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Motivation

Motivation
— Deterministic prediction inadequate for many engineering applications
— Statistics of output given statistics of input

Resolution levels model structures

Types of Uncertainty C L m ::
— Aleatory [M ‘ /AR 1Y
— Epistemic 11N M [uncertainty analysis]
— Combined Aleatory/Epistemic 1N output | [sensitivity analysis

Monte Carlo methods
— Sampling
— Expensive to build up statistics (O(+/N))
Surrogate Models
— Curse of dimensionality (number of parameters)
Explore ways in which adjoint methods can reduce cost of UQ
— Principal advantage: N derivatives for 1 adjoint solve (per output)
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Explore ways in which adjoint methods can reduce cost of UQ
— Principal advantage: N derivatives for 1 adjoint solve (per output)




Some Definitions
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Some Definitions

Sample Variance Sample Standard Deviation
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Some Definitions

* Aleatory uncertainty
— Inherently variable, defined by PDF

 Monte Carlo sampling should follow
prescribed input distribution

— Markov Chain Monte Carlo

* Epistemic uncertainty
— Lack of knowledge, defined by interval

Probability

Disttution  Monte Carlo sampling should follow
- prescribed input distribution
L — Latin Hypercube sampling (uniform)

Interval
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Different UQ Requirements

@ Different Forms of Uncertainty:
Q Aleatory:

@ Due to inherent randomness
@ Specified with probability distribution
o Quantified using Monte Carlo Sampling (~ 10° — 10*)

@ Epistemic:
@ Due to lack of knowledge about exact value

e Specified by interval
o Quantified using Latin Hypercube sampling (~ 3)

© Mixed:

@ Inputs have different forms
o Quantified using Mixed Sampling (~ 3d_5)
e Output distribution has interval

@ Each form extremely expensive to quantify for complex simulations
(Aleatory < Epistemic <& Mixed)

@ Different Gradient-based strategies used for each



Outline

Tangent and Adjoint for First-order sensitivities
Tangent and Adjoint for Second-order sensitivities (Hessian)

Preliminary examples of adjoint/Hessian in UQ
— Extrapolation about Mean

— Method of Moments

— Inexpensive Monte Carlo
Surrogate Model Construction

— Gradient/Hessian Enhanced Polynomial Regression
— Gradient/Hessian Enhanced Kriging Model

Epistemic Uncertainty Quantification

— Intervals

— Gradient-based bound optimization
Example: Hypersonic Flow UQ

— Combined aleatory/epistemic uncertainties



Adjoint Formulation for
Parameter Sensitivity
dL oL oL ouU

L=L(D;,U(D))) dD, oD, ' AU dD,
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* Single adjoint solution gives sensitivity of L with
respect to all parameters D;



Second Order Sensitivities: Hessian
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* Hessian can be computed with one adjoint solution and N

forward sensitivity solutions 2Y_ aD j=1,...,N



Efficient CFD Hessian Calculation

An efficient CFD Hessian calculation method
by Adjoint method and Automatic Differentiation (AD)

Grid Deformation

\/

Flow Residual

\ 2 \ 2 \ 2 \ 2
Flow Adjoint dx/dD, dx/dD, ceseee dx/dD,,,,
Mesh Adjoint dw/dD, dw/dD, dw/dD,,,
| | | |
) 2

Gradient and Hessian




Extrapolation Model using First and
Second-Order Sensitivities

L-Lm(D,x{'D)TU(D)) _ L.(DD,X(DD)__U(DD)) +
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* Calculate functional value near nominal location D
using nominal function value and its derivatives

— Low cost one derivatives obtained
— Use Monte Carlo sampling of input parameters D;



Method of Moments

WV = L(D,) < s Mean output=output of mean
Linear v 2
t aD; |’

(2) _ _ Non-linear shift in mean
I J“*L 2 Z (dﬂa )
Quadratic
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Propagate mean and variance using first and second-order derivatives
Only provides output mean and variance (no probability distributions)




