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1 INTRODUCTION

1 Introduction

As mentioned in the first chapter, the ability to compute not only simulation outputs
as a function of inputs, but also the derivatives or sensitivities of these outputs with re-
spect to the inputs is becoming increasingly recognized as an important capability not
only for enabling optimization and error estimation, but also for uncertainty quantifica-
tion. As simulation capabilities advance, practitioners are demanding more than simple
deterministic results from their simulations. Rather, these are being replaced with the
prediction of mean values, accompanied with information on the probability distribution
of these outputs about the mean as a function of variations in the simulation inputs or
model parameters. For example, in gas turbine engines, where blade life is correlated with
exposure to high temperatures, the prediction of a single deterministic blade surface tem-
perature provides little information for assessing overall reliability compared to the ability
to predict a probabilistic range of possible temperatures given the various uncertainties in
the blade characteristics, the operating conditions, and the simulation model itself. The
additional information provided by uncertainty quantification is especially important for
situations in which real world data is difficult or impossible to obtain. A prime example
of this situation is hypersonic flow. The simulation of hypersonic flow is characterized
by high velocities, leading to strong shocks, high temperatures and pressures, the excita-
tion of internal energy modes and often chemical reactions. To simulate these physical
phenomena, a number of constitutive relations and empirical models are required, each
of which contain a large number of often experimentally derived inputs. For engineering
systems featuring hypersonic flow, such as atmospheric re-entry of spacecraft, acquiring
experimental data is costly and, in some cases, impossible, leading to a heavy reliance
on simulation for the design of these systems and for ensuring the proper performance.
Because of this heavy reliance, uncertainty quantification is a vital tool for the simulation
of hypersonic flow. Using uncertainty quantification, the quality of simulation results can
be assessed and the reliability of the system can be characterized in a probabilistic sense.

The goal of uncertainty quantification is to determine the range and distribution of
possible values of important simulation outputs or quantities of interest, given a proba-
bilistic distribution of simulation input parameters. The uncertain input parameters can
include variations in geometry due to manufacturing tolerances and/or wear and tear,
variations in flow conditions (for example due to atmospheric changes for flight systems),
and imprecise knowledge of model parameters, such as empirically measured chemically
reacting real gas reaction rates for the case of hypersonic flow problems. While other
types of errors are present in most simulations, such as model form error due to physical
models (such as turbulence models) that fail to correctly represent all underlying physics,
these require specialized techniques of their own, and in general we will only be concerned
with uncertainties that can be expressed as variations in parametric inputs.

The variability of simulation inputs can come in two forms: aleatory or epistemic.
The quantification of each form, as well as the case of mixed form, requires a unique set
of methods. Aleatory uncertainties arise due to the inherent randomness of a variable
and are characterized by a probability distribution [42]. For aleatory inputs, the goal of
uncertainty quantification is to determine the distribution of an output quantity due to
these input distributions. Depending on the application, this characterization may consist
of constructing the full empirical distribution function or may be limited to calculating
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statistics of the distribution that can be used within design, such as the average, variance
or a specified quantile. Epistemic uncertainty arises from a lack of knowledge regarding
the true value of a parameter. Because of this lack of knowledge, the parameter has
no associated probability distribution function and is typically only specified using an
interval. The goal of uncertainty quantification for epistemic uncertainties is to determine
the output interval of a quantity due to specified input intervals.

In general, uncertainty quantification problems involve many input parameters that
interact with each other in non-linear manners and one cannot study the effect of one pa-
rameter in isolation from variations in the others. Therefore, the most consistent approach
for determining output statistics is to perform many simulations with different values of
the input parameters for each simulation in order to build up a statistical representation
of the simulation output through sampling of the uncertain input parameters. This is
known as Monte Carlo simulation and various approaches for sampling or determining
the values of the input parameters can be used such as Latin Hypercube sampling, strat-
ified sampling, and Markov Chain Monte Carlo methods. Although we will use Monte
Carlo methods extensively, we will not concern ourselves with the particular character-
istics of different sampling strategies. Monte Carlo methods are not dependent on the
number of input parameters although these methods converge relatively slowly with the
number of samples (O(

√
N)). The principal disadvantage with Monte Carlo methods is

the large number of simulations required, often exceeding thousands or tens of thousands
of simulations required to obtain good output statistics. Thus, for high fidelity simula-
tions which may take hours or even days for a single simulation, Monte Carlo methods
quickly become intractable.

A typical approach for reducing the expense of Monte Carlo sampling is the use of an
inexpensive surrogate model. This surrogate approximates the relationship between the
true functional value and the input parameters and is built based on a limited number
of functional evaluations, each of which corresponds to a full simulation. Because the
surrogate is inexpensive to evaluate, exhaustive sampling of this model can be performed
to build the required statistics of the output. Surrogate models range in complexity
from simple extrapolations [9, 10] to more sophisticated models, such as least-squares
polynomials [2, 3, 41, 16], support vector regression [12], radial basis functions [4], and
Kriging. In computational fluid dynamics (CFD), Kriging methods in particular have
gained popularity [7, 21, 19, 45, 6, 31, 18, 37, 24, 23, 49]. For the quantification of
uncertainty in hypersonic flows, surrogates based on polynomial chaos have been employed
with success [2, 3]. Despite this success, these polynomial approaches have been limited
to a small number of variables. One drawback of surrogate-based methods is the “curse
of dimensionality”, whereby the number of samples required for an accurate surrogate
increases exponentially as the number of input parameters grows.

Adjoint methods can be used to reduce the cost of uncertainty quantification in various
ways. For example, the sensitivities of the output functional with respect to all input
parameters can be used to determine which parameters are least likely to influence the
output values (lowest gradients or sensitivities) and these parameters can be discarded
prior to construction of the surrogate model, thus reducing the dimensionality of the
problem. This corresponds to a local sensitivity analysis, for which adjoint methods
are ideally suited, since the sensitivity of the output with respect to all inputs can be
computed for the cost of a single adjoint solution. However, by considering only local
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information and by neglecting non-linear effects, local sensitivity analysis may lead to
erroneous conclusions about which parameters can be discarded.

Adjoint methods can also be used to reduce the cost of surrogate model construction.
In addition to requiring the surrogate model to match computed functional values at spe-
cific locations in parameter space, we may also require the model to match the gradients
of the functional with respect to the input parameters at those same locations. In doing
so, we may leverage the power of the adjoint formulation in obtaining the entire gradient
vector with respect to all input parameters for the same cost as the functional evaluation.
Thus for an N-dimensional problem (i.e. N input parameters) we can supply N+1 pieces
of information to the surrogate model for a cost of one functional and one adjoint evalu-
ation. In addition to first-order derivatives, we may also seek to match the second-order
derivatives of the surrogate and simulation at these locations. For this, the adjoint can
be combined with N forward sensitivity analysis problems (one per parameter) to obtain
the full Hessian of the functional with respect to the inputs. Thus we can supply an
additional N(N+1)

2
pieces of information (individual elements of the symmetric Hessian

matrix) at the cost of N forward sensitivity solutions. Of course, the success of higher
order functional interpolation is highly dependent on the smoothness of the functional
itself, and the effectiveness in improving the accuracy of the surrogate model must be
weighed against the cost of evaluating these additional derivatives.

Epistemic uncertainty may be quantified via sampling based approaches or via opti-
mization. Typically, Latin hypercube sampling [17] is used for epistemic uncertainties,
although other methods such as approaches based on random sampling and Dempster-
Shafer evidence theory can be used [15, 48, 22]. For Latin hypercube sampling in par-
ticular, the required number of samples grows quickly as the dimension of the problem
increases, making the quantification of epistemic uncertainties for large-dimension prob-
lems difficult [42]. As was the case with aleatory uncertainty, one possible solution is to
replace sampling with a surrogate model; however, this approach will again eventually
encounter the curse of dimensionality as the input dimension increases. The other main
approach for epistemic uncertainty quantification is to pose the problem as a bound-
constrained optimization problem, defined as: given input parameters within specified
ranges, determine the maximum and minimum values of an output functional. Although
this approach entails solving a complicated global optimization problem with the possibil-
ity of multiple extrema [38], the number of functional evaluations to solve the optimization
problem scales more readily to high-dimensional problems if a gradient-based optimizer is
employed, particularly when an adjoint method is available to compute the gradients at
low cost. For situations in which traditional gradient-based approaches, such as those built
from Newton’s method, are inadequate, efficient global optimization techniques based on
Kriging surrogate models have been successfully demonstrated within the field of CFD
[18]. For these methods, a Kriging surrogate is used to represent the design space, and
traditional global optimization techniques, such as genetic algorithms, are applied to this
surrogate. As is the case for aleatory uncertainty, these Kriging methods can be enhanced
with derivative and Hessian values to improve the performance of the model in higher
dimensions [24, 49].

In the following sections we illustrate the application of adjoint methods to sensitivity
analysis and uncertainty quantification problems. We first provide an overview of the
forward sensitivity and adjoint formulation for parameter sensitivities and extend this
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2 CALCULATING DERIVATIVES

to the calculation of the full Hessian for second derivatives using a combination of the
adjoint and forward sensitivity solutions. We then illustrate the application of adjoint
derived first and second-order derivatives for uncertainty quantification problems using
the method of moments, simple extrapolation, and the construction of polynomial regres-
sion surrogate models as well as Kriging models. In a second part we demonstrate the
systematic application of these techniques to a hypersonic reacting gas simulation with
numerous uncertain model parameters.

2 Calculation of First and Second Derivative Infor-

mation

Although the derivation of the forward and adjoint sensitivity equations has previously
been described, the derivation is repeated here for completeness. This is followed by the
derivation of the formulation for the Hessian matrix of second derivatives.

2.1 Forward and Adjoint Methods

We consider a simulation which takes a set of N input parameters Dj, j = 1, 2, ...N and
produces a set of outputs or quantities of interest L based on a computed state U, where
U is a field vector, for example a flow field solution for a computational fluid dynamics
(CFD) problem. Thus, the functional dependence can be written as

L = L(U(Dj), Dj) (1)

where U depends implicitly on the inputs D, since it is obtained as the solution of the
residual equation

R(U(Dj), Dj) = 0 (2)

In order to compute the derivate of L with respect to Dj, we invoke the chain rule as

dL

dDj

=
∂L

∂Dj

+
∂L

∂U

∂U

∂Dj

(3)

∂U
∂Dj

represents the flow field sensitivities which can be obtained by differentiating the

residual equation or constraint R(U(Dj), Dj) = 0 as[
∂R

∂U

]
∂U

∂Dj

= − ∂R

∂Dj

(4)

Substituting this into equation (3) we obtain:

dL

dDj

=
∂L

∂Dj

− ∂L

∂U

[
∂R

∂U

]−1
∂R

∂Dj

(5)

The forward linearization approach corresponds to evaluating the last two terms on the
right hand side first, while the adjoint approach consists of evaluating the first two terms
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on the right-hand side first. Therefore, the forward linearization can be written as:[
∂R

∂U

]
∂U

∂Dj

= − ∂R

∂Dj

(6)

dL

dDj

=
∂L

∂Dj

+
∂L

∂U

∂U

∂Dj

(7)

whereas the adjoint procedure corresponds to:[
∂R

∂U

]T
Λ = − ∂L

∂U

T

(8)

dL

dDj

=
∂L

∂Dj

+ ΛT ∂R

∂Dj

(9)

In both of these formulations, most of the computational expense occurs in the solution
of the first equation, which requires the inversion of a matrix of the size of the exact
flow Jacobian. In the first case, a new solution of the flow sensitivity problem must be
repeated for each input parameter Dj, whereas in the second case, a new adjoint solution
is required for each objective L. Thus the forward sensitivity approach is best suited for
cases with a single input and multiple objectives, while the adjoint approach is best suited
for cases with a single objective and multiple input parameters.

