrid convergence for various discretization

orders, compared with the single level solver on a fixed mesh size of N = 1248.

Due to the fact that the mesh size has been fixed for all schemes, this figure illus-

trates the effect of discretization order on convergence rate. Clearly, both single level

solver and hp-Multigrid approach yield a convergence rate which is independent of

the order of discretization for a fixed grid size (i.e. p-independence), and the hp-

Multigrid approach delivers an overall much faster convergence rate than the single

level method. Fig. 2.10(b) shows that the computational cost for a higher-order dis-

cretization scheme increases progressively using the single level method. For example,

to obtain a level of 10−14, the computational cost required by the p = 4 scheme in the

single level method is roughly 4.3 and 5.6 of those required by the p = 2 and p = 1

schemes. On the other hand, although an hp-Multigrid cycle requires more compu-

tational time than a single level cycle, the hp-Multigrid approach is still shown to

be significantly more efficient than the single level method in terms of computational

cost, and the benefit of the hp-Multigrid solver can be expected to be more evident

for higher approximation orders and larger meshes.

Since mesh resolution is another factor which affects convergence and compu-

tational time, the behavior of the hp-Multigrid approach and corresponding single

level solver is examined with repsect to various mesh sizes. The convergence his-
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Figure 2.10: Comparison of convergence for the hp-Multigrid and the single level
solvers, using various discretization orders on a fixed mesh size of N = 1248, for the
2D channel flow test case. (a) Convergence history vs. the number of hp-Multigrid
cycles. (b) Convergence history vs. computational cost.
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Figure 2.11: Comparison of convergence for the hp-Multigrid and the single level
solvers, using various mesh sizes of N = 573, N = 1248, N = 2522 and N = 5088
and a fixed discretization order of p = 4, for the 2D channel flow test case. (a)
Convergence history vs. the number of hp-Multigrid cycles. (b) Convergence history
vs. computational cost.
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tories obtained for various mesh sizes are illustrated in Fig. 2.11 using the fixed

discretization order of p = 4 for all runs. In terms of number of cycles, increasing

the number of elements, N , has an adverse effect on the convergence rate of the sin-

gle level solver, showing that the element Gauss-Seidel solver is in fact h-dependent.

However, the hp-Multigrid solver is seen to provide essentially h-independent conver-

gence rates, achieving convergence to 10−14 within 40 multigrid cycles for all meshes.

Fig. 2.11(b) shows the computational costs for this test case. It is clearly shown that

the hp-Multigrid solver provides the most efficient mechanism for solving the dis-

crete steady-state problem, and this advantage can be expected to increase for finer

meshes. For example, using the mesh size of N = 573 and the fixed discretization

order of p = 4, the hp-Multigrid approach achieves a speedup of 6.5 over the single

level solver, while a speedup of 8.4 is obtained for the mesh size of N = 5088.
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Chapter 3

Derivation of Discrete Adjoint For-

mulations and Application to Shape

Optimization

In this chapter, a discrete adjoint-based sensitivity analysis technique is developed and

investigated based on the steady-state discontinuous Galerkin discretization. This ap-

proach is well-suited for many applications in computational fluid dynamics, such as

shape optimization and error estimation. Here a framework for design-optimization

problems using an adjoint-based sensitivity formulation is first established. Chapter 4

and Chapter 6 will further explore the application of adjoint methods for error estima-

tion and adaptive refinement strategies for steady-state and unsteady flow problems.

3.1 Introduction

In aerodynamic design optimization techniques, most efficient optimization strategies

are gradient based [21,63,76,86–89], where the vehicle shape is parametrized by a set

of design variables, D, and an optimum achievable shape is obtained by minizing an

appropriate cost functional, L, such as drag coefficients, target pressure distributions,

lift to drag ratios, etc. Much focus of this gradient-based optimization is placed on

obtaining the sensitivity derivatives of the cost functional with respect to the de-
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sign variables, dL/dD, which provides the search directions for optimization. Several

approaches may be useful for obtaining the sensitivity derivatives. The most straight-

forward approach is via the finite-difference method, in which each component of the

gradients, dL/dDm, is evaluated individually by varying the value of Dm by a small

amount and recomputing the value of the objective functional based on this effect.

However, the sensitivity result obtained by the finite-difference method is very sensi-

tive to the selected perturbation size, and moreover each gradient component requires

one extra analysis solution, and thus this method results in an inefficient approach

when there is a large number of design parameters. An alternate approach to obtain

objective sensitivities in a more accurate manner is via the tangent method, in which

a linearization of the analysis problem is directly taken based on the analysis code,

thus yielding accurate sensitivity results. However, the evaluation of each sensitivity

derivative requires the solution of a linear system, which again becomes impractical

when a large number of design variables is involved. A more popular approach for

this task involves the use of an adjoint method [23, 64, 86, 89], in which all the sensi-

tivity derivatives relevant to one objective functional are obtained by solving one flow

problem and one adjoint problem, thus the total cost of this method is essentially

independent of the number of design variables, leading to an efficient approach when

there is a large number of design parameters while only a single or a small number of

objectives. The solution of the adjoint problem should exhibit a similar convergence

rate as the primary or flow problem due to the fact that both problems contain the

same eigenvalues. However, the linear nature of the adjoint problem simplifies the

solution procedure and often results in the cost of the adjoint problem being lower

than the cost of the flow problem.

There are two main approaches for formulating the adjoint problem, namely the

continuous approach and the discrete adjoint approach. In the continuous adjoint

approach, the governing equations are first linearized and then discretized, while in

the discrete adjoint approach the same steps are performed but in reverse order. Since

the linearization of the discretized equations for the primal (i.e. flow) problem has

been already performed for the element Jacobi solvers, the current work concentrates
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on constructing objective gradients based on the discrete adjoint approach for shape

sensitivity problems.

The remainder of this chapter is organized as follows. In Section 3.2, some pre-

liminary descriptions, including shape parametrization, surface and mesh deformation

and objective or cost functionals, are first given. Then the discrete adjoint-based sen-

sitivity derivatives are formulated in the context of discontinuous Galerkin methods.

In Section 3.3, the shape optimization procedure used in this work is described. Com-

putational results are shown in Section 3.4 to demonstrate the performance of the

adjoint approach in a typical design problem.

3.2 Sensitivity Calculation

The adjoint sensitivity formulation starts with the formulation of the tangent prob-

lem, in which the discretized governing equations are linearized and the sensitivity

derivatives of an objective functional are formulated. The discrete adjoint formulation

is then derived by transposing each matrix of the tangent problem and performing

the operations in reverse order. A detailed derivation with references to related ap-

proaches can be found in [89] and therefore our emphasis in this section is to give a

summary and to extend the basic idea to discontinuous Galerkin discretizations on

meshes involving curved elements.

3.2.1 Preliminary Description

Design Variables and Shape Parametrization

Assume that an initial shape geometry, represented by the coordinates of boundary

nodes xs and possibly additional surface quadrature points xq for curved elements,

and a computational mesh are given. The surface geometry is modified through

surface node displacements which are determined by a set of design variables, D =

{Dm,m = 1, · · · , Nd} (where Nd represents the total number of design variables).

The Hicks-Henne sine bump function [90] is employed in order to ensure smooth
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Figure 3.1: Illustration of the Hicks-Henne bump functions for various xsm parameters
varying from 0.02 to 0.96.

designed surface shapes, and the design variables are set to be the magnitudes of the

bump functions placed in the normal directions of the surface nodes, expressed as:

bi(xsi, Dm) = Dmsin
4(πxsi

ln 1
2
/lnxsm), xsi, xsm ∈ [0, 1] (3.1)

where xsm denotes the x-coordinate of the surface node where the bump function is

placed. bi denotes the surface node displacement at xsi due to the displacement of the

surface node at xsm, and Dm is the mth component of the design variables associated

with the surface node at xsm. Fig. 3.1 depicts a sample plot of the bump functions

with a magnitude of 1, as xsm takes on a range of 0.02 to 0.96. For multiple design

variables (Nd > 1), the surface displacement at a particular node location of xsi is

the superposition of all the bump functions placed at each designed surface node,

and new surface coordinates are computed based on all the surface displacements,

denoted as:
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Figure 3.2: Mapping between a physical curvilinear triangle and the reference triangle.

∆xsi = nsi

Nd∑
m=1

bi(xsi, Dm)

xs
new
i = xs

old
i + ∆xsi (3.2)

where ∆xsi represents the displacement at the surface node i. nsi denotes the nor-

mal direction at the surface node i. xs
(new)
i and xs

(old)
i represent the new surface

coordinates and the old ones from the previous design step, respectively.

Additional Quadrature Points for Surface Shape

As described in the previous chapter, the integrals in Eq. (2.15) are evaluated in

the physical triangle but the basis set is defined in the reference triangle, thus a

reference-to-physical coordinate transformation is required, as illustrated in Fig. 3.2.

The transformation for a specific physical element is determined by its geometric

modal mapping coefficients, x̃ shown in Eq. (2.13). For a linear element mapping

(i.e. straight-sided boundary elements), the coordinates of the newly updated surface

nodes, xs, are sufficient to determine the surface geometric modal mapping coeffi-

cients, x̃s, as well as the Jacobian of the mapping and its metrics for each surface

edge or face, due to the linear transformation. However, additional quadrature points

are required to determine higher-order geometric mapping modes x̃s for curved surface

elements (c.f. Eq. (2.14)), which must be employed in the presence of higher-order

solutions (p ≥ 1). Moreover, surface quadrature points must deform with surface
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Figure 3.3: Illustration of deformation of curved surface elements with additional
quadrature points. The dashed line element represents the initial element shape and
the solid line element represents the deformed element shape.

nodes to define new surface mappings, as illustrated in Fig. 3.3. This is achieved

by using the same smooth bump functions used for the surface node displacements,

shown as:

∆xqi = nqi

Nd∑
m=1

bi(xqi, Dm)

xq
new
i = xq

old
i + ∆xqi (3.3)

where ∆xqi represents the displacement at the quadrature point i and nqi denotes

its normal direction obtained by the old surface geometry. x
(new)
qi and x

(old)
qi represent

the new surface quadrature coordinate for quadrature node i and the old one from

the previous design step, respectively. Therefore, the displacements at the entire set

of surface quadrature points are performed similarly to those occurring at the surface

grid points.

Interior Mesh Deformation

Once the deformed surface mesh is obtained, the interior mesh must be deformed

to prevent the generation of overlapping elements. In the current work, the interior

mesh displacements are governed by a discretized set of equations arising from the

tension spring analogy [5, 91, 92], in which each edge of the mesh is represented by a
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spring whose stiffness is related to the length of the edge. The governing equations

are expressed as,

[K]∆x = ∆xs (3.4)

where ∆x and ∆xs denote the entire mesh displacements and the surface mesh dis-

placements, respectively. Based on this definition, the vector of the surface mesh

displacements ∆xs is a subset of the vector of ∆x. [K] denotes the stiffness matrix

obtained from the discrete mesh motion equations. Thus, the entire set of mesh coor-

dinates, x, and the corresponding coordinate mapping modal coefficients, x̃, for the

aforementioned reference-to-physical mapping can be obtained by solving Eq. (3.4)

given the displacements of surface mesh points and surface quadrature points, which

are determined by the bump function and design variables as described previously. In

order to solve Eq. (3.4), we use several hundred sweeps of a Gauss-Seidel scheme since

these equations are relatively simple and inexpensive to solve due to the relatively

coarse meshes which are generally employed with high-order discretizations.

Steady-state Flow Equations

The spatially discretized governing equations on the deformed mesh are expressed as:

R (ũ(x̃), x̃) = 0 (3.5)

where R represents the spatial residual. As described previously, the evaluation of

the volume and surface integrals of the discretized governing equations (in Eq. (2.15))

require the reference-to-physical transformation denoted by the coordinate mapping

modal coefficients (in Eq. (2.13)), thus the spatially discretized residual is shown as a

function of x̃ rather than x. Additionally, due to the element-based transformation,

the coordinate mapping modal coefficients, x̃, are also element-based. The solution

of this system is solved by using the hp-Multigrid approach driven by the element

Gauss-Seidel smoother described in Section 2.2.3 to accelerate convergence of the

non-linear problem, with the understanding that the mesh configuration (and thus x̃
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values) are held fixed throughout the flow solution process.

Objective Functional

Consider a scalar-valued objective functional, L, which refers to the cost functional

for the optimization problem and is related to a surface integral of the flow-field

variables, such as drag coefficients or target pressure distributions, etc. A general

formulation for the objective functional is expressed as:

L = L(x̃(D), ũ(x̃(D))) (3.6)

where ũ denotes the converged steady-state flow solution obtained based on Eq.

(3.5). Similarly, this functional expression shows the dependence on the coordinate

modal coefficients rather than grid node coordinates for the reason described above.

Gradient-based shape optimization techniques require the evaluation of the sensitivity

of the objective functional with respect to the design variables, i.e. dL/dD. The

next section provides a derivation of the discrete adjoint approach for the sensitivity

evaluations in the context of discontinuous Galerkin methods.

3.2.2 Discrete Adjoint Approach

The derivation of the discrete adjoint technique for sensitivity analysis starts with

the forward tangent problem by taking the derivatives of Eq. (3.6) with respect to

the design variables via the chain rule, which leads to the following expression for the

sensitivity derivatives,

dL

dD
=

(
∂L

∂x̃
+
∂L

∂ũ

∂ũ

∂x̃

)(
∂x̃

∂x

∂x

∂xs

∂xs

∂D
+

∂x̃

∂xq

∂xq

∂D

)
(3.7)

We next examine each term in the above equation. ∂xs/∂D represents the sensitivity

of surface mesh points with respect to the design variables, which is obtained by

linearizing the definition of the bump functions as they appear in Eq. (3.2). Since

the surface quadrature points on the geometry surface deform in a similar way as

the surface grid points, ∂xq/∂D refers to the sensitivity of surface quadrature points
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with respect to the design variables, which is obtained by linearizing Eq. (3.3) with

respect to design variables. ∂x/∂xs represents the sensitivity of the entire set of mesh

points with respect to surface node displacements, which is evaluated based on the

mesh deformation equation (3.4) as:

∂x

∂xs

= [K]−1 (3.8)

where [K]−1 represents the inverse of the mesh stiffness matrix. We note that the

sensitivities ∂x/∂xs rely only on the grid node information, thus the stiffness matrix

has the same formulation as the one used in finite-volume methods [92]. ∂x̃/∂x

refers to the sensitivity of the coordinate mapping coefficients with respect to the

entire set of mesh point displacements. Since an individual grid node only affects

the coordinate mapping coefficients of the elements sharing this node (as a vertex),

∂x̃/∂x corresponds to a sparse matrix and only the non-zero entries in the matrix

are stored in memory. ∂x̃/∂xq refers to the sensitivity of the coordinate mapping

coefficients with respect to the surface quadrature displacements, due to the fact that

the coordinates of the element vertices as well as the additional quadrature points

are required for determining the geometric mapping cooefficients for curved boundary

elements (c.f. Eq. (2.14)). In particular, only the elements coinciding with high-order

curved boundaries correspond to non-zero blocks in ∂x̃/∂xq, which are evaluated by

linearizing Eq. (2.14) with respect to the coordinates of additional quadrature points.

∂ũ/∂x̃ denotes the flow sensitivities due to perturbations of geometric mapping modal

coefficients, x̃, which result from the mesh deformation. Due to the fact that the

flow variables are defined implicitly by the spatially discretized governing equations

expressed in Eq. (3.5), the sensitivities ∂ũ/∂x̃ can be formulated by linearizing Eq.

(3.5) with respect to the design variables via the chain rule, as:

[
∂R

∂ũ

]
∂ũ

∂x̃

∂x̃

∂D
+

∂R

∂x̃

∂x̃

∂D
= 0 or

∂ũ

∂x̃
= −

[
∂R

∂ũ

]−1
∂R

∂x̃
(3.9)

Substituting Eq. (3.8) and Eq. (3.9) into Eq. (3.7) yields the final expression for the

gradient sensitivities, shown as:
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dL

dD
=

(
∂L

∂x̃
− ∂L

∂ũ

[
∂R

∂ũ

]−1
∂R

∂x̃

)(
∂x̃

∂x
[K]−1 ∂xs

∂D
+

∂x̃

∂xq

∂xq

∂D

)
(3.10)

The discrete adjoint problem is then formulated by transposing both sides of Eq.

(3.10), which yields:

dL

dD

T

=

(
∂xs

∂D

T

[K]−T ∂x̃

∂x

T

+
∂xq

∂D

T ∂x̃

∂xq

T)(∂L
∂x̃

T

− ∂R

∂x̃

T [∂R
∂ũ

]−T
∂L

∂ũ

T
)

(3.11)

where [·]−T denotes the inverse of the transposed matrix. Eq. (3.11) corresponds to

the formulation for evaluating the discrete adjoint-based sensitivity derivatives in the

context of discontinuous Galerkin discretizations. Some notable differences between

the above formulation for DG methods and the corresponding adjoint formulation [89]

in finite-volume methods can be observed: first, both surface grid points and surface

quadrature points are deformed simultaneously based on the bump functions: the

terms relevant to the design variables in this formulation include both (∂xs/∂D)T

and (∂xq/∂D)T . Second, the sensitivities of the coordinate mapping, (∂x̃/∂x)T and

(∂x̃/∂xq)
T , must be evaluated. As discussed previously, these terms represent the

effect of the entire set of mesh points and the surface quadrature points on the ge-

ometric mapping modal coefficients. Third, all sensitivities denoted in the second

bracket of the right-hand-side of the equation, such as [∂R/∂x̃]T or (∂L/∂x̃)T must

be evaluated with respect to the corresponding modal coefficients of geometric element

mapping in the DG discretizations, as opposed to the direct use of grid coordinates

in finite-volume methods. This is because geometric information appears directly in

the residual and objective formulations only through the Jacobian from the reference

to physical mapping as well as its metrics ∂(x, y)/∂(ξ, η).

We note that the term [∂R/∂ũ] in Eq. (3.11) refers to the Jacobian matrix of the

spatial residual, which has the same formulation as that used in the steady-state flow

solver (in Eq. (2.16)). Since a direct solve for the inverse of the full Jacobian matrix

or its transpose can be very expensive, the flow adjoint variables, λ, are introduced

by replacing the last two terms, satisfying,
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[
∂R

∂ũ

]−T
∂L

∂ũ

T

= λ or

[
∂R

∂ũ

]T

λ =
∂L

∂ũ

T

(3.12)

Thus the transpose of the Jacobian of the discrete flow equations is used in the

definition of the flow adjoint variables, evaluated using the converged steady-state

flow state, ũ, therefore, the flow adjoint problem corresponds to a linear problem. In

the present work, this linear system is solved using the same efficient hp-Multigrid

algorithm used in the flow solver as described in Section 2.2.3, thus producing similar

convergence rates, due to the fact that both problems contain the same eigenvalues.

However, the linear nature of the adjoint problem often results in lower cost per

iteration compared to the flow or primal problem. Substituting the flow adjoint

variables λ into Eq. (3.11) yields:

dL

dD

T

=
∂xs

∂D

T

[K]−T ∂̄L

∂x

T

+
∂xq

∂D

T ∂̄L

∂xq

T

(3.13)

where

∂̄L

∂x

T

=
∂x̃

∂x

T ∂̄L

∂x̃

T

(3.14)

∂̄L

∂xq

T

=
∂x̃

∂xq

T ∂̄L

∂x̃

T

(3.15)

∂̄L

∂x̃

T

=
∂L

∂x̃

T

− ∂R

∂x̃

T

λ (3.16)

where (∂̄L/∂x)T denotes objective sensitivities with respect to the mesh deformation

and (∂̄L/∂xq)
T denotes objective sensitivities with respect to the surface quadrature

point deformation.

Returning to Eq. (3.13), a similar approach is taken to avoid a direct solve for

the inverse of the transposed mesh stiffness matrix [K]−T in Eq. (3.13) by introducing

the mesh adjoint variables, λx, satisfying:

[K]−T ∂̄L

∂x

T

= λx or [K]T λx =
∂̄L

∂x

T

(3.17)
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To solve this equation, we use several hundred sweeps of a Gauss-Seidel scheme since

these equations are relatively simple and inexpensive to solve due to the relatively

coarse meshes which are generally employed with high-order discretizations. Substi-

tuting Eq. (3.17) to Eq. (3.13), the final sensitivity is then computed as follows:

dL

dD

T

=
∂xs

∂D

T

λx +
∂xq

∂D

T ∂̄L

∂xq

T

or (3.18)

dL

dD
= λT

x

∂xs

∂D
+
∂̄L

∂xq

∂xq

∂D
(3.19)

Since the terms relevant to the design variables (i.e. ∂xs

∂D

T
and ∂xq

∂D

T
) are evaluated

at the last step in this formulation, the evaluation of the adjoint-based sensitivity

derivatives is essentially independent of the number of design variables, which makes

the adjoint method well-suited for cases with large numbers of design variables.

3.3 Shape Optimization Procedure

Once the objective sensitivities have been evaluated, they are used to drive the opti-

mization problem. In particular, the perturbation of the design variables is computed

based on the steepest-descent method in the present work as:

∆D = −β dL
dD

(3.20)

where β refers to the optimization step size, chosen to be small enough to ensure

convergence of the design optimization process and the negative sign implies the

direction for minimizing the objective functional.

The complete shape optimization procedure is shown in Fig. 3.4. To summarize,

five sequential steps are required for every design cycle:

1. Solve the steady-state flow equations denoted in Eq. (2.15).

2. Solve the flow adjoint and mesh adjoint variables denoted in Eq. (3.12) and Eq.

(3.17) respectively.
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3. Evaluate gradients or objective functional sensitivities dL/dD described in the

previous section (c.f. Eq. (3.18) or (3.19)).

4. Compute the perturbation of the design variables based on Eq. (3.20) and

change D in the steepest descent direction, as Dnew = Dold + ∆D.

5. Deform the geometry shape based on the new design variables and deform the

interior mesh based on the mesh motion equations.

This procedure is repeated until the objective functional is sufficiently minimized.

The step size β in Eq. (3.20) is chosen by trial and error. Although a line search [93]

procedure could be used for this purpose, and would likely result in superior perfor-

mance of the optimization algorithm, the current approach is simple to implement

and sufficient for demonstration purpose.