Uncertainty Quantification using
Gradients and Hessian Information

04 - PN Jdooz
F  — — — — Liftdistribution - ;]
sk Drag distribution s el 1
s - 0025
02f
- <002
01| ]
i Joo1s
. 1 <
o B - [&]
o1k 0.1
02F — 0.005
0af ]
N - 0
04
: TR BT B T A AR B A R T -0.005
2 = 0 1 2 3
Alpha (Degrees)
01F
0.05¢F
> 0 2 . h
uncertain shape
-0.05
o1l parameters




Uncertainty Quantification using
Gradients and Hessian Information

Prescribed input (D) statistical distributions

— Mean values (nominal NACA0012)

— Standard deviation =0.01

— Normal (Gaussian) distribution

Full Monte Carlo: Compute Lift mean and Standard Deviation

by sampling input distribution and running CFD for each
sample of inputs

— Compare with Method of Moments
— Compare with Monte Carlo using extrapolation instead of CFD runs

=

Mean Standard deviation Run time (minutes)
Nonlinear 5.55 x 102 1.03 x 101 150, 000
MM1 5.81 x 102 1.02 x 101 30
MM2 539 x 10 1.02 x 107! 60
Lin 5.82 x 1072 1.02 x 101 30
Quad 5.39 x 102 1.03 x 107! 60




Frequency
]
[
(=]

Probability Distribution of Lift

Nonlinear MC

03 02 -01 0 0.1 02
Time-averaged Lift Range

Monte Carlo gives full statistics of output

-0.3

-0.2

Lin

-0.1 0 0.1 0.2 0.3
Time-averaged Lift Range

Frequency

Quad

03 02 -01 0 0.1 0.2 0.3 0.4
Time-averaged Lift Range

— Inexpensive Monte Carlo using extrapolation gives similar PDF
— Only valid for small regions near mean
— Method of Moments gives no PDF information



Surrogate Models

Extrapolation is a simple example of a surrogate model

— Requires 1 functional and adjoint evaluation
* Additional forward linear problems at same location for Hessian

— Only valid near evaluated location

More sophisticated surrogate models make use of
information at many locations in parameter space
— Polynomial Regression

— Kriging Models

— Number of samples grows exponentially with dimension of
parameter space (number of individual parameter)

These can also be enhanced with
— Gradient information
— Hessian information
Pros and Cons of Adjoint enhancement
— ++ More information for low cost (N values for 1 adjoint)
— -- All information is local



Direct fit {no cross-validation)
2l r

Polynomial Regression =~ — . -
* Fitting of statistical data with . SRV Ol
polynomial model y(D) =Y BU(D)
— Best fit in least-square sense
— Multi-dimensional N

— High dimensional (each parameter/input corresponds to a dimension)

Uy (D) Uy (D) U, (D) N y(Ds)
Ui(Dy)  Wa(Ds) T(Dy) || y(De)
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Gradient Enhanced

Polynomial Regression
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Incorporate gradient information by differentiating
polynomial bases

y(D) =) B.V.(D)

dy(D)
oD,

Require least squares best match of function values and

= Z Lj 5

OV, (D)
oD,

Match d derivatives at each sample point for cost of 1 adjoint



Gradient Enhanced
Polynomial Regression

 Minimum number of sample points for function only

regression
 d=number of

o (d + p)! parameters (dimension)
d'p! * p = polynomial order

* Minimum number of sample points for
function/gradient regression
. { (d+p)! w
T | dlpl(d + 1)
 Number of sample points for linear/quadratic gradient

enhanced regression
N {1 for p = 1. Typically use X2 more points (or more)

Pd;;zﬂ for p = 2.