2.2 Hessian Computation

Consider now the computation of the Hessian matrix of second derivatives of the form
d2L

dDjdDk
, where j = 1, 2, ..N and k = 1, 2, ...N . The Hessian is a N ×N square symmetric

matrix. For a given objective we will show that it is possible to compute all entries in
the matrix using a single adjoint solution and N forward sensitivity solutions [10, 43].
Differentiating equation (3) again we obtain an expression for the second derivative of the
objective as:

d2L

dDjdDk

= DikL+
∂L

∂U

∂2U

∂Dj∂Dk

(10)

where DikL is given by

DikL =
∂2L

∂Dj∂Dk

+
∂2L

∂U∂Dk

∂U

∂Dj

+
∂2L

∂U∂Dj

∂U

∂Dk

+
∂2L

∂U2

∂U

∂Dj

∂U

∂Dj

(11)

The expression for ∂2L
∂Dj∂Dk

in equation (10) is broken down in this manner because the

Dik is easily computable provided the N flow sensitivity vectors ∂U
∂Dj

(j = 1, 2, ..., N) are

available, for example by solving equation (6) N times. However, the second derivative
term ∂2U

∂Dj∂Dk
in equation (10) must be computed by solving the equation obtained by

differentiating the residual equation twice, i.e. by differentiating equation (4) or (6) a
second time to obtain: [

∂R

∂U

]
∂2U

∂Dj∂Dk

= −DikR (12)

VKI - 7 -
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where DikR is given by analogy with equation (11) as:

DikR =
∂2R

∂Dj∂Dk

+
∂2R

∂U∂Dk

∂U

∂Dj

+
∂2R

∂U∂Dj

∂U

∂Dk

+
∂2R

∂U2

∂U

∂Dj

∂U

∂Dj

(13)

Therefore, solving for all ∂2U
∂Dj∂Dk

requires N(N + 1)/2 solutions of equation (12), for all

possible values of j and k. However, if we substitute equation (12) into equation (10) and
make use of our definition of the adjoint variable (e.g. equation (8), we obtain:

d2L

dDjdDk

= DikL+ ΛTDikR (14)

Since DikL and DikR can be computed provided all flow sensitivity vectors ∂U
∂Dj

are known,

all entries in the Hessian matrix can therefore be assembled with equation (14) at the cost
of one adjoint solution and N forward sensitivity solutions.

2.3 Application to Uncertainty Quantification

In the following section, we illustrate the use of gradient and Hessian information for
a simple uncertainty quantification problem. The problem consists of quantifying the
uncertainty in the aerodynamic performance of a time-dependent pitching airfoil given
uncertainties in the shape of the airfoil. Using both the first and second derivatives of the
output objective with respect to the airfoil shape parameters, we construct an extrapola-
tion model of the airfoil objective about the mean that can be used to approximate the
output for relatively small changes in the input values. We also enable the propagation of
uncertainty statistics from the inputs to the output using the method of moments. These
techniques are compared against a brute force Monte Carlo approach that performs a
large number of flow simulations with different input values in order to build up statistics
for the output objective.

The test case consists of a sinusoidally pitching airfoil about its quarter-chord location
solved using the Euler equations in arbitrary Lagrange Eulerian form as described in
[30, 43]. The computational mesh contains about 20,000 triangular elements and is shown
in Figure 1(left). The required deformation and movement of the mesh is performed via
a linear tension spring analogy. The freestream Mach number is M = 0.755 with a mean
angle of attack of 0.016 degrees with a periodic pitch amplitude of 2.51 degrees at a
reduced frequency of 0.0814. A second-order backwards difference (BDF2) time-stepping
scheme is used with 32 time steps per period. The baseline simulation consists of N = 40
time steps after a steady-state solution at the mean angle of attack. The resulting time-
dependent lift and drag profiles are displayed in Figure 1(right). We are interested in the
variations displayed in the time-averaged lift coefficient (the objective) with respect to
uncertainties in the shape of the airfoil. Geometric uncertainty is modeled by introducing
two airfoil shape design parameter, one Hicks-Henne bump function on the top surface of
the airfoil and one on the lower surface. The two design variables are treated as random
variables with normal distribution. The mean is set to zero (corresponding to the NACA
0012 airfoil) and the standard deviations are taken to be σD1 = σD2 = 0.01. Figure 2
shows the NACA 0012 airfoil and the airfoils resulting from perturbations of ±σDj .
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Figure 1: (Left) Computational mesh for pitching airfoil problem; (right) Time history of
lift and drag coefficients

The time-dependent adjoint and Hessian for the two-dimensional inviscid flow solver
have been implemented and are used to obtain first and second derivatives of the objec-
tive with respect to the variations in the shape design parameters. Therefore, for given
variations in the design parameters, the objective may be linearly extrapolated as:

LLin

(
D,x(D),U(D)

)
= L

(
D0,x(D0),U(D0)

)
+

N∑
j=1

dL

dDj

∣∣∣∣
D0

·∆Dj (15)

using only first-order derivative information suppled by the adjoint solution, or quadrati-
cally as

LQuad

(
D,x(D),U(D)

)
= LLin

(
D,x(D),U(D)

)
+

N∑
j=1

N∑
k=1

1

2

∂2L

∂Dj∂Dk

∣∣∣∣
D0

·∆Dj∆Dk (16)

using both first and second-order derivatives obtained from the adjoint and Hessian solu-
tions, where D0 represents the mean value of the input paramters D, and ∆Dj represents
the deviation of the jth parameter from its nominal value.

The simplest approach for obtaining statistics for the objective as a function of the in-
put distributions is to perform a full Monte Carlo simulation where the inputs are sampled
and used to generate a new objective value through a full CFD simulation for each set of
samples. Alternately, we may use the same sampling of the inputs, but generate approxi-
mate objective values for each set of inputs using either linear of quadratic extrapolation,
based on the above equations. This approach requires a single CFD simulation (about
the mean values) and a single adjoint calculation in the linear case, and two additional
forward sensitivity calculations (one for each input) in the quadratic case. In essence,
the extrapolation models are used as simple surrogate models upon which an inexpensive
Monte Carlo (IMC) simulation is performed.

Moment methods represent an alternate approach for obtaining output objective statis-
tics [44, 39]. Moment methods are based on Taylor series expansions of the original non-
linear objective function L(D) about the mean of the input D0 given standard deviations
σDj . The resulting mean µL and standard deviation σL of the objective function are given
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to first order (MM1) by

µ
(1)
L = L(D0) (17)

σ
(1)
L =

√√√√ M∑
j=1

(
dL

dDj

∣∣∣∣
D0

σDj

)2

, (18)

and to second order (MM2) by

µ
(2)
L = µ

(1)
L +

1

2

M∑
j=1

(
d2L

dD2
j

∣∣∣∣
D0

σ2
Dj

)
(19)

σ
(2)
L =

√√√√ M∑
j=1

(
dL

dDj

∣∣∣∣
D0

σDj

)2

+
1

2

M∑
j=1

M∑
k=1

(
d2L

dDjdDk

∣∣∣∣
D0

σDjσDk

)2

. (20)

In the first-order moment method the mean output is given as the output evaluated at
the mean input values, whereas the shift in the output mean due to non-linear effects
is captured in the second-order method. On the other hand, moment methods assume
Gaussian distributions and do not give and information about the probability density
function (PDF), and higher order moment methods require the computation of higher
derivatives which becomes impractical in most cases.

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 2: The NACA 0012 airfoil (in black) and airfoils resulting from perturbations of
±σDj (in gray).

For the full non-linear Monte Carlo and inexpensive Monte Carlo methods (based
on linear or quadratic extrapolation) we use stratified sampling with a sample size of
10, 000. One flow solve takes about 15 minutes on four 2GHz cores and the adjoint solve
for the gradient as well as the forward solves for each design variable for the Hessian
calculation take about the same time. Comparisons of the mean and standard deviation
predictions of the objective function (time-averaged lift) using the various methods as well
as approximate running times are displayed in Table 1.

The 99 per cent confidence interval for the mean calculated with the full nonlinear
Monte Carlo simulation is [5.52× 10−2, 5.58× 10−2]. As can be seen first-order moment
method (MM1) and linear extrapolation (Lin) yield very similar results as expected from
the leading error. Also, second-order moment method (MM2) and quadratic extrapolation
(Quad) give similar results for the same reason. Finally, as can be seen in Figure 3 the
IMC methods capture the actual histograms and consequently PDFs of the time-averaged
lift distribution quite well.
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3 SURROGATE MODELS

Table 1: Comparison of Mean and Standard deviation predictions.

Mean Standard deviation Run time (minutes)
Nonlinear 5.55× 10−2 1.03× 10−1 150, 000

MM1 5.81× 10−2 1.02× 10−1 30
MM2 5.39× 10−2 1.02× 10−1 60
Lin 5.82× 10−2 1.02× 10−1 30

Quad 5.39× 10−2 1.03× 10−1 60

Figure 3: Histograms for time-averaged lift perturbations using various methods.

3 Gradient and Hessian Enhanced Surrogate Models

A surrogate model is a function that can be used to inexpensively approximate one or
more outputs of a simulation over a range of parameter values based on a relatively small
number of simulation results performed with specific input parameter values. The linear
and quadratic extrapolation methods demonstrated in the previous section are simple
examples of surrogate models. However, extrapolation methods only make use of local
information and quickly become unreliable for non-linear functions away from the sampled
region. In order to be more uniformly accurate and reliable, a set of samples that covers
a broad range of the parameter space is required. The main drawback with surrogate
models is that the number of samples and thus the cost associated with constructing
an accurate surrogate typically grow exponentially as the number of design variables
increases. This cost can be mitigated to some degree by the incorporation of gradient
information into the surrogate model through the use of adjoint methods. Although
each functional value used to build the surrogate model comes at the cost of one full
CFD simulation, for the equivalent cost of one adjoint solution, we can obtain the entire
vector of gradients at that location for use in the model. Thus while the functional
value supplies one piece of information for training the model, the adjoint supplied N
pieces of information for the same cost, where N represents the number of parameters or
inputs. Similarly, a Hessian calculation can supply N(N+1)

2
pieces of information for the

additional cost of N forward sensitivity solutions. On the other hand, the lower cost of
this local information must be weighed against the effectiveness of obtaining more global
information by sampling additional functionals at different locations in parameter space.
At the same time, gradient and especially Hessian information will be less useful for
globally approximating non-smooth functions, illustrating the problem dependent nature
of surrogate model construction.
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In the following section, we describe the construction of a polynomial regression model
that includes gradient information, as well as the formulation of Kriging models that may
include gradient and Hessian information and illustrate the performance of gradient and
Hessian enhanced Kriging models on simple model problems.

3.1 Gradient Enhanced Polynomial Regression Methods

A polynomial regression model is based on the assumption that the output is approximated
by a linear combination of polynomials given by equation:

y(D) =
∑
s

βsΨs(D) (21)

where Ψ(D) represent a series of polynomials in D with degree less than p and β are a
set of undetermined coefficients. The coefficients are determined by finding the set that
best describe the simulation results at various values of D. Based on the results of N
simulations, a system of equations can be solved to determine β.

Ψ1(D1) Ψ2(D1) · · · Ψs(D1)
Ψ1(D2) Ψ2(D2) · · · Ψs(D2)

...
. . . . . .

...
Ψ1(DN−1) Ψ2(DN−1) · · · Ψs(DN−1)
Ψ1(DN) Ψ2(DN) · · · Ψs(DN)



β1

β2
...
βs

 =


y(D1)
y(D2)

...
y(DN−1)
y(DN)

 (22)

Here, the matrix on the left-hand side of the equation is defined as the collocation matrix
H. Because N is typically greater than S (normally by a factor of two), this collocation
matrix is inverted in a least-squared sense. This process is demonstrated below. Let
the vector Y represent the results of N simulations using the input parameters Di for
i = 1, 2, ..., N . Additionally, define the collocation matrix H as the rectangular matrix
(dimension N × S) whose elements represent the basis functions evaluated at the input
parameters Di. The coefficients β are determined by solving a set of linear equations,
represented below.

Hβ = Y (23)

Because H is a rectangular matrix, the coefficients are determined in a least-squares
sense. To solve the problem in this manner, both sides of equation (23) are multiplied by
the transpose of the collocation matrix. The product of the collocation matrix with its
transpose is denoted as the regression matrix, A.

