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Motivation 

• Computational fluid dynamics analysis capabilities 
commonplace today 

• In addition to analysis capability, sensitivity 
capability is highly desirable 
– Design optimization 

– Error estimation 

– Parameter sensitivity 

• Sensitivities may be obtained by: 
– Perturb input, rerun analysis code (Finite difference) 

– Linearizing analysis code (tangent method) 
• Good for 1 input, many outputs 

– Adjoint method (Pironneau, Jameson, many others…) 

• Good for many inputs, one output 

 



Objective 
• Demonstrate methodical approach for formulating and 

implementing discrete adjoint to increasingly complex 
problems 

• Progressively more complex simulation sensitivity 
formulations 
– Steady-state aerodynamics  

– Time-dependent aerodynamics (2D) 

– Time-dependent coupled aero-elastic (3D) 

• Focus 
– Adjoint formulation 

• Hand coded (occasional use of AD) 

• Same data structures/solution techniques as analysis 

• Verification 

– Exact full sensitivities in all cases 

– Optimization examples are mostly illustrative 

 Time-dependent 

 Aeroelastic 

 Overset meshes 

 Adaptive meshes 



Outline 
• General unsteady tangent/adjoint formulations 

– Backward time integration 

• Specific Case 

– Time-dependent aerodynamic shape optimization 

– 2D pitching airfoil optimization 

• Generalized multidisciplinary formulation 

– Time-dependent aerodynamic shape optimization 

– Time-dependent aeroelastic shape optimization 

• Aeroelastic rotor optimization example 

• Conclusions 



Adjoint Sensitivity Formulation 
• Continuous vs. Discrete Adjoint Approaches 

– Continuous: Linearize then discretize 

– Discrete: Discretize then Linearize 

 

• Continuous Approach: 
– More flexible adjoint discretizations 

– Framework for non-differentiable tasks (limiters) 

– Often invoked using flow solution as constraint using Lagrange 
multipliers 

 

• Discrete Approach: 
– Reproduces exact sensitivities of code 

• Verifiable through finite differences 

– Relatively simple implementation (but tedious) 
• Chain rule differentiation of analysis code 

• Transpose these derivatives  
– (transpose and reverse order) 

• Includes boundary conditions 

• Automation possible (but use judiciously for efficiency reasons) 
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Adjoint Formulation 

(chain rule approach) 
• Objective: 

• Subject to:  

– R = 0 : flow solution converged 

– u : flow variables (solution) 

– D: design parameters (shape parameters)  

• Sensitivities:  

 

 
• Constraint sensitivity eqn: 

 

• Final form:  
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Adjoint Formulation 

• Sensitivity equation:  

 

 

 

• Adjoint equation: 

– No dependence on D 

– Dependence on L 

 

• Final form: 

 

• Cost is independent of number of D’s 

• dL/dD are then used by a gradient based optimizer to find next best shape  
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KKT/Lagrange Multiplier Adjoint 

Formulation 

Sensitivity equation 

Adjoint equation 

Constraint equation 



Optimization for Time Dependent 

Problems 

• Using chain rule linearization 
– New time-step values depend on previous time step values 

– Integrate linearized equation in time (tangent problem) 

– Transpose all to get adjoint                                                      
(and reverse order of matrix multiplication) 

• Integrate backwards in time 

• Requires storing entire time history (to disk) 

– 10 8-Byte variables per grid point per time step 

– Advantage of using large time steps with good implicit solver 

– Use local node disks on parallel computer (>1TB each node) 

• Simple derivation of time-dependent adjoint 
– Chain rule linearization 

– Lagrange multipliers 
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Time Dependent Problems: 

Forward Sensitivity 

• Time integrated objective functional 

• Unsteady Residual (BDF1 for simplicity) 

• Sensitivity of objective (chain rule) 



Time Dependent Problems: 

Forward Sensitivity 

Obtain flow sensitivity by 
differentiating residual 

Substitute into objective sensitivity equation 

......... Recursion relation: 

Forward integration in time 

(requires u at each time level) 



Time Dependent Problems: 

Adjoint Formulation 

• n constraints ( 1 per time step) 

• n Lagrange multipliers 
 



Time Dependent Problems: 

Adjoint Formulation 

• Constraint equation(s) • Sensitivity equation(s) 