Kriging Models

Consider a random process model estimating a function value
by a linear combination of function values (training points)

y(x) — zWi (X)Y; /
=1

Modeled as stochastic process with Gaussian correlation function
dependent on distance between points

o
~
~
N\
N

0 0.5 1
0

Where y, represents the training point functional values and w,(x) are
the coefficients determined by solving the problem that minimizes the
Variance of the error in the approximation

21-



Kriging, Gradient-enhanced Kriging

Kriging model approach - originally in geological statistics

Two gradient-enhanced Kriging (cokriging or GEK)

"~ v Direct Cokriging

Gradient information is included in the formulation
(correlation between func-grad and grad-grad)

L ¥ Indirect Cokriging

Same formulation as original Kriging

Additional samples are created by using the gradient info
Kriging model by both real and additional pts

2D example - Xadd — Xi +AX
O : Real Sample Point

@ : Additional Sample Point

ay(xi )

OX

Yadd = Y(x) T AX'

-22-



Gradient Enhanced Kriging Models

Consider a random process model estimating a function value
by a linear combination of function and gradient values (training points)

Voo = D Wi + DAY,
i=1 i=1

1 05 g 0.5 1

Where y’. represents the training point gradient values and A.(x) are
the coefficients determined by solving the problem that minimizes the
Variance of the error in the approximation

-23-



Gradient/Hessian-enhanced Kriging
Indirect Approach Xogg =X, T AX

Yaad = Vi) +AX G + % AX"HAX

2D example
O : Real Sample Point
@ : Additional Sample Point

Arrangements to Use Full Hessian / Diagonal Terms

@ Major parameters :

@distance between real / additional pts

@number of additional pts per real pt
@ Worse matrix conditioning with smaller distance, larger number of additional pts
@ Severe tradeoffs for these parameters

-24-



Gradient/Hessian Enhanced Kriging Models

Consider a random process model estimating a function value
by a linear combination of function values (training points)

Voo = D WY+ DAY+ D BY;
=1 =1 =1

1 05 9 0.5 1

Where y”. represents the training point Hessian values and ¢.(x) are
the coefficients determined by solving the problem that minimizes the
Variance of the error in the approximation

-25-



2D Rastrigin Function Fitting

—10(cos(27%, )+ cos(27x, ))

2 2
1+X2

X

y(x) =20+

80 samples by Latin Hypercube Sampling

Direct Kriging approach

Gradient/Hessian-enhanced

Exact Rastrigin Function

-26-



5D Rosenbrock Function Fitting

= F
— - —A-— - [Indirect FG
— - Indirect FGH
: v Direct_FG
e = = Direct FGHd
Direct FGH

10 e

‘ F: Function-based Kriging
FG: Gradient-enhanced
FGHd: G/diag. Hess-enhanced
FGH: G/full Hess-enhanced

lo‘t | | | | IR N | -
10* 10°
Number of Sample Points

@ RMSE .vs. Number of sample points
@ Superiority in direct Kriging approaches due to exact enforcement
of derivative information and better conditioning of correlation matrix



10*

10°

RMSE
=

107

10° L
10°

- . ; s : | - F
el | —-—A-—- Indirect FG |
. | v Indirect FGH |
———— Direct_FG
N - — —  Direct_FGHd
: 3 Direct FGH

10° 10°
Number of Pieces of Information

10°

10*

5D Rosenbrock Function Fitting

| —=—— F

s | —-—-—- Indirect_ FG

| m=—— Indirect_FGH
———— Direct_FG

| - Direct_FGHd
Direct FGH |

10°

10° 10°
Approximated Computational Time Factor

@ # of pieces of information = sum of # of F/G/H net components
@ To scatter samples is better than concentration at limited samples
@ Approximated computational time factor

N

sample

TF= YT, T,=1/2/3, fif

i=1
® G/H-enhanced surrogate model provides better performance
with efficient Gradient/Hessian calculation methods

-28-
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@ Unstructured mesh CFD

@ Steady inviscid flow, NACA0012 ‘

@ 20,000 triangle elements
@ Mach Number  [0.5, 1.5] e
@ Angle of Attack g, [0.0, 5.0]
@ 21x21=441 validation data

; iidch .

Exact Hypersurf'acevof Drag Coefficient

Exact Hypersufface of Lift Coefficient
-29-



Aerodynamic Data Modeling

Exact Gradient-enhanced

or ()

= : ] ]
6 ;idch Numb

;iach Nwm?