HTHβ = Aβ = HTY (24)

Because the regression matrix A is square, it can be inverted to determine the coefficients
that best describe the simulation outputs Y . These coefficients are given as:

β = A−1HTY (25)

Gradient information can be incorporated into the regression model by differentiating
equation (21).

∂y(D)

∂Dk

=
∑
s

βs
∂Ψs(D)

∂Dk

(26)
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These derivative observations can be incorporated into the collocation matrix, providing
additional equations without increasing the number of samples required for the regression.



Ψ1(D1) Ψ2(D1) · · · Ψs(D1)
∂Ψ1(D1)
∂D1

∂Ψ2(D1)
∂D1

· · · ∂Ψs(D1)
∂D1

...
. . . . . .

...
∂Ψ1(D1)
∂Dd

∂Ψ2(D1)
∂Dd

· · · ∂Ψs(D1)
∂Dd

...
. . . . . .

...
Ψ1(DN) Ψ2(DN) · · · Ψs(DN)
∂Ψ1(DN )
∂D1

∂Ψ2(DN )
∂D1

· · · ∂Ψs(DN )
∂D1

...
. . . . . .

...
∂Ψ1(DN )
∂Dd

∂Ψ2(DN )
∂Dd

· · · ∂Ψs(DN )
∂Dd




β1

β2
...
βs

 =



y(D1)
∂y(D1)
∂D1
...

∂y(D1)
∂Dd
...

y(DN)
∂y(DN )
∂D1
...

∂y(DN )
∂Dd


(27)

With the collocation defined as in equation (27), the regression coefficients are determined
using the least-squares procedure given in equations (23) through (25).

The choice of basis functions ΨD used for this regression is general. In previous work,
Hermite polynomials have been used within gradient-enhanced regression models [41]
and multidimensional basis have been constructed by means of a tensor product of one
dimensional polynomials [16].

Ψk(D) =
d∏
i=1

Hmji
(Di) (28)

Here, mj
i is a multi-index dictating the order of the polynomial H. The basis of a given

order p will contain products of polynomials less than or equal to degree p. In this way,
the basis is hierarchical in that the basis of degree p contains all the terms of basis of
degree p− 1. An example basis of degree 2 in 3 dimensions is given below.

Ψ(D) =


1,

H1(D1), H1(D2), H1(D3)
H1(D1)×H1(D2), H1(D1)×H1(D3), H1(D2)×H1(D3),

H2(D1), H2(D2), H2(D3)

 (29)

Here, Hk is the hermite polynomial of degree k. As the above set demonstrates, the
number of terms in the regression grows rapidly as order and/or dimension is increased.

The cost of constructing a polynomial regression model is dictated by the number
of terms required in the regression, as the number of simulation results required for the
surrogate must be greater than or equal to the number of terms in the regression. The
number of terms in the regression is given by the following relation:

S =
(d+ p)!

d!p!
(30)

where d is the dimension of the space and p is the highest polynomial order. When
gradient information is incorporated into the training of the surrogate, each simulation
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result (analysis followed by adjoint) provides d + 1 pieces of information. Hence, the
number of simulation results required for a surrogate using gradient information is given
by:

N ≥
⌈

(d+ p)!

d!p!(d+ 1)

⌉
(31)

For example, if we impose a requirement of worst-case linear growth in the number of
required simulations, regression orders of p = 1 and p = 2 may be considered. With this
constraint, the required number of simulation results is given as:

N ≥

{
1 for p = 1,⌈

(d+2)
2

⌉
for p = 2.

(32)

As these equations show, when gradient information is used, there is no constraint on
the number of simulations required to construct a linear model. For a quadratic model,
the expense associated with training the model increases only linearly. Equation (32)
places a lower bound on the number of simulations required to construct the regression
model. In practice, the regression model is typically over-determined and the coefficients
are determined in a least-squares sense.

3.2 Gradient and Hessian Enhanced Kriging Methods

A Kriging model is a form of regression that is able to account for correlation between the
data points, enabling more accurate functional representations. An overview of Kriging
models is given here based on the descriptions in Reference [40]. The Kriging model is
premised on the assumption that the output data y obey a Gaussian process, specified as:

y = N(m(x), K(x, x′; θ)) (33)

where m(x) is the mean function, K(x, x′; θ) represents the covariance between data
points, and θ represent parameters used to govern the covariance function, known as
hyperparameters. The choice of mean function can vary widely based on the application
of the Kriging model. Within machine learning applications where training data is abun-
dant, a zero mean function is often used, known as simple Kriging. For the purposes of
uncertainty quantification, a non-zero mean function may be required. This mean func-
tion can be explicitly defined or incorporated as part of the Kriging construction. For
an explicitly defined mean function, the output is represented as the sum of the mean
function with a zero mean Gaussian process [40].

y = m(x) +N(0, K(x, x′; θ)) (34)

For an explicit mean function, the zero mean Kriging model is built based on the residual
between the measured output y and the explicitly defined mean function m(x).

To construct the Kriging model, it is first “trained” using a number of simulation
results, represented as Y , evaluated at a set of input parameters, ~X. Using these results,
the parameters in the Gaussian process are fitted and predictions away from these training
points can be made. The prediction from the Kriging model is itself a Gaussian process
with an associated mean value and variance. Using the covariance between points in the
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domain, model predictions throughout the domain are determined by sampling from the
conditional distribution y∗| ~X, Y where ~X, Y are the input and output training data. The
posterior mean predictions for an explicit mean are given by the formula [40]:

y(~x∗)| ~X, Y,m(x) = m(x) + kT∗K
−1(Y −m(x)) (35)

where kT∗ represents the covariance between the test point, ~x∗, and the training points
~X (a row vector of length N). The term K is the covariance between the training data,
represented by a matrix of dimension N ×N .

In addition to an explicitly defined mean function, a non-zero mean function can be
incorporated into the construction of the Gaussian process. This non-zero mean function
usually takes the form of a polynomial regression and the coefficients within the regression
are informed by the correlation within the Kriging model. When a polynomial mean
function is used, the Kriging model is referred to as Universal Kriging. The special case
of a zeroth order regression, meaning a constant mean function, is referred to as ordinary
Kriging. For a universal Kriging model, the functional form becomes [40]:

y(~x) = N(h(~x)β,K(~x, ~x; θ)) (36)

where h(~x) is a column vector containing the basis functions of the regression evaluated at
the point ~x and β are the regression parameters. Using a regression-based mean function,
predictions can be made based on this model using the formula:

y(~x∗)| ~X, Y = h(~x∗)β + kT∗K
−1(Y −Hβ) (37)

where H is the collocation matrix of the regression, Y is the vector of training function
values, K is the covariance matrix between the training points and k∗ is the vector of
covariances between the training points and the test point (x∗). Since the regression is
built from a limited number of training points, it is prudent to assume that the regression
parameters belong to a distribution of parameters. In the limit of zero knowledge of this
distribution (vague prior assumption), the optimal regression parameters are given by
[40]:

β̂ = (HTK−1H)−1HTK−1Y = A−1HTK−1Y (38)

where A is the regression matrix defined as HTK−1H. Unlike the regression matrix used in
polynomial regression, the regression matrix for the Kriging model includes the correlation
between the data points, K. The case of polynomial regression is found by assuming no
correlation between the data points, represented as K reducing to the identity matrix.
Using this definition of regression parameters, mean predictions can be made using the
following single formula:

y(~x∗)| ~X, Y = kT∗K
−1Y + (h(~x∗)− kT∗K−1H)β̂ = kT∗K

−1Y +R(~x∗)β̂ (39)

The elements of the covariance matrix represent the covariance between the function
values. For Kriging, the covariance between function values is assumed to be a function
of distance between the two data points. This functional form is known as a stationary
covariance function [40].
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Ki,j = cov(yi, yj) = k(|~xi − ~xj|) + σnδi,j (40)

Here, k(|~xi − ~xj|) is the covariance between training points i and j and σn represents the
noise in the training data. For machine learning applications, this noise is treated as a
hyperparameter and fitted through the likelihood equation, which is described below. For
the application of uncertainty quantification, this noise is a specified value and is set to
ensure proper conditioning of the covariance matrix. The multidimensional covariance
function is formed as the product of one dimensional covariance functions as this form
produces better conditioned covariance matrices [13]. The covariance between two points
(denoted as ~x and ~x′ to avoid confusion) is given below.

k(~x, ~x′; θ) = σ2

d∏
i=1

ki(xi − x′i; θi) = σ2

d∏
i=1

ki(ri; θi) (41)

Here, σ represents the covariance magnitude and θi is the length scale for each dimension.
A common one dimensional covariance function is the Matern function with the parameter
ν = 3/2, given below [40].

ki(xi − x′i) =

(
1 +
√

3

∣∣∣∣xi − x′iθi

∣∣∣∣) e−√3

˛̨̨̨
xi−x

′
i

θi

˛̨̨̨
(42)

The parameters in the covariance function are determined via the likelihood equation.
The likelihood equation gives the probability that the data with a given set of parame-
ters satisfy the assumed Gaussian process. By maximizing this probability, the optimal
parameters can be determined. The log-likelihood equation for a universal Kriging model
is given by [40]:

log(p(y|X; θ)) = −1

2
(Y −HTβ)TK−1(Y −HTβ)− 1

2
log |K| − N

2
log 2π (43)

where N is the number of training points. Based on this likelihood equation, the optimal
covariance magnitude can be found analytically. By differentiating the likelihood equation
with respect to the covariance magnitude, the optimal magnitude can be determined.
Denoting the covariance matrix with a magnitude of 1 as K̂, the optimal magnitude is
given as [13]:

σ(θ)2 =
(Y −HTβ(θ))K̂(θ)−1(Y −HTβ(θ))

N
(44)

Using this explicit equation for the magnitude, the likelihood equation can be rewritten
as:

log(p(y|X; θ)) = −n log σ(θ)2 − log(|K̂(θ)|)− N

2
log 2π (45)

The only parameters without analytic expressions are the length scales θ. These length
scales are determined via numerical optimization. For this work, a pattern search [33] is
used to determine the optimal parameters as a global deterministic optimization technique
is preferable to non-deterministic methods, such as genetic algorithms, as deterministic
methods allow for repeatability of results. This optimization represents the most expensive
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part of constructing the Kriging model, as the covariance matrix must be constructed and
inverted for each function evaluation in the optimization. Additionally, the dimension of
the optimization problem corresponds to the dimension of the space approximated by the
model.

Like the polynomial regression presented in the previous section, the Kriging model
is also susceptible to the “curse” of dimensionality. Although the Kriging model does not
have an explicit relationship for the number of training points as the dimension of the
space expands, the amount of data required for an accurate model typically increases ex-
ponentially fast as the number of parameters increases. This fact is because an accurate
surrogate requires training points that fill the design space. To reduce the cost of training
the model as the dimension expands, gradient information can be incorporated into the
Kriging model. This can be done in an indirect approach, or direct approach. In the indi-
rect approach, new functional values are obtained by extrapolating the current functional
value using the available gradient, and these are supplied as additional training points to
the unmodified Kriging formulation. Although this allows the inclusion of gradient in-
formation without modifcations to the Kriging formulation, the indirect approach can be
sensitive to the magnitude of the extrapolation distance used, with large distances result-
ing in loss of accuracy, and small distances resulting in poor matrix conditioning. In the
direct approach for including gradient information in the Kriging model, the covariance
matrix must first be extended to include the covariance between derivative values. When
these correlations are included, the covariance becomes a block matrix with the following
components.

K =

[
cov(Y, Y ) cov(Y,∇Y )
cov(∇Y, Y ) cov(∇Y,∇Y )

]
(46)

The covariance between function and gradient components is found by differentiating
the covariance function [46]:

cov(
∂y

∂xk
, y′) =

∂

∂xk
k(~x, ~x′) (47)

Differentiating once more (now w.r.t to the second argument of the covariance function)
gives the covariance between gradient components:

cov(
∂y

∂xk
,
∂y′

∂x′l
) =

∂2

∂xk∂x′l
k(~x, ~x′) (48)

The gradient vector and Hessian matrix resulting from equations (47) and (48) can
then be arranged into the matrices cov(∇Y, Y ) and cov(∇Y,∇Y ) respectively.