Time Dependent Problems: 

Adjoint Formulation 
• Adjoint equations 

• Reverse recurrence relation  

• Solved by back-substitution 
– Requires u at each time level 



Generalized Discrete 

Sensitivities 

• Consider a multi-phase analysis code: 

 

 

– L = Objective(s) 

– D = Design variable(s) 

• Sensitivity Analysis 

– Using chain rule: 



Tangent Model 

• Special Case:   

– 1 Design variable D, many objectives L 

• Precompute all stuff depending on single D 

• Construct dL/dD elements as: 



Adjoint Model 

• Special Case: 

– 1 Objective L, Many Design Variables D 

– Would like to precompute all left terms 

 

 

– Transpose entire equation: 



Adjoint Model 

• Special Case: 

– 1 Objective L, Many Design Variables D 

– Would like to precompute all left terms 

 

 

– Transpose entire equation: precompute as: 



Steady-State Shape 

Optimization Problem 
• Multi-phase process: 

 



Tangent Problem 

• 1: Surface mesh sensitivity: 

 

• 2: Interior mesh sensitivity: 

 

• 3: Residual sensitivity: 

 

• 4: Flow variable sensitivity: 

 

• 5: Final sensitivity 



Adjoint Problem 

• 1: Objective flow sensitivity: 

 

• 2: Flow adjoint: 

 

• 3:Objective sens. wrt mesh: 

 

• 4: Mesh adjoint: 

 

• 5: Final sensitivity: 



General Approach 

• Linearize each subroutine/process individually in analysis 
code (tangent or forward model) 

– Check linearization by finite difference/complex variables/dual 
numbers/AD 

– Transpose to get adjoint, and check duality relation 
• Should reproduce same sensitivities to machine precision 

• Build up larger components 
– Check linearization, duality relation 

• Check entire process for FD/Complex and duality 

• Use single modular solver for all phases 

• Maintaining forward linearization has advantages 
– Cases with few design variables, many objectives 

– Debugging adjoint code 

– Enables exact Jacobian/vector products for Krylov solve 

– Facilitates Hessian calculations (later…) 
 



Verification: Complex Step 

• Finite difference approach is plagued by round-off 

error (small e)  versus non-linear error (large e) 

– Must find range of e that gives accurate sensitivities 

– Sometimes no such range exists 

• Complex variable approach: 

– Replace f(x) with complex function f(x+ie) 

– Then df/dx = Im(f(x+ie))/e 

– Can take e=1.e-100 (no roundoff error) 

– Very accurate gradients  (machine precision) 

 



General Duality Relation 

• Necessary but not sufficient test 

– Check using series of arbitrary input vectors 
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•Tangent Model: 

 

•Adjoint Model: 

 

•Duality Relation: 
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General Duality Relation 

• Necessary but not sufficient test 

– Check using series of arbitrary input vectors 
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Time Dependent & Moving Mesh 

Shape Optimization Problem 

• Flow equations written in ALE form 

• Functional dependence of residual (BDF2) 

• Functional dependence of mesh motion 
equations (same as before) 
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Time Dependent & Moving Mesh 

Shape Optimization Problem 

• Flow equations written in ALE form 

• Using space-time notation 
– U = solution over all space and time   

– R = residuals over all space and time 



Time Dependent & Moving Mesh 

Shape Optimization Problem 

• Flow adjoint solved by backsubstitution  
– Using 2 previous levels in time (BDF2) 

 

 

 

• Interior mesh sensitivities : dR/dX inner product (2 levels 
back in time) 

 

 

 

• Final (surface) sensitivity 
– Single mesh adjoint problem 
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Time-Integrated Objective 

Formulation 

Pitching airfoil time histories of CL and CD 



Optimization Procedure 

Run flow solver to 

obtain unsteady 

solution (fwd in time) 

Run adjoint solver to 

compute sensitivities 

(reverse in time) 

Compute design variable 

perturbation as:  

Dd

dL
D 


 

Perturb D 

by D 

Deform airfoil 

surface as a 

function of D 

Compute 

objective 

function Lg 
Set D = 0 

start stop 

Check Lg  

(or provide gradient to optimizer) 



