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Motivation 
• Motivation 

– Deterministic prediction inadequate for many engineering applications 
– Statistics of output given statistics of input 

• Types of Uncertainty 
– Aleatory 
– Epistemic 
– Combined Aleatory/Epistemic 

• Monte Carlo methods 
– Sampling 
– Expensive to build up statistics (O(     )) 

• Surrogate Models 
– Curse of dimensionality (number of parameters) 

• Explore ways in which adjoint methods can reduce cost of UQ 
– Principal advantage:  N derivatives for 1 adjoint solve (per output) 
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Some Definitions 

Probability Distribution Function (PDF) 

Gaussian Distribution 

Cumulative Distribution Function (CDF) 



Some Definitions 



Some Definitions 
• Aleatory uncertainty 

– Inherently variable, defined by PDF 

 

 

 

• Epistemic uncertainty 

– Lack of knowledge, defined by interval 

 

 

 

• Monte Carlo sampling should follow 
prescribed input distribution 
– Markov Chain Monte Carlo 

• Monte Carlo sampling should follow 
prescribed input distribution 
– Latin Hypercube sampling (uniform) 



Different UQ Requirements 



Outline 
• Tangent and Adjoint for First-order sensitivities 
• Tangent and Adjoint for Second-order sensitivities (Hessian) 
• Preliminary examples of adjoint/Hessian in UQ 

– Extrapolation about Mean 
– Method of Moments 
– Inexpensive Monte Carlo 

• Surrogate Model Construction 
– Gradient/Hessian Enhanced Polynomial Regression 
– Gradient/Hessian Enhanced Kriging Model 

• Epistemic Uncertainty Quantification 
– Intervals 
– Gradient-based bound optimization 

• Example: Hypersonic Flow UQ 
– Combined aleatory/epistemic uncertainties 



Adjoint Formulation for  
Parameter Sensitivity 

• Single adjoint solution gives sensitivity of L with 
respect to all parameters Dj  
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Second Order Sensitivities: Hessian 

• Hessian can be computed with one adjoint solution and N 
forward sensitivity solutions         j=1,…,N 
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Efficient CFD Hessian Calculation 

Grid Deformation 

Flow Residual 

Flow Adjoint 
Mesh Adjoint 

dx/dD1 

dw/dD1 

dx/dD2 

dw/dD2 

dx/dDNdv 

dw/dDNdv 

...... 

Gradient and Hessian 

An efficient CFD Hessian calculation method 
by Adjoint method and Automatic Differentiation (AD) 



Extrapolation Model using First and 
Second-Order Sensitivities 

• Calculate functional value near nominal location Do 
using nominal function value and its derivatives 
– Low cost one derivatives obtained 

– Use Monte Carlo sampling of input parameters Dj 



Method of Moments 

• Propagate mean and variance using first and second-order derivatives 
• Only provides output mean and variance (no probability distributions) 

• Linear 

• Quadratic 

Non-linear shift in mean 

Mean output = output of mean 



Uncertainty Quantification using 
Gradients and Hessian Information 

2 uncertain shape 
parameters 



Uncertainty Quantification using 
Gradients and Hessian Information 

• Prescribed input (D) statistical distributions 
– Mean values (nominal NACA0012) 
– Standard deviation  = 0.01 
– Normal (Gaussian) distribution 

• Full Monte Carlo: Compute Lift mean and Standard Deviation 
by sampling input distribution and running CFD for each 
sample of inputs  
– Compare with Method of Moments 
– Compare with Monte Carlo using extrapolation instead of CFD runs 



Probability Distribution of Lift 

• Monte Carlo gives full statistics of output 
– Inexpensive Monte Carlo using extrapolation gives similar PDF  
– Only valid for small regions near mean 
– Method of Moments gives no PDF information 



Surrogate Models 
• Extrapolation is a simple example of a surrogate model  

– Requires 1 functional  and adjoint evaluation 
• Additional forward linear problems at same location for Hessian 

– Only valid near evaluated location 

• More sophisticated surrogate models make use of 
information at many locations in parameter space 
– Polynomial Regression 
– Kriging Models 
– Number of samples grows exponentially with dimension of 

parameter space (number of individual  parameter) 

• These can also be enhanced with 
– Gradient information 
– Hessian information 

• Pros and Cons of Adjoint enhancement 
– ++ More information for low cost (N values for 1 adjoint) 
– -- All information is local 