In addition to extending the covariance matrix, the training data must be redefined
as:

Y =

[
Y
∇Y

]
(49)

and the collocation matrix must be extended to include the derivative of the basis func-
tion evaluated at the training points. This extension is performed by differentiation of
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the basis functions, as was demonstrated in the previous section. Similarly, by extend-
ing the covariance matrix to include the covariance between second derivatives, Hessian
information may be included in the Kriging model, as shown in Reference [49].

3.2.1 Kriging Model Examples

The performance of surrogate models can be evaluated by using them to fit analytic func-
tions. An impressive example of the potential of gradient and Hessian enhanced Kriging
models can be demonstrated through the Rastrigin function. The Rastrigin function is a
non-convex multimodal function that is often used as a performance test for optimization
problems and is defined as:

Rastrigin(x) = 10m+
m∑
i=1

[
x2
i − 10cos(2πxi)

]
(−5.12 ≤ xi ≤ 5.12) (50)

where m denotes the dimension (i.e. m = 2 in this case). The shape of the 2D Rastrigin
function is illustrated in Figure 4, showing the multimodal form of this function. We
construct a Kriging model of this function using 80 sample points generated by latin hy-
percube sampling (LHS) which may include gradient and Hessian components evaluated
analytically at these sample points. In Figure 5, three different surrogate models con-

Figure 4: Visualization of 2D Rastrigin function

structed by function, function/gradient and function/gradient/Hessian information are
compared. The gradient and gradient/Hessian-enhanced Kriging models are constructed
by the direct Kriging approach. Although the function values show agreement in the vicin-
ity of the 80 sample locations, the function-based conventional Kriging model does not
capture the global trend of the Rastrigin function. Although the gradient-enhanced Krig-
ing model displays better accuracy, only the gradient/Hessian-enhanced Kriging model
reproduces the global trends accurately, which is rather remarkable given that only 80
sample locations are used in this case.

For a more quantitative investigation with higher dimensionality, we use the same
Kriging model to fit the 5D Rosenbrock function by using various sets of sample points
(from 10 to 600) generated by LHS. The Rosenbrock function is defined as:

Rosenbrock(x) =
m−1∑
i=1

[
(1− xi)2 + 100(xi+1 − x2

i )
2
]

(−2 ≤ xi ≤ 3) (51)
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Figure 5: Kriging models used to fit Rastrigin function with 80 sample points

where m denotes the dimension of the function (i.e. m = 5 in this case). Once the
surrogate model is constructed, the accuracy of the model is evaluated by using the root
mean squared error (RMSE) between the exact function and approximate function values
given by the surrogate model. The RMSE is given as follows:

RMSE =
1

M

√√√√ M∑
j=1

(ŷ(xj) − yexact(xj)
)2 (52)

where the coordinates xj, j = 1, ...M define an equally spaced Cartesian mesh which
covers the entire design space. In Figure 6 the RMSE values are compared between the
direct/indirect Kriging approaches. For the gradient/Hessian-enhanced indirect Kriging
approach, three runs are executed with different sets of the extrapolation distance ∆x and
number of extrapolation points madd. For the gradient/Hessian-enhanced direct Kriging
approach, two runs are executed: one where the full Hessian matrix is used at each
point, and one where only the diagonal elements of the Hessian are used. The direct
approaches do not have any parameters to be specified, and in general the performance
of the direct approaches is much better than the indirect approaches. This superiority
is due to the exact enforcement of derivative information and the better conditioning of
the correlation matrix. In Figure 6(b), the x-axis is modified to represent the number
of pieces of information and the approximated computational time factor for a detailed

VKI - 19 -



3 SURROGATE MODELS 3.2 Kriging Examples

comparison. The number of pieces of information is the sum of the number of function
values, gradient as well as Hessian net components among all sample points, which is
generally equal to the size of the correlation matrix. The approximated computational
time factor is defined as the sum of the local sample points, with a weight of 1 for
function only, 2 for function/gradient, and 3 for function/gradient/Hessian sample points.
This definition assumes that the computational times of gradient/Hessian evaluations are

Figure 6: Comparison of RMS error of various Kriging models for the 5D Rosenbrock
function as versus (a) number of sample points (b) pieces of information supplied to
surrogate models, (c) approximate computational time

respectively comparable to one function evaluation. Although this is the case when using
an adjoint approach for obtaining the gradient information, the Hessian construction
scales with the number of design variables or input parameters. However, the current
implementation parallelizes this aspect of the Hessian resulting in an overall wall clock
timing close to that assigned above. Of course, this represents a best-case scenario for the
Hessian enhanced model. The original function-based Kriging shows the best performance
when compared by the number of pieces of information. This result implies that the
scattering of only function information for the whole design space is better than the
concentration of function/gradient/Hessian information at a limited number of sample
points to obtain a more accurate fitting of the whole design space. When compared by the
approximated computational time factor, the gradient/Hessian-enhanced direct Kriging
approaches show better performance than the original Kriging approach. These results
demonstrate that, although including additional local information is not as effective as
corresponding increases in the amount of supplied global information, the principal benefit
comes from the reduced cost afforded by the adjoint for evaluating the local gradient (and
to a lesser degree Hessian) information.

The developed Kriging approaches are next used to fit an airfoil two-dimensional aero-
dynamic database. Moving now to a realistic aerodynamic problem, we demonstrate the
use of a gradient-enhanced Kriging model for fitting a two-dimensional airfoil aerodynamic
database. We consider the steady inviscid flow around a NACA0012 airfoil. The govern-
ing Euler equations of the flow problem are discretized by a finite-volume approach and
are solved with second-order spatial accuracy. The computational mesh is the same as
shown previously in Figure 1. In this study, two parameters are considered; Mach number
and angle of attack. Their ranges are specified as 0.5 ≤ Mach ≤ 1.5 and 0o ≤ α ≤ 5o.
The exact surface or validation data is obtained through a series of 21x21=441 flow com-
putations covering the entire parameter space at equally spaced increments. The exact
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hypersurfaces of lift and drag coefficients are shown in Figures 7(a) and 8(a) showing rapid
variations in the transonic regions. The Kriging models are constructed by utilizing the
function and adjoint gradient values at ten sample points, and the resulting hypersurfaces
for the function alone and function-gradient Kriging models are depicted in Figures 7 and
8. The figures show how the addition of gradient information vastly improves the approx-
imation of the hypersurfaces. However, in this case, the Hessian information could not
be used to improve the Kriging model. Upon closer examination, the exact hypersurfaces
were found to contain small noise levels (attributed to shock alignment with cell faces)
which resulted in highly varying second derivatives and thus precluded effective use of the
Hessian information.

Figure 7: Hypersurface of lift coefficient; (a) Exact, (b) Kriging using function values, (c)
Kriging using function and gradient values

Figure 8: Hypersurface of drag coefficient; (a) Exact, (b) Kriging using function values,
(c) Kriging using function and gradient values

3.2.2 Uncertainty Quantification using Kriging Model

We now compare the results of an uncertainty quantification analysis about the Mach =
0.8, α = 2.5o point on the hypersurface using a full non linear Monte Carlo simulation
and an inexpenive Monte Carlo (IMC) simulation on the Kriging surface. In this analysis,
uncertainties are given to the two parameters (Mach and α) based on a normal distribu-
tion. The mean of the normal distribution is fixed to the nominal values and the output
statistics are examined as a function of the standard deviation of the input parameters
(σD) which is varied from 0 to 0.1 The location of the mean values in parameter space is
chosen to coincide with a region of rapid non-linear variation as noted in Figure 9. The
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number of function calls for a Monte-Carlo simulation is fixed to 1000 in this study, and
these are used to calculate the mean and variance of the aerodynamic functions. The
function calls are directly solved by non-linear CFD calculations in the non-linear Monte
Carlo (NLMC) simulation. This is carried out for seven different values of σD, which
means 7000 CFD function calls are required for this analysis. In the IMC simulation,
on the other hand, the function calls are solved on the Kriging surrogate model, which
dramatically reduces the computational cost for the uncertainty analysis. In Figure 9,
the locations of all 1000 sample points are visualized on the exact hypersurfaces for σD
of 0.1. In Figure 10, the variations in the mean of lift/drag coefficients with respect to
the variation of σD are compared for Kriging models constructed using different numbers
of function evaluations versus the full NLMC case. As can be seen from the plots, using
upwards of 60 function evaluations for the Kriging model results in close agreement for
the mean values with those obtained from the NLMC simulation at a fraction of the cost,
and the agreement increases as more function evaluations are used.

Figure 9: Location of nominal values (red) and 1,000 Monte Carlo sample points (yellow)
for σD = 0.1 on lift (left) and drag (right) hypersurfaces

Figure 10: Mean value of lift and drag computed by full non-linear Monte Carlo versus in-
expensive Monte Carlo on Kriging model constructed with increasing numbers of samples
as a function of standard deviation of design variables
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4 Gradient-based Epistemic Uncertainty Quantifica-

tion

For epistemic uncertainty, the goal is to determine the interval of the output given intervals
for the input parameters. As was the case with aleatory uncertainty, this output interval
can be approximated by assuming a functional form of the output over the design space.
Using a linear functional representation, the output interval width can be approximated
using a moment-method type formula, given as:

yo = f(xo) (53)

∆y =
d∑
i=1

∣∣∣∣ ∂f∂xi∆xj

∣∣∣∣ (54)

where xo represents the design variables at the center of the input interval and yo repre-
sents the center of the output interval. Because epistemic uncertainties are often specified
using a plus/minus, xo and yo can be thought of as the unperturbed values. Although
these values are analogous to mean values for the aleatory case, the use of mean im-
plies an associated probability distribution function so the term unperturbed will be used
throughout this section.

For cases in which the linear approximation is insufficient, the determination of the
output interval can be recast as a bound-constrained optimization problem. The optimiza-
tion problem is specified as: given a set of intervals for the input parameters, determine
the minimum and maximum possible output values. This problem statement gives two
optimization problems, given in as:

ymin = min
x∈I

f(x) (55)

ymax = max
x∈I

f(x) (56)

Here, the input intervals are given by the space I and the minimum and maximum values
are determined based on inputs in this space. The process by which these minimum and
maximum values are determined can vary widely in expense and complexity. The most
straight-forward method for determining the extrema is by exhaustive sampling of the
function. Typically, uniform Latin hypercube sampling is performed using a fixed number
of samples, usually 3, for each variable. For this method, the required number of samples
grows exponentially fast as the number of input parameters is increased, with the formula
given as N = 3d. For complex simulations, this exhaustive sampling is prohibitively
expensive. As was the case with aleatory uncertainty, the simulation output can once
again be replaced with a gradient-enhanced surrogate model and the Latin hypercube
sampling can be performed on this surrogate. As was discussed previously, the expense
associated with the construction of these surrogate models increases dramatically with
dimension; hence, for large numbers of epistemic variables, the expense of a surrogate
based approach may become prohibitively large.
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In addition to exhaustive sampling approaches, more sophisticated optimization meth-
ods can be applied directly to the problems posed in equations (55) and (56). In par-
ticular, we will focus on gradient-based methods for optimization as these method can
scale to large input dimension without an exponential increase in cost, by leveraging the
adjoint capability. The optimization method used for this work is the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [50]. The L-BFGS algorithm is
a quasi-Newton solver, meaning that only the function and gradient at each iteration is
required and an approximate Hessian is constructed based on the convergence history of
the solver. Using this approximate Hessian, Newton’s method is used to drive the gradient
to zero. For a BFGS method, the design space is approximated at iteration k as [33]:

mk(p) = yk +∇yTk p+
1

2
pTBkp (57)

where the subscript k indicates current iteration values, Bk is the approximate Hessian
and p represents the search direction. With this functional form, the direction of the
minimum location is given by:

pk = −Bk∇yk (58)

With the search direction determined, a line search is performed in this direction to
determine a step size that gives a sufficient decrease in the functional. The approximate
Hessian is updated at each iteration based on the requirement that the new approximate
Hessian Bk+1 must accurately predict the difference between the current gradient value
∇yk+1 and the previous gradient ∇yk when used in a Taylor series approximation. The
exact details of the construction of this approximate Hessian can be found in Reference
[33]. For the limited-memory BFGS algorithm, this approximate Hessian is never explic-
itly constructed and the effect of the approximate Hessian is built up using only a limited
number of previous gradient values. The limited storage requirements of this method
make it particularly suited for high dimensional problems.