Unsteady Flow Solution 
 

Pressure Contours for Pitching Airfoils 

Minf = 0.755, a0 = 0.016o, amax = 2.51o, w = 0.1628, t=0 to 54 

27 time-steps with dt=2.0 

NACA0012 Baseline Airfoil Optimized Airfoil 



Time-Dependent Load 

Convergence 
 



Dynamic Stall Optimization 

Optimized airfoil performance: Objective=Minimize moment excursions at constant lift 

2100 ||)()(||||)(|| tCtCtCL
TARGETLLM  w



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

m coupled disciplines=> L is a functional computed using multidisciplinary solution set: 

Linearize using chain rule with respect to D: 

Inner-product form: Tranpose for adjoint total sensitivity: 

U over all space and time 
mth discipline 

Inner products over all space and time 



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

Residual equations for m disciplines: 

Linearize with respect to D: 

Write in combined 

matrix form: 



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

Transpose and rearrange for vector of state sensitivity matrices: 



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

Substitute into adjoint total sensitivity equation: 



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

Define vector of 

disciplinary adjoint 

variables: 

Rearrange to recover 

linear adjoint system: 



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

General Jacobian matrix when 

expanded discretely in time is 

lower triangular due to 

hyperbolic nature of time: 

Swap rows and columns to obtain an upper 

triangular linear system that can be solved by 

back substitution 



Generalized Form for Multidisciplinary 

Unsteady Coupled Equations 

Finally, substitute vector of disciplinary adjoint 

variables into total sensitivity equation to obtain 

gradient 



Extension to Multidisciplinary Problems: 

Time-Dependent Aeroelasticity 

• Fully coupled problem involves 4 modules: 
– Flow solver 

– Structural Solver 

– Mesh deformation 

– Fluid-structure interface (FSI) 

• Adjoint formulation leads to : 
– Disciplinary adjoints:  Fluids, Structures, Mesh, FSI 

– Disciplinary adjoints are coupled at each time step 

– Coupled adjoint solver analogous (transpose) of coupled aeroelastic 

analysis solver 



Forward Flight Flexible Rotor 

Optimization 

• 4 bladed Hart-II rotor in forward flight: 
– Rigid & Flexible; Mtip = 0.64; 1040 RPM; 

μ=0.15 (M∞~0.1); α=5.4O
 

• CFD/CSD specifications: 
– 2.32 million grid nodes (prisms, pyramids, 

tets) 

– 20 beam elements per blade 

• Tight CFD/CSD coupling 
– 2 rotor revs  

– 2.32M : Dt2O 
• 6 coupling per time step, 10 CFD and 20 CSD 

non-linear iterations per coupling 

• ~40 min/rev with 1024 cores 

– Control Inputs:  
• Collective (θO) and Cyclics (θ1c, θ1s) 

CFD flow domain 

Rigid and Flexible blades 44 
 sincos 11 scOpitch 


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Aerodynamic Solver: NSU3D 
 

• 3D unstructured mesh finite-volume RANS solver 

• 2nd –order accurate in space and time. 

• One equation Spalart-Allmaras turbulence model. 

• Deforming mesh capability with GCL compliance 

• Fully implicit discretization solved using Newton’s 

method at each time-step as: 

 

 

 

– Preconditioned GMRES used for linear system 

• Forward linearization used for exact Jacobian-vector products 

– Linear agglomeration multigrid for preconditioner 

– Line implicit solver as smoother for linear multigrid 

 



Structural Analysis: Beam Model 

• Hodges-Dowell type finite element 

based solver   

• 15 degrees of freedom (flap, lag, axial 

and torsion) 

• First order system: 

    where, 

• J = Residual of structural equation  

• q = blade dof (displacements) 

• F = beam (aero) forcing  

• Solved via direct inversion 

Beam FEM 

model 



Mesh Deformation  
• Propagates surface displacements to interior mesh 

– Deflections from structural model at each time step (xn) 

– Design shape changes (D) 

• Based on linear elasticity analogy  

– (more robust than spring analogy) 

• Solved using line-implicit agglomeration multigrid 

(analogous to flow solver) 

                                    G(xn,xn
surf,D) = 0 



Fluid-Structure Interface (FSI)  

• Cloud of surface points associated with beam element 

• Forces projected onto beam element shape functions 

 

 

 

• Displacements projected back to CFD surface points 

using transpose 
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CFD/CSD Coupling Time 