@ Adjoint gradient is helpful to construct accurate surrogate model

@ CFD Hessian is not helpful due to noisy design space
-30-



Aerodynamic Data Modeling

v NACA0012

v M=1.4

v A0A=3.5[deg]

v Noisy in Mach number direction

0.212 ‘ 0.1090 I
—- CFD Data —- CFD Data
0.1088

— Linear by Adj_Grad — Linear by Adj_Grad

0.211
AN

X‘ — Quadratic by Adj_G/H 01086 — Quadratic by Adj_G/H
. 4\ ]
&' 0.210 X %’M
0.1084
0.209 \ 0.1082 / \
\ 0.1080 \

0.208 !
1.390 1.395 1.400 1.405 1.410 1.390 1.395 1.400 1.405 1.410

Mach Number Mach Number

C Cy

Co

-31-



UQ using Kriging Surrogate Model

Full-MC results for 6=0.1

v’ Uncertainty analysis at M=0.8, AoA=2.5 for both Mach/Ao0A
v 1000 CFD evaluations for a specified ¢ value
v" In total 7000 CFD evaluations (= 1000 x 7) for full-MC

-32-



Mach-AoA Hypersurfaces

0.8 0.07
0.7 0.06
® Full NLMC
J 0.6 Joos | = IMC_H005
G
2 E IMC_H030
<
S 05 g 0.04 ~ IMC_H060
—IMC_HI00
0.4 0.03
0.3 0.02
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Standard Deviation for DVs Standard Deviation for DVs
Mean of C, Variance of C,

v More accurate uncertainty analysis by Inexpensive MC using Kriging model

-33-



Epistemic Uncertainty Quantification

 Method of intervals
— Simply sum intervals for each parameter using constant gradient

yﬂ — f {IQJ — Probability
d . Distribution
_ df
L\y — E : : ﬂxj
1 di‘-?‘

y Yo

* Bound constrained optimization problem

— Determine minimum and maximum output values over all
possible input values.

Ymin = min f(x)
xe]

Ymazr — Max f{f’)
rel

— Use gradient-based optimization (adjoint enabled)
— Global optimum required

* Global optimization/Surrogate models



Kriging Sampling Criteria for Global Optimization

v How to find promising location on surrogate model ?

v Expected Improvement (EIl) value

v" Potential of being smaller than current minimum (optimal)
v" Consider both estimated function and uncertainty (RMSE)

1(6)= (3~ (6o Yo I Yo I [@o @wj

S S oy oS
Evaluation of — Exact Function e Sample Points — Kriging RMSE —ElI
Initial Sample Points
)l, 1.0 N 1.0E-02
Construction of 0.8 \ ,,Z 8.0E-03
Kriging Model % El-based criteria have good balance
v 5 0.6 between global/local searching 6.0E-03
Search of — _
Promising Location S \ L
; S 04 /0 4.0E-03
c
Exact Function Call T \ A /
and Update 0.2 \ / 2.0E-03
no 0.0 0.0E+00
Clterla 0.0 0.2 0.4 0.6 0.8 1.0

yes

Design Variable
-35-



Demonstration: Hypersonic Flow UQ

Hypersonic Flow roughly defined as M > 5

Characterized by:
e Strong Shocks
o Internal Energy Modes (Rotational, Vibrational, Electronic)
o Chemical Reactions

Non-equilibrium chemistry requires each species to be modeled

Thermal non-equilibrium requires individual energy modes to be
solved independently

Models can require hundreds of parameters to define (Arrhenius
Reaction Coefficients, Curve fits, etc.)