The main drawback of gradient-based optimization is that the methods are inherently
localized in nature. For epistemic uncertainty propagation, the global maximum and mini-
mum are required. For problems where gradient-based optimization is insufficient, a global
optimization method must be employed. Popular global optimization methods include ge-
netic algorithms, pattern searches, Monte-Carlo sampling and swarm-based algorithms.
Global optimization methods typically require a large number of function evaluations. In
light of this drawback, efficient global optimization is an area of active research. One
such efficient global optimization technique often used in CFD is based on the previously
outlined Kriging model [18, 24, 49]. Although no results will be shown using this method,
the method will be outlined due to its close relation to the other techniques outlined in
this chapter.

The process of Kriging-based global optimization is given by the following steps. This
process is outlined only for minimization as the case of maximization can be found by
reversing the sign on the function. First, a handful of function evaluations are performed
and a Kriging surface is constructed based on these results. Second, based on the Kriging
surface, promising candidate locations for the minimum value are determined. Finally,
additional function evaluations are performed at these candidate locations and a new
Kriging surface is constructed with these new function values added to the surrogate
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training data. This process is repeated until a termination criteria is met, typically a
relative convergence, gradient norm or maximum function evaluation criteria.

An effective way of determining promising candidate locations is based on the underly-
ing Gaussian process representation of the Kriging surface. Because the Kriging surrogate
is stochastic, function predictions have an associated variance. Hence, the surrogate pre-
dictions have an associated uncertainty representing the accuracy of the surrogate at a
particular location. For optimization applications, this variance, along with the mean
predictions, can be used to determine the location in the design space with the highest
probability of containing a new minimum value. This criteria is known as the expected
improvement (EI) method and is given by the following formula [18]:

EI(x) =

{
(ymin − y∗(x))Φ

(
ymin−y∗(x)

s(x)

)
+ sxφ

(
ymin−y∗(x)

s(x)

)
if s(x) > 0,

0 if s(x) = 0
(59)

where ymin is the minimum value from the previous optimization iteration, y∗(x) is the
mean prediction from the Kriging model, s(x) is the Kriging standard deviation prediction,
Φ is the normal cumulative distribution function and φ is the normal probability density
function. As the formula shows, the EI criteria contains two terms. The first term is
proportional to the mean Kriging prediction and grows when the mean prediction is less
than the current minimum value. The second term is proportional to the variance of the
Kriging prediction and grows for x values away from existing sample points. Hence, the EI
criteria maintains a balance between a local search, where points around the minimum of
the surrogate model are added, and a global search, where points are added in unexplored
areas of the design space. The candidate locations are the points in the design space
where the expected improvement function is maximized. Because this maximization is
performed on the Kriging model, any global optimization technique can be used. In
previous works, genetic algorithms have been used to determine the location with highest
expected improvement [18]. Obviously, because this optimization technique is dependent
on the construction of a Kriging model, gradient and Hessian information can easily be
incorporated into the training of the surrogate, improving the accuracy of the Kriging
surface [49].

5 Uncertainty Quantification of Hypersonic Flow Prob-

lem

In this section, we demonstrate the gradient enhanced uncertainty quantification tech-
niques developed in the preceding sections for a realistic problem consisting of hyper-
sonic flow over a circular cylinder. The physical model involves the solution of the two-
dimensional laminar Navier-Stokes equations with a non-equilibrium real gas model. The
real gas model is a five-species, two-temperature model for non-ionizing air [14]. Both
the Dunn-Kang chemical kinetics model and the Park model [36] have been implemented.
Despite the superior accuracy of the Park model, the Dunn-Kang model is used for un-
certainty quantification because of the ease with which uncertain parameters within the
model may be specified. The complete real gas model contains approximately 250 parame-
ters, embedded within the constitutive models for the reaction rates, transport coefficients,
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relaxation times, and caloric equations of state. However, a number of parameters are
not included in the sensitivity analysis either because previous sensitivity and uncertainty
analyses have indicated the parameters to be unimportant or reliable uncertainty specifi-
cations are unavailable [47]. Thus, a total of 66 model parameters are examined for this
sensitivity analysis. These parameters cover freestream conditions, transport properties
and the chemical kinetics model.

5.1 Problem Definition

In vector form, the Navier-Stokes equations for chemically reacting real gas mixtures are
given by

∂U

∂t
+∇ · ~F (U) = ∇ · ~Fv(U) + S(U), (60)

where U are the conserved flow variables, ~F is the inviscid flux, ~Fv is the viscous flux,
and S contains any source terms required for the physical model, such as reaction or
energy coupling terms. For the real gas model, specific heats are calculated via fourth
order polynomial curve fits covering various temperature ranges. The total enthalpy is
calculated simply by integrating these curve fits and incorporating the proper heat of
formation information [11]. The transport model is a collision integral model. For this
model, viscosity, thermal conductivity, and diffusion coefficients are calculated based on
linear interpolation of collision integrals between 2000 K and 4000 K[11, 34].

The governing equations described above are first discretized in space, using a cell-
centered second-order accurate finite-volume approach on two-dimensional unstructured
meshes and the solution is advanced in time to steady state using a fully implicit approach.
In semi-discrete form, the equations have the following form:

∂U

∂t
+ R(U) = 0 (61)

The residual within each cell is given by the sum of the normal inviscid and viscous fluxes
over all faces plus a cell-centered contribution due to source terms. The inviscid flux
is calculated by using gradient reconstruction of primitive variables, and gradients are
calculated using Green-Gauss contour integration over the cell. The limiter used in this
code is a combination of a pressure switch and the smooth Van Albada limiter[14, 34, 8].
The AUSM+UP flux function is used because of the ease with which it can be extended
to additional equations and its applicability across a wide range of Mach numbers. In
order to extend this flux function to the real gas model, a frozen speed of sound is used
[8, 25]. The equations are solved using a preconditioned Newton-Krylov method that is
converged to machine precision for each steady-state analysis case. The exact discrete
adjoint of this model is also implemented and solved in an analogous fashion [27, 26].

This solver is validated using the standard test case of 5 km/s flow over a circular
cylinder with a super-catalytic, fixed-temperature wall. The conditions for this test case
can be found in Table 2. The results of this test case are compared with those of the well-
validated code LAURA[5, 32] and are depicted in Figure 11. For these comparisons, the
Park chemical kinetics model was used. Although this model shows better agreement with
the validation codes, the Dunn-Kang model is ultimately used for all of the demonstration
sensitivity and uncertainty quantification results due to the ease with which uncertain
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Table 2: Benchmark flow conditions

V∞ = 5 km/s
ρ∞ = 0.001 kg/m3

T∞ = 200 K
Twall = 500 K
M∞ = 17.605
Re∞ = 376,930
Pr∞ = 0.72

θ (deg)

2q
"/

ρ ∞
V

3 ∞

0 30 60 90
0

0.002

0.004

0.006

0.008

0.01 LAURA
FV code

Figure 11: Validation of solver for 5 km/s flow over circular cylinder. Left: Computed flow
field temperature contours. Middle: Surface heating distribution. Right: Comparison of
temperatures along centerline with LAURA [5] results running on equivalent mesh.

parameters within the model may be specified. As the figure shows, the solver is able to
match the LAURA validation results closely.

For the subsequent sensitivity analyses and uncertainty quantifications, the objective
of interest is the integrated surface heating over the surface of the cylinder, given as:

L = −
∫
∂Ω

(k∇T · ~n+ kv∇Tv · ~n) dA
1
2
ρ∞V 3

∞
(62)

In this equation, T is the translational-rotational temperature, k is the translational-
rotational thermal conductivity, Tv is the vibrational temperature, and kv is the vibra-
tional thermal conductivity.

In the following sections, we first perform a local sensitivity analysis in order to as-
sess which parameters contribute the most uncertainty to the surface heating objective.
This is followed by a global sensitivity analysis, using a polynomial regression model, and
the results of local and global sensitivity analyses are compared. We then focus on the
construction and use of gradient enhanced Kriging models for aleatory uncertainty quan-
tification, as well as gradient-based optimization for epistemic uncertainty quantification.
We conclude with an example of mixed aleatory-epistemic uncertainty quantification for
the hypersonic cylinder case.
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5.2 Local Sensitivity Analysis

The first variables examined relate to the specification of reaction rates. For the Dunn-
Kang chemical kinetics model used within this work, the reaction rates take the following
form.

Kf = CfT
ηf
a e
−
Ea,f
kBTa (63)

Kb = CbT
ηb
a e
−
Ea,b
kBTa (64)

Here Ea,f and Ea,b represent the activation energy for the forward and backward reactions
respectively, kB is Boltzmann’s constant, and Ta is a characteristic temperature for the
reaction. The parameters examined in this case were Cf and Cb for each reaction, giving a
total of 34 parameters for the 17 reactions in the model. Figure 12 depicts the computed
sensitivity of surface heating with respect to the forward and backward reaction rates
using the adjoint procedure for the 5 km/s benchmark case. Note that because of the large
discrepancy between the design variable and the objective, the sensitivity is expressed as

fractional change in objective per fractional change in design variable (i.e.
dL
L
dD
D

) [28]. As

the results demonstrate, the reactions governing the production and breakdown of NO,
as well as the oxygen recombination reactions, have the greatest influence on integrated
surface heating.

In addition to reaction rates, the sensitivity with respect to parameters within the
transport model was calculated. For the collision integral model, measured collision inte-
grals between the five species at 2000 K and 4000 K are used, and linear interpolation is
used to determine the collision integral at the appropriate temperature [11].

log10(Ωk,k
s,r ) = log10(Ωk,k

s,r )2000 +
[
log10(Ωk,k

s,r )4000 − log10(Ωk,k
s,r )2000

] ln(T )− ln(2000)

ln(4000)− ln(2000)
(65)

In the above equation, Ωk,k
s,r represents the collision integral between species s and species

r. For the five-species model, 15 independent collision interactions are possible. This
model gives a total of 60 parameters, since two separate collision integrals (Ω1,1

s,r and Ω2,2
s,r)

are used at each temperature. The collision integrals are treated as the parameters of
interest and the variables examined for this analysis take the form of a multiplicative
constant, Aks,r, on the input collision integrals Ω̂k,k

s,r [35]. Because the inputs at 2000 K
and 4000 K are correlated, a single parameter is prescribed that accounts for shifts in the
cross-section across the entire temperature range. This parameter modifies the collision
integrals as follows:

Ωk,k
s,r (T ) = Aks,rΩ̂

k,k
s,r (T ) (66)

where Ω̂k,k
s,r (T ) is the unperturbed collision integral and Aks,r is a multiplicative constant for

each unique collision integral (30 total). The results of this calculation are also presented
in Figure 12. As the results show, the collisions involving N2 have the greatest effect
on integrated surface heating. This result is unsurprising because N2 is the predominant
species at the super-catalytic wall boundary condition.

In order to determine the relative importance of parameters drawn from the various
parts of the real gas model, the derivative magnitude over all the model parameters are
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Figure 12: Left: Sensitivity of surface heating with respect to forward and backward
reaction rates. Right: Sensitivity of surface heating with respect to collision integral
parameters

directly compared. In addition to the parameters for the transport model and chemical
kinetics model, the freestream density and velocity are also included in the sensitivity
analysis in order to measure the relative importance of freestream conditions. The total
number of uncertain parameters considered amounts to 66, which includes the 30 collision
integral parameters described above, the 34 reaction rate parameters, and the 2 addi-
tional freestream flowfield parameters (density and velocity). The top ten parameters
based on the derivative magnitude are given in Table 3. As these results demonstrate, the
freestream density has the greatest effect on surface heating by several orders of magni-
tude. The rest of the top parameters are composed of the previously identified important
collision integrals and reaction rates with the top collision integrals ranking above the
majority of the top reaction rates.