3.4 Design Results

In this section, a typical two-dimensional design problem is used to demonstrate the

design procedure. The design problem consists of minimizing the root mean square

(RMS) difference between pressure distributions on a current geometry configuration

against those on the target NACA0012 airfoil configuration. The objective functional

used for this purpose is given as,

L =

√∑Ns

i=1 (pi − (pi)target)
2

Ns

(3.21)

where (pi)target represents the target pressure value at an arbitrary surface node num-

ber i and Ns denotes the total number of the surface points. In this test case, the

design variables are set to be the magnitudes of the bump functions placed at sur-

face grid points, ranging from 10% to 90% of the chord locations of the upper and

lower airfoil surface. Once the objective functional and design variables are given, the

sensitivity gradients can be evaluated using the discrete adjoint sensitivity technique

described previously.
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Figure 3.4: Illustration of the shape optimization algorithm.

The initial geometry and computational mesh, which contains 2128 unstructured

triangular elements and 145 surface node points, are illustrated in Fig. 3.5. The initial

airfoil configuration is obtained by deforming the surface nodes of the target airfoil

(NACA0012), which ensures that the designed airfoil should match the target airfoil

as the objective functional is minimized. A free-stream Mach number of 0.5 and a

zero degree of angle of attack are specified for this design problem. A fourth-order

(p = 3) spatial discontinuous Galerkin discretization is employed and the p-Multigrid
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Figure 3.5: Initial wing-body geometry and unstructured computational mesh for the
airfoil design optimization problem.
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Figure 3.6: Comparison of the computed adjoint-based sensitivities and finite-
differenced sensitivities for the p = 3 discretization on the initial mesh.

approach with 5 smoothing passes at each multigrid level is employed for the flow and

adjoint problems. In addition, the steady-state flow solution from a previous design

cycle is used as an initial condition for the next run, in order to provide a good initial

solution for the next design step and to reduce computational cost.

Before proceeding to the design optimization procedure, the sensitivity vector

computed using the proposed discrete adjoint procedure is verified by comparing with
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Figure 3.7: Convergence histories of the flow and adjoint solvers at the first design
cycle of the optimization problem.

the finite-differenced values. In the finite difference scheme, the ith component of the

sensitivity vector (i.e. dL/dDi) is obtained by perturbing the bump function placed

at the airfoil surface point i, obtaining a new surface geometry and re-computing the

steady-state flow solution to obtain the change of the objective due to the perturbation

Di. This procedure is invoked for all design variables to obtain the entire sensitivity

vector. Fig. 3.6 illustrates the sensitivity values computed using the discrete adjoint

approach for the p = 3 discretization scheme and the finite-difference scheme. It is

shown that the computed adjoint sensitivities provide good agreement with the finite

differenced values, thereby verifying the linearization terms determined in Eq. (3.11).

Fig. 3.7 illustrates the p-Multigrid convergence of the flow and adjoint solvers

at the first design cycle of the optimization procedure for the p = 3 discretization

scheme. As can be seen, the discrete adjoint solver delivers a convergence rate which

is asymptotically equivalent to that of the flow solver. Fig. 3.8 shows the airfoil

surface shapes at various stages of the optimization procedure obtained using the

p = 3 discretization scheme, compared with the target NACA0012 airfoil geometry.

Although the initial airfoil shape differs considerably from the target airfoil, as shown

in Fig. 3.8(a), the target airfoil shape is recovered in a few design cycles. For example,

the airfoil shape produced at the 4th design stage matches the target very closely.
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Fig. 3.9 plots the computed objective against the number of shape optimization

cycles. It is clearly shown that the objective functional decreases significantly for the

initial steps (e.g. step 1 to 4), although convergence slows down in the later design

steps. Nevertheless, a one order of magnitude reduction in the objective is achieved

in approximately 40 design cycles and the shape of the target airfoil is reproduced

closely. It is noted that the steepest-descent optimization approach used in this

example constitutes a relatively simple and crude optimization approach (particularly

when using a fixed step size β) and superior performance should be achievable with

more sophisticated optimizers such as LBFGS [93,94].
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Figure 3.8: Results of airfoil surface shapes against the target NACA0012 airfoil
geometry at various stages of the optimization procedure.
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Chapter 4

Adjoint-based Spatial Error Estima-

tion and Adaptation

In this chapter, an adaptive discontinuous Galerkin algorithm driven by an adjoint-

based spatial error estimation technique for the inviscid compressible Euler equations

is investigated and developed. The main procedure to implement this approach con-

sists of solving the flow (i.e. primal) solution and the adjoint (i.e. dual) solution

corresponding to a particular simulation objective output of interest. The benefit

of the adaptive algorithm is that it provides a well-founded technique for estimating

the error in specific simulation outputs and resulting in a spatial error distribution

which can be used to guide adaptive refinement strategies for automatically producing

accurate simulations at optimal cost in the objectives of interest.

4.1 Objective

Practical formulations for goal-oriented a posteriori error estimation based on adjoint

techniques have been developed and demonstrated successfully, initially within the

context of a variational framework [27, 49, 69–72, 95], and more recently for finite-

volume discretizations [24–26,73,96,97]. Fidkowski and Darmofal [98] also presented

a side-by-side comparison of output error estimation using the finite element method

as well as finite volume methods. In this work, high-order discontinuous Galerkin
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discretizations are combined with adjoint error estimation techniques and adaptive

refinement strategies, with the goal of developing simulation strategies capable of de-

livering a prescribed level of accuracy in specific engineering objectives of interest.

The discrete adjoint formulation developed in Section 3.2.2 is employed exclusively

and the objective error estimates are derived in a non-variational framework, although

the resulting equations are identical to those obtained using a variational framework.

One notable difference with some previous formulations is that we estimate only the

change in the functional value between two successively refined or enriched mesh

levels, as opposed to attempting to estimate the total error defined as the change

between the current functional value and the value which would be obtained in the

continuous limit [24, 69]. The current approach, which has been demonstrated suc-

cessfully for complex three-dimensional problems [73], involves fewer approximations

and is sufficient for adaptive mesh refinement purposes. In order to be competitive,

the gains afforded by the reduced number of degrees of freedom for a given accuracy

level achieved by the adaptive process, compared to a global refinement strategy, must

outweigh the additional cost of the error estimation technique, as well as the cost of

solving the flow and adjoint problem on multiple intermediate adaptively refined lev-

els. To this end, the cost of the error estimation technique is designed to be equivalent

to, or in most cases lower than, the cost of solving the analysis problem on the current

refinement level. This is achieved by solving the adjoint problem on the same mesh

as the analysis problem at each refinement level, and using reconstruction techniques

to obtain a fine level adjoint field, as required in the error estimation formulation.

In the context of discontinuous Galerkin discretizations, accuracy enhancements

can be achieved either by refining the mesh (h), or by raising the order of accuracy

of the discretization (p). In this work, purely h and purely p refinement approaches

are examined, as well as a combined hp-adaptive approach, which has been shown

to be optimal, in the sense that it has the potential to enable exponential error

convergence [50]. The key to choosing between h and p lies in the ability to assess

the local smoothness of the solution, and thereby two previously described smoothness

indicators [99–102] are employed for this purpose. When properly implemented, the
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hp-adaptive scheme has the potential to capture discontinuous phenomena such as

strong shocks without the need for limiting, since the smoothness indicator acts to

preserve low-order discretizations in such regions.

The standard p- or hp-Multigrid approach begins with an approximation level

represented by the highest discretization order p, and coarser approximation levels

consist of lower-order discretizations, such as p−1, p−2, down to p = 0, while the same

grid is used by all p-levels. This approach applies naturally to cases with a uniform

discretization order (p) of the domain. However, a discretization generated using

either p- or hp-refinement results in the presence of different orders of discretizations

in different regions of the mesh. This complicates the implementation of the standard

p-Multigrid approach, which assumes the presence of a uniform discretization order p

on each multigrid level. In this context, a zonal multigrid strategy is investigated as

a modification to the traditional multigrid approach described previously. The goal

of this investigation is to further improve overall efficiency of the multigrid approach

by avoiding appearance of certain elements of the mesh on multiple multigrid levels

with unchanged approximation orders.

The outline of this chapter is as follows. In Section 4.2 key techniques for esti-

mating the error in the functional with respect to its values on a globally refined or

p-enriched fine mesh are described. This procedure avoids expensive computations

of the flow and adjoint solutions on the fine mesh, while requiring a linear adjoint

problem to be solved on the original coarse mesh. Section 4.3 demonstrates various

adaptive strategies to locally refine the coarse mesh in areas which most adversely

influence the functional accuracy, as predicted by the aforementioned error estimation

technique. In Section 4.4, several numerical test cases including subsonic compress-

ible flow over an idealized four-element airfoil geometry and hypersonic compressible

flow over a half-circular cylinder are used to exhibit the performance of the adaptive

solution strategy, as well as the ability of the hp-adaptive scheme to capture strong

shocks or discontinuities while improving functional accuracy. Finally in Section 4.5,

the basic idea of the zonal multigrid approach in the context of variable p-order dis-

cretizations is described and computational results are compared with the prescribed
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global multigrid approach with respect to both convergence and computational cost.

4.2 Adjoint-based Spatial Error Estimation

In this chapter, the model problems involve the two-dimensional steady-state com-

pressible Euler equations. The discretization and solution strategies used for these

equations have been described in the preceding chapter. Here we address and analyze

adjoint-based error estimates for specific functional outputs. The goal of this proce-

dure is to obtain a spatial distribution of the functional error which can be used either

to correct the current functional value or to drive an adaptive meshing procedure for

improved functional accuracy [103].

4.2.1 Functional Output

In many engineering and aerospace applications, some key objective functional out-

puts are of particular interest in computational simulations, such as the objective

functional of lift, drag or integrated wall temperature, as chosen in this work. Once

the flow solution is obtained, it is relatively simple to evaluate the functional out-

puts. For example, the Cartesian force vector F=(Fx, Fy)
t acting on the boundaries

of interest (∂Ωw) for the model problem is given as,

Fx =

∫
∂Ωw

p nxdS Fy =

∫
∂Ωw

p nydS (4.1)

Then the lift and drag which are defined as the components of F perpendicular and

tangential to the free-stream velocity, respectively, are derived as,

L = −Fx sinα+ Fy cosα D = Fx cosα + Fy sinα (4.2)

where α is the angle of attack. The objective functional of integrated temperature

on a solid surface is computed as:

TI =

∫
∂Ωw

TdS =

∫
∂Ωw

p

ρ
dS (4.3)
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4.2.2 Error Estimation

Consider a coarse mesh TH , where the parameter H represents an average element size

as well as a low discretization order p for the current finite-element mesh. Let L(ũ)

denote an objective functional of interest, which is computed based on the flow-field

variables in terms of the expansion coefficients, ũ = {ũi,k, i = 1, . . . ,M ; k = 1, . . . , N}

in Eq. (2.7). The objective functional can be evaluated on the coarse mesh, repre-

sented as LH(ũH) by using the steady-state flow solution ũH that satisfies Eq. (2.5)

on the coarse mesh. We seek an approach to approximate the objective functional

on a globally refined mesh Th, as illustrated in Fig. 4.1, by either subdividing each

element into four congruent elements (subdivided mesh), or by increasing the order of

discretizations from p to p+1 (enriched mesh). However, in practice we wish to avoid

computing the flow solution on Th directly due to the possibly high expense of solving

the fine level flow problem. Thus the output functional Lh(ũh) on the fine mesh is

expanded with respect to the projected coarse mesh flow solution, ũh
H = Ih

HũH , based

on a Taylor series expansion, expressed as:

Lh(ũh) = Lh(ũ
h
H) +

(
∂Lh

∂ũh

)
ũh

H

(ũh − ũh
H) + · · · (4.4)

where Lh(ũ
h
H) is the output functional on the fine mesh evaluated with the projected

coarse mesh flow solution. The vector
(

∂Lh

∂ũh

)
ũh

H

denotes the sensitivities of the fine

level objective functional with respect to the fine level flow variables evaluated at

the state ũh
H . If the output functional consists of a surface integral, the sensitivities

of the objective with respect to the flow solution are non-zero only on boundary

elements which intersect the surface under consideration. Similarly, the fine level

residual vector Rh = {Rhj,k, j = 1, . . . ,M ; k = 1, . . . , N} can be expanded about the

projected coarse level flow solution:

Rh(ũh) = Rh(ũ
h
H) +

[
∂Rh

∂ũh

]
ũh

H

(ũh − ũh
H) + · · · (4.5)

where
[

∂Rh

∂ũh

]
ũh

H

is the full Jacobian matrix of the fine level flow problem evaluated by

the projected coarse mesh flow solution state. We proceed to derive an approximation
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of the solution error, ũh − ũh
H , by re-arranging Eq. (4.5), given as,

ũh − ũh
H ≈ −

[
∂Rh

∂ũh

]−1

ũh
H

Rh(ũ
h
H) (4.6)

where the fact that Rh(ũh) = 0 has been used, since ũh represents the finite-element

flow solution on the fine mesh. Substituting Eq. (4.6) into Eq. (4.4), we obtain an

expression to approximate the fine mesh functional as,

Lh(ũh) ≈ Lh(ũ
h
H)−

(
∂Lh

∂ũh

)
ũh

H

[
∂Rh

∂ũh

]−1

ũh
H

Rh(ũ
h
H) (4.7)

where the flow residuals Rh(ũ
h
H) are non-zero since the coarse level flow solution

projected onto the refined mesh ũh
H does not satisfy the discretized flow equations in

the fine space. In order to relate the functional error to the local residuals of the flow

solution and to prevent computing the inverse of the Jacobian matrix directly, the

fine adjoint variable, λh, is introduced, satisfying:

[
∂Rh

∂ũh

]T

ũh
H

(λh)ũh
H

=

(
∂Lh

∂ũh

)T

ũh
H

(4.8)

In actual fact, Eq. (4.8) is the approach corresponding to the discrete adjoint formu-

lation for the flow adjoint variables discussed in the previous chapter. Recalling this

linear system, the coefficient matrix constructed for the adjoint problem corresponds

to the transpose of the full-Jacobian matrix of the flow equations and thus the ad-

joint solution scheme delivers similar convergence characteristics as the flow problem.

Substituting Eq. (4.8) into Eq. (4.7) and rearranging, we may write the functional

on the fine mesh as:

Lh(ũh) ≈ Lh(ũ
h
H)−(λh)

T
ũh

H
Rh(ũ

h
H)︸ ︷︷ ︸

ε∗a

(4.9)

The ε∗a term corresponds to an estimate of the error in the fine mesh functional Lh(ũh),

and involves the fine mesh adjoint solution, λh. In order to avoid solving the fine

mesh adjoint problem, we first solve the discrete adjoint problem on the coarse mesh:
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Figure 4.1: Illustration of refined finite-element meshes; (a) coarse mesh, (b) subdi-
vided mesh, (c) enriched mesh.

[
∂RH

∂ũH

]T

λH =

(
∂LH

∂ũH

)T

(4.10)

using the hp-Multigrid approach driven by the linearized element Gauss-Seidel smoother

[16,20] described in sections 2.2.2 and 2.2.3 to accelerate convergence. An approxima-

tion to the fine level adjoint solution is then obtained by performing a reconstruction

postprocessing procedure to the coarse level adjoint solution, λH , onto the refined

mesh via a patch-wise least square method [76], where the reconstructed adjoint so-

lution at an element k (k ∈ Th) is solved by minimizing the following equations:

I
(
(λh

H)ik

)
=
∑
l∈Pk

∥∥∥ M∗∑
j=1

(λh
H)jk

φj|l −
M∑

j=1

(λH)jk
φj|l
∥∥∥2

L2

, i = 1, · · · ,M∗ (4.11)

with respect to each variable as:

∂I
(
(λh

H)ik

)
∂(λh

H)jk

= 0 i, j = 1, · · · ,M∗ (4.12)

where Pk represents the patch of the element k consisting of all of its neighboring

elements, and the subscript (·)ik denotes the i th expansion coefficient of the adjoint

solution in element k. M∗ the is number of modes required for the order of discretiza-

tion on the fine mesh. Using the reconstructed adjoint expression in Eq. (4.9), we

obtain the error expression:
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Lh(ũh) ≈ Lh(ũ
h
H)−(λh

H)TRh(ũ
h
H)︸ ︷︷ ︸

εa

−((λh)ũh
H
− (λh

H))TRh(ũ
h
H)︸ ︷︷ ︸

εr

(4.13)

where εa and εr denote the computable error correction and the remaining error,

respectively. The computable error correction εa is expressed as the inner product

of the local residuals with the reconstructed adjoint solution, and results in a spatial

distribution of the functional error. The remaining error term is typically an order

of magnitude smaller than the computable error correction, and thus the remaining

error can be safely absorbed into the adjoint correction without compromising the

reliability of the adaptive algorithm. Therefore the functional approximation on a

globally refined mesh becomes:

Lh(ũh) ≈ Lh(ũ
h
H)− (λh

H)TRh(ũ
h
H) (4.14)

Next the variation of the discrete functional between coarse and fine levels, Lh(uh)−

LH(uH), is derived by subtracting from both sides the coarse functional, LH(uH),

written as:

Lh(uh)− LH(uH)︸ ︷︷ ︸
εc

≈ Lh(u
h
H)− LH(uH)︸ ︷︷ ︸

εd

−(λh
H)TRh(ũ

h
H)︸ ︷︷ ︸

εa

(4.15)

In this form, the additional term εd is the error incurred between the evaluation of

the functional on the fine level using the projected coarse mesh flow solution, and

the functional evaluated on the coarse mesh level with the coarse mesh flow solution.

Referring to Eq. (4.15), the major computational work at each adaptation cycle

involves solving the flow and adjoint problems on the coarse mesh and the proper

reconstruction procedure to the fine mesh level.

4.2.3 Refinement Criteria

The adjoint correction εa provides a spatial functional error estimator on each element

k in the current computational domain, given as,
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εa,k = −(λh
H)T

k Rh,k(ũ
h
H) (4.16)

where the local element-wise error indicator is expressed as the inner product of

the local residual vector with the approximated adjoint variables within the children

elements of a coarse element k. In order to adaptively reduce the error in the objective

functional, an error-balancing refinement criterion [49] is employed in the current work

where elements are flagged for local refinement if the inequality

|εa,k| >
Etol

N
(4.17)

holds, where Etol is a positive user-desired global tolerance and N denotes the num-

ber of elements in TH . Eq. (4.17) provides a stopping criterion for the simulation

when the local error indicator on the current mesh is within the maximum allowable

equidistributed error level η̄ = Etol

N
in each element.

We note that an alternate approach [25, 27] in the adaptive criteria is to esti-

mate εr, as denoted in Eq. (4.13) using the combination of both primal-based and

dual-based error estimate expressions and to reduce this quantity by adaptive mesh

refinement. On the other hand, the adaptive criteria in this work is based on the cor-

rection term, εa, obtained by using the reconstructed adjoint solution, which is seen

to be sufficient for adaptive mesh refinement purposes [72, 103]. If the termination

criterion is not reached, we store a list of indices of the flagged elements and then

proceed to the local mesh refinement operation presented in the following section to

improve the quality of the finite-element mesh.

4.3 Adaptive Mesh Refinement

In the context of discontinuous Galerkin discretizations, accuracy enhancements can

be achieved either by refining the mesh (h), or by raising the order of accuracy (p)

of the discretization. Therefore, the mesh refinement operation can be classified as

h-refinement, p-enrichment and combined hp-refinement.
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Figure 4.2: An example of h-refinement for an original coarse mesh and its consecu-
tively refined meshes near an airfoil boundary. (a): refinement on a fixed discretization
order p = 1. (b): refinement on a fixed discretization order p = 4.

4.3.1 h-refinement

h-refinement involves locally refining the mesh by adding nodes to midpoints of each of

the edges of flagged elements on the current coarse mesh. Thus an h-refinement proce-

dure subdivides one element into four self-similar children elements (1:4 refinement),

while keeping the original discretization order p fixed. New nodes on interior edges

are simply added at the edge midpoints since all interior elements have straight-sided

edges. However, for wall or surface boundary elements, in order to ensure that the

newly generated nodes and and additional quadrature points for curvilinear boundary

conditions [16] conform to the original geometry boundary, a quintic spline interpo-

lation is used based on the original surface (data) grid points to obtain the required

new surface information. Fig. 4.2 illustrates an example of the meshes obtained by an

h-refinement process on an airfoil using fixed discretization orders p = 1 and p = 4,

respectively.

Upon subdividing one flagged element into four congruent children elements,

hanging nodes may be generated on shared edges where only a single side of two

neighboring elements has been marked for refinement. Several algorithms are em-

ployed in this work in order to eliminate the presence of hanging nodes, as depicted

in Fig. 4.3: A given element with a single hanging node is subdivided into two chil-
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(a) (b)

Figure 4.3: Example of h-refinement to eliminate the presence of hanging nodes.
(a): Original mesh where the red elements represent elements flagged for regular 1:4
refinement and the yellow element represents a forced 1:4 refinement in this element
due to the generation of two additional nodes. (b): The subsequent h-refined mesh.

dren elements (1:2 refinement); if two hanging nodes are generated in one element,

a regular 1:4 subdivision is implemented. Since repeated implementation of the 1:2

refinement due to hanging nodes on a given element may result in poorly shaped

elements, only a single level of 1:2 refinement is permitted, and 1:4 refinement is

employed if subsequent refinement of these elements is required. Additional mesh op-

timization techniques [104] are also employed including an edge-swapping procedure,

where the local topology of the mesh is changed based on a criterion which maximizes

the minimum interior angle of the elements (a MaxMin triangulation), and a mesh

smoothing procedure where the positions of the mesh points are relocated to the cen-

troid of the surrounding mesh points which are connected to the current point, while

the mesh topology remains unchanged.

4.3.2 p-enrichment

An alternate approach to mesh h-refinement is p-enrichment, where the local dis-

cretization order p is increased to p + 1, while the underlying triangulation remains

fixed. Note that during the process of the adaptive p-enrichment, it is very common

to have two neighboring elements with different discretization orders, as illustrated in

Fig. 4.4. In order to obtain the design solution accuracy, the number of quadrature

points must increase with higher discretization orders [36]. Thus, in this context, the
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Figure 4.4: Illustration of an interior boundary between two neighboring elements
with different interpolation orders.

number of quadrature points required to calculate the surface integral at a shared edge

of two neighboring elements of different discretization orders is taken as the number

required to satisfy the element with the higher discretization orders. However, the

inner and outer traces of the conservative flow variables at each quadrature point

need to be approximated by their own expansion coefficients and basis functions, and

the optimal number of quadrature points required to evaluate the volume integral in

Eq. (2.15) is based on the discretization order of the computed element itself.

p-enrichment is known to be capable of achieving exponential convergence in

terms of number of unknowns for smooth solutions. However, this approach can not

be employed directly for non-smooth solutions or for cases with shocks or singularities,

since the higher-order discretizations (p > 0) produce unbounded oscillations in such

regions and may result in loss of stability.