RS e, o |k pesclim, g ww R H e rscin s



Real Gas Model

@ Five Species, Two Temperature Real Gas Model for Air
e Accounts for Molecular dissociation: N>, O,,N,O,NO
o Energy described by translation-rotational temperature and
vibrational-electronic temperature

@ Compressible Navier Stokes Equations:

dp. ¥ Y

ai + V- (psU) = =V - (ps V) + ws
OPet L (pheU) =V - () =V - G=V -Gy =V - [ 3 hespsV
dt Pt - ’ s hate s
WV (pel) = Qrv+ Y

T +V - (pe, = WUr_v + 5 Ev, sls

-V (Z hv,ﬁﬁﬁif}E) -V Ejv



Real Gas Model

@ Constitutive Law's:

psVs = —pDsV cs Fick's Law
T=p(Vi+idV) — %,U-V - ul Newtonian Fluid
g=—kVT Fourier's Law
gy = —k/VT,
@ Equations of State:
= ?MS = AL AL T+HA T?+ A TP+ A T* (Caloric)

Plp, T) = pZ: CSME}S T (Thermal)



Real Gas: Transport Model Parameters

o Defines: p=pu(T,ps), k=k(T,ps), kv = ky(T,ps), Ds = Ds( T, ps)

o Calculated using Collision integrals (cross-sections) for each
Interaction ng

@ Specified at 2000 K and 4000 K and interpolated using:

log10(Q2:F) =log10(Q&F) 2000+
In( T) — In(2000)

log10(25F ) a000 — log10(Q2EF )Emﬂ} In(4000) — /n(2000)

@ 15 interactions possible giving 60 total model parameters

e Effect of curve shifts accounted for using parameter AEI:

30 parameters assuming values at

k. k _ Ak Ak.k
2000K and 4000K are correlated Qs._'r ( T) — As,rQs;r ( T)



Real Gas: Reaction Model Parameters

@ Net creation/destruction of each species ws:

Weg = MsZ(_ﬁS._r — &s,r](Rf,r — Rb,f’)

@ Reaction Rates specified using Law of Mass Action:

Rf.» = 1000 | k¢, | [(0.001ps/ M)

5

o Rate Coefficients k¢, and kp , given by Arrhenius relation
(Dunn-Kang Model)

o _Ey -
kf._r — (-f.r Ta e kBla II':llf:r,r — Cb.r Ta e kBls

@ 17 reactions total, 34 parameters:



Flow Solver

Equations solved numerically in two dimensions using in-house
developed finite-volume solver

Capable of solving on unstructured triangles/quadrilaterals

Solution marched to steady state using implicit pseudo-time stepping

u” _ Un—l
At

J(u", U™t = +R(U"

Newton's Method used to solve nonlinear equation at each time-step:

JU* = —[P]7H (UK, U™
Ut = U + AUk

Jacobi or line-preconditioned GMRES used to invert Jacobian



Flow Solver

Gradient reconstruction of primitives
Green-Gauss contour integration used to calculate gradients

Smooth Van Albada Limiter with Pressure Switch used:

1 (AT +2)A” 424 AT
Wi = max(0,1 — K““)g— AT £ 2A~ + A-AT 4 g2

_ 2k lPrR—Pu
ZkPR‘|—PL

Face based Gradients calculated using averaging and correction term:

/i

Ve -V, —-VV.AT AT

VV, = ‘?’V + — —
IAT] A T]

Inviscid Flux Calculated Using AUSM+UP flux function with Frozen
Sneed of Sound



Code Validation

@ 5 km/s cylinder test case

e Fixed Wall temperature Table: Benchmark Flow Conditions
e Super-catalytic Wall Ve = 5 km/s
@ Results compared with poo = 0.001 kg/m>
LAURA (Same Mesh) T = 200 K
@ Park Chemical Kinetics Twall = 500 K
M., = 17.605
Model
Y Re., = 753,860
Pro = 0.72




Objective Formulation

* |ntegrated surface heating objective

[ KVT - F+k,VT, - AdA

[ = —-




Fractional Sensitivity

Local Sensitivity Analysis

Reaction Rates Collision Integrals
4 00E-002 1.40E-D03
3.00E-002
1.00E-003
2.00E-002 3.00E-004
5.00E-004
1.00E-002 B Forwarm
I Backvard
‘ 400E-004
0.00E+000 ———1—1— S B j — =0 == 2.00E-D04
AAAAabAboboBbAABBBEBAB .
5222332223323 233% .;_.xw.;l_l_l ._l
(o} Q (=] o o
_1'DDE_002%Ezzggac}egggzzgzg ;?7_;?770;707";?
=
-2.00E-002