5.3 Parameter Reduction through Global Sensitivity Analysis

The previously presented derivative sensitivity analysis did not consider the relative input
uncertainties for each parameter. Also, the analysis is inherently localized in nature
and may give inaccurate results for large perturbations of the input parameters or due
to interference effects between variables [47]. To overcome these limitations, a global
sensitivity analysis can be performed and the importance of each variable can be estimated
based on its contribution to the simulation output. This global sensitivity analysis is
performed using Monte Carlo sampling. For this method, design variable values are drawn
from the associated input distribution and a CFD simulation is run to acquire an output
sample. Statistics are then calculated based on these output samples. Although the
work associated with this sampling is independent of the number of design variables, the
expense of this sampling is often prohibitively high due to the slow convergence of output
statistics. The sensitivity itself can be quantified using a linear regression analysis. This
linear analysis calculates the correlation coefficient for each variable based on the Monte
Carlo results. Although this method cannot fully separate the effect of each variable on the
output, it can provide valuable information on the overall effect each variable has on the
output measured over the entire design space. It can also account for interference effects
between the variables and give a measure of the contribution each variable’s uncertainty
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Table 3: Ranking of input parameters based on derivative values

Number Variable Derivative Value
1 ρ∞ 4.887
2 O2-N2 (k=1) 1.1630× 10−3

3 N2-N2 (k=1) 9.6708× 10−4

4 N2-N2 (k=2) 9.4977× 10−4

5 O-N2 (k=2) 8.6974× 10−4

6 O2 +O � 2O +O (f) 6.2120× 10−4

7 NO-N2 (k=2) 5.2660× 10−4

8 NO +O � N +O +O (b) 4.1447× 10−4

9 N2 +O � NO +N (f) 3.9861× 10−4

10 N2 +O � NO +N (b) 3.8755× 10−4

makes to the overall output uncertainty. The correlation coefficient for variable Di is
given by the following [47]:

ri =
cov(Di, y)

σDiσy
(67)

Here, y represents the output of interest from the simulation, σDi represents the standard
deviation of the input design variable and σy represents the standard deviation of the
output. The standard deviation of the input design variable is a quantity that must
be taken from the relevant literature or estimated based on some expert judgment or
experience [42, 47]. The quantity σy is measured empirically from the Monte Carlo data
set. Because the output variance is required, global sensitivity analysis is intricately tied
to uncertainty quantification.

In practice, the correlation coefficient must be estimated based on the Monte Carlo
data using estimators for each of the statistical quantities in equation (67). The correlation
coefficient can therefore be estimated as [47, 1]:

ri =

∑
k(Di,k − D̄i)(yk − ȳ)√∑

k(Di,k − D̄i)2
∑

k(yk − ȳ)2
(68)

where Di,k represents the kth sample of the ith parameter input , D̄i represents the mean
value of the ith parameter input, yk denotes the output value at the kth sample, ȳ corre-
sponds to the average output computed over all samples, and where the summation over
k indicates a sum over the Monte Carlo sample points.

The expense of performing a full Monte Carlo analysis can be mitigated by construct-
ing a surrogate model and performing an inexpensive Monte Carlo analysis directly on
the surrogate model. The gradient-enhanced polynomial regression model detailed in sec-
tion 3.1 can provide a basis for rapid global sensitivity analysis even in the limit of large
input dimension when the degree of the regression is limited to 2. To demonstrate this
capability, a global sensitivity analysis is performed on the real gas solver using the pre-
viously enumerated 66 model parameters based on a polynomial regression of degree 2.
The results of this regression-based analysis are then compared with a Monte Carlo global
sensitivity analysis performed directly using the CFD solver.
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For 66 dimensions, the size of the regression basis is 2278 terms for p = 2. When
gradient values are included, these facts indicate only 34 simulation results are required for
a p = 2 regression. These numbers represent the minimum number of simulations and in
practice additional simulations can be incorporated into the regression by additional over-
determination of the system. In practice, a total of 68 function/gradient evaluations are
used to train the model, computed from input samples distributed uniformly throughout
the design space via Latin Hypercube sampling. For this analysis, these parameters are
assumed to follow a Gaussian distribution. The results of the regression model global
sensitivity analysis are compared against high-fidelity Monte Carlo sampling using 6,331
CFD simulation results based on the square of the correlation coefficient. The 66 variables
used for this sensitivity analysis along with their mean and standard deviations taken from
[47] are listed in Table 4. The error in the square of the correlation coefficient is estimated
at 0.02 based on the results of a similar global sensitivity analysis with a similar number
of samples [47]. Hence, when comparing coefficients, only differences greater than 0.04
should be considered when ranking parameters.

The results of this regression-based global sensitivity analysis are summarized in Table
5 and compared to the corresponding result from the high-fidelity Monte Carlo analysis.
In this table, the ten most influential parameters on the surface heating are identified
based on the regression-based global sensitivity analysis and compared with the ranking
from the Monte Carlo analysis. Additionally, the square of the correlation coefficient
predicted by each method is compared. Based on the results in Table 5, two conclusions
can be made. First, the regression-based analysis produces parameter rankings and un-
certainty contributions in relatively good agreement with the Monte Carlo results at a
fraction of the cost (68 function/gradient results vs. 6,331 function results). Second, both
the Monte Carlo and regression-based analysis indicate that the majority of the output
uncertainty, measured by the square of the correlation coefficient, is the result of a small
number of parameters, with these top ten accounting for over 90% of the output variance.
Because the output variance is the result of a handful of variables, this sensitivity analy-
sis can provide the justification for the dimension reduction used within the uncertainty
quantification presented in the next section.

We also compare the results of the global sensitivity analysis with those obtained from
the simpler local sensitivity analysis. For this comparison, the top parameters from the
local sensitivity analysis are identified and compared with their ranking from the global
sensitivity analysis in Table 6, using the high-fidelity Monte Carlo simulation results in

Table 4: Input Model Parameters with Uncertainty

Number Variable Mean Standard Deviations
1 ρ∞ (kg/m3) 1× 10−3 5%
2 V∞(m/s) 5000 15.42

3-17 A1
s−r 1 5%

18-32 A2
s−r 1 5%

33-49 ξf 0 0.25
50-66 ξb 0 0.25
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Table 5: Top 10 parameters from P=2 regression sensitivity analysis compared with global

Rank Variable Global Regression Global
Rank Contribution Contribution

1 ρ∞ 1 0.56879 0.60055
2 O2 +O � 2O +O (f) 2 1.0002× 10−1 1.0610× 10−1

3 O2 +O2 � 2O +O2 (b) 6 5.7669× 10−2 2.1621× 10−2

4 NO +O � N +O +O (b) 3 4.0057× 10−1 5.1914× 10−2

5 N2-N2 (k=1) 5 3.7461× 10−2 3.1617× 10−2

6 O2-N2 (k=1) 4 3.3299× 10−2 4.2121× 10−2

7 N2-N2 (k=2) 8 2.1163× 10−2 1.9019× 10−2

8 O-N2 (k=2) 9 1.7395× 10−2 1.3874× 10−2

9 V∞ 14 1.3497× 10−2 4.8401× 10−3

10 O2 +O � 2O +O (b) 13 1.1734× 10−2 7.4280× 10−3

the case of the global sensitivity analysis. In addition to comparing the ranking of each
parameter, the uncertainty contribution is also compared. For the local sensitivity results,
this is computed using the method of moments. The inverse of Table 6 is given in Table 7
where the top parameters from the global sensitivity are given with their associated local
ranks.

As this comparison shows, the local sensitivity analysis does a reasonable job identi-
fying the most sensitive parameters with the global and local analysis. The two analyses
identify the same top 3 parameters and identify 7 of the same parameters within their
respective top 10 lists. Unfortunately, outside of the top three, the two types of analy-
sis begin giving dramatically different rankings and the local sensitivity analysis seems
to miss a number of the important collision integrals. Based on the uncertainty in the
global sensitivity results, the disagreement in rankings is only important for variables
with correlation coefficients significantly greater than 0.02, namely O2 −N2(k = 1) and
N2 − N2(k = 1). The fact that the local analysis misidentifies the ranking of these
parameters demonstrates a significant disagreement between the two forms of sensitivity
analysis and illustrates the importance large perturbations and non-linear interference
effects can have on overall sensitivities.

5.4 Aleatory Uncertainty Quantification using Kriging Model

We now demonstrate the use of a Kriging model for uncertainty quantification of the
surface heating objective for the hypersonic cylinder case based on the 66 uncertain pa-
rameters as described previously in Table 4.

From the global sensitivity analysis presented in the previous section, it was shown
that the majority of the uncertainty is the result of a relatively small number of variables.
Because of this fact, the dependence of the output on the lower importance variables
can be neglected, allowing for the creation of a lower-cost Kriging model with respect to
the variables contributing the majority of the uncertainty. In order to demonstrate the
performance of this strategy, Kriging models based on the top 15 variables identified by
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Table 6: Top 10 parameters from local sensitivity analysis compared with global

Rank Variable Global Local Global
Rank Contribution Contribution

1 ρ∞ 1 0.43230 0.60055
2 O2 +O � 2O +O (f) 2 1.7490× 10−1 1.0610× 10−1

3 NO +O � N +O +O (b) 3 7.7860× 10−2 5.1914× 10−2

4 N2 +O � NO +N (f) 7 7.2017× 10−2 2.0647× 10−2

5 N2 +O � NO +N (b) 10 6.8076× 10−2 1.2155× 10−2

6 NO +O � N +O +O (f) 11 2.5979× 10−2 8.3596× 10−3

7 O2-N2 (k=1) 4 2.4524× 10−2 4.2121× 10−2

8 NO +O � O2 +N (f) 16 2.2155× 10−2 1.4609× 10−3

9 NO +O � O2 +N (b) 63 1.7353× 10−2 3.7488× 10−6

10 N2-N2 (k=1) 6 1.6956× 10−2 3.1617× 10−2

Table 7: Top 10 parameters from global sensitivity analysis compared with local

Rank Variable Local Global Local
Rank Contribution Contribution

1 ρ∞ 1 0.60055 0.43230
2 O2 +O � 2O +O (f) 2 1.0610× 10−1 1.7490× 10−1

3 NO +O � N +O +O (b) 3 5.1914× 10−2 7.7560× 10−2

4 O2-N2 (k=1) 7 4.2121× 10−2 2.4524× 10−2

5 N2-N2 (k=1) 10 3.1617× 10−2 1.6956× 10−2

6 O2 +O2 � 2O +O2 (b) 13 2.1621× 10−2 1.3120× 10−2

7 N2 +O � NO +N (f) 4 2.0647× 10−2 7.2017× 10−2

8 N2-N2 (k=2) 11 1.9019× 10−2 1.6354× 10−2

9 O-N2 (k=2) 12 1.3874× 10−2 1.3714× 10−2

10 N2 +O � NO +N (b) 5 1.2155× 10−2 6.8076× 10−2
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the Monte Carlo based global sensitivity analysis as accounting for 95% of the variance,
given in Table 8, were constructed. Both function and function/gradient Kriging models
were constructed, and the accuracy of these models was compared with a full Monte Carlo
simulation, using 6,331 samples, as a function of the number of training points used to
build the Kriging models. The error in the surrogate is calculated by sampling the Kriging
models at the same points used for the high-fidelity Monte Carlo sampling and measuring
the difference between the Kriging predictions and the Monte Carlo results. Because the
full Monte Carlo results include the effect of all uncertain parameters, the errors incurred
by the Kriging models include both differences due to the omission of the low ranking
uncertain parameters, and the accuracy of the Kriging model itself due to a finite number
of training points.

The error as the number of training points increases is plotted in Figure 13 for both the
function-only models and the function/gradient-enhanced models. As the figure shows,
the gradient-enhanced model consistently produces a more accurate surrogate than the
function-only model. Additionally, the error for the gradient-enhanced model quickly
levels off while the function-only model shows large variation over all but the largest
numbers of training points. This variation may indicate that the sampling density for the
function-only model may not be sufficient until a large number of points is reached.