4.3.3 hp-refinement

In order to avoid higher-order discretizations in non-smooth solution regions in the

context of an adaptive scheme, the combined hp-refinement approach is invoked. In

this case, a choice between h-refinement and p-enrichment must be made individually

for each one of the elements flagged as large error contributors on the current coarse

mesh. The goal of the combined hp-adaptive refinement scheme is to make use of

h-refinement in regions with discontinuities or large flow gradients where high-order

discretizations may not perform suitably and to utilize p-enrichment in areas with

smooth solution behavior to deliver high accuracy. This is accomplished by employing
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a smoothness indicator based on an element-wise or inter-element indicator.

Smoothness Indicator

Since the coefficients in the solution expansions of the DG methodology are assumed

to have a similar decay rate ( 1/n2) as the Fourier coefficients for the case of smooth

solutions, we utilize a local smoothness indicator which involves element-wise integrals

defined as:

Sk =
(q − q̆, q − q̆)k

(q, q)k

(4.18)

and yields a scalar sensor as a measure of smoothness. In this expression, (·, ·) denotes

the standard L2 inner product within element k. q and q̆ represent one representative

quantity of the flow variables such as density or Mach number with a full (for order

p) or truncated expansion (for order p− 1), respectively, written as:

q =
M∑
i=1

q̃i φi (4.19)

q̆ =
M̄∑
i=1

q̃i φi (4.20)

where M and M̄ denote the total number of terms in the solution expansions of dis-

cretization orders p and p−1, respectively. Note that the same expansion coefficients

q̃i of this quantity are used in Eq. (4.19) and Eq. (4.20). An automatic criteria

for choosing between h-refinement and p-enrichment within flagged elements is given

as [99–101]:

{
sk ≥ s0 − k, h− refinement

sk < s0 − k, p− enrichment
(4.21)

where, sk = log10(Sk) and the parameter s0 ∼ 1
p4 , and k is an empirical parameter

and set equal to 6.0 in our experience so as to capture non-smooth regions. Moreover,

we use density in practice as the quantity q to determine the decay rate of expansion

coefficients.
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The other smoothness indicator used in this work particularly for the cases of

high speed flows in the next section is a jump discontinuity indicator [100,102] which

measures the integral of the discontinuous jump of the flow-field variables over each

edge of an element, given as,

Sk =
1

|∂Ωk|

∫
∂Ωk

∣∣∣∣ q+ − q−
1
2
(q+ + q−)

∣∣∣∣ dS (4.22)

where q+ and q− denote the inner and outer traces of the selected quantity. The

discontinuity detection scheme is implemented as:

{
Sk >

1
K , h− refinement

Sk ≤ 1
K , p− enrichment

(4.23)

The parameter K is required to be sufficiently large to capture any strength of shocks

and in our experience it is set equal to 25. The jump indicator performs better than

the element-wise smoothness indicator for high speed flows and pressure has been

found to be a reliable quantity to calculate inter-element jumps.

Shock Capturing

For high-speed flows, it is well known that limiters or added artificial dissipation

are required in order to robustly capture strong shocks with higher-order discretiza-

tions. On the other hand, the amount of dissipation added by a first-order spatial

discretization scheme is sufficiently large to handle any shock using an appropriate

Riemann solver. However, the dissipation added by a first-order accurate scheme is

proportional to the element size, h, and therefore large numbers of small elements are

required for high accuracy. Thus, the role of the hp-refinement approach for prob-

lems with strong shocks is to provide enhanced accuracy through mesh refinement

in shock regions identified by a smoothness indicator, and simultaneously to increase

discretization orders in smooth areas to improve functional accuracy.
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4.4 Results

The adaptive mesh strategies are first applied to a subsonic flow over an idealized

four-element airfoil. Comparisons of the adapted meshes and the error convergence

histories are demonstrated for the h-refinement alone as well as for the p-enrichment

alone, and for the combined hp-adaptive approach. The functional error estimates

are examined for each adaptation process of the various mesh adaptation strategies.

A second test case involves strong shocks or discontinuities produced by a hyper-

sonic flow over a half-circular cylinder in order to demonstrate the shock-capturing

properties of the hp-adaptive approach.

The input for the simulations consists of an initial coarse mesh TH associated

with a uniformly lower discretization order p, an objective functional of interest as well

as a user-desired functional error tolerance. The output includes the refined mesh Tbh
together with a polynomial degree distribution p̂k, k ∈ Tbh, and the final flow solution

as well as final functional value. The performance of the adaptive process is measured

in terms of the reduction of the error in the functional output versus the number of

unknowns (i.e. degrees of freedom) or the computational cost in CPU time. Degrees

of freedom (DOF) are computed as the total number of unknowns, excluding the

number of subcomponents for the system of equations (i.e. 4 for the two-dimensional

Euler equations). The computational time required for one adaptation cycle includes

the accumulated expense of computing both the flow and adjoint problems for all

previous adaptation cycles plus an additional flow solution for the current adapted

mesh. On the other hand, the computational cost for the uniform refinement approach

is only considered as the expense of solving a single flow problem on the uniformly

refined mesh.

4.4.1 Subsonic Flow over a Four-element Airfoil

The computational domain for this test case consists of an idealized four-element

airfoil with a far-field outer boundary placed at a distance of 50 chord lengths away

from the airfoil. The initial mesh illustrated in Fig. 4.5 contains 1,508 unstructured
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Figure 4.5: Close-up view of the initial unstructured mesh for a four-element airfoil
(1,508 elements).

triangular elements. A low free-stream Mach number of 0.2 as well as a zero incidence

are prescribed for the flow field. The HLLC approximate Riemann solver [45, 46] is

used for the flux function at all interior edges/boundaries to resolve the disconti-

nuity in the flow variables at each elemental interface, and the particular boundary

treatment described in Section 2.2 is employed at all physical boundaries. The exact

functional value is taken from a solution on a h-adapted mesh with a uniformly p

= 3 discretization order, where the relative difference in the functional between the

current and the previous adapted functional is within 10−4.

hp-Multigrid Solution

As mentioned previously, both the flow and the discrete adjoint problems must be

solved at each mesh adaptation cycle, which consumes most of the computational

cost (over 95%) throughout the adaptive simulation. Thus, in order to make the

overall scheme competitive, we make use of efficient solution techniques including

the hp-multigrid approach driven by the element Gauss-Seidel smoother described

in sections 2.2.2 and 2.2.3 to accelerate convergence for both the flow and adjoint

problems.

The computed steady-state solution in terms of Mach number contours and the
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(a) Mach number contours (b) x-momentum component of the discrete ad-
joint solution

Figure 4.6: Flow and discrete adjoint solutions for subsonic flow over a four-element
airfoil with a free-stream Mach number of 0.2; Lift is set to be the objective functional
of interest.
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Figure 4.7: Comparison of convergence histories of both flow and adjoint solutions in
terms of number of hp-Multigrid cycles.

x-momentum component of the adjoint solution corresponding to the objective func-

tional of lift on the initial mesh with a uniform p = 4 order of discretization are

illustrated in Figures 4.6(a) and 4.6(b), respectively. The x-momentum component of

the adjoint solution corresponds to the sensitivity of the lift value to point sources of

x-momentum in the flow field. The fact that regions upstream of the airfoil denoted

by the red contours in Fig. 4.6(b) have a significant effect on the lift output provides
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an illustration of the non-local effect due to the hyperbolic property of the governing

equations. Fig. 4.7 provides a comparison of convergence histories for both the flow

and the adjoint solvers in terms of the number of hp-multigrid cycles. The discrete

adjoint solver delivers a convergence rate which is asymptotically equivalent to that

of the flow solver, since the adjoint problem is constructed as an exact dual to the

primal problem.

Error Prediction for Two Mesh Levels

Before proceeding to the mesh adaptation test cases, it is important to verify that the

computable adjoint error correction denoted as εa in Eq. (4.13) is capable of providing

an acceptable approximation for the fine adjoint error correction, denoted as ε∗a in Eq.

(4.9), as well as providing an accurate prediction of the corresponding globally refined

mesh value. Table 4.1 and Table 4.2 consider the comparisons of the computed drag

change between two mesh levels, where the fine level is obtained by increasing the grid

resolution using a uniform 1:4 h-refinement (Case A) or by raising the discretization

order p to p + 1 globally (Case B), with the computable adjoint error correction εa

and the corresponding term ε∗a evaluated using the fine level adjoint solution. It can

be observed that the reconstructed adjoint error correction provides good agreement

with the fine adjoint error estimates. For example, the correction term evaluated

using the reconstructed adjoint solution agrees to within 88.0% of the corresponding

error evaluated using the fine level adjoint solution for Mesh 1 in Case A. However,

this agreement increases to 99.1 % for Mesh 3. In Case B, the reconstructed adjoint

solution also provides acceptable agreement with the corresponding error relevant to

the fine level adjoint solution: a 61.0 % agreement is provided for Mesh 1 and a 91.4 %

for Mesh 4. This implies that the reconstructive procedure for the coarse level adjoint

sufficiently captures the behavior of the fine level adjoint. Moreover, the accuracy of

the resulting estimates based on the computable adjoint error is satisfactory compared

with the corresponding two-level functional error. For example, the computed εa value

corresponds to 98.7% of the actual two-level error for Mesh 3 of Case A and 99.7%

for Mesh 4 of Case B.
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Table 4.1: Case A: comparisons of the adjoint error correction for drag output com-
puted using fine and reconstructed coarse adjoint solutions (ε∗a and εa, respectively)
with the true functional error between two mesh levels where grid resolution is in-
creased by a uniform 1:4 refinement and the discretization order p = 1 is fixed for all
runs. Mesh 1, 2 and 3 contain 1508, 6032 and 24128 elements respectively.

Mesh error ε∗a (based on λh) εa (based on reconstructed λh
H)

1 -2.76903217E-3 -2.71897249E-3 -2.39419266E-3
2 -7.10679246E-4 -7.41825861E-4 -7.19017106E-4
3 -1.14173193E-4 -1.16541513E-4 -1.15579326E-4

Table 4.2: Case B: comparisons of the adjoint error correction for drag output com-
puted using fine and reconstructed coarse adjoint solutions (ε∗a and εa, respectively)
with the true functional errors between two mesh levels where the discretization order
is uniformly increased from p to p + 1 and the underlying grids (1508 elements) are
fixed for all runs. Mesh 1, 2, 3 and 4 are uniformly discretized by p = 0, 1, 2, and 3,
respectively.

Mesh error ε∗a (based on λh) εa (based on reconstructed λh
H)

1 -3.81409957E-2 -3.32547210E-2 -2.03270239E-2
2 -2.82996939E-3 -3.03437520E-3 -1.33580368E-3
3 -5.72914101E-4 -5.41733478E-4 -5.85074179E-4
4 -1.72394870E-4 -1.82852793E-4 -1.71881095E-4
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(a) Final h-adapted mesh (8,387 elements)
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(b) Close-up view of the final adapted mesh

Figure 4.8: Final h-adapted mesh for the objective functional of lift and a fixed
discretization order of p = 1 (i.e. second-order accurate) in the subsonic flow test
case.

h-adaptation for Lift Output

Here the performance of the h-adaptive mesh refinement algorithm driven by the

adjoint-based error estimation is demonstrated for the case of inviscid subsonic flow

over a four-element airfoil. The objective functional of interest is specified as lift,

which is calculated from the static pressure distribution on the airfoil surface as

described in Section 4.2.1. A uniform discretization order of p = 1 (i.e. second-order

accurate) is fixed for all h-adaptive refinement levels and the error tolerance is set

to be 10−3. Figures 4.8(a) and 4.8(b) depict the final h-adapted mesh with 8,387

elements after four adaptation cycles. As expected, most of the refinement occurs

around the airfoil surface, particularly near the leading and trailing edges. However,

some h-refinement occurs upstream of the airfoil as shown in Fig. 4.8(a) due to the

hyperbolic nature of the problem.

The convergence behavior of the functional error for the adaptive approach is

compared with that achieved using uniform mesh refinement approach, where each

element in the computational domain is refined by the aforementioned 1:4 ratio, re-

gardless of the objective functional error contribution. Thus, the objective functional

value obtained from the uniformly refined mesh represents the optimal functional er-
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(a) Lift error vs. degrees of freedom (b) Lift error vs. CPU time

Figure 4.9: Comparison of error convergence histories for the target functional of
lift between the h-refinement and uniform mesh refinement approaches, using a fixed
discretization order of p = 1.

Figure 4.10: Comparison of lift functional convergence as a function of degrees of
freedom for the h-refinement and uniform mesh refinement approaches using a fixed
discretization order of p = 1 for the subsonic test case.
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ror reduction achievable on the corresponding h-adaptively refined mesh. Fig. 4.9

summarizes the results of the convergence of the functional error for both approaches.

In terms of degrees of freedom as depicted in Fig. 4.9(a), the h-refinement approach

achieves equivalent error levels as the uniform refinement approach at each adapta-

tion cycle, while using fewer degrees of freedom. In other words, the uniform mesh

refinement approach contains excessive resolution in areas of little influence on the

functional accuracy. For example, at the second adaptation cycle, the number of un-

knowns required by the h-refinement approach is only 22% of the number employed

by the uniform refinement method, and this advantage is even more evident for the

two following h-adaptation iterations. Moreover, in terms of the required CPU time

shown in Fig. 4.9(b), the adaptive approach incurs significantly lower computational

cost resulting from the use of fewer degrees of freedom at equivalent accuracy, even

though the computational cost of the adaptive approach includes all previous adap-

tive flow and adjoint solutions, while the uniform refinement case only includes the

cost of the fine level flow solution alone.

Next we examine the effectiveness of the error estimate or correction produced by

the adjoint technique for predicting the functional value on the next finer level. Fig.

4.10 depicts the lift functional convergence histories on the h-adapted meshes, the

functional values on the adapted meshes including the corresponding correction, and

the functional values computed on the uniformly refined meshes, in terms of degrees of

freedom for this subsonic test problem. The correction produced by the adjoint-based

error estimation becomes more accurate with increasing refinement levels, and the

functional value on the two finest levels is predicted very accurately on the previous

coarser level, as indicated by arrows shown in this figure. The increasing effectiveness

of the correction term on finer levels is explained by the fact that this is based on

a linearization about the coarser level solution. The correction term can be used to

predict the value of the functional on a finer mesh level.
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Figure 4.11: Final p-adapted mesh (1,508 elements; pmin = 1, pmax = 4) for the
objective functional of drag in the subsonic flow test case.

p-adaptation for Drag Output

In this case, the p-enrichment algorithm is performed using drag as the output. The

same coarse mesh illustrated in Fig. 4.5 together with a uniform p = 1 discretization

and an error tolerance of 5 × 10−4 are set as the initial inputs. The final p-adapted

mesh depicted in Fig. 4.11 illustrates the variation of discretization orders ranging

from p = 1 to p = 4 while operating on the same initial mesh. Areas targeted for

order refinement are mainly concentrated on the airfoil surface particularly around the

leading and trailing edges, which demonstrates similar results in the lift-h-adaptation

case.

The error convergence history of the p-adaptive enrichment algorithm for this

subsonic test case is also compared with that of the uniform order refinement ap-

proach, where the refined mesh is obtained by globally increasing the discretization

order from p to p+ 1 with the underlying mesh fixed. The functional error obtained

from the uniform order refinement method is used to determine the optimal achievable

error reduction possible for one p-adaptation cycle. In terms of degrees of freedom,

as illustrated in Fig. 4.12(a), the p-enrichment scheme is also capable of delivering

equivalent error levels as the uniform refinement approach at each adaptation cycle,
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(a) Drag error vs. degrees of freedom (b) Drag error vs. CPU time

Figure 4.12: Comparison of error convergence histories for the target functional of
drag between the p-enrichment and uniform order refinement approaches.

Figure 4.13: Comparison of drag functional convergence for the adaptive p-enrichment
and the uniform order refinement approaches in terms of degrees of freedom for the
subsonic test case.
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while requiring fewer degrees of freedom. In terms of CPU cost, as shown in Fig.

4.12(b), the p-enrichment scheme demonstrates superior performance compared to

the uniform order-refinement scheme particularly on the last two adaptation cycles.

For example, to achieve a 10−4 drag error, the uniform order refinement method in-

curs roughly twice the cost of the adaptive scheme in CPU time. The examination of

the effectiveness of the error estimates or the correction term provided by the adjoint-

based error estimation for the p-enrichment test case is demonstrated in Fig. 4.13.

The functional value obtained from the purely p-adapted mesh at each refinement

level is close to the functional obtained by the uniform order refinement. Moreover,

the approximated functional for the next finer level provided by the functional with

the added correction term on the previous coarse adaptation level (as represented by

the orange line) is seen to become increasingly more accurate with additional refine-

ment levels, and the finest objective functional is predicted very accurately for the

final adaptation level using the computable error correction term.

hp-adaptation for Drag Output

The following test case considers the effective combination of both h- and p-refinement

algorithms (i.e. the approach of hp-adaptation) for subsonic flow over the four-element

airfoil, using drag as the objective functional. The element-wise smoothness indicator

described by Eq. (4.18) in Section 4.3.3 is employed for this subsonic test case.

The hp-adaption test case starts with the same initial mesh (Fig. 4.5) together

with a uniform discretization order of p = 1 and the desired error tolerance is specified

as 10−5. The final adapted mesh is shown in Fig. 4.14 with a total of 7,105 elements

and a variation of discretization orders ranging from p = 1 to p = 4. Areas of high

h-refinement are concentrated near the airfoil leading edges, due to the presence of

large gradients in these regions. On the other hand, areas of high order p-enrichment

mainly occur near the surface of the last two airfoil-elements.

Fig. 4.15(a) compares the drag error convergence of hp-refinement with pure

h-refinement and pure p-enrichment implemented using the same initial meshes for

this test case. In terms of degrees of freedom, the h-refinement approach represented
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Figure 4.14: Final hp-adapted mesh (7,105 elements; pmin = 1, pmax = 4.) for the
objective functional of drag in the subsonic flow test case.

by the green line requires more degrees of freedom for the same error reduction as the

p- and hp-refinement approaches. Both hp-refinement and p-enrichment algorithms

demonstrate exponential error convergence rates but the slope of the hp-enrichment

(i.e slope = 5.3) exceeds the slope of 2.9 achieved using p-enrichment alone. In

addition, for a fixed range of discretization orders (pmin = 1, pmax = 4), the hp-

refinement scheme is capable of achieving roughly two orders of magnitude higher

error reduction than the p-enrichment scheme. In terms of CPU cost, as illustrated

in Fig. 4.15(b), the performance of the hp-refinement scheme demonstrates superior

efficiency over the purely h-refinement scheme, while displaying similar cost compared

to the p-enrichment scheme over the initial refinement levels. Fig. 4.16 exhibits the

convergence of the functional for the hp-adaptive case in terms of degrees of freedom.

It can be observed that the final output functional is accurately predicted by the

corrected functional on the second and third adaptation cycles.

4.4.2 Hypersonic Flow over a Half-circular Cylinder

The next test case involves the computation of hypersonic flow over a half-circular

cylinder with a free-stream Mach number of 6 using the hp-adaptive scheme. The far-
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(a) drag error vs. degrees of freedom (b) drag error vs. CPU time

Figure 4.15: Comparisons of error convergence histories for the functional of drag
between the hp-refinement, pure h-refinement and pure p-enrichment schemes.

Figure 4.16: Comparisons of drag functional convergence for the hp-refinement ap-
proach in the subsonic test case.
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field inlet boundary of the mesh is treated using a fully prescribed supersonic inflow

condition. The inviscid fluxes of the flow solver are calculated using the Lax-Friedrichs

flux functional [47] and the flow solution obtained at the previous adaptation cycle

is used as an initial condition for the next finer refinement cycle. A first-order accu-

rate scheme (p = 0) is used initially to ensure a stable solution, and the hp-adaptive

refinement strategy is implemented in areas where the spatial functional error has rel-

atively large contributions. The switch between mesh subdivision (i.e. h-refinement)

and variation of discretization order (i.e. p-enrichment) is based on the inter-element

smoothness indicator evaluated by Eq. (4.22).

hp-adaptation for Integrated Surface Temperature

The objective functional in this test case is set to the integrated temperature on the

cylinder surface (c.f. Eq. (4.3)) since surface heating is of significant interest for

hypersonic problems. Here we examine the shock resolution as well as the functional

accuracy convergence throughout the adaptation process. The adaptation starts with

an initial mesh shown in Fig. 4.17(a) and a uniform p = 0 order of discretization.

Since the mesh in the shock region is relatively coarse, discontinuities are not well

resolved (spreading over 4 ∼ 5 elements), as observed from the Mach number contours

illustrated in Fig. 4.17(b).

The sequentially adapted meshes together with the distributions of discretization

orders are illustrated in Fig. 4.18. It can be observed that no refinement takes place

ahead of the shock due to the fact that the uniform flow ahead of the shock wave is

exactly represented by the first-order (p = 0) discretization in this region. Substantial

h-refinement occurs around/in the shock regions where a first-order accurate scheme,

represented by the white color on the plots, is maintained throughout all the hp-

adaptation cycles, and higher-order discretizations are prescribed behind the shock

and ahead of the cylinder. The final adapted mesh illustrated in Fig. 4.18(c) contains

a dense distribution of h-refinement in shock areas and a range of discretization orders

from p = 0 to p = 3 in the region between the shock and cylinder. It is also noted

that the entire shock region is not refined, since lateral regions of the shock wave
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(a) Initial mesh, 17072 elements

(b) Mach number contours

Figure 4.17: Initial mesh and computed Mach number contours using a first-order
accurate discretization (p = 0) for hypersonic flow passing a half-circular cylinder
with a free-stream Mach number of 6.

which are not close to the cylinder have little influence on the functional of interest.

In addition, a thin shock profile upstream of the cylinder is properly captured and

resolved on the final hp-adapted mesh as illustrated by the final pressure and Mach

number contours in Fig. 4.19. Fig. 4.20 compares the shock profiles on the initial

mesh and each of the three adapted meshes as a plot of pressure along the centerline

x = 0. The original shock profile is resolved over a relatively wide distance, while

the shock computed on the final adapted mesh is around 10 times thinner than the

one resolved on the initial mesh. Note that in order to obtain a similar scale of

the shock profile, the original mesh would require three successive full refinements,

which produces a mesh with over 1 million degrees of freedom, whereas the number

of unknowns in terms of degrees of freedom on the final adapted mesh is only about

6% of this triple-uniformly refined mesh.
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(a) 1st adapted mesh, 21372 elements, discretization orders (pmin = 0, pmax = 1)

(b) 2nd adapted mesh, 29100 elements, discretization orders (pmin = 0, pmax = 2)

(c) 3rd adapted mesh, 42234 elements, discretization orders (pmin = 0, pmax = 3)

Figure 4.18: hp-adapted meshes with the distributions of orders of discretization for
hypersonic flow (Mach 6) passing a half-circular cylinder.