Polynomial Regression 
• Fitting of statistical data with                             

polynomial model 
– Best fit in least-square sense 
– Multi-dimensional  
– High dimensional (each parameter/input corresponds to a dimension) 



Gradient Enhanced  
Polynomial Regression 

• Incorporate gradient information by differentiating 
polynomial bases 

• Require least squares best match of function values and 
gradients 

• Match d derivatives at each sample point for cost of 1 adjoint 



Gradient Enhanced  
Polynomial Regression 

• Minimum number of sample points for function only 
regression  

• Minimum number of sample points for 
function/gradient regression  

• Number of sample points for linear/quadratic gradient 
enhanced regression 

• d = number of 
parameters (dimension) 

• p = polynomial order 

Typically use X2 more points (or more) 
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Kriging Models 
Consider a random process model estimating a function value 
by a linear combination of function values (training points) 
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Where yi represents the training point functional values and wi(x) are 
 the coefficients determined by solving the problem that minimizes the  
Variance  of the error in the approximation 
 

Modeled as stochastic process with Gaussian correlation function 
dependent on distance between points  
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Kriging, Gradient-enhanced Kriging 
Kriging model approach       - originally in geological statistics 

Two gradient-enhanced Kriging (cokriging or GEK) 

 Direct Cokriging 

 Gradient information is included in the formulation 

 (correlation between func-grad and grad-grad) 

 Indirect Cokriging 

 Same formulation as original Kriging 

 Additional samples are created by using the gradient info 

 Kriging model by both real and additional pts 
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2D example 

 : Real Sample Point 

 : Additional Sample Point 
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Gradient Enhanced Kriging Models 
Consider a random process model estimating a function value 
by a linear combination of function and gradient values (training points) 

Where y’i represents the training point gradient values and li(x) are 
 the coefficients determined by solving the problem that minimizes the  
Variance  of the error in the approximation 
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Gradient/Hessian-enhanced Kriging 
Indirect Approach 

  xHxGx
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2D example 

 : Real Sample Point 

 : Additional Sample Point 

Arrangements to Use Full Hessian / Diagonal Terms 

 Major parameters :  

distance between real / additional pts  

number of  additional pts per real pt 

 Worse matrix conditioning with smaller distance, larger number of additional pts 

 Severe tradeoffs for these parameters 
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Gradient/Hessian Enhanced Kriging Models 
Consider a random process model estimating a function value 
by a linear combination of function values (training points) 

Where y’’i represents the training point Hessian  values and fi(x) are 
 the coefficients determined by solving the problem that minimizes the  
Variance  of the error in the approximation 
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2D Rastrigin Function Fitting 
      21

2

2

2

1 2cos2cos1020 xxxxy  x

80 samples by Latin Hypercube Sampling 

Direct Kriging approach 

Exact Rastrigin Function Function-based Kriging Gradient-enhanced Gradient/Hessian-enhanced 



5D Rosenbrock Function Fitting 

F:  Function-based Kriging 
FG:  Gradient-enhanced 
FGHd:  G/diag. Hess-enhanced 
FGH:  G/full Hess-enhanced 

 RMSE .vs. Number of sample points 

 Superiority in direct Kriging approaches due  to exact enforcement  

     of derivative information and better conditioning of correlation matrix 
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5D Rosenbrock Function Fitting 

 # of pieces of information = sum of # of F/G/H net components 

 To scatter samples is better than concentration at limited samples 

 Approximated computational time factor  

 

 

 G/H-enhanced surrogate model provides better performance 

 with efficient Gradient/Hessian calculation methods 
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Aerodynamic Data Modeling 
 Unstructured mesh CFD 

 Steady inviscid flow, NACA0012 

 20,000 triangle elements 

 Mach Number  [0.5, 1.5] 

 Angle of Attack[deg] [0.0, 5.0] 

 21x21=441 validation data 

Exact Hypersurface of Lift Coefficient Exact Hypersurface of Drag Coefficient 
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Aerodynamic Data Modeling 

 Adjoint gradient is helpful to construct accurate surrogate model 

 CFD Hessian is not helpful due to noisy design space 

Function-based Kriging Gradient-enhanced Exact 

Cl 

Cd 
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Aerodynamic Data Modeling 
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 Noisy in Mach number direction 
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UQ using Kriging Surrogate Model 

 Uncertainty analysis at M=0.8, AoA=2.5 for both Mach/AoA 

 1000 CFD evaluations for a specified σ value 

 In total 7000 CFD evaluations (= 1000 x 7) for full-MC 

Full-MC results for σ=0.1 
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Mach-AoA Hypersurfaces 

Mean of Cm Variance of Cm 

 More accurate uncertainty analysis by Inexpensive MC using Kriging model 



Epistemic Uncertainty Quantification 
• Method of intervals 

– Simply sum intervals for each parameter using constant  gradient 

• Bound constrained optimization problem 
– Determine minimum and maximum output values over all 

possible input values. 