Figure 14 shows the average and variance predictions as the number of training points
increases for both the function only model and the function/gradient-enhanced model. As
the figure demonstrates, the average predictions for the gradient-enhanced model show less
variation and have better agreement with the Monte Carlo results when compared to the
function-only results. For the variance, both models show discrepancies with the Monte
Carlo results but the predictions for the gradient-enhanced model show less variation as
the number of training points increases, indicating some level of convergence for the model
training.

Finally, to examine the prediction of statistics beside the mean and variance based on
a Kriging model, the cumulative distribution function (CDF) of the output based on the
gradient-enhanced Kriging model was constructed using 68 training points. This CDF is
plotted in Figure 15 along with the CDF from the high-fidelity Monte Carlo results. The
CDF curve produced by the Kriging model matches the CDF from the Monte Carlo results
well in spite of the fact that a majority of the input variables have been ignored within
the construction of the Kriging model and only 68 simulations are required, compared to
6,331 simulations for the full Monte Carlo method.

5.5 Epistemic Uncertainty Quantification

We now consider gradient-based approaches for epistemic uncertainty quantification. Be-
cause of the expense associated with traditional methods of episetmic uncertainty, a subset
of the input variables used in the previous sections is chosen and treated as epistemic.
Using this variable subset, the output interval for the hypersonic cylinder surface heating
objective is predicted using a linear surrogate and an optimization approach. The per-
formance of these methods is measured by comparing against the bounds produced by
exhaustive sampling.

The traditional method for quantifying epistemic uncertainty is Latin Hypercube sam-
pling. This sampling is performed using a fixed number of samples (∼ 3) in each direction
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Table 8: Variables for the Kriging model based on Monte Carlo global sensitivity analysis

Rank Variable Uncertainty Contribution Total Contribution
1 ρ∞ 0.60055 0.60055
2 O2 +O � 2O +O (f) 1.0610× 10−1 0.70665
3 NO +O � N +O +O (b) 5.1914× 10−2 0.75857
4 O2-N2 (k=1) 4.2121× 10−2 0.80069
5 N2-N2 (k=1) 3.1617× 10−2 0.83231
6 O2 +O2 � 2O +O2 (b) 2.1621× 10−2 0.85393
7 N2 +O � NO +N (f) 2.0647× 10−2 0.87457
8 N2-N2 (k=2) 1.9019× 10−2 0.89359
9 O-N2 (k=2) 1.3874× 10−2 0.90747
10 N2 +O � NO +N (b) 1.2155× 10−2 0.91962
11 NO +O � N +O +O (f) 8.3596× 10−3 0.92798
12 NO-N2 (k=1) 7.6676× 10−3 0.93565
13 O2 +O � 2O +N (b) 7.4280× 10−3 0.94308
14 V∞ 4.8401× 10−3 0.94792
15 O2 +N2 � 2O +N2 (f) 3.5848× 10−3 0.95150

Figure 13: Variation of surrogate error as number of training points increases for gradient-
enhanced and function-only Kriging models
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Figure 14: Variation of mean (Left) and variance (Right) of surface heating objective
as number of training points increases for gradient-enhanced and function-only Kriging
models

Figure 15: CDF prediction of surface heating objective for Kriging model based on 68
training points in 17 dimensions compared with Monte Carlo CDF.
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(with a total number of samples increasing as 3d with d representing the number of epis-
temic variables). Due to the expense of sampling approaches, the dimension for this
problem is reduced relative to the aleatory uncertainty problem presented in the previous
section. For the purposes of validation, the set of 66 variables used for the aleatory uncer-
tainty problem is reduced to a set of 8 variables for the epistemic problem. Limiting the
validation to 8 variables allowed the output interval to be computed in a cost equivalent
to that of an aleatory problem. Using 3 sample points in each direction, as indicated
in Reference [42], the choice of 8 epistemic variables requires 6, 561 simulation results to
provide the appropriate interval, a cost similar to the 6,331 results used to validate the
aleatory results. The choice of which 8 parameters to include in the epistemic study was
motivated by both theoretical and practical concerns. Of the 66 parameters used in the
sensitivity analysis and aleatory uncertainty quantification, the parameters corresponding
to the collision integrals and chemical kinetics model are most accurately described by
epistemic uncertainty due to their experimental nature and the lack of information in the
literature regarding the distribution of these values.

Limiting ourselves to the 30 transport parameters in the model, the final set of 8
parameters was chosen based on the sensitivity analysis presented in section 5.3. From
this analysis, the collisions involving diatomic nitrogen have the greatest effect on surface
heating. The final set of 8 variables are chosen as the collision integrals of diatomic nitro-
gen with itself and the other predominant species near the wall, namely O2, O, and N , for
k equal to 1 and 2. These variables are given in Table 9 with their associated intervals.
The assumption of ±20% uncertainty for the collision integrals is taken from Reference
[35], although that work assumed a Gaussian for the uncertainty while an interval is used
in this work. It should be noted that the parameters chosen for the epistemic problem
do not correspond exactly with the 8 most important collision integrals from the sensi-
tivity analysis, although that criteria would indicate 6 of the same parameters. Although
the sensitivity analysis played a role in selecting the parameters used for the epistemic
problem, the variable set was modified slightly to more closely match the experiences of
Reference [20]. Had similar studies not been available, the sensitivity analysis could have
been used exclusively.

The output interval due to variations in these 8 parameters was determined based on
Latin Hypercube sampling using 3 samples in each dimension (6, 561 total samples). For
this sampling, variations were only allowed for these 8 variables and the other variables
were frozen at their unperturbed or mean values. With the samples determined, the
minimum and maximum objective values from the data set are determined. Because no
distribution can be associated with epistemic uncertainty, this output interval is the only

Table 9: Epistemic Model Parameters

Variable Unperturbed Value Lower Bound Upper Bound
A1
N2−N2, A

2
N2−N2 1 0.8 1.2

A1
N2−N , A

2
N2−N 1 0.8 1.2

A1
N2−O, A

2
N2−O 1 0.8 1.2

A1
N2−O2, A

2
N2−O2 1 0.8 1.2
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useful result of the sampling, as the epistemic nature of this problem prevents inferring
any other properties. The choice of using 3 samples in each dimension was made based on
Reference [42]. As will be shown, this choice may lead to underestimation of the output
interval. Hence, when comparing the results of other methods to the interval predicted
by sampling, an interval prediction larger than the sampling result is preferred, as the
sampling result is limited by the number of samples used and is used to guard against
the possibility of the optimization falling into a local optimum. Using these validation
results, the performance of the gradient-based methods can be measured.

In addition to this 8 dimensional problem, the gradient-based methods are used to
predict the output interval due to uncertainty in all 30 transport parameters. Although
interval predictions are made, no validation of the interval based on sampling is possible
due to the prohibitively high cost associated with sampling. Using 3 samples in each
direction for 30 dimensions would require over 100 trillion samples. Instead of comparing
the results of the gradient-based method to a sampling based approach, the methods can
only be compared with one another. The interval for all 30 transport parameters was
[0.8, 1.2] and again corresponds to ±20% uncertainty [35].

5.5.1 Linear Results

When gradient values are available, the width of the output interval can be predicted
based on a single function/gradient evaluation at the unperturbed parameter values. The
half width of the interval is predicted using the gradient values (according to equations
(53) and (54)) and the lower and upper bounds of the output interval are predicted by
subtracting and adding this half width to the function prediction of the simulation. The
results of this linear approximation for the 8 dimensional case are given in Table 10 and
compared to the interval produced by Latin Hypercube sampling.

Table 10: Interval prediction from moment method compared with LHS result

Linear Method LHS interval
Center 1.0370E-002 1.0449E-002

Interval Half Width 8.6634E-004 7.1266E-004
Upper 1.1237E-002 1.1161E-002
Lower 9.5040E-003 9.7361E-003

Percentage ±8.35% ±6.82%

As this table demonstrates, the linear method gives a conservative estimate for both
the lower bound and the upper bound of the interval. Also included in Table 10 is the
center of the interval predicted by the LHS sampling and linear method. As the table
shows, the center of the interval from sampling deviates significantly from the function
value evaluated using parameters at the center of the interval. This fact gives an indication
of the non-linearity of the simulation result. Additionally, it demonstrates the difficulty
in determining a representative result for the simulation value. While the center of the
interval prediction may be an intuitive representative result, any value inside the interval
bounds is equally valid. Despite this difficulty, the center of the interval is used as a
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representative value so the uncertainty can be represented as a plus/minus value about
this value. When this percentage error about the center is computed, it is clear that the
linear method produces a significantly wider output uncertainty when compared to the
sampling results.

Because a single function/gradient evaluation is used to predict the output interval,
this method can be applied to the 30 dimensional problem without increasing the cost
of the prediction. Although no validation results are presented for this case, the 30
dimensional interval prediction is given in Table 11. As expected, the size of the output
interval, relative to the 8 dimension case, is larger as a result of adding more uncertain
parameters. Although no validation of this result is possible, it will be compared to the
corresponding optimization result in the next section.

Table 11: Interval prediction using moment method for 30 dimensional case.

Linear Method
Center 1.0370E-002

Interval Half Width 1.1787E-003
Upper 1.1549E-002
Lower 9.1916E-003

Percentage 11.37%

5.5.2 Optimization results

In order to provide an inexpensive interval prediction even as the problem dimension
increases, gradient-based optimization (leveraging the adjoint capability) is used to deter-
mine the minimum and maximum values possible given specified intervals on the inputs.
Specifically, the L-BFGS algorithm [50] is used for the optimization. The optimization
approach is first tested for the 8 dimensional test case. The convergence for the minimum
and maximum optimization results is shown in Figure 16 in terms of function/gradient
evaluations. Plotted with the convergence are the minimum and maximum values from
the LHS results. As the figure demonstrates, the interval produced by optimization is
larger than the sampling result, producing conservative estimates for the minimum and
maximum values.

Because the optimization result produces interval bounds beyond the values produced
by sampling, the optimization results should be viewed as the correct result. Because the
results of the optimizations represent actual function values achieved with inputs con-
tained in the specified intervals, the bounds produced by optimization are the correct
solution to equations (55) provided the minimum and maximum values are the global
extrema. Hence, the sampling results are used to ensure the optimization has not fallen
into any local extrema. Although the sampling does not ensure that the optimization
gives the global minimum and maximum values, the sampling results provide no evidence
to undermine the optimization results. Even though L-BFGS is an inherently local opti-
mization, in this case it appears to produce the global minimum and maximum values. In
addition to producing the more accurate interval estimate, the optimization produces it
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at significantly reduced cost, requiring only 43 function/gradient evaluations. The rapid
convergence of these optimization problems is likely due to the relatively smooth behavior
of the design space and the fact that the optimal values typically occur at the bounds for
most variables. Although a smooth design space is typical for most outputs of engineering
calculations [29, 41], it is likely more complex simulations will require more work to solve
the required optimization problems.

Figure 16: Convergence of optimization over epistemic variables (8 dimensional case) for
fixed aleatory variables compared with bounds from Latin hypercube sampling.

In order to further compare the optimization to the other results, its bounds are
compared with sampling and the linear method in Table 12. In addition to comparing the
bounds, the center of the interval as well as a symmetric uncertainty percentage are given.
Based on these results, the optimization and linear method produce similar measures of
uncertainty as a percentage of the center of the interval. Despite this fact, the bounds
produced by the linear method show disagreement with the optimization result, with
the linear method underestimating the maximum and producing an overly conservative
minimum bound.