Fig. 4.21 depicts the functional convergence for this test case. Although on

the initial mesh (p = 0) the corrected functional represented by the first point (star

symbol) of the green line does not predict the finer level functional very well, it does

provide a notable improvement in the correct direction. Furthermore, the difference

between the adapted functional value and corrected functional value significantly

decreases with increasing adaptation cycles, and the last (third) corrected functional
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(a) Pressure solution

(b) Much number solution

Figure 4.19: Pressure and Mach number contours on the final hp-adapted mesh for
hypersonic flow (Mach 6) passing a half-circular cylinder.
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Figure 4.20: Comparison of pressure profiles at the centerline x = 0 between the
initial mesh and hp-adapted meshes for hypersonic flow over half-circular cylinder
(Mach 6).
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Figure 4.21: Comparison of functional convergence in terms of degrees of freedom
(DOF) for hypersonic flow passing half-circular cylinder (Mach 6).

value predicts the final functional value very accurately.

4.5 Modified p-Multigrid Scheme

The solutions of the flow and adjoint problems in the previous test cases are obtained

using the standard hp-Multigrid approach discussed in Section 2.2.3. As mentioned

previously, the p- or hp-Multigrid approach begins with an approximation level repre-

sented by the highest discretization order p, and coarser approximation levels consist

of lower-order discretizations, such as p − 1, p − 2, down to p = 0. This approach

applies naturally to cases with a uniform discretization order (p) of the domain.

However, a discretization generated using either p- or hp-refinement results in the

presence of various orders of discretization on the same mesh, such as the adapted

meshes shown in Figures 4.11, 4.14 and 4.18. This complicates the implementation

of the p-Multigrid approach, which assumes the presence of a uniform discretization

order p on each multigrid level.
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Figure 4.22: Illustration of global and zonal multigrid strategies using a one-
dimensional mesh. Various colors indicate various orders of discretization: red: p = 4,
green: p = 3, light blue: p = 2, blue: p = 1 and purple: p = 0.

4.5.1 Global versus Zonal p-Multigrid

A straight-forward implementation of the p-Multigrid solution scheme for cases with

variable p-order discretization can be found in the “Global p-Multigrid” strategy. In

this approach, the finest multigrid level consists of the entire variable p-order dis-

cretizations of the problem to be solved (i.e. Fig. 4.11 in our example test case). The

next coarser level is obtained by reducing the order of the highest p-order discretiza-

tion elements to p − 1, while retaining the same discretization orders of all other

elements. This procedure is applied recursively until a uniform p = 0 level is ob-

tained. The “Global-p-Multigrid” scheme is illustrated for the one-dimensional case

in Fig. 4.22, where the finite element mesh contains elements of various discretization

orders ranging from p = 4 to p = 1. The drawback of this approach lies in the fact

that certain elements of the mesh appear on multiple coarser levels with unchanged

discretization orders. Because the efficiency of the multigrid scheme is predicated on

the elimination of specific error frequencies on each level, this can be expected to

result in additional unnecessary computations, thus reducing overall efficiency.

To overcome these drawbacks, we propose an alternate “Zonal p-Multigrid” strat-
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egy. This approach is also illustrated in Fig. 4.22 for the one-dimensional case. In

the “Zonal p-Multigrid” strategy, each finest multigrid level contains only the mesh

elements of the highest discretization order p. The next coarser level contains only

the mesh elements of order p− 1, in addition to the elements from the preceding fine

level p, which are now reduced to discretization order p− 1. This process is applied

recursively down to a uniform p = 0 level. In the “Zonal p-Multigrid” approach, each

level contains a uniform discretization order. Furthermore, mesh elements of a given

discretization order may appear only once on a given level, and are not recalculated

at the same order on other coarser levels as in the “Global-p-Multigrid” approach.

However, individual finer levels in the “Zonal p-Multigrid” approach no longer con-

tain the entire computational domain, leading to the description of this scheme as

a “zonal” approach. This zonal multigrid scheme has previously been demonstrated

for low-order finite-difference [105] and finite volume schemes [82], although their ex-

tension to p-Multigrid schemes has not been previously investigated. As in previous

zonal multigrid work, in order to ensure that the final discretization on the union of

all zonal grid levels reproduces exactly the finest level global multigrid discretization,

additional fringe elements for each zonal level must be retained. In particular, if one

element, in which the discretization order is lower than p (e.g. p − 1), contains a

direct neighboring element of discretization order p, this element is included in the

solution approximation at multigrid level of p.

4.5.2 Computational Comparisons

As pointed out previously, the zonal multigrid method can be implemented by stor-

ing only qualified elements for each multigrid level in order to save computational

time. The previous case of p-adaptation for subsonic flow over a four-element air-

foil is revisited as an example for comparing the performance of the zonal multigrid

method against the global multigrid method. Here, the test case starts with the fi-

nal p-adapted finite-element mesh shown in Fig. 4.11, and implements both solution

strategies. A uniform initial condition and the same flow conditions as described

earlier in the p-adaptation case are used. Since the highest discretization order is
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Table 4.3: Number of elements and edges required at each level of the zonal p-
Multigrid for the p-adapted mesh illustrated in Fig. 4.11.

p4 p3 p2 p1 (entire mesh) p0 (entire mesh)
Elements 137 402 1428 1508 1508

Edges 251 686 2214 2314 2314

Table 4.4: Computational cost (sec) for one zonal multigrid cycle and one global
multigrid cycle.

Zonal Global Ratio
One multigrid cycle 1.3803 2.4256 0.5960

p = 4 in this case, both zonal and global multigrid methods begin with the finest

level, p = 4, and employ coarser levels with p = 3, 2, 1 and p = 0 sequentially.

Table 4.3 provides the numbers of elements and edges or faces involved in each

level of the zonal p-Multigrid strategy for this mesh. Note that the levels of p = 4

and p = 3 contain only 9% and 27% of the total number of elements, respectively,

thereby saving significant computational operations. Fig. 4.23(a) plots the residual

convergence histories of both methods with respect to the number of multigrid cycles.

It can be observed that the zonal p-Multigrid scheme delivers a slightly slower conver-

gence rate than the global p-Multigrid scheme due to omission of repeated smoothing

passes on lower order elements appearing on multiple levels in the global multigrid

approach. However, in terms of computational cost as depicted in Fig. 4.23(b), the

zonal scheme is seen to be more efficient, demonstrating 37% of savings in CPU time,

compared with the global multigrid approach. This is achieved by a decreased num-

ber of elements, and edges (as listed in Table 4.3) on the finer multigrid levels and

thus lower required number of operations per multigrid cycle. Table 4.4 shows that

the computational cost for one zonal multigrid cycle is approximately 56.9% of the

cost of one global multigrid cycle. In summary, the zonal multigrid method provides

an avenue to improve the multigrid solver performance for problems with variable

p-order discretizations. However, this benefit relies on the specific construction of

the multigrid mesh levels, such as the proportion of high-order discretized elements

against lower-order elements in the computational domain, and requires the inclusion

of extra fringe elements with lower-order discretizations. Therefore, in general, the
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Figure 4.23: Comparison of convergence histories of the global and zonal multigrid
methods for the case of subsonic flow over a four-element airfoil.

performance benefit of the zonal p-Multigrid approach will be highly dependent on

the distribution of the discretization orders for each given problem.
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Chapter 5

High-order Implicit Temporal Schemes

for Unsteady Flows

The emphases of the last three chapters are given to steady-state problems and this

chapter concentrates on extending the techniques carried out for steady-state prob-

lems to unsteady compressible flow problems. Specifically, efficient solution tech-

niques for high-order accurate temporal schemes are developed and incorporated with

high-order accurate spatial discontinuous Galerkin discretizations. Implicit time-

integration techniques are considered exclusively in order to avoid the stability re-

strictions of explicit methods. Standard Backwards differencing methods (BDF1 and

BDF2) as well as a second-order Crank-Nicholson (CN2) and a fourth-order implicit

Runge-Kutta (IRK4) scheme are considered in an attempt to balance the spatial and

temporal accuracy of the overall approach. The implicit system arising at each time

step is solved using the p-Multigrid approach described in Section 2.2.3, which is

shown to produce both h independent convergence rates, while remaining relatively

insensitive to the time-step size. The Crank-Nicholson methodology, although not

strictly L-stable, demonstrates superior performance compared to the BDF2 scheme

for the problems chosen in this work. However, the fourth-order accurate implicit

Runge-Kutta scheme is found to be the most efficient in terms of computational cost

for a given accuracy level as compared to the lower order schemes, in spite of the

added cost per time step, and the benefits of this scheme increase for tighter error
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tolerances.

5.1 Introduction

For time-dependent problems, discontinuous Galerkin methods have generally been

used in conjunction with high-order accurate explicit time-integration methods, such

as explicit Runge-Kutta discontinuous Galerkin (RKDG) methods [13,18,52]. While

such methods are well suited for problems with similar spatial and temporal scales,

they are notoriously inefficient for problems with disparate temporal and spatial

scales, such as low reduced frequency problems, and for steady-state problems.

The CFL stability limit of explicit schemes applied to high-order spatial dis-

cretizations becomes more restrictive as the order of the spatial discretization in-

creases. In general, the stability limit can be as severe as CFL ∼ 1
p2 [106], where p

represents the polynomial degree of the basis functions. As a consequence, implicit

time-integration strategies, which are unconditionally stable and allow the selection

of the time step based purely on temporal accuracy considerations [54–56], can be

expected to provide a more effective approach for problems with disparate length

and time scales or stiff problems. However, implicit methods require the solution

of one or more non-linear problems at each time step, thus requiring the use of an

efficient solution technique in order to make these schemes competitive. Recently,

various efforts have investigated the use of high-order implicit time-integration meth-

ods [55,57,58,107] and solution procedures.

This work considers implicit time-integration approaches of various orders, namely

the first and second-order implicit Backwards Differencing schemes (BDF1 and BDF2),

the second-order Crank-Nicholson scheme (CN2), and an implicit fourth-order Runge-

Kutta scheme (IRK4), for solving the Euler equations with high-order spatial dis-

continuous Galerkin discretizations. In order to provide a competitive approach,

the implicit system arising at each time-step in these time-integration schemes must

be solved in an efficient manner. This is achieved using the spectral multigrid (p-

Multigrid) method developed for steady-state problems in Section 2.2.3.
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The remainder of this chapter is organized as follows. Section 5.2 describes the

temporal discretizations used in this work. Section 5.3 briefly describes the implicit

solution techniques developed in this work. In Section 5.4, two-dimensional numerical

results are shown for an isentropic convecting vortex case, and for a periodic vortex-

shedding problem using an unstructured triangular mesh to examine the performance

of the solution strategy with regards to mesh size and time-step size, and to examine

the accuracy and efficiency of higher-order temporal discretizations, with particular

emphasis on the suitability of these schemes in terms of accuracy and efficiency for

spatial discretizations of various orders.

5.2 Temporal Discretizations

The time-dependent formulation incorporated with the spatial discontinuous Galerkin

discretizations for the two-dimensional inviscid compressible Euler equations is shown

in Eq. (2.5). By substituting the Galerkin solution expansion formulation denoted in

Eq. (2.7), Eq. (2.5) becomes:

M
dũ

dt
+ R(ũ) = 0 (5.1)

where R represents the spatial residual described in Eq. (2.15), and M denotes the

mass matrix which has identical diagonal blocks, Md, for each of the four modal

variables of (ρ, ρu, ρv, ρe)i, and which can be written as:

Md =



∫
Ωk
φ1φ1dV

∫
Ωk
φ1φ2dV . . .

∫
Ωk
φ1φNdV∫

Ωk
φ2φ1dV

∫
Ωk
φ2φ2dV . . .

∫
Ωk
φ2φNdV

. . . . . . . . . . . .∫
Ωk
φNφ1dV

∫
Ωk
φNφ2dV . . .

∫
Ωk
φNφNdV


(5.2)

The implicit time-integration schemes currently employed in this work range from

first to fourth-order accurate in time, including both first and second-order accurate

multistep backwards difference formulations (BDF1 and BDF2), the second-order ac-

curate Crank-Nicolson or trapezoidal scheme, and a fourth-order accurate implicit
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multistage Runge-Kutta scheme (IRK4). The BDF1 and BDF2 schemes are both

unconditionally stable, while the CN2 scheme is A-stable, but not L-stable [108]. For

these reasons, CN2 has often been shunned in favor of BDF2 in many computational

fluid dynamics problems. However, the lack of L-stability may be acceptable par-

ticularly for problems with smooth solutions, and the scheme is therefore included

in the present study. Because higher-order multistep backwards difference schemes

beyond second-order are not A-stable, we choose to investigate the use of implicit

Runge Kutta schemes for achieving higher temporal accuracy. A six-stage diagonally

implicit IRK scheme is chosen which is fourth-order accurate in time. While this

scheme may not necessarily represent the optimal fourth-order temporal scheme for

all problems, it has been designed with stiff stability and accuracy considerations in

mind [109], and has been used successfully on lower-order finite-volume schemes by

various authors [55, 110]. One of the drawbacks of IRK methods is their expense,

since these require the solution of multiple implicit problems at each time step (one

per stage), as opposed to BDF and CN schemes which only require the solution of a

single implicit problem per time step. Therefore, one of our objectives is to determine

if IRK schemes can be competitive or superior to lower-order schemes when used in

conjunction with efficient solvers, particularly when high accuracy is required.

Starting from the set of ordinary differential equations given by Eq. (5.1), the

formulations for BDF1, BDF2 and CN2 schemes are given respectively as:

BDF1 :
M

∆t

(
ũn+1 − ũn

)
+ R

(
ũn+1

)
= 0 (5.3)

BDF2 :
M

∆t

(
3

2
ũn+1 − 2ũn +

1

2
ũn−1

)
+ R

(
ũn+1

)
= 0 (5.4)

CN2 :
M

∆t

(
ũn+1 − ũn

)
+

1

2
R
(
ũn+1

)
+

1

2
R (ũn) = 0 (5.5)

where ∆t represents the integration time step, and ũn and ũn+1 denote numerical

solutions for the current and the next (unknown) time step, respectively. By defining

a nonlinear unsteady residual, Re, for the corresponding BDF1, BDF2 and CN2

schemes as:
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BDF1 : Re(ũ
n+1) =

M

∆t
ũn+1 + R(ũn+1)− M

∆t
ũn = 0 (5.6)

BDF2 : Re(ũ
n+1) =

M

∆t
(
3

2
ũn+1) + R(ũn+1)− M

∆t
(2ũn − 1

2
ũn−1) = 0 (5.7)

CN2 : Re(ũ
n+1) =

M

∆t
ũn+1 +

1

2
R(ũn+1)− (

M

∆t
ũn − 1

2
R(ũn)) = 0 (5.8)

the solution of these schemes at the time step n + 1 can be achieved by solving the

nonlinear problems Re(ũ
n+1) = 0. These schemes are relatively efficient because

they solve only one implicit set of equations per time step. In the case of multistage

implicit Runge-Kutta schemes, however, multiple implicit problems are required per

time step (each stage requires one implicit system solution), but these schemes are

easily implemented in the presence of variable time steps and can be constructed to

be A- and L-stable for any temporal order. In the current work a particular class

of Explicit first stage, Single Diagonal coefficient, diagonally Implicit Runge-Kutta

(ESDIRK scheme), is considered. The formula for a S-stage ESDIRK scheme can be

written as:

(i) ũ(0) = ũn

(ii) For s = 1, · · · ,S

ũ(s) = ũn −∆t
∑s

j=1 asjM
−1R(ũ(j))

(iii) ũn+1 = ũn −∆t
∑S

j=1 bjM
−1R(ũ(j))

(5.9)

where asj are the Butcher coefficients of the scheme. The Butcher table for the six-

stage ESDIRK scheme (i.e. S = 6, fourth-order accurate) employed presently is shown

in Table 5.1 and the values [55,110] are given in Table 5.2. The set of coefficients, asj

in Eq. (5.9), defines the implicit RK schemes. The first stage is explicit due to a11

= 0 and a single implicit scheme is solved at each additional individual stage since

the set of akj has the form of a lower triangular matrix. The last stage coefficients

take on the form aSj = bj, and thus the solution for the next time step is equal to

the solution at the last stage, i.e. ũn+1 = ũ(S). ck represents the point in the time

interval, [t, t+ ∆t] and satisfies:
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Table 5.1: Butcher Tableau for ESDIRK class of six-stage RK schemes.

c1 = 0 0 0 0 0 0 0

c2 a21 a22 = a66 0 0 0 0

c3 a31 a32 a33 = a66 0 0 0

c4 a41 a42 a43 a44 = a66 0 0

c5 a51 a52 a53 a54 a55 = a66 0

c6 = 1 a61 = b1 a62 = b2 a63 = b3 a64 = b4 a65 = b5 a66

ũn+1 b1 b2 b3 b4 b5 b6

Table 5.2: The Butcher coefficients asj and cs for the ESDIRK4 scheme (with a6j =
bj.

a21 a22 a31 a32

a33 a41 a42 a43

a44 a51 a52 a53

a54 a55 a61 a62

a63 a64 a65 a66

c1 c2 c3 c4

c5 c6

1
4

1
4

8611
62500

−1743
31250

1
4

5012029
34652500

−654441
2922500

174375
388108

1
4

15267082809
155376265600

−71443401
120774400

730878875
902184768

2285395
8070912

1
4

82889
524892

0
15625
83664

69875
102672

−2260
8211

1
4

0 1
2

83
250

31
50

17
20

1
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ck =
k∑

j=1

akj (k = 1, 2, . . . , 6) (5.10)

Similarly, the unsteady residual corresponding to the non-linear implicit system at

each stage of the IRK4 scheme can be written as:

Re(ũ
(1), · · · , ũ(s)) =

M

∆t
ũ(s) + assR(ũ(s))

−

[
M

∆t
ũn −

s−1∑
j=1

asjR(ũ(j))

]
= 0 (s = 1, · · · , 6) (5.11)

5.3 Solution Approach

As pointed out previously, implicit time-integration methods require the solution of

one or more implicit problems per time step. Efficient solvers are required for this

task in order to achieve an overall competitive approach. Our approach consists of

using the p-Multigrid approach alone described in Section 2.2.3, in conjunction with

an element Jacobi smoother on each multigrid level, for solving the implicit system at

each time step. The use of p-Multigrid alone rather than the hp-Multigrid approach is

due to the fact that the addition of h-Multigrid can be expected to be less important

for time-dependent problems, since the resulting implicit systems are more diagonally

dominant and are somewhat more local in nature than the corresponding steady state

problem. The extension to hp-Multigrid can be employed naturally as described in

Section 2.2.3.

Returning to the unsteady residual formulation, Re(ũ
n+1), for solving the flow

solution at time step n+1 in the implicit schemes, a Newton scheme can be expressed

in a similar way to that used for the steady-state problem as:

(i)

[
∂Re(ũ)

∂ũ

]k

∆ũk+1 = −Re(ũ
k) (5.12)

(ii) ũk+1 = ũk + α∆ũk+1, k = 1, 2, · · · ,V

(iii) ũn+1 = ũV when Re(ũ
V) = 0
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where k refers to the subiteration index in the Newton iterations. [∂Re(ũ)/∂ũ]

is the Jacobian matrix for the unsteady flow problem and its formulation can be

derived based on Equations (5.6)-(5.8) and Eq. (5.11) for the respective BDF1,

BDF2, CN2 and IRK4 schemes considered in this work. α is a relaxation pa-

rameter similarly employed in the steady-state solver, which is designed to keep

‖α∆ũk+1‖L∞/‖ũk+1‖L∞ ≤ 10%. The current solution method considers the use of the

element Jacobi smoothers investigated for the steady state problem (in Section 2.2.2),

including the non-linear element Jacobi (NEJ), the quasi-non-linear element Jacobi

(qNEJ) and the linearized element Jacobi (LEJ) solvers. As described previously,

the NEJ and qNEJ smoothers store only the Jacobian entries corresponding to the

modal coupling between all modes within an element, resulting in a block diagonal

matrix, [DT ], which is easily inverted using Gaussian elimination at the block level,

and all other entries, [OT ] are discarded. In the LEJ solver, the full Jacobian entries

are decomposed into both diagonal, [DT ], and off-diagonal, [OT ], block components,

i.e. [∂Re(u)/∂u]k = [DT ]k + [OT ]k, where the [DT ] blocks are treated implicitly, and

the [OT ] blocks are treated explicitly. Note that the diagonal block matrix [DT ]k, the

off-diagonal blocks [OT ]k and the unsteady residual Re will have different forms for

the various time-integration schemes. To make this point clear, we specify in Table

5.3 these terms for the corresponding BDF1, BDF2 and CN2 schemes, and for inter-

mediate stage values of the IRK4 scheme, respectively. R(ũk) in this table refers to

the spatial residual vector corresponding to Eq. (2.15). The respective notations of

[D]k and [O]k denote diagonal and off-diagonal block components of the steady-state

Jacobian matrix, evaluated using ũk.

The procedure used for implementing the p-Multigrid approach for the steady-

state problem in Section 2.2.3 can also be extended to the time-dependent problem

at each implicit time step (e.g. n+ 1), described as:

• Step 1: Start with ũl = ũn.

• Step 2: Perform M subiterations (k = 1, · · · ,M) on the high-order approxi-

mation level (p) to solve the problem: Rep(ũ
k
p) = Sp, using an element Jacobi
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solver mentioned previously; Get residual: rp = Sp −Rep(ũ
M
p ).

• Step 3: Restrict both solution and residual to the low-order approximation

level (p− 1): ũ0
p−1 = Ip−1

p ũMp ; Sp−1 = Rep−1(ũ
0
p−1) + Ip−1

p rp.

• Step 4: Solve the low-order approximation level problem by using the same

element Jacobi solver with M subiterations (k = 1, · · · ,M): Rep−1(ũ
k
p−1) =

Sp−1; Obtain the low-order level error: ep−1 = ũMp−1 − Ip−1
p ũMp .

• Step 5: Prolongate this low-order level error to correct the high-order approx-

imation level: ũl+1
p = ũMp + Ip

p−1ep−1.