Using adjoint formulation, obtain derivative of
surface heating w.r.t. uncertain input parameters

Classify from most sensitive to least sensitive
Use to focus on most sensitive parameters



Comparison with Global
Sensitivity Analysis

Local analysis gives effect to infinitesimal change in parameters
Does not account for interference effects or large perturbations

Global sensitivity analysis gives average effect over design space
Calculated via Monte Carlo sampling (6,331 for this case)

__ cov(Di,y)

TD; Ty
@ Design space given by the uncertainty space of 66 parameters:
(Assumed normal distribution)

Number Variable Mean Standard Deviations
1 Poo (kg/m’) | 1 x 1073 5%
2 Vo(m/s) 5000 15.42
3-17 Al 1 5%
18-32 A 1 5%
33-49 Er 0 0.25
50-66 £p 0 0.25




Global vs Local Sensitivity Analysis

@ Importance ranking and contribution to variance compared
@ Variance contribution given by square of correlation coefficient

@ Local and Global show significant disagreement

Rank Variable Local Global Local

1 Poc 1 0.60055 0.43230

2 O, + 0 =20+ 0 (f) 2 1.0610 x 10~ | 1.7490 x 101
3 NO+ O = N+20 (b) 3 5.1914 x 10—2 | 7.7560 x 102
4 02-N2 (k=1) 7 42121 % 1072 | 2.4524 x 102
5 N2-N2 (k=1) 10 3.1617 x 10=2 | 1.6956 x 102
6 O, + 0, =20+ 05 (b) 13 2.1621 x 1072 | 1.3120 x 102
7 N, + O = NO + N (f) 4 2.0647 x 1072 | 7.2017 x 102
8 N2-N2 (k=2) 11 1.9019 x 10~2 | 1.6354 x 102
9 O-N2 (k=2) 12 1.3874 x 102 | 1.3714 x 102
10 N, + O = NO+ N (b) 23 1.2155 x 10~2 | 6.8076 x 102




Gradient-Enhanced Regression based
Global Sensitivity Analysis

@ Global Sensitivity using 68 function/gradients

@ Hermite Polynomial basis with maximum order 2
@ Correlation calculated by sampling from regression
9
Q

Better agreement in terms of ranking and contribution

Used for dimension reduction for uncertainty quantification

Rank Variable Global Regression Global
1 [ 1 0.56879 0.60055
2 O, +0=20+0 (f) 2 1.0002 x 10~1 | 1.0610 x 101
3 O, + 0, =20+ 0y (b) 6 5.7660 x 1072 | 2.1621 x 102
4 NO+O=N+ 0+ 0O (b) 3 4.0057 x 10~ | 5.1914 x 102
5 N2-N2 (k=1) 5 | 3.7461 x 1072 | 3.1617 x 102
b 02-N2 (k=1) 4 3.3299 x 10=2 | 4.2121 x 10?2
7 N2-N2 (k=2) 8 2.1163 x 1072 | 1.9019 x 102
8 0O-N2 (k=2) 9 1.7395 x 1072 | 1.3874 x 102
9 Vi 14 1.3497 x 1072 | 4.8401 x 1073
10 0, + 0 =20+ 0 (b) 13 | 1.1734 x 102 | 7.4280 x 1073




Aleatory Uncertainty using Kriging
Model

Reduce Kriging dimension by using only

15 most “sensitive” parameters as

determined from global sensitivity 107 m GradientEnhanosd
analySIS N —-—#—-— Function Only

Build Function only and I n
Function/Gradient Kriging models [ . .