Because the gradient-based optimization can scale to larger dimension, the bounds
for the 30 dimensional problem can be determined. These bounds are compared with
the results from the linear method. Although the agreement of these two methods does
not imply that the bound is necessarily correct, the fact that the predictions are based
on differing methods should give an indication of the quality of the result. Because
the optimization result is based on actual function values, instead of extrapolation, the
optimization result is likely the more correct result. The convergence of the 30 dimensional
optimization problems is given in Figure 17. Using 83 function/gradient evaluations,
the optimization method is able to produce the output interval for the 30 dimensional
problem. Despite the large increase in the dimension of the problem, the cost of the
optimization only increased by approximately a factor of two. This fact is likely because
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Table 12: Comparison of Interval prediction for Optimization, Sampling and Linear
Method (8 dimensional case)

Linear Method LHS interval Optimization
Center 1.0370E-002 1.0449E-002 1.0506E-002

Interval Half Width 8.6634E-004 7.1266E-004 8.8912E-004
Upper 1.1237E-002 1.1161E-002 1.1395E-002
Lower 9.5040E-003 9.7361E-003 9.6168E-003

Percentage 8.35% 6.82% 8.46%

the optimal values are located at the bounds of the domain for most variables, allowing
the optimizer to easily find the optimum. Additionally, because the sensitivity of many
collision integrals is small, the addition of these variables to the optimization does not
drastically effect the overall design space. The interval produced by optimization on the
30 dimensional problem is compared to the linear method in Table 13. As the table shows,
the linear method again underestimates the maximum value but is overly conservative for
the minimum value. Although the width of the interval and center of the interval do not
agree with the optimization, the uncertainty expressed as a percentage of the center value
agree remarkably well for the two methods, as was the case for the 8 dimensional case.
Given the difference in bound predictions, this fact is likely coincidental.

Figure 17: Convergence of optimization over epistemic variables (30 dimensional case) for
fixed aleatory variables.
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Table 13: Interval prediction for optimization method for 30 dimensional problem.

Linear Method Optimization
Center 1.0370E-002 1.0543E-002

Interval Half Width 1.1787E-003 1.2031E-003
Upper 1.1549E-002 1.1746E-002
Lower 9.1916E-003 9.3400E-003

Percentage 11.37% 11.41%

5.6 Combined Aleatory-Epistemic UQ

To quantify uncertainty for the mixed case, a combined optimization/Kriging approach
is applied in a statistics-of-intervals manner, meaning that multiple optimizations are
performed over different values of the aleatory variables and a surrogate is created for
these optimization results. To test this strategy, ten variables are treated as uncertain,
given in Table 14. The epistemic variables for the mixed case are the same eight vari-
ables as those used for the pure epistemic case. Two aleatory variables are used for this
study, corresponding to the freestream density and velocity. These parameters and asso-
ciated uncertainty were chosen based on the results of similar uncertainty quantification
studies[35, 2]. The choice of which parameters to treat as aleatory was taken from an
additional study[3].

The goal of a mixed aleatory/epistemic uncertainty quantification is to produce an
interval containing the solution with a specified probability, known as a P-box [42]. The
performance of the statistics-of-interval approach is measured based on its predictions of
a 99% P-box as well as its ability to predict the CDF curves associated with the mini-
mum and maximum values of the optimization, enabling any P-box to be predicting in
principle. These predictions can be validated in one of two ways. First, a nested sam-
pling approach can be used, in which an aleatory uncertainty quantification is performed
for each epistemic sample [42]. Using three points in each dimension for the sampling
of epistemic variables and 5000 samples for the aleatory uncertainty quantification, this
nested approach would require approximately 30 million simulation results for the vari-
ables used in this study. Aside from nested sampling, the statistics associated with the

Table 14: Uncertain model parameters

Variable Type Uncertainty
ρ∞ (kg/m3) Aleatory ±10% (σ = 5%)
V∞(m/s) Aleatory ±30.84 (σ = 15.42)

Ω1,1
N2−N2,Ω

2,2
N2−N2 Epistemic ±20%

Ω1,1
N2−N ,Ω

2,2
N2−N Epistemic ±20%

Ω1,1
N2−O,Ω

2,2
N2−O Epistemic ±20%

Ω1,1
N2−O2,Ω

2,2
N2−O2 Epistemic ±20%
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interval bounds can be validated by exhaustive sampling of the optimization results over
the aleatory variables. Hence, thousands of pairs of optimization results would be required
to validate the statistics associated with the interval bounds. If 5000 samples are per-
formed to characterize the distribution of the interval bound due to the aleatory variables,
approximately 300,000 simulation results with gradients would be required for this test.
For both approaches, this validation is essentially intractable. To validate the Statistics-
of-Intervals/Kriging method applied to a real gas simulation, each element of the method
was validated separately against exhaustive sampling. With each element validated, the
mixed aleatory/epistemic uncertainty was calculated by using successively more accurate
surrogate models to demonstrate convergence of the statistic predictions.

The optimization portion of the Statistics-of-Intervals method was validated in the
previous section. With the optimization confirmed, the ability of the Kriging model to
capture the aleatory variation of the integrated surface heating was tested. Although
the previously discussed method for aleatory uncertainty quantification was based on a
gradient-enhanced Kriging model, the Statistics-of-Intervals method uses a function-only
Kriging model. Because the Statistics-of-Intervals method requires the construction of a
Kriging model for the optimization results, the gradient of the optimal results would be
required for a gradient-enhanced method, a quantity that is difficult to calculate. Luckily,
within hypersonic flows, the number of aleatory variables is relatively small, reducing the
need for a gradient-enhanced surrogate model.

In order to determine the number of training points required to capture the design
space associated with the two aleatory variables identified in Table 14, Kriging models
were constructed using an increasing number of simulation results and statistics were
predicted based on each model. For this test, the epistemic variables were frozen at
their non-perturbed values (1 in the terms of the parameters defined in Table 14), and
sampling was performed over the aleatory variables. In order to provide validation data,
Monte Carlo sampling was performed over the two aleatory variables, and the distribution
was characterized both by constructing a CDF curve and by calculating specific statistics.
In order to acquire accurate statistics, 4,564 samples were used, and a separate simulation
was performed for each. With the validation data acquired, ordinary (constant mean
function) Kriging models with increasing numbers of training points were constructed.
Because the epistemic variables for this test were fixed, each training point required only
a single CFD simulation.

As a first test, the convergence of the mean, variance, and 99th percentile are shown
for Kriging models with increasing numbers of training points. The convergence of this
metric as a function of training point number is given in Table 15. As the results show,
predictions of the Kriging model rapidly converge toward the Monte Carlo results. In
addition to predicting distribution statistics, a CDF of the output is constructed based
on samples extracted from the Kriging model and compared with that of Monte Carlo
sampling. Figure 18 shows the predicted CDF curve for a Kriging model with 8 training
points and the CDF from Monte Carlo sampling. Using only 8 samples, the Kriging
model produces a CDF curve nearly identical to the curve produced through Monte Carlo
sampling, at a fraction of the cost. Based on this result, it can be expected that a similar
number of optimization results should be required to accurately predict the mixed result.
Since this problem only considers the uncertainty due to two aleatory variables, this cost
is most likely overly optimistic for typical problems.
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Table 15: Convergence of Kriging statistic predictions for aleatory uncertainty with fixed
epistemic variables with increasing number of training points

Training Points Average Variance 99th Percentile
8 1.036110× 10−2 6.061055× 10−8 1.098518× 10−2

16 1.036622× 10−2 6.075630× 10−8 1.097558× 10−2

31 1.034997× 10−2 6.145065× 10−8 1.098506× 10−2

59 1.037171× 10−2 6.185576× 10−8 1.099184× 10−2

121 1.036669× 10−2 6.120957× 10−8 1.097695× 10−2

Monte Carlo Results
Samples MC Average MC Variance MC 99th Percentile

4564 1.036082× 10−2 6.103365× 10−8 1.098385× 10−2

With each element of the Statistics-of-Intervals/Kriging approach validated indepen-
dently, the complete mixed aleatory/epistemic uncertainty is predicted by using opti-
mization for the epistemic dependence and an ordinary Kriging model for the aleatory
dependence. In order to demonstrate the validity of the full results, the convergence
of the minimum and maximum 99th percentile predictions are shown as the number of
training points for the Kriging model is increased in Table 16. For the mixed results,
a training point now represents a pair of optimizations and has a cost of approximately
60 function/gradient evaluations on average. As the table demonstrates, the statistic
predictions quickly converge to asymptotic values. Included in Table 16 is the total
cost in terms of function/gradient evaluations. While the nested sampling and exhaus-
tive sampling of the optimization were prohibitively expensive for the CFD model, the
Statistics-of-Intervals/Kriging model was able to capture converged statistics with a num-
ber of function/gradient evaluations within the computational budget (although still most
likely prohibitively high for complex simulations). Nevertheless, by using the Kriging
model combined with optimization, the Statistics-of-Intervals/Kriging method was able
to quantify the mixed aleatory/epistemic uncertainty problem where other methods could
not be used.

Figure 19 shows the convergence of the average and variance prediction based on

Table 16: 99th percentile predictions for SOI method using ordinary Kriging model for
real gas CFD simulation

Training Data Size Number of F/G Evaluations 99th percentile of Min 99th percentile of Max
8 500 1.017556× 10−2 1.206949× 10−2

15 900 1.016681× 10−2 1.207132× 10−2

23 1400 1.018928× 10−2 1.207939× 10−2

52 3000 1.020232× 10−2 1.210513× 10−2

104 6176 1.020243× 10−2 1.210416× 10−2
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Figure 18: CDF based on Kriging model using 8 sample points compared with CDF of
Monte Carlo results with fixed epistemic variables.

Kriging models with increasing numbers of training points. As this figure shows, the
statistics produced from each model show little variation as the number of training points
increases and the variation is small compared with the overall interval produced due to the
epistemic uncertainty. In addition to calculating specific statistics of the output interval,
the CDF of the minimum and maximum values can be predicted by sampling from the
Kriging surface. The bounding CDF curves are plotted in Figure 20 for a Kriging model
based on 8 and 104 pairs of optimizations. As the figure demonstrates, the CDF curves are
nearly identical, suggesting that the Kriging model has reached some level of convergence.

6 Conclusion and Further Work

In these notes, we have shown how adjoint techniques can be used to accelerate and
enhance applications in sensitivity analysis and uncertainty quantification (UQ). The
principal advantage adjoint techniques bring to UQ is the ability to compute the sensitivity
of a simulation objective or quantity of interest with respect to any number of input
parameters at a cost similar to a single analysis simulation. Additionally, adjoint methods
enable the computation of the Hessian matrix of second derivatives at an additional cost
equivalent and N forward sensitivity solutions for N input parameters. The resulting first
and second-order sensitivities can be used directly in sensitivity analysis to identify the
most important parameters, or in uncertainty quantification of the objective, either by
propagating statistical metrics of uncertainties through the simulation using the method
of moments, or by providing additional information at reduced computational expense for
the construction of surrogate models. Additionally, for epistemic uncertainties, the UQ
problem can be posed as the solution of a bound optimization problem for which adjoint

VKI - 45 -



7 ACKNOWLEDGEMENTS

Figure 19: Convergence of average (Left) and variance (Right) prediction for minimum and
maximum distribution using Kriging models built from increasing numbers of optimization
results for real gas CFD simulation.

methods can provide efficient gradient computations.
While the use of first-order sensitivities in uncertainty quantification problems is rel-

atively well established, the potential for Hessian information to accelerate uncertainty
quantification techniques remains relatively unexplored. In the examples described in
these notes, the Hessian was shown to be advantageous for model problems based on
analytic functions, but was not used on practical uncertainty quantification problems due
to the cost and associated lack of smoothness of the output functional in some cases.
Further investigations into the use of Hessian or Hessian-vector product information for
uncertainty quantification should be an active area of research in the future.

The sensitivity analysis and uncertainty quantification examples described in these
notes were mostly developed for steady-state single disciplinary problems. Based on the
development of adjoint methods for time-dependent and multi-disciplinary problems in
the preceding chapters, these techniques should be extensible to more complex problems
of these types, although the overall expense of high-fidelity UQ will remain an impediment
to widespread use. Finally, the potential of adjoint methods to be used in conjunction with
more elaborate UQ techniques, involving combinations of the approaches described herein,
but also involving Bayesian methods such as Bayesian belief networks for multidisciplinary
problems remains relatively unexplored and can be considered to be an area of research
with potentially high payoff.
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