• Step 6: Repeat Steps 2 through 5 for each level of the V-cycle p-Multigrid

method until Rep(ũ
l+1
p ) = 0 (machine zero or a suitably determined tolerance),

then the solution for the n+ 1 time step is obtained as: ũn+1 = ũl+1
p .

Similarly, the use of the notation (·)p is to specify the approximation level of the

p-Multigrid approach. The source term Sp, which represents the residual restriction

term from the finer multigrid levels, vanishes on the finest level (highest-order ap-

proximation level) in the multigrid formulation, but is retained on all levels in the

description for generality. The two-level multigrid scheme described above is used re-

cursively to solve the coarse level problem, resulting in the full multilevel algorithm.

Furthermore, five subiterations are utilized in both the qNEJ and LEJ schemes be-

tween non-linear Jacobian (and residual for the LEJ method) updates.

5.4 Results

In this section, two test cases are used to illustrate the performance of the solution

techniques for the time-dependent compressible Euler equations. The first test case

consists of an isentropic convecting vortex on a uniform mesh, while the second test

case consists of the time-dependent vortex shedding from a triangular wedge on a

highly graded unstructured mesh.
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Table 5.3: Diagonal blocks, off-diagonal blocks and unsteady residuals for the BDF1,
BDF2, CN2 and IRK4 schemes.

Schemes [DT ]k [OT ]k Re(ũ
k)

BDF1 [DT ]k = M
∆t

+ [D]k [O]k M
∆t

ũk + R(ũk)− F

F = M
∆t

un
h

BDF2 [DT ]k = 3
2

M
∆t

+ [D]k [O]k 3
2

M
∆t

ũk + R(ũk)− F

F = M
∆t

(2un
h − 1

2
un−1

h )

CN2 [DT ]k = M
∆t

+ 1
2
[D]k 1

2
[O]k M

∆t
ũk + 1

2
R(ũk)− F

F = M
∆t

un
h − 1

2
R(ũn)

IRK4 [DT ]k = M
∆t

+ ass[D]k ass[O]k M
∆t

ũk + assR(ũk)− F

(s =
1, · · · , 6)

F = M
∆t

un
h −

∑s−1
j=1 asjR(ũ(j))

For the first test case, we concentrate on assessing the accuracy and efficiency of

the various time-integration schemes in the presence of high spatial accuracy (p=4,

fifth-order spatial accuracy). Accuracy is assessed on the one hand by comparing

solutions using the same time step for the various schemes with each other and with

an exact solution, in order to demonstrate that accuracy is within (or close to) the

asymptotic region of convergence for the higher-order time-integration methods for

such problems. A more quantitative time step refinement study is then performed

to demonstrate the asymptotic error reduction properties of the respective temporal

schemes. In order to compare the efficiency of the various schemes, the performance

of the p-Multigrid solution strategy is first evaluated, including the dependencies on

grid resolution and time step size, which are ultimately the key determining factors

for any efficiency comparison of time-implicit schemes. The delivered accuracy of the

various schemes as a function of CPU time is then examined.

The second test case represents a more realistic problem, for which an exact

solution is not available. In this case, we investigate the effect of low and high-

order accurate time-integration schemes combined with low and high-order spatial

discretizations on highly graded meshes on overall solution accuracy. We begin by

establishing the asymptotic convergence of the time-integration schemes on this more

demanding problem, through a time-step refinement study, and then examine the

overall solution error for various combinations of spatial and temporal accuracy. Fi-
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nally, a qualitative comparison is made with a simple explicit scheme, to illustrate

the advantages of time-implicit approaches for low-reduced frequency problems of this

type.

5.4.1 Convection of an Isentropic Vortex

The convection of a two-dimensional inviscid isentropic vortex [111–113] is simulated

to examine the performance of the implicit time-stepping schemes. The exact solution

for this test case at any time t is the initial solution at t0 = 0 translated over a

distance u∞t for a horizontally convecting vortex, which provides a valuable reference

for measuring the accuracy of the computed solution.

The mean flow density, ρ∞, velocity, u∞ and v∞, pressure, p∞ and tempera-

ture T∞ are taken as freestream values, which are set as (ρ∞, u∞, v∞, p∞, T∞) =

(1, 0.5, 0, 1, 1) in this test case. Freestream boundary conditions are imposed on the

top and bottom boundaries, while periodic boundary conditions are applied between

the inlet and outlet of the domain. These boundary conditions are applied on all

levels of the multigrid sequence. At t0 = 0, the flow is perturbed by an isentropic

vortex (δu, δv, δT ) centered at (x0, y0) with the form:

δu = − σ

2π
(y − y0)e

ϑ(1−r2) (5.13)

δv =
σ

2π
(x− x0)e

ϑ(1−r2) (5.14)

δT = −σ
2(γ − 1)

16ϑγπ2
e2ϑ(1−r2) (5.15)

where, ϑ and σ are parameters which determine the strength of the vortex, r =√
(x− x0)2 + (y − y0)2 is the distance to the vortex center, and γ = 1.4 is the ratio

of specific heats of air. In this study, we set ϑ as unity and σ as 4.0. Given the pertur-

bation functions shown in Eq. (5.13), Eq. (5.14) and Eq. (5.15), the other resulting

conservative variables can be determined based on the assumption of isentropic flow

throughout the domain (i.e. p/ργ = 1 and T = p/ρ for a perfect gas), given as:
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ρ = T 1/(γ−1) = (T∞ + δT )1/(γ−1) =

[
1− σ2(γ − 1)

16ϑγπ2
e2ϑ(1−r2)

]1/(γ−1)

(5.16)

u = u∞ + δu = 0.5− σ

2π
(y − y0)e

ϑ(1−r2) (5.17)

v = v∞ + δv = 0 +
σ

2π
(x− x0)e

ϑ(1−r2) (5.18)

Numerical Solutions

This test case employs a uniform Cartesian triangular mesh. The initial vortex is

placed at (x0, y0) = (0, 0) on a domain of −7 ≤ x ≤ 7 and −3.5 ≤ y ≤ 3.5 with 10000

elements, as shown in Fig. 5.1. A fifth-order accurate (p = 4) spatial discretization

is used in all cases, and the time-step (∆t) is set equal to 0.2. Since the local CFL

number is defined as,

CFLi =
∆t

voli

3 edges∑
j=1

(|u · n|+ c)j 1 ≤ i ≤ N (5.19)

where vol denotes the area of the element in the 2D case, c denotes the local speed of

sound and N represents the number of elements, then the fixed time-step ∆t = 0.2

corresponds to a maximum CFL number of 11. Note that for the considered p = 4

spatial discretization, the explicit stability limit could be as much as 176 times smaller

(i.e. ∼ 1
p2 ) than our chosen time step.

Fig. 5.1 illustrates the computational mesh and the initial density contours in

the domain. The length of the domain is 14, and the horizontal velocity is u∞ = 0.5,

thus the vortex requires T = 28 to complete one revolution around the periodic grid

in the x-direction. Computed density solutions at times t = 4, t = 10, t = 20 and

t = 50 obtained by the BDF1, BDF2, CN2 and IRK4 schemes are shown in Figures

5.2 and 5.3. The first three non-dimensional times are within the first horizontal

period of the vortex motion, and the last t = 50 is close to the end of the second

period (since it requires t = 56 to complete the second period). The results of the
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Figure 5.1: Grid and initial density contours for the isentropic vortex convection
problem.

BDF1 scheme (Figures 5.2(a) – 5.2(d)) illustrate how the vortex is diffused using

this first-order accurate scheme, even at small time increments. Conversely, as shown

in Figures 5.2(e) – 5.2(h) and Figures 5.3(a) – 5.3(d), the BDF2 and CN2 schemes

display a substantially better shape retaining property for the vortex, except at later

times such as t = 50 where some dispersion and oscillations are evident around the

brink of the vortex. On the other hand, the IRK4 scheme (Figures 5.3(e) – 5.3(h))

provides the best accuracy with the final shape of the vortex at t = 50 being almost

indistinguishable from the initial shape.

A more quantitative comparison is given in Fig. 5.4, where the density profiles

along the horizontal centerline (y = 0) for the BDF1, BDF2, CN2 and IRK4 time-

integration schemes at various times, t = 4, t = 10, t = 20, and t = 50, are compared
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(a) t=4, BDF1 (b) t=10, BDF1

(c) t=20, BDF1 (d) t=50, BDF1

(e) t=4, BDF2 (f) t=10, BDF2

(g) t=20, BDF2 (h) t=50, BDF2

Figure 5.2: Density contours (3D) of the BDF1 and BDF2 schemes at various times,
t=4, 10, 20 and 50, using a time-step of ∆t=0.2 and p = 4 spatial discretization.
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(a) t=4, CN2 (b) t=10, CN2

(c) t=20, CN2 (d) t=50, CN2

(e) t=4, IRK4 (f) t=10, IRK4

(g) t=20, IRK4 (h) t=50, IRK4

Figure 5.3: Density contours (3D) of the CN2 and IRK4 schemes at various times,
t=4, 10, 20 and 50, using a time-step of ∆t=0.2 and p = 4 spatial discretization.
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(a) t=4

(b) t=10

(c) t=20

(d) t=50

Figure 5.4: Comparison of the various temporal schemes with the exact solution,
illustrated by density profiles at the centerline y = 0, at t=4, 10, 20 and 50, using a
time-step of ∆t=0.2.
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with the exact solution, obtained by translating the initial centerline density profile

to the appropriate spatial location for each given time. From the figure, it can be seen

that the IRK4 scheme exhibits the best resolution and provides very good agreement

with the exact solution, since there is no visual deviation between the computed

results and exact results and the vortex core is well conserved. On the other hand,

the BDF1 scheme which is only first-order accurate in time, produces rapid dissipation

of the vortex core, as mentioned previously, while the BDF2 and CN2 schemes provide

substantially better resolution and higher accuracy than the BDF1 scheme. Before

t = 20, the computed results obtained by the BDF2 and CN2 schemes fall almost on

top of the exact solution, but at later times, these schemes show increased deviations

from the exact profile, although the CN2 scheme remains substantially more accurate

than the BDF2 scheme. However, this result must be balanced by the fact that the

CN2 scheme is not L-stable [108], and may perform poorly in other cases.

Temporal Accuracy

We begin by examining the error of the respective time-integration schemes at a fixed

time-step size, in order to determine if these schemes are within or close to their

asymptotic regions of convergence. This is important since the error properties of

these schemes are asymptotic in nature, based on the presumption of smooth solu-

tions, and there is no guarantee that higher-order methods will deliver smaller errors

than lower order methods, even at equivalent time steps, when these assumptions do

not hold.

In order to assess the asymptotic behavior of the time-integration schemes, a

temporal refinement study is carried out using the same fixed spatial discretization

(p = 4). Because the overall error is due to both spatial and temporal error, the

“exact” numerical solution for each temporal scheme is obtained using a small time-

step reference solution, in order to eliminate the effect of spatial error and to isolate

the temporal error. The time-step to obtain the “exact” solution is ∆t = 0.01 for

all time-integration schemes. Various time-steps, consisting of ∆t = 2.0, 1.0, 0.5 and

0.25, which correspond to a maximum CFL number of 110, 55, 28 and 14, respectively,
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Figure 5.5: Comparisons of temporal accuracy for various implicit temporal schemes
as a function of time-step size at t = 4.

have been used for all of the temporal schemes. Additionally, two smaller time-steps,

∆t = 0.125 and 0.0625 are employed for the BDF1, BDF2 and CN2 schemes to extend

their range of comparison. A regular mesh with a grid spacing of ∆x = ∆y = 0.25 and

a total of 3136 elements is employed for this study. The temporal error is obtained

by computing the RMS difference of all conserved variables at all grid points between

the computed solution and the reference exact solution.

The temporal accuracy results for the BDF1, BDF2, CN2 and IRK4 schemes at

t = 4 are illustrated in Fig. 5.5, where the computed temporal error is plotted as

a function of the time-step on a log-log plot. The first-order backwards differencing

scheme displays a slope of 1.0. The second-order backwards differencing scheme and

the Crank-Nicholson scheme demonstrate similar slopes of 1.9 and 2.0, respectively,

although the CN2 scheme is consistently more accurate in absolute terms than the

BDF2 scheme. The fourth-order Runge-Kutta scheme exhibits a slope of 3.82, which

is close to the design value of 4. For any given time-step size, the IRK4 scheme

achieves higher accuracy than the BDF1, BDF2 and CN2 schemes, while the BDF2
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and CN2 schemes provide better accuracy than BDF1. For example, using a time-

step size of ∆t = 0.25, the IRK4 scheme attains a temporal error of approximately

10−6 while all the other schemes incur temporal errors larger than 3× 10−4.

These results demonstrate that the chosen temporal discretization schemes achieve

their design order of accuracy within the range of time steps of interest and for

high-order spatial discretizations. On the other hand, since the higher-order tempo-

ral schemes (particularly the IRK scheme) are more expensive than the lower order

schemes, the more practical consideration of computational efficiency of these schemes

for a prescribed error tolerance must be addressed. However, since the efficiency of

these schemes is inherently related to the performance of the implicit solver used at

each time step, the performance of the p-Multigrid solver must first be examined and

quantified.

Comparison of p-Multigrid Smoothing Strategies

As discussed in Section 5.3, several p-Multigrid solver variants consisting of the non-

linear element Jacobi (NEJ), the quasi-nonlinear element Jacobi (qNEJ) and the

linearized element Jacobi (LEJ) can be used as smoothers at each implicit time step.

In this section, the performance of these three variants in one implicit time step is

demonstrated using the IRK4 scheme and the p = 4 spatial discretization for the

vortex convection test case. Within the multigrid scheme, 5 smoothing passes are

utilized at each mesh level. Furthermore, the qNEJ and LEJ smoothers effectively

freeze the non-linear Jacobians (and residuals for the LEJ scheme) over 5 iterations,

resulting in a single non-linear update on each grid level within a multigrid cycle.

Fig. 5.6(a) depicts the convergence profiles of the LEJ, qNEJ and NEJ solvers

in terms of p-Multigrid cycles for a single implicit time step solution. Since the

solution of five unsteady residuals (i.e. Re(ũ
(1), · · · , ũ(s)), s = 2, · · · , 6) is required

to be solved in a single implicit time step of the IRK4 scheme, the results depicted

in this figure show five stage-convergence histories. As expected, the results are

similar to those obtained in the context of the equivalent steady-state solver [16,48]:

the linearized element Jacobi, quasi-nonlinear element Jacobi and non-linear element
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(a) Convergence history in terms of p-Multigrid
cycles

(b) Convergence history in terms of CPU time

Figure 5.6: Comparisons of convergence for solver variants (LEJ, qNEJ and NEJ)
in one time step of the IRK4 scheme on a mesh of 7056 elements and discretization
order p = 4, using fixed time-step size of ∆t = 0.5.

Jacobi converge with similar rates in terms of the number of p-Multigrid cycles.

However, when compared in terms of CPU time, as shown in Fig. 5.6(b), the LEJ

and qNEJ solvers are seen to be substantially more efficient than the NEJ solver due

to the omission of the expensive block diagonal Jacobian re-computations required

in the latter scheme at each smoothing pass. In this test case, the LEJ and qNEJ

smoothers require only a single Jacobian evaluation and LU factorization at each

mesh level within a multigrid cycle, whereas this procedure must be repeated 5 times

for the NEJ scheme. The reduction of the number of non-linear residual evaluations

in the LEJ scheme results in only slightly improved CPU time, moreover, since the

off-diagonal blocks of the Jacobian matrix are not stored in the qNEJ scheme, the

qNEJ scheme may be an appropriate compromise for cases where memory limitations

are dominant.

Efficiency of p-Multigrid Approach

Having settled on the use of the qNEJ smoother, we must now assess the efficiency

of the overall p-Multigrid solver for time-implicit problems, in order to later examine
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and understand the efficiency comparisons of the various time-integration schemes.

The use of efficient non-linear solvers is particularly important for the performance

of high-order temporal schemes, such as IRK, which entail the solution of multiple

non-linear problems within a given time step. These schemes are substantially more

expensive per time step than their lower-order counterparts, but enable the use of

much larger time steps for equivalent accuracy, due to their superior asymptotic

properties. Thus, the performance of the multigrid scheme as a function of time step

size must be considered in addition to the more traditional performance metric as a

function of grid size.

In this section, we examine the convergence of the non-linear p-Multigrid solver

(using the qNEJ smoother) compared to that of the corresponding single level solver as

a function of grid size and time-step size in one implicit time-integration. Specifically,

the grid sizes vary from 3136, to 7056 to 14400 elements on a domain of −7 ≤ x ≤ 7

and −3.5 ≤ y ≤ 3.5, and time-step sizes range from ∆t = 0.5, ∆t = 1.0 to ∆t =

5.0. The spatial discretization (p = 4), as well as initial and boundary conditions,

are kept unchanged and we choose the BDF2 scheme as the time-integration scheme,

with the understanding that the performance of the multigrid scheme will be similar

for implicit systems arising from each BDF or CN2 time step, or each IRK stage.

Fig. 5.7(a) depicts the p-Multigrid convergence for various mesh sizes, compared

with the single level solver for a fixed time step of the BDF2 scheme. The solid

lines represent computed results using the p-Multigrid strategy and the dashed lines

represent results using the corresponding single level solver, i.e. no multigrid involved.

Since the time-step size has been fixed for all runs, this figure illustrates the effect

of grid resolution or mesh size on convergence rate. An important aspect of these

results is the relative insensitivity of the p-Multigrid convergence to the mesh size,

which illustrates the h-independent property of the p-Multigrid solver. On the other

hand, the convergence rate of the single level solver decreases progressively for finer

mesh sizes. While a p-Multigrid cycle requires more computational time than a single-

grid cycle, the p-Multigrid approach is still seen to be more efficient overall in terms

of CPU time than the single level solver, as depicted in Fig. 5.7(b), and the benefit
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(a) Convergence history vs. p-Multigrid cycles (b) Convergence history vs. CPU time

Figure 5.7: Comparisons of the convergence between p-Multigrid and single level
solvers, using various grid sizes, N=3136, N=7056 and N=14400 with a fixed time-
step of ∆t = 1.0 for the BDF2 scheme.

of the p-Multigrid solver can be expected to increase for larger mesh sizes.

Since time-step size is another factor which affects convergence and computa-

tional time, we also discuss the characteristics of the p-Multigrid approach and corre-

sponding single level solver with respect to time-step sizes. The obtained convergence

profiles for various time-step sizes are illustrated in Fig. 5.8, for the largest mesh size

of N = 14400. As previously, the p-Multigrid approach delivers faster convergence

and requires lower overall CPU time than the corresponding single-level solver, for a

given time step. As the time-step size is increased, the convergence of both solvers

deteriorates, as expected, since small time-step sizes correspond to more diagonally

dominant systems, which can be inferred from the diagonal block formulations in Ta-

ble 5.3. In particular, at relatively small time-step values, the use of the p-Multigrid

solver may not be necessary, and a few passes of the single grid solver (element Jacobi)

may be sufficient to adequately solve the implicit system. However, for large time

steps, the convergence of the p-Multigrid solver deteriorates less severely than that

of the single level solver, and will eventually asymptote to the convergence observed

for steady-state problems [16]. Thus, for moderate time-step sizes, the p-Multigrid
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(a) Convergence history vs. p-MG cycles (b) Convergence history vs. CPU time

Figure 5.8: Comparisons of the convergence between p-Multigrid and single level
solvers, using various time-step sizes, ∆t = 0.5,∆t = 1.0 and ∆t = 5.0, with a fixed
mesh size of N=14400 for the BDF2 scheme.

solver provides the most efficient mechanism for integrating the implicit equations in

time, and the benefit of this method can be expected to increase for larger time-step

sizes and for finer meshes. For example, using a time step of ∆t = 1 on the mesh size

of N=14400, the p-Multigrid approach achieves a speedup of 1.8 over the single grid

solver, while a speedup of 2.35 is obtained for a time step of ∆t = 5.

Comparison of Efficiency of Temporal Schemes

The results of the time-step refinement study discussed in the temporal accuracy

section and depicted in Fig. 5.5 are revisited in Fig. 5.9, where the temporal error

is plotted as a function of the required CPU time, which is obtained using the p-

Multigrid algorithm (with qNEJ smoother) described in Section 5.3, the performance

of which at one implicit time step was examined in the previous section. In all

cases, the non-linear residuals at each time step are converged to machine precision.

Although this may not be necessary for preserving the final accuracy of the computed

solutions, the determination of suitable levels for implicit system convergence remains

an active research area and is explored further in Chapter 6. In any case, for a given

accuracy level, one may expect the required convergence levels to be the same for all
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Figure 5.9: Comparisons of temporal efficiency for various implicit temporal schemes
at t = 4 for vortex convection test case.

schemes, so that the relative comparisons between CPU time required for the various

temporal schemes remain valid. The results of Fig. 5.9 indicate that in order to reach

a specified error level, the IRK4 scheme requires the least CPU time, while the BDF1

scheme is clearly not practical in terms of efficiency, due to its low convergence rate.

For example, to achieve an accuracy level of 1×10−4, the IRK4 scheme requires 2615

seconds of CPU time, while the BDF2 scheme requires 8042 seconds, which is over 3

times longer. On the other hand, the CN2 scheme in this case requires 3975 seconds to

achieve this accuracy level, which only is 1.52 times longer than the IRK4 scheme and

twice as fast as the BDF2 scheme. While the CN2 scheme has the same asymptotic

behavior as the BDF2 scheme, it consistently outperforms the BDF2 scheme and

comes closest to matching the efficiency of the IRK4 scheme. Nevertheless, the lack

of L-stability for the CN2 scheme remains a disadvantage which may result in poor

performance of this scheme in other cases. For higher accuracy levels, the advantage

of the IRK4 scheme increases, due to the asymptotic properties of these schemes. In

general, the choice of the most efficient scheme will depend not only on the efficiency

of the non-linear solver, but also on the desired level of accuracy, with higher accuracy

levels favoring higher-order schemes.
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(a) t∼4

(b) t∼10

(c) t∼20

(d) t∼50

Figure 5.10: Comparison of numerical results with the exact solution, using the var-
ious temporal schemes for equal work performance, illustrated by density profiles at
the centerline y = 0, at t ∼ 4, 10, 20 and 50. The various required time-step sizes are
indicated in Table 5.4.
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Table 5.4: Time-step sizes and CPU costs for BDF1, BDF2, CN2 and IRK4 schemes
used for accuracy study at equivalent CPU cost for vortex convection test case.

