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Motivation 

• Adjoint allows error estimation (and thus 
adaptive control) for specific objectives 

– Focus computational resources on output 
objective of interest 

– Conserve resources by de-emphasizing 
resolution/resources in regions that do not affect 
objective 



Motivation 

• Adjoint error estimation well known for spatial 
error estimation and control (AMR) for steady-
state problems 

• Extend to multidisciplinary time-dependent 
problems 

• Investigate formulations that can be used directly 
with existing discretizations/frameworks 
– Precludes space-time formulations, solver 

modifications 

– Lower potential, but more immediately applicable 



Outline 
• Theoretical Formulation 

– Linear continuous formulation 
– Non-linear discrete formulation 

• Formulation for Temporal-Algebraic error estimation in 
time-dependent ALE problems 
– Verification of error estimates 
– Adaptive control of temporal-algebraic error 

• Combined spatial-temporal-algebraic error estimation 
and control 
– Equidistribution of error 
– Optimal cost  error control 

• Generalized formulation for multidisciplianry problems 
• Conclusions/Future Work 



Adjoint Error Estimation 
Continuous Linear Formulation 

Consider solution of: 
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Adjoint Error Estimation 
Continuous Linear Formulation 

Consider solution of: 

fAu  ),( ugL 

gvA * ),( fvL 

with scalar output of interest: 

where A* is the adjoint operator of A defined as the 
operator that satisfies: 
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L can also be computed as (dual problem): 



Proof 

by definition of 
adjoint operator 
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Continuous Linear Case 

For an approximate                    : 

)~,(),(
~

ugugLL 

)~,(
~

uugLL 

)~,*(
~

uuvALL 

))~(,(
~

uuAvLL 

)~(
~

uLL 

)~,(
~

uAfvLL 

Error in L is given by 
inner product of 
adjoint solution with 
primal residual exactly 



Continuous Linear Case 

• Adjoint problem same expense as primal problem 
• Assuming  cheaper approximate adjoint solution  
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O(1) small small small 

• Provided: 
–     converges to u (primal consistency) 
–     converged to v (dual consistency) v~
u~



Non-Linear Discrete Case 
• Use subscript h to denote discrete operator/solution 

–      is exact discrete solution (unknown) 
–      is approximate discrete solution (known) 

• Exact (discrete) functional can be written as Taylor 
series about known approximate functional value as: 

• Since residual of exact discrete solution must vanish 

• Obtain expression for error in solution 
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Non-Linear Discrete Case 
• Substituting into Taylor series for L: 

• Defining an adjoint variable as 

• Obtain 

• Note: Even for exact discrete adjoint solution, estimate is 
approximate due to non-linear effects 



Interpretation of Adjoint Variable 

Generalized Green’s function 

Sensitivity of objective wrt residual  



Non-Linear Discrete Case 
• As previously, exact (discrete) adjoint may be as 

costly to obtain as exact solution uh 

• Using approximate discrete adjoint  h
~

computable unknown 

• Computable term will provide good error estimation if 
have asymptotically converging approximate       , e.g. 

h
~

• Note 2 types of approximations 
– Approximate adjoint 
– Non-linear errors 





• Use approximate adjoint computed on coarse grid 

• Here solution is approximate because is obtained from 
coarse grid 



Example: Spatial Discretization Error 

• Mach 6 flow over cylinder solved with h-p adaptive Discontinuous 
Galerkin scheme 

• Objective is integral of surface temperature              of cylinder 

• Adjoint error estimates used to drive spatial h (mesh) and p (order) 
refinement 

• Refinement occurs ONLY in region of shock that affects objective 

Tds



Example: Refinement History 

• Adjoint predicts discrete functional value on next refinement level 
– Not a predictor of total error/continuous functional value 

• Error prediction improves at each refinement level 
– Decreasing non-linear error 
– Superconvergence of  2nd error  term 