– Use gradient-based optimization (adjoint enabled) 

– Global optimum required 
• Global optimization/Surrogate models 
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Kriging Sampling Criteria for Global Optimization 
 How to find promising location on surrogate model ? 

 Expected Improvement (EI) value 

 Potential of being smaller than current minimum (optimal) 

 Consider both estimated function and uncertainty (RMSE) 
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EI-based criteria have good balance 

between global/local searching 



Demonstration: Hypersonic Flow UQ  



Real Gas Model 

• qq 



Real Gas Model 



Real Gas: Transport Model Parameters 

30 parameters assuming values at       
2000K and 4000K are correlated 



Real Gas: Reaction Model Parameters 



Flow Solver 



Flow Solver 



Code Validation 



Objective Formulation 

• Integrated surface heating objective 



Local Sensitivity Analysis 

• Using adjoint formulation, obtain derivative of 
surface heating w.r.t. uncertain input parameters 

• Classify from most sensitive to least sensitive 
• Use to focus on most sensitive parameters 

Reaction Rates Collision  Integrals 



Comparison with Global  
Sensitivity Analysis 



Global vs Local Sensitivity Analysis 



Gradient-Enhanced Regression based 
Global Sensitivity Analysis 



Aleatory Uncertainty using Kriging 
Model 

• Reduce Kriging dimension by using only 
15 most “sensitive” parameters as 
determined from global sensitivity 
analysis 

• Build Function only and 
Function/Gradient Kriging models 
– Use different number of training points 

for Kriging model 
– Examine error wrt full Monte Carlo 

sampling (6331 CFD runs) 

• Gradient-enhanced Kriging produces 
consistently lower error 

• Lower limit on error due to omitted 
parameters 

• 68 sample points adequate for Kriging 
 

 



Aleatory Uncertainty using            
Kriging Model 

• Gradient-enhanced Kriging superior predictions of mean and variance 

• Close to full Monte Carlo results (6331 pts) with only 68 Kriging pts 
– 68 CFD analyses  

– 68 adjoint solutions for gradient-enhanced model 



Aleatory Uncertainty Quantification 



Epistemic Uncertainty Quantification 

• qq 



Epistemic Interval using Gradient-
Based (Bound) Optimization 



Epistemic Interval using Gradient-
Based (Bound) Optimization 

• Linear results give confidence that 
optimization not stuck in local optimum 

• May not be true in general case 
 

LHS sampling unfeasible for 30 parameters >1014 



Mixed Aleatory-Epistemic 

• qq 



Mixed Aleatory-Epistemic 



Mixed Aleatory-Epistemic 

• qq 



Mixed Aleatory-Epistemic 

• qq 



Mixed Aleatory-Epistemic 

• Convergence of output interval (min-max) with 
increasing number of Kriging points 



Mixed Aleatory-Epistemic 

• qq 



Mixed Aleatory-Epistemic 



Conclusions and Future Work 

• Adjoint methods are enabling for Sensitivity Analysis and 
Uncertainty Quantification 
– Particularly for cases involving one or few objectives 
– Provide entire gradient wrt all uncertain parameters for cost of 

single adjoint problem 

• Demonstrated applications 
– Method of moments 
– Local sensitivity analysis 
– Enhanced surrogate models 

• Polynomial regression 
• Kriging models 

– Gradient-based optimization for epistemic uncertainties 
– Mixed aleatory-epistemic uncertainties 



Conclusions and Future Work 

• Monte Carlo sampling unfeasible in many cases 

– Mixed aleatory-epistemic uncertainties 

• Hessian information can be useful for: 

– Method of moments 

– Further enhanced surrogate models 

– Newton optimization 

• Hessian cost must be evaluated vs more global 
information and effects of non-smooth 
functionals 