BDF1 BDF2 CN2 IRK4
∆t 0.31 0.24 0.2 1.1
t ' 4 2080 1965 2180 1939
t ' 10 5056 5013 4951 4895
t ' 20 9810 10122 9895 9818
t ' 50 23908 25215 24736 24575

In another comparison of the efficiency of the various schemes, the delivered

accuracy of these schemes at equivalent CPU cost is compared in Fig. 5.10. This

numerical experiment is similar in nature to that displayed in Fig. 5.4, except that

the comparison of the solutions is made at equivalent CPU time as opposed to the

use of a constant time step. In order to achieve equivalent CPU time for the various

schemes, the time step of each scheme must be adjusted accordingly to achieve a

target total run time. The chosen time step and resulting computational cost for

each scheme are given in Table 5.4, where the use of larger time steps for the more

expensive schemes is evident. While the chosen time steps result in approximately

similar total CPU costs, the final solutions do not always lie at exactly the same

locations in time, due to the use of integer numbers of time steps of varying sizes.

Therefore, the final solutions are compared by translating the vortex density profile

back to the origin, in order to compare solution accuracy at the approximate points

in time given by t ∼ 4, t ∼ 10, t ∼ 20 and t ∼ 50. The results illustrate what

can be surmised from Fig. 5.9, namely that the fourth-order implicit Runge-Kutta

scheme remains the most competitive approach, while the errors in the other schemes

accumulate more rapidly as time proceeds, with the CN2 scheme providing the next

best accuracy for a given cost. Note that the IRK scheme achieves superior accuracy

in this case while using a time step which is approximately 5 times larger than that

used for the lower-order schemes.
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5.4.2 Shedding Flow over a Triangular Wedge

The next test case involves the problem of vortex shedding over a triangular wedge.

Because of the inviscid nature of the flow simulation, a triangular geometry is chosen

in order to ensure that vortices are produced due to separation at sharp corners. In

addition to representing a more realistic test case and to involving a highly graded

unstructured mesh, this case is also used to study the performance of the various

temporal schemes in combination with low and higher-order spatial discretizations,

thus focusing on the interplay between spatial and temporal errors.

Numerical Solutions

The geometry consists of a triangular wedge placed on the centerline y = 0 of the

computational domain, which contains 10,836 unstructured triangular elements, with

the ratio of the smallest to largest cell area being 1:1425 (which corresponds to an

explicit CFL ratio of 38:1). The flow is inviscid, and a uniform freestream Mach

number of 0.2 is applied as the initial condition. Since our principal focus in these

calculations is the ability of these schemes in retaining the shape of the vortices as

these are convected downstream from the wedge, and in order to reduce the occur-

rence of initial discontinuities near the surface of the wedge which would be produced

with a uniform freestream initial condition and would be detrimental for high-order

spatial discretizations, we first employ a p = 0 spatial discretization and BDF2 tem-

poral scheme, utilizing a uniform-flow initial condition: u(x, t = 0) = u∞ = 0.5,

v(x, t = 0) = v∞ = 0, ρ(x, t = 0) = ρ∞ = 1.0 (shown in Fig. 5.11(a)), to obtain an

intermediate solution (shown in Fig. 5.11(b)), in which the formed vortices have not

yet separated. Then, this intermediate solution is applied as the initial condition to

all other high-order p = 1 and p = 3 spatial-discretization schemes, using either the

BDF2 or IRK4 time-integration schemes.

Starting with the computed intermediate solution as the initial condition, Figures

5.12 and 5.13 depict the numerical results at t = 100 for p = 1 and p = 3 spatial

discretizations using the BDF2 and IRK4 time-integration schemes with the same
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(a) mesh and uniform flow

(b) intermediate solution

Figure 5.11: Mesh and density contours for uniform flow and intermediate p = 0
solution used as the initial condition for high-order schemes in the shedding vortex
test case.

fixed time-step size of ∆t = 0.05, respectively. It can be observed that for a fixed

temporal scheme (either the BDF2 or IRK4 scheme), the higher-order accurate p = 3

spatial scheme provides the best shape-retaining convection capability: the vortices

produced around the corners of the triangle wedge keep their shapes far downstream.

On the other hand, the p = 1 scheme is relatively dissipative as seen by the diffusion of

the core of the vortices as they are convected downstream. While the improvement in

the solution due to the increase in spatial discretization order is evident, any solution

changes due to the use of higher-order temporal schemes are less evident in these

qualitative illustrations.

Returning to the results of Fig. 5.12 and 5.13, we take a more quantitative

look at the incurred errors, by plotting the the density distributions along cuts taken

through the centerlines of last three downstream vortices in Fig. 5.14. For the lower-
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order spatial discretization of p = 1 (Fig. 5.14(a)), there is no evident improvement

in overall solution accuracy using the IRK4 temporal discretization scheme over the

BDF2 scheme, since the spatial error dominates the temporal error in this case. On

the other hand, for the higher-order spatial discretization of p = 3 (Fig. 5.14(b)), the

IRK4 scheme is seen to be more accurate than the BDF2 scheme, producing notable

variations in both diffusion and dispersion rates. Therefore, one may conclude that

the use of higher temporal accuracy is not always beneficial, and can even be wasteful

in cases where the dominant error is due to other sources. Generally, the most efficient

overall solution procedures for a given error tolerance will be strategies which attempt

to balance temporal and spatial error sources. This may not be possible in the case of

explicit schemes, where the maximum permissible time step is determined by stability

considerations rather than accuracy considerations.

Temporal Accuracy

In order to assess the accuracy of our temporal discretizations, we perform a tempo-

ral refinement study, similar to that described for the case of the periodic convecting

vortex. The temporal error is isolated by producing a reference“exact” numerical

solution, using a small time-step size of ∆t = 2× 10−4 for each temporal and spatial

discretization. Using the same initial and boundary conditions as described above,

computations are performed using time-step sizes from 0.05 to 5× 10−4 and the error

is measured at t = 0.1. The results shown in Fig. 5.15 indicate that the design

accuracy of the BDF2 and IRK4 schemes is approached in both cases, yielding curve

slopes of 1.92 and 3.96 in the case of the second-order accurate (p = 1) spatial dis-

cretization, and 1.72 and 3.96 in the case of the fourth-order accurate (p = 3) spatial

discretization, for the BDF2 and IRK4 temporal schemes, respectively. However, it is

notable that the absolute temporal errors of both implicit time-integration schemes

are consistently smaller for the second-order accurate (p = 1) spatial discretization

as compared to the higher-order spatial discretization case (p = 3).
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Implicit versus Explicit schemes

In this section, a qualitative comparison is performed between a second-order accurate

explicit scheme and the second-order BDF2 implicit scheme for the vortex shedding

problem described above using the fourth-order accurate (p = 3) spatial discretiza-

tion. The formulation of the second-order explicit forward Euler scheme (FD2) is

written as:

FD2 : Re(ũ
n+1) =

M

∆t
(
3

2
ũn+1 − 2ũn +

1

2
ũn−1) + R(ũn) = 0 (5.20)

By arranging this formulation, the explicit solution at time step n+1 can be computed

as:

ũn+1 =
4

3
ũn − 1

3
ũn−1 − 2

3
M−1∆tR(ũn) (5.21)

It can be observed that no Jacobian matrix is required to be computed or stored in

the explicit scheme and the major computation work is to evaluate the spatial residual

vector, R(ũn), as opposed to the solution of a large non-linear system of equations

in the implicit schemes. Therefore the required computational cost at each time step

can be drastically decreased compared to implicit schemes. However, explicit schemes

are restricted to small time-step sizes due to stability considerations. In the current

text case, the maximum permissible time step for stability, which is determined by

the smallest cells in the mesh, is ∆tmax = 5× 10−5 for the FD2 scheme. This is three

orders of magnitude smaller than the time-step of 0.05 used for the BDF2 scheme.

Table 5.5 compares the characteristics of the explicit and implicit approaches to

this problem, using the p-Multigrid solver to drive the implicit scheme, and converging

each implicit system to a relatively low tolerance of 1×10−7. Since the relatively large

time-step can be used in the BDF2 scheme, the total number of time steps to integrate

the solution to the non-dimensional time t = 2.5 is 1000 times smaller than that of

the explicit scheme. Thus, although the CPU time required for a single explicit time

step is much lower than that required for an implicit time step, the results in Table

5.5 show that the the implicit time-integration scheme requires only 22% of the CPU
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Table 5.5: Explicit-implicit comparison for the shedding flow case
for solution at t = 2.5 time-step size time steps convergence limit CPU time (s)

implicit (BDF2) ∆t = 0.05 50 1× 10−7 5160

explicit (FD2) ∆t = 5× 10−5 50000 − 22920

time of the explicit approach in this case. However, this comparison is only qualitative

in nature, since the temporal accuracy of the two approaches is not matched, and the

CPU time required by the implicit approach is strongly dependent on the level of

convergence required of the inner iterations for the implicit solver. However the

performance of the explicit scheme is determined by stability considerations, which

will be detrimental when the resulting temporal accuracy imposed by the stability

limit is not closely related to the desired temporal accuracy.
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(a) p = 1

(b) p = 3

Figure 5.12: Density contours of the p = 1 and p = 3 spatial-discretization schemes,
at t = 100, using the BDF2 scheme and ∆t = 0.05.

(a) p = 1

(b) p = 3

Figure 5.13: Density contours of the p = 1 and p = 3 spatial-discretization schemes,
at t = 100, using the IRK4 scheme and ∆t = 0.05.
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(a) p = 1

(b) p = 3

Figure 5.14: Density distributions of the p = 1 and p = 3 spatial-discretization
schemes, at t = 100, using the BDF2 and IRK4 schemes and ∆t = 0.05. Note the
different scales used for the p = 1 and p = 3 spatial-discretizations.
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(a) p = 1

(b) p = 3

Figure 5.15: Comparison of temporal accuracy as a function of time-step size for the
BDF2 and IRK4 schemes at t = 0.1.
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Chapter 6

Adjoint-based Temporal Error Esti-

mation and Adaptation

In Chapter 4, an adjoint-based error estimation technique was developed to deter-

mine global functional error in spatial discretizations and to guide adaptive mesh

refinement schemes for spatial error reduction. The main purpose of this chapter

is to extend the same methodology to unsteady flow problems, namely providing a

general approach for predicting temporal error relevant to a specified time-dependent

objective functional, identifying temporal error distributions for discretizations in

the time domain, and applying subsequently an adaptive time-step refinement pro-

cedure for temporal error reduction. In the current work, the error sources under

primary consideration include the error resulting from a time discretization, which

is determined by the time-step size, ∆t, as well as the algebraic error resulting from

incomplete convergence of the non-linear implicit system being solved at each implicit

time step. The formulation derived for accomplishing these tasks reveals that a time-

dependent flow problem together with an unsteady adjoint problem must be solved

at each adaptation cycle. Therefore, in order to make the entire strategy perform

competitively, the efficient solution strategies described in the preceding sections are

used for accelerating convergence of both unsteady flow and adjoint problems.
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6.1 Objective

Typically, uniform time-step sizes are utilized for unsteady flow simulations, such as

the test cases described in Section 5.4. However in general, due to the non-linear

nature of the governing equations, it is not simple to choose a priori a realistic time-

step size to ensure specific simulation error tolerances. A brute-force approach to

selecting suitable time-step sizes consists of repeating the simulation multiple times

with progressively smaller time steps until the desired temporal accuracy is attained.

However, even if a suitable time-step size can be selected, the use of a uniformly small

time step can be wasteful due to excessive temporal resolution in regions where high

temporal resolution is not necessary for the accuracy of outputs of interest. In this

context, a global error control technique via the discrete adjoint method addressed

in this chapter can be used to estimate temporal error distribution for a specified ob-

jective functional, and thus to guide temporal resolution enhancement specifically in

regions which contribute strongly to the global temporal error. In addition to the tem-

poral resolution error, other important sources of error may be present. Specifically

in the present work, the error arising from incomplete convergence of the non-linear

implicit system at each time step is also considered, and techniques for ensuring

this “algebraic” error is significantly smaller than the temporal resolution error are

developed.

The adjoint-based temporal error estimation can be derived in a similar manner

as described in Chapter 4 for spatial error estimates. The resulting adjoint sensitivity

formulation associated with an objective functional of interest leads to the require-

ment of solving an unsteady adjoint problem which must be solved backwards in

time [67]. Specifically, the unsteady flow solution arising from the governing equa-

tions is solved from an initial time value to a final time value, while the unsteady

adjoint solution is solved in the same discretized time domain, but in a reverse order

(i.e. starting from the final time value backwards to the initial time point). This im-

plies that the entire flow solution history must be stored since it is reused to evaluate

the subsequent adjoint solution. Thus, the computer program consists of three main
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components: the first component performs the forward time-integration prescribed in

the previous chapter for the various implicit temporal schemes in conjunction with

high-order spatial discontinuous Galerkin discretizations. Since it is not practical to

save the entire unsteady solution history in memory, the flow solution at each implicit

time step is written as a file to the hard disk. The second component involves solving

the unsteady adjoint problem at each equivalent time step and writing the adjoint

solution history to the hard disk at each time step during the backwards time sweep.

The third component reads all required data via input file operations, computes global

as well as local estimated errors and performs the local time-step refinement strategy

for the current time domain.

This chapter is organized as follows. In Section 6.2, the unsteady discrete

adjoint-based error-estimation procedure is formulated for temporal error sources us-

ing various orders of temporal discretizations, namely the first-order backward differ-

ence (BDF1) scheme and the fourth-order implicit multistage Runge-Kutta (IRK4)

scheme. In Section 6.3, this technique is extended to account for algebraic error

sources due to incomplete convergence of the governing equations. Section 6.4 de-

scribes a temporal adaptive refinement criteria and Section 6.5 shows several time-

dependent numerical results in order to demonstrate the temporal error estimation

technique, providing comparisons in terms of performance with a uniform time-step

refinement approach.

6.2 Adjoint-based Temporal Error Estimation

This section considers discrete adjoint formulations for the first-order BDF1 scheme

and the fourth-order IRK4 scheme. Formulations for other temporal discretization

schemes can be derived by applying the same strategy as proposed in this section.

The model problem involves the unsteady two-dimensional compressible Euler equa-

tions as described in the previous chapter. The goal of this procedure is to obtain

a distribution of the functional error in the time domain which can be used either

to correct the current functional value or to drive an adaptive time-step refinement
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method for improving functional accuracy.

6.2.1 Time-dependent Functional Output

For time-dependent simulations of engineering interest, the objective may consist of

an output functional computed at the final time, or a constructed quantity related

to time-integrated flow-field variables. In general, a time-integrated objective can be

expressed as:

Lf =

∫ T

0

L(t)dt (6.1)

where L(t) denotes a time-dependent functional such as drag or lift at time t. When

the above time integral is discretized, the objective can be expressed as:

Lf (ũ1, ũ2, · · · , ũn) =
n∑

i=1

qi(∆ti)Li(ũi) (6.2)

where the notation (·)i refers to a quantity evaluated at time step i, ũi denotes the

time-dependent flow variables obtained at time step i, and Li(ũi) represents the time-

dependent objective component evaluated using ũi. qi represents the quadrature

weight associated with time step i. The sensitivity vector of the time-dependent

objective functional with respect to the set of unsteady flow variables can be then

expressed as:

∂Lf

∂ũ
=

(
∂Lf

∂ũ1 ,
∂Lf

∂ũ2 , · · · ,
∂Lf

∂ũn

)
=

(
q1∂L

1

∂ũ1 , q
2∂L

2

∂ũ2 , · · · , q
n∂L

n

∂ũn

)
(6.3)

If the objective functional of interest is only dependent on the flow quantities at the

final time, the only non-zero component of the flow sensitivity vector is the last entry.

6.2.2 First-order Backwards Euler Scheme

Formulation

Consider an affordable coarse mesh in the time domain, represented by H using

relatively large time-step sizes. ũH denotes the vector of time-dependent flow variables
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obtained using the BDF1 scheme (c.f. Eq. (5.6)) at the current temporal resolution

level, i.e. ũH = {ũi
H , i = 1, 2, · · · , n}, where the superscript i refers to the time

step at the current temporal resolution level. By solving the time-dependent flow

problem at the current temporal resolution level, the coarse time level functional,

Lf
H(ũH), can be evaluated. However, Lf

H(ũH) may not be sufficiently accurate to

satisfy a particular design requirement. We seek an approach to approximate the

objective functional evaluated at a uniformly refined temporal resolution level (i.e.

fine time level), constructed by subdividing each coarse level time step by a factor of

2 (i.e. ∆th = ∆tH/2). However, it may not be practical to evaluate the unsteady flow

variables and the subsequent objective output (denoted as ũh and Lf
h(ũh) respectively)

directly on the fine level temporal mesh since this requires roughly twice the cost of the

original time-dependent computation. Instead, we first project the current unsteady

flow solution, ũH , onto the fine temporal resolution level via linear interpolation to

obtain the projected coarse unsteady flow solution, ũh
H , i.e. ũh

H = Ih
HũH . Then,

the objective functional on the fine temporal resolution level is expanded using a

Taylor series expansion with respect to the projected coarse unsteady flow variable

set, expressed as:

Lf
h(ũh) = Lf

h(ũ
h
H) +

(
∂Lf

h

∂ũh

)
ũh

H

(ũh − ũh
H) + · · · (6.4)

where
(
∂Lf

h/∂ũh

)
ũh

H

denotes the sensitivity vector of the fine time level objective

output with respect to the fine time level flow variable set, evaluated at the projected

coarse unsteady flow variable state, ũh
H . The discrete solution error, ũh − ũh

H , in the

above equation is not available due to the presence of the unknown fine time level flow

solution, ũh. Therefore, we make use of the fine level unsteady flow residual vector,

Reh(ũh) = {Re
i
h}, which is expanded in a similar way with respect to the projected

coarse unsteady flow variable set as:

Reh(ũh) = Reh(ũ
h
H) +

[
∂Reh

∂ũh

]
ũh

H

(ũh − ũh
H) + · · · = 0 (6.5)

where [∂Reh/∂ũh]ũh
H

denotes the full unsteady Jacobian matrix formulated at the
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fine time level while evaluated at the projected coarse level flow solution state. By

re-arranging Eq. (6.5) and using the relation Reh(ũh) = 0 (since ũh represents the

exact unsteady solution on the fine time level mesh) an approximation for the discrete

solution error, ũh − ũh
H , can be obtained:

ũh − ũh
H = −

[
∂Reh

∂ũh

]−1

ũh
H

Reh(ũ
h
H) (6.6)

Substituting Eq. (6.6) into Eq. (6.4), the objective functional on the fine temporal

resolution level is approximated as:

Lf
h(ũh) ≈ Lf

h(ũ
h
H) −

(
∂Lf

h

∂ũh

)
ũh

H

[
∂Reh

∂ũh

]−1

ũh
H

Reh(ũ
h
H) (6.7)

In general, the unsteady Jacobian matrix [∂Reh/∂ũh]ũh
H

is a large sparse lower block

bi-diagonal matrix (illustrated later), and the size of this matrix depends on the total

number of time steps. Therefore, it is impractical to solve the inverse of the Jacobian

matrix directly. Recalling the approach invoked in the use of the adjoint variables in

the steady state problem, a vector of the fine level unsteady adjoint variables, λh, is

introduced, satisfying the linear system of equations written as:

λT
h =

(
∂Lf

h

∂ũh

)
ũh

H

[
∂Reh

∂ũh

]−1

ũh
H

or

[
∂Reh

∂ũh

]T

ũh
H

λh =

(
∂Lf

h

∂ũh

)T

ũh
H

(6.8)

Comparing Eq. (6.8) with Eq. (4.8), the unsteady adjoint formulation appears to

be similar to the corresponding adjoint formulation for the steady-state problem,

however, the unsteady adjoint problem in fact spans all discrete time steps in the

BDF1 temporal discretization.

Next we describe the solution procedure for the unsteady adjoint problem. Sub-

stituting Eq. (6.8) into Eq. (6.7) yields:

Lf
h(ũh) ≈ Lf

h(ũ
h
H) −λT

hReh(ũ
h
H)︸ ︷︷ ︸

εt
a∗

(6.9)

or
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Lf
h(ũh)− Lf

H(ũH) ≈ Lf
h(ũ

h
H)− Lf

H(ũH)−λT
hReh(ũ

h
H)︸ ︷︷ ︸

εt
a∗

(6.10)

where εt
a∗ corresponds to the error correction term for estimating the functional error

arising from two successively refined temporal resolution levels. However, this term is

expensive to compute since it requires the solution of the adjoint problem at the fine

temporal resolution. Instead, we first solve the discrete unsteady adjoint problem at

the coarse temporal resolution as:

[
∂ReH

∂ũH

]T

ũH

λH =

(
∂Lf

H

∂ũH

)T

ũH

(6.11)

As discussed previously, the unsteady residual, ReH = {Re
i
H}, and the unsteady flow

solution, ũH = {ũi
H}, involve the state variables at all discrete locations of the BDF1

temporal discretization. Furthermore, the residual vector component, Re
i
H , at the ith

time step is only dependent on the state variables, ũi
H and ũi−1

H , in the BDF1 scheme

(refer to Eq. (5.6)), therefore, the full unsteady Jacobian matrix has the following

lower-block bi-diagonal form:

[
∂ReH

∂ũH

]
ũH

=



[
∂Re

1
H

∂ũ1
h

]
0 0 · · · 0 0[

∂Re
2
H

∂ũ1
H

] [
∂Re

2
H

∂ũ2
H

]
0 · · · 0 0

0
. . . . . . 0 · · · 0

0 0
. . . . . . 0 0

0 · · · 0
[
∂Re

n−1
H

∂ũn−2
H

][
∂Re

n−1
H

∂ũn−1
H

]
0

0 0 · · · 0
[

∂Re
n
H

∂ũn−1
H

] [
∂Re

n
H

∂ũn
H

]


ũH

(6.12)

Then the transpose of the full unsteady Jacobian matrix shown above yields an upper-

block bi-diagonal matrix, and Eq. (6.11) yields the following matrix form:
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

[
∂Re

1
H

∂ũ1
H

]T [
∂Re

2
H

∂ũ1
H

]T

0 · · · 0 0

0
[
∂Re

2
H

∂ũ2
H

]T [
∂Re

3
H

∂ũ2
H

]T

0 0 0

0 0
. . . . . . 0 0

...
...