• Final prediction is very accurate 



Different Error Sources 

• Multidisciplinary time-dependent simulations 
contain many error sources 

• Approximate nature of solution         has not been 
specified 
– Computed on coarser grid (spatial disc. error) 
– Computed using larger time step (temporal error) 
– Not fully converged  (algebraic error) 
– Computed using low fidelity model (modeling error) 
– Combinations of above 

• Can we use a single adjoint calculation to estimate (and 
control) different error types ? 
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Characteristics of Time Dependent 
Problems 

• Ignore spatial error for now… 
• Temporal error due to discrete (large) time steps 
• Algebraic error more prevalent for time-

dependent problems 
– Impractical to converge each implicit time step to 

machine precision 

• Temporal and algebraic errors are intimately 
related for time dependent problems 
– Smaller implicit time steps converge faster 
– Algebraic error accumulates over all time steps 

• Must be considered simultaneously 
 
 



Simple Multidisciplinary Time-
Dependent Example 

• Pitching airfoil with deforming mesh 
• Estimate temporal and algebraic error 

– Ignore spatial discretization error for now 



Governing Equations 

• Flow equations solved in ALE form at each time step 

• Mesh deformation equations solved at each time 
step (prescribed airfoil motion) 

 

 

 

• Represents integration over all space and time 

• At a given time step (BDF2) 

n n



Temporal Error Estimation 

Temporal error due to flow 
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Temporal error due to mesh 



Temporal Error Estimation 
Temporal error due to flow Temporal error due to mesh 

Rh non zero because evaluated with  
approximate flow and mesh solution 
obtained using larger time step 

Gh non zero because evaluated with  
approximate mesh solution obtained 
using larger time step 



Algebraic Error Estimation 
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Algebraic error due to flow Algebraic error due to mesh 

Similarly for mesh residual…..  



Algebraic Error Estimation 
Algebraic error due to flow Algebraic error due to mesh 

Rh non zero because evaluated with  
approximate flow and mesh solution 
obtained partial convergence 

Gh non zero because evaluated with  
approximate mesh solution obtained 
using partial convergence 



Solution of Flow Adjoint Equation 

Lower triangular form over time 



Solution of Flow Adjoint Equation 



Combined Temporal and Algebraic Error 

• For temporal error estimation, assumed coarse time 
solution was fully converged prior to projection to 
fine time level 

• In practice, approximate solution is partially 
converged on coarse time step solution  
– Algebraic error estimate is unchanged (no projection) 
– Temporal error estimate includes temporal error and 

algebraic error 
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 Temporal error due to flow 

• Additive error estimation is best we can do within 
context of adjoint formulation (a linearization) 

 Temporal error due to mesh 



Simple Multidisciplinary Time-
Dependent Example 

• Pitching airfoil with deforming mesh 
• Estimate Temporal/Algebraic error in time-

integrated lift over 1st quarter period 





















Combined Spatial-Temporal-Algebraic 
Error Estimation 

• Previous example omitted spatial discretization error 
– Well known already 

– Complications for time-dependent mesh refinement (AMR) 

• Must consider all 3 error sources simultaneously to 
reduce total simulation error 
– Use static mesh time-dependent case with exact solution 

– Time and convergence are 1-dimensional error spaces 
• Cost of adjoint is same as using twice as many time steps or twice 

the convergence tolerance 

– Maximum benefits come from reusing single adjoint 
calculation for all error sources 

 



Motivation 

• Examine total error (wrt exact functional) by refining in 
space, time and convergence tolerances 

Exact (analytical) solution: 
239.52558800471  



Total Functional Error as Function of 
Refinement 

• Increasing temporal resolution 
ineffective at reducing total 
error on coarse grids 

• Increasing spatial resolution 
ineffective at reducing total 
error using large time steps 



Total Functional Error as Function of 
Refinement 

• Increasing temporal resolution 
ineffective at reducing total 
error on coarse grids 

• Increasing convergence tolerance 
ineffective at reducing total error 
unless have fine mesh and time 
step resolution 



Combined Spatial-Temporal-Algebraic 
Error Estimation 

• Equations over space and time: 

 