Integration Methodology 

• Outer loop over physical time steps 
– Coupling iterations per time step : 

• Mesh: 
– Line implicit multigrid 

• Flow: 
– Implicit BDF2 Newton iterations (GMRES) 

– Linear agglomeration multi-grid 

• FSI (Fluid to structure) 
– Explicit assignment 

• Structure: 
– Implicit BDF2 newton iteration (direct inversion) 

• FSI (Structure to fluid) 
– Explicit assignment 

49 



Analysis Convergence 

• 60 non-linear iterations per time step 

• 3 multigrid cycles/iteration 

• Convergence by 2 orders of 
magnitude 

 

Rigid blade convergence Flexible blade convergence 

• 6 coupling cycles per time step 

• 10 non-linear iterations/coupling with 3 

multi-grid cycles/iteration 

• Convergence by 2 orders of magnitude 50 



Convergence continued… 

Mesh convergence per 

time step 

CSD convergence per 

coupling per time step 

• Mesh solves upto 60 iterations or 1x10-9 (whichever earlier) per coupling  

• Mesh convergence by 10 orders of magnitude per time step (6 coupling cycles) 

• Beam convergence to machine precision (faster convergence) 51 



Blade Tip Time History 

Blade tip vs time 

• Blade flaps to high values, but converges 
to a lower value after 2 revs 

Surface Cp 

Flexible 

Rigid 

52 

R=2.0m 



• Time-dependent objective function:   

 

• Linearizing w.r.t design variable ‘D’: 

 

 

• General expression for forward linearization of 

objective function w.r.t design variables: 

Aerodynamic Sensitivity: Tangent 

Represents inner 

product over 

space and time 
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Aero Sensitivity: Tangent 

Constraint equation to be satisfied: Implicit residual at each time-step. 

Writing in generalized matrix form: 

Equations dependent on D 

Solution involves integrating forward over entire time domain 
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Aero Sensitivitiy: Adjoint 

• Adjoint equations: 

 

 

 

 

• Solve adjoint system: 

 

• Finally objective sensitivity: 

Equations independent of D 

Solution involves integrating  

backward over entire time domain 



Structural Sensitivity 

• Objective function L, 

• Constraint:  

 

• Tangent: 

 

• Adjoint: 

 

• ‘D’ can be structural or geometric shape 
parameters 



Fully Coupled Fluid-Structure 

Analysis 
General solution 

Mesh: 

Flow: 

force transfer: 

Structure: 

Blade deformation transfer: 

• Flow and mesh • Force transfer • Structure • Blade deformation transfer 

Per coupling cycle 



Fully Coupled Fluid-Structure 

Sensitivity: Tangent 

• Functional sensitivity: 

 

• Solve: 

 

Mesh and 

Flow 

Surface 

force 

sensitivity 

Force 

transfer 

and 

Structure 

Deformation 

transfer 

Per coupling 

cycle 



Fully Coupled Fluid-Structure 

Sensitivity: Adjoint 

• Solve: 

 

 

 

 

Per coupling 

cycle 



Fully Coupled Fluid-Structure 

Sensitivity: Adjoint 

• Solve: 

 

 

 

 

Per coupling 

cycle 



Coupling Schematic 

CFD CSD 

Force (F) 

 Deformation 

(XS) 

Analysis 

CFD CSD 

(dF/dD) 

 (dXS/dD) 

Tangent 

CFD CSD 

    ɅF 

    ɅXs 

Adjoint 
61 

Start 

End 

Start 

End 

Start 

End 

Same data 

structures 

Same solution 

strategy 



Blade Geometry Parametrization 

Hicks-Henne bump functions 

Structured blade mesh 

overlap with CFD mesh 

• Master blade shape defined by Hicks-Henne bump functions and twist 
– Defined by high-resolution structured mesh (in black) 

– Shape changes interpolated onto unstructured CFD surface mesh 

• 115 design parameters 
– 10 Hicks-Henne bump fcts per blade section, 11 blade sections (110) 

– Twist at blade root and tip (2) and 3 pitch parameters 
62 



Unsteady Objective Function 

63 

• Trim 

Target thrust = 4.4e-3 

Target CMx CMy=0.0 

• Performance 

– Target power = 0.0 
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Unsteady Strongly Coupled CFD/CSD 