. . . . . . 0

0 0 · · ·
[
∂Re

n−1
H

∂ũn−1
H

]T [
∂Re

n
H

∂ũn−1
H

]T

0 0 · · · · · · 0
[
∂Re

n
H

∂ũn
H

]T


ũH



λ1
h

λ2
h

...
λn−1

h

λn
h


=



∂Lf
h

T

∂ũ1
h

∂Lf
h

T

∂ũ2
h

...
∂Lf

h

T

∂ũn−1
h

∂Lf
h

T

∂ũn
h


ũH

(6.13)

This matrix form implies that the unsteady adjoint problem can be solved by block

back substitution, cooresponding to a backward integration in time. In particular,

the adjoint problem at the final time step n is first solved by:

[
∂Re

n
H

∂ũn
H

]T

ũH

λn
H =

(
∂Lf

H

∂ũn
H

)T

ũH

(6.14)

Then, the adjoint solution at the previous time step n− 1 is solved as:

[
∂Re

n−1
H

∂ũn−1
H

]T

ũH

λn−1
H =

(
∂Lf

H

∂ũn−1
H

)T

ũH

−
[
∂Re

n
H

∂ũn−1
H

]T

ũH

λn
H (6.15)

Thus, the adjoint solution at time step n − 1 requires the adjoint solution at time

step n, which has been already solved. This procedure is performed repeatedly until

the initial time step is reached. Note that the formulation for the linearization of the

unsteady residual vector with respect to the unsteady flow variables at two successive

time steps can be derived based on Eq. (5.6) as:

[
∂Re

i
H

∂ũi
H

]T

ũH

=

[
M

∆tH

]T

+

[
∂R

∂ũ

]T

ũi
H

(6.16)[
∂Re

i
H

∂ũi−1
H

]T

ũH

= −
[
M

∆tH

]T

(6.17)

where M and R represent the mass matrix and the spatial residual, respectively.

[∂R/∂ũ]ũi
H

corresponds to the Jacobian of the spatial residual alone (c.f. Eq. (2.15))
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which must be evaluated at the appropriate unsteady flow solution state, ũi
H , at time

step i. Once the coarse level unsteady adjoint solution, {λi
H , i = 1, · · · , n}, is solved,

an approximation to the fine level adjoint solution is then obtained by performing a

reconstruction postprocessing procedure of the coarse level unsteady adjoint solution

onto the refined temporal resolution mesh via cubic spline interpolation, denoted as:

λh
H = Ĩh

HλH , (6.18)

Replacing the exact fine level unsteady adjoint solution with the reconstructed adjoint

solution, Eq. (6.9) yields:

Lf
h(ũh) ≈ Lf

h(ũ
h
H)−λh

H

T
Reh(ũ

h
H)︸ ︷︷ ︸

εt
a

(6.19)

or

Lf
h(ũh)− Lf

H(ũH) ≈ Lf
h(ũ

h
H)− Lf

H(ũH)−λh
H

T
Reh(ũ

h
H)︸ ︷︷ ︸

εt
a

(6.20)

where εt
a denotes the computable error correction term which is expressed as the inner

product of the local unsteady residuals with the reconstructed unsteady adjoint solu-

tion for all the children time-steps at the coarse temporal resolution level, expressed

as:

εt
a =

n∑
i=1

(λh
H)iTRe

i
h(ũ

h
H) (6.21)

εt
a results in a functional error distribution in time, which enables the identification

of regions corresponding to relatively large error distributions.

An Alternate Approach to the Adjoint Problem

In the preceding section, a general approach is described for using the projected

coarse time level adjoint solution as an approximation to the fine time level adjoint

solution. However, in our experience, for the first-order BDF1 scheme the cubic

spline interpolation used for projecting the coarse time level adjoint solution onto
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Figure 6.1: Illustration of the adjoint problems in the coarse and fine level time
domains.

the fine temporal resolution level is not sufficiently accurate to provide a satisfactory

approximation to the fine time level adjoint solution. Increasing the order of the

interpolation function from cubic to quintic has been found to have little beneficial

effect. This is due to the fact that unsteady flow features that can be captured in a

coarse time level do not include sufficient information about the fine time level for

complex unsteady flow problems. In order to obtain more information provided in the

fine time level, while still restricting the overall computational cost, we propose an

alternate approach, in which the adjoint problem is formulated in the fine time level

but only solved at the discrete locations which coincide with the coarse level time-

steps, as illustrated by the green points in Fig. 6.1. In this approach, the adjoint

solution at the final time step n is first evaluated as:

[
∂Re

n
h

∂ũn
h

]T

ũh
H

λn
H =

(
∂Lf

h

∂ũn
h

)T

ũh
H

(6.22)

Noting that the adjoint problem at the final time step of the fine time level is similar to

the corresponding coarse level adjoint problem, however, the fine level time-step size,

∆th, must be employed in the evaluation of the Jacobian matrix, i.e. [∂Re
n
h/∂ũ

n
h] =

M/∆th +[∂R/∂ũ](ũh
H)n . For the earlier time steps (i ∈ [1, n−1]), the discrete adjoint

problem is solved as:
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[
∂Re

i
h

∂ũi
h

]T

ũh
H

λi
H =

(
∂Lf

h

∂ũi
h

)T

ũh
H

−

[
∂Re

i+ 1
2

h

∂ũi
h

]T

ũh
H

(
s1λ

i
H + s2λ

i+1
H + s3λ

i+2
H

)
or (6.23)

[∂Re
i
h

∂ũi
h

]T

ũh
H

+ s1

[
∂Re

i+ 1
2

h

∂ũi
h

]T

ũh
H

λi
H =

(
∂Lf

h

∂ũi
h

)T

ũh
H

−

[
∂Re

i+ 1
2

h

∂ũi
h

]T

ũh
H

(
s2λ

i+1
H + s3λ

i+2
H

)
(6.24)

In the above equations, the unknown adjoint variables, λ
i+1/2
h , are replaced by a

quadratic interpolation approximation, s1λ
i
H + s2λ

i+1
H + s3λ

i+2
H , in the right-hand-

size, where s1, s2 and s3 denote the stencil coefficients for this interpolation function.

Recursively integrating this approach backwards to the first time step, the adjoint

problem is solved for a total of n time steps, thus ensuring similar cost as the coarse

time level adjoint solution. The fine time level adjoint approximation (λh
H) is then

obtained by reconstructing the coarse level unsteady adjoint solution onto the fine

time level mesh by the cubic interpolation procedure. Based on our experience,

this approach provides improved accuracy for estimating functional values and the

subsequent adaptation procedure. Thus this method is used in the numerical test

cases later discussed for the BDF1 temporal discretization.

6.2.3 Fourth-order Implicit Runge-Kutta Scheme

Formulation

The fine time level functional values obtained using higher-order implicit Runge-

Kutta temporal schemes can be approximated using the same approach as described

for the first-order BDF1 scheme, and a similar formulation equivalent to Eq. (6.9)

can be obtained. However, both unsteady flow solution and unsteady adjoint solution

in the IRK schemes involve multistage computations at each time step. Due to the

specific ESDIRK class of RK schemes employed in the current work, the flow solution

at the first stage of each time step is in fact equal to the solution at the final stage of

the previous time step, denoted as ũ
(1),i
H = ũ

(6),i−1
H = ũi−1

H , where the first bracketed

superscript represents an intermediate stage index, and the second superscript denotes
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the time step index. In this manner, the vectors of the unsteady flow solution and the

full unsteady residual for the IRK4 scheme denoted in Eq. (5.11) can be expressed as:

ũH = {ũ(s),i
H , s = 2, 3, · · · , 6; i = 1, 2, · · · , n} and ReH = {Re

(s),i
H , s = 2, 3, · · · , 6; i =

1, 2, · · · , n}, respectively, where n denotes the total number of time steps. Thus,

the unsteady adjoint formulation (equivalent to Eq. (6.11)) at the coarse temporal

resolution level has the following matrix form for a simplified time domain, involving

only two time steps (n = 2):
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ũ

(5
),

1
H

# T"
∂
R

e
(6

),
1

H

∂
ũ
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ũ

(5
),

2
H

∂
L

f H

T

∂
ũ
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where the lower triangular part of the transpose of the full unsteady Jacobian matrix,

[∂ReH/∂ũH ]TũH
, in the IRK4 scheme also contains only zero entries. The complete

matrix for arbitrary time domains (n > 2) follows the form given here in a simi-

lar manner. Additionally, each individual matrix-block in Eq. (6.25) involves the

linearization of an unsteady residual component with respect to the unsteady flow

variables at a given intermediate stage of a time step, which can be obtained based

on Eq. (5.11) as:

[
∂Re

(s),i
H

∂ũ
(s),i
H

]T

=

[
M

∆tH

]T

+ ass

[
∂R

∂ũH

]T

ũ
(s),i
H

(s ∈ [2, 6], i ∈ [1, n]) (6.26)[
∂Re

(s),i
H

∂ũ
(m),i
H

]T

= asm

[
∂R

∂ũH

]T

ũ
(m),i
H

(2 ≤ m < s, i ∈ [1, n]) (6.27)[
∂Re

(s),i
H

∂ũ
(6),i−1
H

]T

= −
[
M

∆tH

]T

+ as1

[
∂R

∂ũH

]T

ũ
(6),i−1
H

(s ∈ [2, 6], i ∈ [1, n]) (6.28)

In the above equations, [∂R/∂ũH ]T
ũ

(s),i
H

corresponds to the transpose of the Jacobian

of the spatial residual alone (c.f. Eq. (2.15)) which must be evaluated at the ap-

propriate stage value (s) and time step value (i). {asm} corresponds to the Butcher

coefficients of the particular fourth-order implicit IRK4 scheme used in this work, and

the values are given in Table 5.2. Since the computation for the adjoint solution at

an intermediate stage s of the time step i requires the adjoint solution at later stages,

the unsteady adjoint solution for the IRK4 scheme results in a backward integration

in time. The formulation for evaluating the first adjoint variables when sweeping

backwards in time, which in fact corresponds to the adjoint solution at the final time

step, is given by:

[
∂Re

(6),n
H

∂ũ
(6),n
H

]T

λ
(6),n
H =

∂Lf
H

∂ũ
(6),n
H

T

(6.29)

Then, the adjoint solution at other intermediate stages in the final time step can be

evaluated following the backwards recursion relation as:
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[
∂Re

(s),n
H

∂ũ
(s),n
H

]T

λ
(s),n
H =

∂Lf
H

∂ũ
(s),n
H

T

−
6∑

m=s+1

[
∂Re

(m),n
H

∂ũ
(s),n
H

]T

λ
(m),n
H (s = 5, 4, · · · , 2) (6.30)

For earlier time steps i ∈ [1, n−1], the multistage adjoint solution in the IRK4 scheme

is computed based on the following formulations:

[
∂Re

(6),i
H

∂ũ
(6),i
H

]T

λ
(6),i
H =

∂Lf
H

∂ũ6,i
H

T

−
6∑

m=2

[
∂Re

(m),i+1
H

∂ũ
(6),i
H

]T

λ
(m),i+1
H (6.31)[

∂Re
(s),i
H

∂ũ
(s),i
H

]T

λ
(s),i
H =

∂Lf
H

∂ũs,i
H

T

−
6∑

m=s+1

[
∂Re

(m),i
H

∂ũ
(s),i
H

]T

λ
(m),i
H (s ∈ [2, 5]) (6.32)

Note that the right-hand-size of the adjoint formulation in Eq. (6.29) for evaluating

the adjoint problem at the final time step (s = 6, i = n) is distinct from the one

in Eq. (6.31) for the evaluation at an intermediate time step (s = 6, i 6= n). The

approximated fine level adjoint variables for the IRK4 scheme are obtained by locally

interpolating the coarse level adjoint variables to the fine time level using a quintic

spline function, expressed as, λh∗
H = Īh

HλH , and then performing a few passes (usually

2 ∼ 3 Gauss-Seidel smoothings) on the refined level to update the projected coarse

adjoint solutions, expressed as λh
H = P(λh∗

H ). We have found that this fine-level

update approach performs more effectively and is simpler to implement than the

extended strategy used for the BDF1 scheme. The discrete functional error between

the fine time level functional evaluated with the exact fine level flow solution and the

fine time level functional evaluated with the projected coarse time level flow solution

is approximated as:

Lf
h(ũh)− Lf

h(ũ
h
H) ≈ −λh

HReh(ũ
h
H)︸ ︷︷ ︸

εt
a

(6.33)

or

Lf
h(ũh)− Lf

H(ũH) ≈ Lf
h(ũ

h
H)− Lf

H(ũH)−λh
HReh(ũ

h
H)︸ ︷︷ ︸

εt
a

(6.34)
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where ũh
H denotes the projected coarse time level flow solution ( ũh

H = Īh
HũH) which

is obtained by using the aforementioned quintic spline interpolation function. εt
a

represents the adjoint correction term for the IRK4 scheme, which is expressed by

the same formulation as denoted for the first-order accurate BDF1 scheme, however,

noting that the adjoint correction term in the IRK4 scheme involves the inner product

of the temporal adjoint variables and local unsteady residuals for all intermediate

stages in the time domain, expressed as:

εt
a =

n∑
i=1

6∑
s=2

−(λh
H)(s),iTRe

(s),i
h (ũh

H) (6.35)

6.3 Estimation of Algebraic Error Due to Partial

Convergence

The preceding sections provide the fundamental approach for estimating the temporal

error in a specified time-dependent functional output. This section considers another

error source, namely that which arises from incomplete or partial convergence in the

implicit flow problem at each time step.

Partial convergence at each implicit time step of an unsteady flow problem expe-

dites the nonlinear problem solution but simultaneously introduces additional error

to the flow solution and therefore may affect the accuracy of the functional of interest.

However, a quantitative accuracy study can be performed in order to ensure that the

use of partial convergence tolerances produces negligibly small errors in functional

values, compared with functional errors arising from other sources, such as temporal

discretization errors. In this context, the adjoint-based error estimation technique

developed in the previous sections is extended to provide an estimate of error due to

partial convergence.

Consider an unsteady flow solution, ũH , obtained by partially converging each

implicit problem in the current time domain using a specified convergence tolerance

set, denoted as {toli, i = 1, 2, · · · , n}, where n denotes the total number of time steps.
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The coarse time level functional evaluated with a fully converged (to machine zero)

flow solution ũH can be expanded with respect to the partially converged flow solution

based on a Taylor series expansion as:

Lf
H(ũH) = Lf

H(ũH) +

(
∂Lf

H

∂ũH

)
ũH

(ũH − ũH) + · · · (6.36)

The coarse level residual can also be expanded with respect to the partially converged

flow solution, ũH , as:

ReH(ũH) = ReH(ũH) +

[
∂ReH

∂ũH

]
ũH

(ũH − ũH) + · · · = 0 (6.37)

The discrete solution error between fully and partially converged solutions is approx-

imated as:

ũH − ũH ≈ −
[
∂ReH

∂ũH

]−1

ũH

ReH(ũH) (6.38)

Note that ReH(ũH) 6= 0 since ũH is not the exact discrete solution. Substitute Eq.

(6.38) into Eq. (6.36), the functional is approximated as:

Lf
H(ũH) ≈ Lf

H(ũH)−

(
∂Lf

H

∂ũH

)
ũH

[
∂ReH

∂ũH

]−1

ũH

ReH(ũH) (6.39)

Replacing the term
(

∂Lf
H

∂ũH

)
ũH

[
∂ReH

∂ũH

]−1

ũH

with the adjoint variables (λH)ũH
yields:

[
∂ReH

∂ũH

]T

ũH

(λH)ũH
=

(
∂Lf

H

∂ũH

)T

ũH

(6.40)

Due to the fact that the transpose of the unsteady Jacobian matrix and the objective

sensitivity vector are evaluated with the partially converged flow solution rather than

the exact flow solution, the adjoint solution is denoted as (λH)ũH
to be distinguished

from λH . Moreover, the computational procedure to obtain (λH)ũH
follows the same

procedure as discussed for either the BDF1 scheme or the IRK4 scheme in the preced-

ing sections, but only operates in the current discretized time domain. The functional

evaluated by the exact discrete flow solution is thus approximated as:

140



Lf
H(ũH) ≈ Lf

H(ũH)−(λH)T
ũH

ReH(ũH)︸ ︷︷ ︸
εc
a

(6.41)

where εc
a represents the adjoint-based error correction term which provides the esti-

mated functional error invoked by the use of the set of residual convergence tolerances,

and can be further expressed for the respective BDF1 and the IRK schemes as:

BDF1 : εc
a =

n∑
i=1

−(λH)i
ũH

T
Re

i
H(ũH) (6.42)

IRK4 : εc
a =

n∑
i=1

6∑
s=2

−(λH)
(s),i
ũH

T
Re

(s),i
H (ũH) (6.43)

Although this can be used for adaptively reducing the algebraic error [75], the eval-

uation of the term εc
a is primarily used to ensure the algebraic error has negligible

effects on the predicted temporal functional error in this work.

6.4 Refinement Criteria

The adjoint correction εt
a results in a functional error distribution at the coarse tem-

poral resolution level. An individual error contribution associated with the time step

i (i ∈ [1, n]) in the BDF1 temporal scheme is evaluated as:

εt
a,i = −(λh

H)iTRe
i
h(ũ

h
H) (6.44)

where the local time-step error indicator for the time step i is expressed as the inner

product of the local unsteady residual vector with the reconstructed adjoint variables

within the children time-steps of the coarse time step i. For the fourth-order IRK4

scheme, the evaluation of this local error indicator for the time step i involves the

inner product of the corresponding state variables at all intermediate stages within

the children time-steps, shown as:

εt
a,i = −

S∑
s=2

(λh
H)(s),iTRe

(s),i
h (ũh

H) (6.45)
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In order to adaptively reduce error in the objective functional, the error-balancing

refinement criterion [49] used in the adjoint-based spatial mesh adaptation is employed

in the current work, where a time step is marked for refinement if the absolute value

of a local error indicator satisfies,

|εt
a,i| >

Et
tol

n
(6.46)

where Et
tol denotes a positive user-specified global tolerance for the functional output.

This criteria identifies the time steps in the coarse temporal resolution level, which

have relatively large error contributions to the global functional error. For time-steps

where the relation of Eq. (6.46) holds, a marked time step is refined by dividing the

local time step into two equivalent time steps. The adaptive algorithm terminates if

all local error contributions are within the maximum allowable equidistributed local

error, Et
tol/n.

6.5 Results

Numerical test cases are used to examine the effectiveness of the error correction

term provided by the discrete adjoint sensitivity technique, and to demonstrate the

performance of the adaptive refinement schemes versus a uniform time-step refinement

method. The first test case revisits the shedding flow over a triangular wedge used

in Section 5.4.2 for the first-order BDF1 scheme, while the second test case considers

the convection of an isentropic vortex described in Section 5.4.1 for the fourth-order

implicit IRK4 scheme.

6.5.1 Shedding Flow over a Triangular Wedge

The problem of flow over a triangular wedge is computed using a mesh of 3684 el-

ements with a third-order (p = 2) spatial discretization scheme and a first-order

temporal discretization scheme. Fig. 6.2 illustrates a typical solution snapshot for

this problem.
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Figure 6.2: Computational mesh and density contours for shedding flow over a trian-
gular wedge.

Error Prediction for Two Time Resolution Levels

The effectiveness of the adjoint-based error correction term for the BDF1 scheme is

examined in this section for two test functional outputs. The functional of interest in

Case I is set to be the drag at the final time T = 5.0, and in Case II the functional of

interest is set to be the time-integrated drag over the time interval [0, T ], expressed

as:

Lf =

∫ T

0

D(t)dt (6.47)

where D(t) denotes the function of time-dependent drag and T = 4.2. The conver-

gence tolerance at each time step is set to be machine precision of 10−16 in order to

eliminate any sources of algebraic error due to incomplete convergence.

Tables 6.1 and 6.2 show functional error computed between two successively re-

fined discretization levels in the time domain, for Case I and Case II respectively.

In these two tables, the first two columns refer to the successively refined tempo-

ral resolution levels and the corresponding total numbers of time steps to evaluate

the specified objective functional, respectively. The temporal resolution, represented

by the number of time steps n, is successively increased by uniformly refining each
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Table 6.1: Case I: comparisons of the error corrections computed by using exact fine
adjoint solution and reconstructed fine adjoint solution, with the computed functional
error between two successively refined levels. Objective functional is set to be the drag
at the final time, T = 5. εt

a∗ and εt
a correspond to the error correction term denoted

in Eq. (6.9) and Eq. (6.19), respectively.

Levels Steps Lf
h(ũh)− Lf

h(ũ
h
H) εt

a∗ (based on λh) εt
a (based on λh

H)

1 20 6.409423983344E-03 5.8953862304640E-03 6.1370526380238E-03

2 40 3.363150411947E-03 3.2090618101287E-03 3.3192713144015E-03

3 80 1.740612661084E-03 1.6772693740095E-03 1.6976435495301E-03

4 160 9.307328650283E-04 9.1940300005702E-04 9.1424908868082E-04

5 320 5.035059191103E-04 5.0213552906005E-04 5.0091023003573E-04

6 640 2.653264156995E-04 2.6527239219869E-04 2.6507952427098E-04

Table 6.2: Case II: comparisons of the error corrections computed by using exact fine
adjoint solution and reconstructed fine adjoint solution, with the computed functional
error between two successively refined levels. Objective functional is set to be the
time-integrated drag over the time interval [0, 4.2]. εt

a∗ and εt
a correspond to the error

correction term denoted in Eq. (6.9) and Eq. (6.19), respectively.

Levels Steps Lf
h(ũh)− Lf

h(ũ
h
H) εt

a∗ (based on λh) εt
a (based on λh

H)

1 70 4.594582618541E-03 4.509605838075E-03 4.521545814133E-03

2 140 2.491381488464E-03 2.456291402865E-03 2.451742657086E-03

3 280 1.324672974414E-03 1.317402757018E-03 1.316237351589E-03

4 560 6.728072622733E-04 6.756449437449E-04 6.761561824491E-04

5 1120 3.282112538086E-04 3.302315506682E-04 3.304402325325E-04

6 2240 1.579403063223E-04 1.589476088374E-04 1.590088887837E-04
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time step through a 1:2 subdivision. Lf
h(ũh) − Lf

h(ũ
h
H) in the third column denotes

functional value difference between the fine time level functional evaluated using the

computed exact fine time level flow state and the fine time level functional evaluated

using the projected coarse time level flow state. This corresponds to the term with

which the adjoint correction term should be compared (c.f. Eq.(6.19)). The last two

(i.e. the fourth and the fifth) columns correspond to the predicted error correction

terms obtained by using the fine time level adjoint solution and the reconstructed

fine level adjoint solution computed based on the extending approach (c.f. Equations

(6.22)-(6.24)). It is shown that the reconstructed adjoint error estimate becomes more

accurate with increasing levels of time-step refinement. In Case I, the correction term

evaluated using the reconstructed adjoint solution agrees to within 96.0% of the cor-

responding error evaluated using the fine time level adjoint solution at the first level.