• Goal is to estimate all error sources using a single 
adjoint solution (on coarse mesh, large time steps, 
partially converged) 

 

• Requires backwards integration in time 

 

0)( hh UR



Combined Error Estimation 

• Spatial error estimate 
– Coarse solution projected onto fine mesh 
– Coarse adjoint projected onto fine mesh 
 

• Temporal error estimate 
– Coarse solution projected onto fine temporal domain 
– Coarse adjoint projected onto fine temporal domain 
 

• Algebraic error estimate 
– No projections required 

• Each error type estimated individually and used to 
drive adaptation of that error type 



Space-Time-Algebraic Refinement 

• Convergence tolerance reduced by 1 order of magnitude 



• qq 

Computational Procedure 



Adaptive Error Control Strategy 



Spatial Refinement Strategies 

• Effect of refinement frequency and target error level 
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Spatial Refinement Strategies 

• Effect of refinement frequency and target error level 

 



Spatial Refinement Strategies 



Spatial Refinement 



Temporal Refinement 



Algebraic Error Refinement 



Test Case Initial Conditions 



Results 
Adaptive Convergence Tolerance 



Results 
Adaptive Time-Step Selection 



Results 
Adaptive Mesh Refinement 



Adaptive Mesh Refinement 



Adaptive Mesh Refinement 



Adaptive Mesh Refinement 



Adaptive Mesh Refinement 



Functional Error vs. Cost 



Functional Error vs Cost 



Optimal Cost Error Reduction 
• Obtain optimal total error reduction for given 

computational budget 
– Requires weighting of error with cost associate for 

reduction 

 



Optimal Cost Error Reduction 

RTol



Optimal Cost Error Reduction 



Optimal Cost Error Reduction 



Results 
Algebraic Error 



Results 
Temporal Error 



Results 
Spatial Error 



Optimal Cost Error Control 

• Line depicts constant Error/Cost Threshold 
– Refinement opportunities above line to be excercised 
– Refining a single spatial element is inexpensive 
– Temporal/Algebraic refinement apply to all elements (more expensive) 
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Summary/Trends 

• Cost weighted refinement tends to perform more 
spatial refinement because of lower cost 
– Can add individual new mesh cells 

• Inherit time step and convergence tolerances of parent cells  

– Temporal refinement results in 1 new time step for all 
mesh cells  

– Convergence tolerance refinement applies to all mesh 
cells 

• Overall delivers lowest total error for fixed 
computational budget 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 

• Consider multidisciplinary objective given by 

 

 

• With coupled disciplinary residual equations to 
be satisfied over all space and time 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 

• Taking Taylor series expansion of objective 
about approximate state 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 
• Linearizing multidisciplinary residual equations 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 

• Substituting into objective linearization 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 



Generalized Error Form for Time-
dependent Multidisciplinary Problems 

• Error is broken down into disciplinary contributions 
– Spatial, temporal, algebraic  error of each discipline 
– Coupling error using fully converged disciplines with lagged values 
– Disciplinary modeling error possible if can project low fidelity model 

solution to high fidelity space 



Conclusions 

• Adjoint methods allow estimation and control of 
error for specific simulation outputs 

• Using a single adjoint solution it is possible to 
estimate and adaptively control various sources 
of error 
– Spatial 

– Temporal 

– Algebraic 

• Techniques extend naturally to multidisciplinary 
problems 

 



Conclusions 

• Focus has been on techniques that can be applied to 
existing production level simulation codes 

• Further optimizations are possible if 
discretization/solvers are designed with adaptive 
error control in mind from the outset 

– Space-time formulations 

– Variable local solver tolerances 

– h-p discretizations 

Spatially varying time implicit steps 



Conclusions 

• Novel discretizations /solvers hold promise for 
large gains in efficiency and accuracy 

• Extending even current spatial-temporal-
algebraic error estimation and control 
techniques to 3D time-dependent 
multidisciplinary problems is challenging 
– Multidisciplinary adjoint solution 

– Dynamic AMR 

– Load balancing 