Adjoint Sensitivity Verification 

• Tangent and adjoint verification by 

perturbing collective pitch (i.e. D=θO) 

• Complex perturbation of value 1x10-100 

•
𝜕𝐿𝑛

𝜕𝑫
from tangent and adjoint verified with 

complex step method every time step 

• Three sensitivity analysis formulations 

converged to machine zero every time step 

64 



Verification of Strongly Coupled 

CFD/CSD Adjoint Formulation 

65 

Time 

step 

Method 𝝏𝑳𝒏

𝝏𝑫
 

1 Complex 7.569817143673123E-005 

Tangent 7.569817143673061E-005 

Adjoint 7.569817143672761E-005 

2 Complex 6.040142774935852E-005 

Tangent 6.040142774935835E-005 

Adjoint 6.040142774935570E-005 

3 Complex -4.959909870786381E-006 

Tangent -4.959909870787765E-006 

Adjoint -4.959909870785228E-006 

5 Complex -1.142069116982308E-004 

Tangent -1.142069116982308E-004 

Adjoint -1.142069116982432E-004 

180 Complex -5.176189427439016E-003 

Tangent -5.176189427439005E-003 

Adjoint -5.176189427434507E-003 

• Verified to 10 

significant digits 

 

• Verified over multiple 

time steps 

 

• Accuracy preserved 

over multiple time-

steps 

 



Optimization Procedure 

1:Trim rotor 

– Minimize Ltrim    (drive to 0) 

– Using only control inputs as design parameters 

2: Perform optimization 

– Minimze Ldesign=Lperformance + Ltrim 

– Using shape parameters + control inputs (design) 

3: Retrim shape-optimized rotor 

– Ltrim=0 not maintained exactly in design process 
(implemented as penalty term) 

• First perform for rigid rotor, then flexible rotor 

66 



Strongly Coupled Optimization on 

Hart-II Rotor: 2.32M Grid 
• Optimization (trim/shape) over 2 rev: Dt=2.0o  

• Optimizer: L-BFGS-B bounded reduced Hessian 

• Bounds for shape parameters: 
– ±5% chord on airfoil section 

– ±1.0o twist 

• Bounds for control inputs 
– o, 1c, 1s : ±5.0

o 

• 6 CFD-CSD coupling cycles/time-step, 10 
Newton cycles/coupling 

• Run in parallel using 1024 cores 
– 70 minutes per rotor revolution 
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Flexible Hart-II Forward Flight Trim 

Thrust vs time Lateral Moment vs time 

• Trimmed to target mean thrust (Ct=4.4e-3), zero moments (~1e-5) 
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Long. Moment vs time 

Pitch (deg) Experiment HOST Present (Flexible) 

θO (Collective)  3.20  4.91  4.56 

θ1c (Lat. Cyclic)  2.00  1.41  1.28 

θ1s (Long. Cyclic) -1.10 -1.34 -2.72 



Flexible Rotor Trim Convergence 
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• Gradient drops more than 2 orders 

• Objective converges by ~15 iterations 

• Consistent pitch parameter convergence 



Flexible Hart-II Shape Optimization 

Power vs time 

• Trimmed to target mean thrust (Ct=4.4e-3), zero moments (~1e-5) 

• Overall ~3.1% power reduction w/ shape optimization after retrim 
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Thrust vs time 



Flexible Optimized Blade Shape 
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Thicker inboard 

and thinner 

outboard sections 

Baseline 

Optimized 

• 1 and ½ order gradient drop, 

objective plateaus 



Conclusions 
• Adjoint methods can be extended to problems of 

arbitrary complexity  
– Time-dependent 

– Multidisciplinary 

• Requires methodical approach 
– Analogous to analysis formulation 

– Same data-structures 

– Reuse coupled disciplinary solvers 

• Using discrete adjoint 
– Straight forward conceptually 

– Tedious 



Conclusions 
• Reverse time integration not large issue for URANS 

calculations with large implicit time steps 

• Accuracy of gradients with                                         
partial convergence remains                                     
poorly understood 
 

 

 

 

• Chaotic adjoint behavior possible with time-dependent 
problems 

– Not likely for URANS with large separation of scales 

– Occurs for turbulence resolving scales (LES) 

– Additional techniques required (Q. Wang 2013) 

 