However this agreement increases to 99.9 % at the sixth level. This indicates that the

reconstruction procedure described in the alternate approach (c.f. Equations (6.22)

− (6.24)) for the fine time level adjoint solution is sufficient to approximate the cor-

responding functional error. Moreover, the computable adjoint error correction term

becomes more accurate for estimating the true functional error with increasing refine-

ment levels. This is due to the fact that the correction term is derived based on the

linearization of the objective functional. For example, in Case II, the effectiveness of

the adjoint correction term, defined as εt
a/
(
Lf

h(ũh)− Lf
h(ũ

h
H)
)
, is 0.9840 at the first

level and 1.0006 at the sixth level.

Adaptive Time-step Refinement

The adjoint-based error estimates, which have been validated in the previous sec-

tion, are now used to drive an adaptive time-step refinement scheme for reducing the

temporal error in the functional output at reduced computational cost, for the shed-

ding flow over a triangular wedge using the BDF1 scheme. A uniform time-step of

∆t = 0.06 is used initially in the BDF1 temporal discretization scheme. The objective

functional of interest is set to be the time-integrated drag from t = 0 to t = 5.1. The

p-Multigrid algorithm driven by the element Gauss-Seidel scheme is employed to ac-
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Table 6.3: Adjoint-based functional error predictions for all cycles of adaptive time-
step refinement in the case of shedding flow over a triangular wedge.

Cycle εt
a εc

a

0 5.5165152746945223E-3 -7.9451904055911315E-6

1 2.8930705943262991E-3 -1.3844562551600945E-6

2 1.1870898137999135E-3 -2.3243979370230301E-8

3 7.8343237101801062E-4 1.4215369712263815E-7

4 2.0210165705981993E-4 2.1716977219027283E-7

celerate convergence of each non-linear problem arising from the implicit method. An

initial convergence tolerance of 10−6 is employed at each individual time-integration

step.

Although the adjoint procedure can be used to estimate and adaptively reduce

temporal and algebraic error simultaneously [75], in this case the adjoint-based al-

gebraic error estimate is used only to verify that the convergence tolerance is set

adequately, in that the algebraic errors in the functional output are much smaller

than the temporal error, while the temporal error is reduced through adaptive time-

step refinement. This is clearly indicated in Table 6.3, where the estimates of both

temporal and algebraic error at each refinement level are compared, showing that the

algebraic errors are consistently several orders of magnitude lower than the temporal

error, thus justifying the use of prescribed convergence tolerance of 10−6.

Fig. 6.3 shows the functional temporal error distributions in time for all temporal

adaptation cycles, where it is clearly shown that a relatively large functional error

occurs in the time interval [0, 1], as illustrated by the red line in this figure. This is

due to the fact that the flow separation from the two sharp corners of the triangular

wedge results in increased pressure drag and therefore the resulting period of time is

of significant importance to the functional accuracy. On the other hand, the fourth

adaptation cycle reveals a much more uniform functional error distribution. Figure

6.4 depicts the resulting adaptively determined time-step sizes in the time domain

for all adaptation cycles, compared with the initial constant time-step size. Rather

than choosing a smaller time-step size for all integration steps, the adaptive time-step
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Figure 6.3: Functional error distributions for all temporal adaptation cycles in the
case of shedding flow over a triangular wedge.

refinement scheme only refines steps with relatively large error contributions, and thus

Fig. 6.4 shows that most time-step size refinement occurs in the time interval [0, 2].

Next, the convergence behavior of the objective functional error for the adap-

tively refined time-step simulations is compared with that achieved using uniformly

refined time-step simulations, where each time step in the time-integration scheme is

refined by the aforementioned 1:2 subdivision, regardless of the objective functional

error contribution. The implicit flow problem at each time step of the BDF1 scheme

in the uniform time-step refinement approach is fully converged to machine preci-

sion of 10−16. The objective functional value obtained from the uniform time-step

refinement approach represents the optimal functional error reduction achievable for

the corresponding adaptive time-step refinement approach. Fig. 6.5 illustrates the

results of functional error convergence for the uniform time-step refinement approach,

the adaptive time-step refinement approach, and for the adaptive approach corrected

with the adjoint error estimate. In terms of total number of time steps or degrees

of freedom (DOF), as illustrated in the left-hand-side figure, the adaptively refined

time-step approach achieves equivalent functional error reductions as the uniformly
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Figure 6.4: Distribution of time-step sizes for all temporal adaptation cycles in the
case of shedding flow over a triangular wedge.

refined time-step approach at each adaptation cycle with substantially fewer time

steps in the time-integration scheme, and the benefits become more evident with

increasing adaptation cycles. This implies that the uniform time-step refinement

approach contains excessive temporal resolution in some regions which have little

influence on the time-dependent functional accuracy. Moreover, as represented by

the blue line in this figure, the adjoint-based correction term provides very accurate

prediction of the functional value for the next refinement level, further increasing the

accuracy/efficiency of this procedure. In terms of computational cost, as depicted in

the right-hand-side figure, the adaptively refined time-step approach is consistently
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more efficient than the uniform time-step refinement approach, although the cost for

one adaptation cycle includes the cost of both the flow and the adjoint solutions

at the current adaptation level as well as the cost of its previous adaptation cycles.

Furthermore, the adaptive approach with adjoint-based error corrections incurs sig-

nificantly lower computational cost than the other approaches to achieve the same

level of accuracy. For example, to achieve an accuracy level of 6 × 10−4, the adap-

tively refined time-step approach exhibits a speedup of 2.4 over the uniformly refined

time-step approach, and the adaptive approach with correction exhibits a speedup of

4.5 over the uniform refinement method. Although the comparisons of computational

effect include the additional cost of solving the adjoint problem in the adaptive case,

the comparison may be somewhat optimistic since the uniform refinement cases are

converged to the machine precision of 10−16, due to the absence of an algebraic error

estimate in these cases. The objective convergence is illustrated in Fig. 6.6 as a

function of time steps for the involved adaptation cycles, demonstrating the effective-

ness of the adjoint-based temporal error correction term for predicting the functional

value at the next finer refinement level. Therefore, the adjoint-based temporal error

correction can be used to predict the finer-level functional value.

6.5.2 Isentropic Vortex Convection

The next example involves a temporal adaptation test case for the fourth-order im-

plicit Runge-Kutta scheme using the case of the convecting isentropic vortex discussed

in Section 5.4.1. Similarly the main tasks include verification of the functional er-

ror predictions between two successively refined time-step levels and comparison of

the adaptively refined time-step approach with the uniform time-step refinement ap-

proach. Fig. 6.7 illustrates the initial density contours and the region used to define

the output functional (as represented by the dark red line in the figure). The func-

tional of interest is set to be the pressure integrated over the length y ∈ [−1, 1] at

x = 2.0 at the final time T = 4. A fifth-order accurate (p = 4) spatial discretiza-

tion and the implicit fourth-order IRK4 scheme are employed for all the following

temporal adaptation cases.
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Figure 6.5: Functional error convergence for the uniform time-step refinement ap-
proach, the adaptive time-step refinement approach and the adaptive approach cor-
rected with the adjoint-based correction in the case of shedding flow over a triangular
wedge.
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gular wedge.
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Figure 6.7: Initial density contours and location of objective functional integral as
represented by the dark red line for the test case of isentropic vortex convection.

Error Prediction For Two Mesh Levels

In this section, we validate the error estimation procedure by verifying that the change

in the functional value between a coarse and uniformly refined time-step simulation

is well predicted by the adjoint procedure. The convergence tolerance at each inter-

mediate stage of the IRK4 scheme is set to machine precision of 10−16 to eliminate

the algebraic error due to incomplete convergence. Table 6.4 shows a comparison of

the results for the true functional change using two successive time resolution levels

constructed by uniformly refining the time-step sizes through the 1:2 subdivision,

and the adjoint error correction evaluated using the fine time level adjoint solution,

and also the corresponding estimate evaluated using the reconstructed fine adjoint

solution (i.e. using 3 Gauss-Seidel smoothings at the fine temporal resolution level).

It can be observed that the reconstructed adjoint solution provides good agreement

with the fine adjoint error estimate, and moreover, the adjoint-based error estimate

is very accurate compared with the computed exact functional error at a given level.

The adjoint correction evaluated using the reconstructed adjoint solution agrees to

94.8% of the true two-level functional error at the first level and increases to 99.9%

at the fifth level.
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Table 6.4: Comparisons of the error predictions obtained by using fine adjoint and
reconstructed fine adjoint, and the computed functional error of the two levels, im-

plemented using the IRK4 scheme, where εt
a∗ = λh

TReh(ũ
h
H) and εt

a = λh
H

T
Reh(ũ

h
H).

Levels Steps Lf
h(ũh)− Lf

h(ũ
h
H) εt

a∗ (based on λh) εt
a (based on λh

H)

1 4 1.571246466096E-03 1.5632947696232E-03 1.4896958322805E-03

2 8 8.319785492716E-05 8.2985882045335E-05 7.9661163552977E-04

3 16 7.250435426930E-06 7.2493664466036E-06 7.2459985983245E-06

4 32 4.340636969857E-07 4.3391789467386E-07 4.3394787466313E-07

5 64 2.694129896951E-08 2.6933615668172E-08 2.6930715973195E-08

Adaptive Time-step Refinement

In this section, the performance of the temporal adaptation procedure is examined for

the fourth-order implicit Runge-Kutta scheme. The adaptive refinement test starts

with the initial condition illustrated in Fig. 6.7 as well as the employment of a uniform

time-step size of ∆t = 0.8. The objective functional used in the previous section for

validating the error predictions is also employed in this example. The convergence

tolerance is set to be 10−8 for all time steps. Similarly to the results shown in the

case using the BDF1 scheme, the algebraic error resulting from this convergence

tolerance level as estimated by the adjoint procedure is still significantly smaller than

the predicted temporal error, and thus only time-step refinement is considered.

Fig. 6.8 illustrates the error distribution in time for all adaptation cycles. For the

initial selection of time-step sizes (i.e. uniform), the functional error exhibits larger

error contributions in regions close to the final time. This is because the location of

the vortex at the first three time steps is not close to the location of integration for

the objective functional and the objective functional is evaluated at the final time.

Therefore, the solution at this region in time has little influence on the final functional

accuracy. As the vortex travels closer to the target area, the accuracy of the unsteady

flow solution becomes more important for the evaluation of the target functional. On

the other hand, the third adaption cycle reveals a much more uniform functional error

distribution due to the time-step refinement procedure.

The error convergence history of the adaptively refined time-step simulations
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Figure 6.8: Functional error distribution in time for all adaptation cycles, in the test
case of isentropic vortex convection.

in the isentropic vortex convection test case is also compared with that of the uni-

formly refined time-step simulations. The flow problem at each intermediate stage

of the IRK4 scheme corresponding to the uniform time-step refinement approach is

converged to machine precision of 10−16 to eliminate the presence of algebraic error.

Therefore, the functional value obtained using the uniform time-step refinement is

used to determine the optimal achievable error reduction possible for one temporal

adaptation cycle. In terms of total number of time steps, as illustrated in Fig. 6.9(a),

the adaptively refined time-step approach using the IRK4 scheme is capable of de-

livering accuracy levels equivalent to the uniformly refined time-step approach, while

requiring fewer time steps. Moreover, the adjoint-based correction also provides an

accurate prediction of the functional value evaluated on the next refinement level. In

terms of CPU time, as shown in Fig. 6.9(b), the adaptive approach demonstrates

superior efficiency over the uniform time-step refinement method, particular for the

last two adaptation cycles, even though the cost for one adaptation cycle includes the

cost of the unsteady multistage flow and adjoint solutions for the current adaptation

level as well as the cost of its previous adaptation cycles. For example, to achieve

a 10−6 functional error tolerance, the uniformly refined time-step approach incurs
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roughly twice the computational cost of the adaptive scheme. If the adjoint correc-

tion is taken into account, further improvement is achieved in terms of computational

efficiency for a given accuracy level. Similarly to the previous case, the efficiency

comparison may be optimistic since the uniform refinement cases are fully converged

to eliminate algebraic errors, while the adaptive results are only partially converged,

relying on the estimate of the algebraic error. The examination of the effectiveness

of the error estimates provided by the adjoint-based error correction for the IRK4

adaptive scheme is demonstrated in Fig. 6.10. The functional value obtained from

the adaptively refined time-step approach is close to the functional obtained by the

corresponding uniformly refined time-step approach and moreover, the approximated

functional, provided by the current functional value with the added correction term,

is seen to be very accurate for predicting the functional value at the next finer level.

The rapid convergence of the functional values with increasing number of time steps

in this case is due to the fourth-order accuracy property of the underlying IRK4

time-stepping scheme.
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(a) Error vs. Time steps (b) Error vs. CPU Time

Figure 6.9: Comparison of the objective functional error reductions obtained by the
uniform time-step refinement approach, the adaptive time-step refinement approach
and the adaptive approach corrected with the adjoint-based correction for the test of
isentropic vortex convection.

Figure 6.10: Convergence of the objective functional for the uniform time-step re-
finement approach, the adaptive time-step refinement approach and the adaptive
approach corrected with the adjoint-based correction for the test of isentropic vortex
convection.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

High-order accurate discontinuous Galerkin discretizations have been investigated in

this work using a set of hierarchical basis functions. The optimal error convergence

rate of p + 1 for a discretization order of p is achieved for the two-dimensional com-

pressible Euler equations on unstructured triangular meshes. In order to make the

high-order discretizations competitive, efficient solution methods have been devel-

oped, including an hp-Multigrid approach driven by element-Jacobi solver variants.

The linearized element-Jacobi schemes deliver faster convergence histories than the

non-linear counterparts, while requiring extra storage for the off-diagonal block com-

ponents of the Jacobian matrix. The hp-Multigrid approach demonstrates both p-

and h-independent convergence rates, and thus the efficiency benefits become more

significant for finer meshes.

For time-dependent problems, an accurate and efficient solution requires a careful

balance between both spatial and temporal errors. For problems with disparate length

and time scales, implicit time-integration methods offer the most promising approach

for realizing efficient and accurate solutions. In the interest of balancing spatial

and temporal errors, the current work has investigated the use of high-order implicit

Runge-Kutta schemes in addition to more traditional second-order temporal schemes,

such as the second-order backwards differencing BDF2 scheme. Compared with the
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lower-order temporal schemes, the fourth-order implicit Runge-Kutta (IRK4) scheme

requires more computational effort to obtain the unsteady solution at each implicit

time step. However, the IRK4 scheme still outperforms the lower-order schemes due

to its more favorable temporal accuracy. The second-order accurate Crank-Nicolson

scheme performs better than the BDF2 scheme, although the lack of L-stability for

this scheme indicates that it should be used with caution. Since the implicit systems

of the unsteady problem are more diagonally dominant than those resulting from the

steady-state problem, this work considers the use of a p-Multigrid approach alone for

accelerating convergence of the non-linear problem arising from each implicit time

step. The p-Multigrid approach demonstrates h-independent convergence rates while

retaining slight dependence on time-step sizes. If the time-step size is chosen to

be sufficiently large, the optimal convergence rate is expected to be asymptotically

equivalent to that of the steady-state solver.

In addition to the investigation of the analysis problems, this work has developed

a framework for implementing sensitivity analysis techniques to high-order discontin-

uous Galerkin methods, with particular emphasis on the use of a discrete adjoint

method in the application areas of shape optimization and error estimation. In the

context of shape optimization, the evaluation of sensitivity derivatives requires the

linearization of the spatial residual with respect to modal solution coefficients and

modal geometric mapping coefficients, since the set of discretized governing equa-

tions is solved in modal space, and the geometry is handled through iso-parametric

mappings that may include curved elements.

Output-based error estimation is another essential application of the discrete

adjoint method derived for shape sensitivities. A framework has been successfully

established for providing an accurate error estimate in a simulation functional out-

put, and for driving adaptive refinement strategies to improve functional accuracy

with optimal computational cost. Although the error estimate obtained by this ap-

proach is used for predicting the functional error between two successively refined

or enriched time-step levels rather than the true error measured in the continuous

limit, this method has been found to be simple, yet efficient and sufficiently effec-
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tive for adaptive refinement purposes. The hp-adaptive mesh refinement scheme is

beneficial for shock-dominated problems, where a uniform p = 0 scheme is used to

initialize the solution, and shock regions are consistently refined by an h-refinement

scheme, and regions with smooth solutions may be enriched by a p-refinement scheme.

The hp-adaptive scheme performs more efficiently than a purely h-refinement scheme

for shock problems in that the p-enrichment scheme is capable of achieving optimal

performance in smooth solution regions. Furthermore, in the hp-adaptive scheme, a

p = 0 scheme is consistently employed in regions of shocks or discontinuities, thus

avoiding the need to employ limiters.

The methodology of the adjoint-based spatial error estimation approach is also

extended to temporal error estimation for a time-dependent functional of interest and

to drive an adaptive time-step refinement strategy for the implicit temporal schemes

implemented in this work. Although the formulation derived for adjoint-based tempo-

ral error estimation appears similar to its spatial counterpart, the procedure requires

the solution of multistep or multistage implicit problems within a backward integra-

tion in time. The gain of the adaptive time-step refinement method over uniform

time-step refinement depends upon the functional error distributions in the time do-

main or the relation of the target functional output to detailed time-dependent flow

features. Specifically, if functional error is more tightly related to the flow features

at a particular period of time than another period of time, the adaptive time-step

refinement approach is capable of delivering substantial increases in efficiency.

In summary, the methodology developed in the current work not only provides

an alternative path for achieving high accuracy for flows with wide range of scales

by avoiding the use of excessive grid or time-step resolution, but also establishes a

framework to further quantify the effect of discretization errors on the key output

quantities of flow simulations and to improve the accuracy of simulations of interest

by adaptive mesh or time-step refinement approaches. This approach can be regarded

as an essential step to apply the computational fluid dynamics to practical problems.
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7.2 Additional Contributions

High-order discontinuous Galekin discretizations are suitable for problems with smooth

solutions. However, for problems in the presence of shocks or discontinuities, addi-

tional dissipative mechanisms [18, 47, 102] are required to stabilize high-order ap-

proximations and to prevent the generation of spurious oscillations. Preliminary

investigation of a total variation based non-linear limiter [114] for limiting spurious

oscillations when solving hyperbolic systems of conservation laws by high-order dis-

continuous Galerkin methods has been performed. The limited solution corresponds

to the minimization of the total variation norm of the unlimited solution and can

be obtained by solving the equivalent Euler-Lagrange (i.e. first-variation) equation

using the same spatial DG scheme as the flow problem. The smoothness indicators

used in the hp-adaptive scheme are also utilized for detecting non-smooth regions

and thus limiting may be applied only in these regions to preserve high accuracy in

smooth regions. In addition, the limiting procedure developed in this work is intended

to be a very general approach, which can be used for any high-order discretization.

Results show that the total variation based non-linear limiter is capable of limiting

oscillations generated by high-order discontinuous Galerkin discretizations for strong

hypersonic shocks, and also capable of capturing shocks with sub-cell resolution for

two-dimensional transonic flows. A detailed description of this work is not included

in this thesis since the topic is beyond the original scope of the thesis and will require

considerable additional work to realize its full potential.

7.3 Future Work

There exists a number of directions for future work focusing on the improvement and

extension of the methods developed in this thesis. A few ideas for future research are

listed here.

1. Improvement of the solver

Optimal performance of the p- or hp-Multigrid approach developed for steady-
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state or unsteady flow solvers relies on the accuracy of the solution at the

lowest p-level (e.g. p = 0 level) and also requires avoiding excessive coarse level

solution cost. Therefore, the optimal number of agglomerated coarser levels as

well as smoothing passes in the element-Jacobi solvers remains to be further

investigated.

2. Dynamic mesh motion problems

The methodology formulated in the current work for time-dependent problems

is restricted to the context of static mesh problems. Cases with relative body

motion are very common in many engineering or aerodynamic applications.

Future work is necessary to extend the methodology to dynamically deforming

meshes by formulating high-order discontinuous Galerkin discretizations in Ar-

bitrary Lagrangian Eulerian (ALE) form [115], while particular emphasis will

be given on the construction of discretely conservative high-order discontinuous

Galerkin methods in the presence of moving meshes and in the presence of both

high-order temporal and spatial accuracy. The shape optimization technique

developed for steady-state flow problems is thus readily extensible to unsteady

flow problems with mesh motion, and further investigation of a better opti-

mizer is vital for accelerating objective convergence of the design optimization

procedure.

3. Robustness of the hp-adaptive refinement strategy

The hp-adaptive refinement strategy enables the accurate solution of flows with

strong shocks without the use of slope limiters, which can lead to loss of nu-

merical convergence. However, successful implementation relies on the correct

selection of smooth elements, since the implementation of the p-enrichment

scheme must be avoided in regions of discontinuities in order to prevent the

generation of unphysical solutions. In order to enhance the overall algorithm ac-

curacy and robustness, further research is necessary to incorporate a high-order

limiter (e.g. the aforementioned total variation based non-linear limiter) with

the proposed hp-adaptive scheme for supersonic and high-speed flow problems.
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Furthermore, the current implementation of the local smoothness indicators is

seen to be effective for capturing discontinuous properties in the flow field, how-

ever, the parameters used in these indicators are still problem-dependent, e.g.

the strength of the shocks, or distinction of shocks from stagnation points, etc.

Research on defining a simple, effective and parameter-free indicator should be

investigated in the future.

4. Combination of spatial and temporal error estimation

The approach developed in the discrete adjoint-based error estimation proce-

dure remains valid for errors arising from either a spatial discretization or a

temporal discretization. However, the total error obtained from a numerical so-

lution lies in both spatial and temporal discretizations. Without identifying the

more important error source, mesh or time-step refinement strategies will fail to

decrease functional errors in an efficient manner. Hence, of particular interest is

the combination of both spatial and temporal error estimation and the quantifi-

cation of errors from these sources. In this context, more effective adaptation

strategies are expected to improve total error tolerances more efficiently.

5. Extension to other sets of equations

Adaptive discontinuous Galerkin methods have been applied exclusively to the

two-dimensional compressible Euler equations in the current work. However,

the prescribed methods are intended to be general and in principle they are not

restricted to these equations. Specifically, the adaptive method only requires

a functional output with a well-posed adjoint problem while the adjoint prob-

lem is constructed as an exact dual to the primal problem. The techniques

developed for error estimation and adaptation can be extended to other sets

of equations, e.g. compressible Navier-Stokes equations. Future work should

concentrate on implementing the Interior Penalty (IP) method [116, 117] for

the spatial discretizations of diffusion terms and extending these methods to

three-dimensional problems.
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