— Use different number of training points
for Kriging model

— Examine error wrt full Monte Carlo
sampling (6331 CFD runs)

Gradient-enhanced Kriging produces
consistently lower error - T

10! ' — Im 10?
Lower limit on error due to omitted Number of Simulations
parameters

68 sample points adequate for Kriging




Aleatory Uncertainty using
Kriging Model

o011 -
L —— Gradieni-Enhanced 1.6E-07
—-—--— Function Only ' E —m— Gradient-Enhanced
— — — — Monte Carlo Results —-—@—-— Function Only
o — — — — Monte Carlo Results
0.0108 1= 14E-07 |- ]
. B
0.0106 12607 -
c = i =
o | L
1] o § n ] L |
= B i N g T T — -, ===
0,0104 =g B ——-—=-—=—===": - = _ - - - —mf
E " = 1 = > B g
| ]
u .. BE-D8 - u
00102 r -
- 6EE-
| 1 1 L1111l
El011[:| “:I.: & = C | 1 M|
Number of Simulations & 0P

107
Number of Simulations

* Gradient-enhanced Kriging superior predictions of mean and variance

* Close to full Monte Carlo results (6331 pts) with only 68 Kriging pts
— 68 CFD analyses
— 68 adjoint solutions for gradient-enhanced model



Aleatory Uncertainty Quantification

@ Methods compared based on cost and statistic predictior

@ Kriging Methods give most accurate results
e Significant Cost reduction possible (6331 fvs. 68 f/g)  «f

—-—-—-- Monte Carlo

oo e b s el
0008 00095 001 00105 0011 00115 0012
Integrated Surface Heating

Kriging-Variable Truncation

Method Mean Variance 95% Cl F/G Cost
Moment Method 1.0370E-002 1.3790E-007 +7.1616% 1
Linear Extrapolation | 1.0369E-002 | 1.3412E-007 | +7.0638% 1
P=1 Regression 1.0497E-002 | 8.8273E-008 +5.6610% 10
P=2 Regression 1.0370E-002 | 8.6692E-008 +5.6786% 68
Kriging-Trunc.-17D | 1.0446E-002 1.0227E-007 +6.1228% 68
Kriging-Reg.-17D 1.0384E-002 | 9.2394E-008 +5.8543% 68
Monte Carlo-L 1.0393E-002 | 9.3979E-008 | +5.8994% 6331
- 1




Epistemic Uncertainty Quantification

@ Collision integrals treated as epistemic (20% interval width)

@ Methods tested using 8 uncertain parameters
e Validated using LHS with 3 points per dimension (6,561 samples)

@ Linear (1 f/g) and optimization (~ 40 f/g) produce more accurate

interval
Linear Method | LHS interval | Optimization
Center 1.0370E-002 | 1.0449E-002 | 1.0506E-002
Interval Halt Width | 8.6634E-004 | 7.1266E-004 | 8.8912E-004
Upper 1.1237E-002 | 1.1161E-002 | 1.1395E-002
Lower 0.5040E-003 | 9.7361E-003 | 9.6168E-003
Percentage 8.35% 6.82% 8.46%




Epistemic Interval using Gradient-
Based (Bound) Optimization
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e Optimization more correct result as it satisfies problem statement

@ More extensive sampling gives bounds approaching optimization



Epistemic Interval using Gradient-
Based (Bound) Optimization

@ Optimization/Linear analysis can be applied to large dimension

@ Number of parameters expanded to all collision integrals (30 total)
@ Methods produce similar interval estimates

LHS sampling unfeasible for 30 parameters >10%*

Linear Method Optimization
Center 1.0370E-D02 1.0543E-002
Half Width 1. 17T8TE-DO3 1.2031E-003
Upper 1.1540E-002 1.1746E-002
Lowear 0.1916E-003 8. 3400E-003
Percentage 11.37% 11.41%

_ Linear results give confidence that
e optimization not stuck in local optimum

May not be true in general case




Mixed Aleatory-Epistemic

@ Variables have either aleatory or epistemic uncertainty

@ Goal: Determine range containing output with specified probability
(P-Box) and separate the contribution from each source

@ Typical situation for simulation as complete knowledge rare
@ Nested sampling traditionally used; however,

o For hypersonic flows, number of epistemic variables much greater than
number of aleatory variables

o Expensive of nested sampling increases rapidly with number of
epistemic variables

o Prohibitively expensive for all but explicit functions

@ Combine surrogate approaches with gradient-based optimization for
rapid mixed UQ



Mixed Aleatory-Epistemic

Define:

@ « are aleatory variables
@ /3 are epistemic variables
e L(«, /3) is simulation output

Nested Sampling:
@ Extract [ realization for i = 1. N,
o Sample over o for j = 1, N,

@ Run simulation
e Compute L(o, 3)

o Characterize output distribution associated with varying a

e Examine statistics over all realizations (determine worst-case)



Mixed Aleatory-Epistemic

@ Nested sampling can be performed inexpensively based on surrogate

@ Optimization/Surrogate should scale to higher dimension for large
number of epistemic variables

@ Two choices for ordering

o Use optimization to determine min/max of statistic
o Use sampling to determine statistic of min/max

@ Statistics-of-Intervals
o Solve multiple optimization problems for different @ samples:
Lmin(c) = mr;n [(cx, 3)
Lnax(€¥) = max L(c, 3)

o Construct surrogate (Kriging model) for L,,(c) and L ()
o Calculate statistics based on sampling over a from surrogate model



Mixed Aleatory-Epistemic

Uncertain Parameters:

Variable Type Uncertainty
poo (kg/m?) Aleatory | +10% (o =5%)
Voo(m/s) Aleatory | +30.84 (o = 15.42)
ﬂh’é_m, QE'%_NE Epistemic 120%
QM%_N, (23> | Epistemic +20%
Q%’é_ O QE}%_D Epistemic +20%
Uy 09 Uiz | Epistemic +20%

@ 10 total uncertain parameters (2 aleatory, 8 epistemic)

@ Nested Sampling used for Validation

@ 3 samples per dimension for epistemic variables (6,561 total)

@ 5000 samples used for aleatory variables



Mixed Aleatory-Epistemic
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* Convergence of output interval (min-max) with
increasing number of Kriging points



Mixed Aleatory-Epistemic

@ CDF for bounds can be created from Kriging Model

@ CDF created with Kriging model based on 8 (~ 500 f/g) and 104
(6176 f/g) pairs of optimizations

@ CDF curves virtually identical, implying convergence of Kriging
predictions
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Mixed Aleatory-Epistemic

@ Multiple Optimizations used to approximate combined results

@ Kriging model constructed for min and max values

o Monte Carlo performed on Kriging surrogate
@ 99th percentile of Min/Max predicted

Training Data Size

F/G Evaluations

09 percentile of Min

00" percentile of Max

g
15
23
52

104

~ 500
~ 900
~ 1400
~ 3000
6176

1.017556 = 102
1.016681 x 102
1.018028 x 102
1.020232 x 102
1.020243 % 102

1.206040 = 102
1.207132 x 102
1.207930 x 102
1.210513 % 102
1.210416 = 10—2

e Statistic converges with handful of optimization results

@ SOI method allows mixed UQ when nested strategy prohibitively

expensive



Conclusions and Future Work

* Adjoint methods are enabling for Sensitivity Analysis and
Uncertainty Quantification
— Particularly for cases involving one or few objectives
— Provide entire gradient wrt all uncertain parameters for cost of
single adjoint problem
 Demonstrated applications
— Method of moments
— Local sensitivity analysis

— Enhanced surrogate models

* Polynomial regression

e Kriging models
— Gradient-based optimization for epistemic uncertainties
— Mixed aleatory-epistemic uncertainties



Conclusions and Future Work

* Monte Carlo sampling unfeasible in many cases
— Mixed aleatory-epistemic uncertainties

* Hessian information can be useful for:
— Method of moments
— Further enhanced surrogate models
— Newton optimization

* Hessian cost must be evaluated vs more global
information and effects of non-smooth
functionals



