
OVERSET MESH RUNS with NSU3D

NSU3D supports the use of multiple overset meshes, when linked to the TIOGA overset mesh library. In this
mode, NSU3D supports overset meshes either in steady-state or time-dependent modes, and either using
static meshes (no relative motion) or dynamically moving overset meshes. For steady-state problems, the
overset mesh IBLANK and fringe interpolation patterns are computed once at startup, whereas for
time-dependent problems with dynamically moving meshes these are recomputed at each time step.

Enabling Overset Mesh runs in the NSU3D input file:
Overset mesh runs are enabled by specifying a mesh file name in the NSU3D input file that ends with the
suffix filename.replicate as shown in the example below:

--
MACH Z-ANGLE Y-ANGLE RE RE_LENGTH
0.5 0.00 0.0 3000000. 1.0
--
FORCE/MOMENT COEFFICIENT PARAMETERS
REF_AREA REF_LENGTH XMOMENT YMOMENT ZMOMENT ISPAN REF_MACH
72700. 141.2 154.245 0.0 0.0 2.0 -1.0
--
MESH DATA FILE
mesh_file.replicate
--

Instead of specifying a partitioned grid file, the mesh_file.replicate file refers to a Fortran namelist file that
specifies the individual (partitioned) component meshes of the overset mesh system along with parameters
for positioning these meshes into the current initial position for the problem setup. When read in, each
component overset mesh is placed on its own distinct set of processors (i.e. a given processor only holds one
partition of a single overset component mesh). Therefore, it is up to the user to pre-partition the individual
overset meshes using the appropriate number of partitions based on the mesh size to ensure that the overall
simulation is well load balanced when running in parallel. Furthermore, when running an overset mesh case,
the total number of processors specified for mpirun must correspond to the sum of all partition numbers
specified in the mesh_file.replicate file. Otherwise, NSU3D will stop and output the required number of
processors for this run based on the information read in from the mesh_file.replicate file. Note that the mesh
motion input file is also copied to the ./WRK directory at run time in order to produce an archival record of all
inputs for the current run.

An example of a mesh_file.replicate* input file for two grid system for an overset mesh problem consisting of
a wing and aileron is given below:

!---
!Overset mesh input file (mesh_replicate) for WINGCS case
!---
&number_of_meshes_def
 nreplicate = 2
 order = 1 !displace,scale
! order = 2 !scale,displace
/
&mesh_replicate_def
 mesh_file_name = '../grids/NACA0012_AR10_1.10Mn.merged.part.16'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 1.0,0.0,0.0,0.0 !Axis and magnitude in degrees

 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.0,0.0,0.0
/
!--
&mesh_replicate_def
 mesh_file_name = '../grids/NACA0012_Aileron_0.48Mn.merged.part.8'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 0.0,1.0,0.0,10. !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.715,2.5,0.0
/
!--

The mesh_file.replicate file contains two types of sections delineated by the key words
number_of_meshes_def and mesh_replicate_def.

• number_of_meshes_def: This section comes first and defines the number of component meshes
and the order used for scale/displace operations as detailed below. Note that this section is optional
as the reader will scan the mesh_file.replicate file to determine the nnumber of meshes if
nreplicate is not specified. However, specifying nreplicate will override the default.

• nreplicate: Number of overset component meshes to be read in (optional).

• order: Determines the order in which scale/displace transformations are applied to each
mesh.

• order=1: Displace first, then scale (see next section)

• order=2: Scale first, then displace (see next section)
• mesh_replicate_def: For each component mesh, this section defines the mesh file to be read in

and parameters for positioning the mesh from its original coordinate system into the proper position
in the final composite overset mesh coordinate system. The parameters for defining the mesh
positioning are over-specified, in that two translations are possible, one before the rotation is
applied, and one translation after rotation is applied. This is to enable more intuitive options for the
user in positioning these component meshes. Additionally, the order of scale/displace (i.e. first
translation) is also user configurable through the order parameter in the previous section.

• mesh_file_name: Name of partitioned NSU3D mesh file to be read in for this mesh
component

• xscale: Scaling factor applied to original component mesh coordinates

• xdisplace: Initial translation applied to component mesh coordinates

• rotation: First 3 numbers define rotation axis, fourth number defines rotation magnitude in
degrees applied to scaled/displaced component mesh coordinates

• rot_center: Rotation center for above rotation

• final_trans: Final translation to be applied to scaled/displaced(translated)/rotated mesh
coordinates

Note that the same mesh may be replicated more than once in different positions, for example when
simulating a rotor or propellor with multiple identical blades. The example below illustrates the setup for a
4-bladed propellor taken from the Workshop for Integrated Propulsion Prediction (WIPP) test case:

!---
!Overset mesh input file for WIPP case
!---
&number_of_meshes_def

 nreplicate = 5
 order = 1 !displace,scale
! order = 2 !scale,displace
/
!--
&mesh_replicate_def
 mesh_file_name = '../grids/blade.part.16'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 1.0,0.0,0.0,0.0 !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.0,0.0,0.0
/
!--
&mesh_replicate_def
 mesh_file_name = '../grids/blade.part.16'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 0.0,1.0,0.0,10. !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.715,2.5,0.0
/
!--
 &mesh_replicate_def
 mesh_file_name = '../grids/blade.part.16'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 0.0,1.0,0.0,10. !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.715,2.5,0.0
/
!--
 &mesh_replicate_def
 mesh_file_name = '../grids/blade.part.16'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 0.0,1.0,0.0,10. !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.715,2.5,0.0
/
!--
 &mesh_replicate_def
 mesh_file_name = '../grids/wing.part.32'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 0.0,1.0,0.0,10. !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.715,2.5,0.0
/
!--

Specifying Dynamic Overset Mesh Motion:
For dynamic overset mesh cases, the mesh motion is specified in the same way as described for a single
mesh in the NSU3D TIME ACCURATE RUNS documentation. This relies on the specification of a mesh
motion input file in the NSU3D input file in the section for OPTIONAL TIME ACCURATE runs as shown
below:

--
OPTIONAL TIME ACCURATE PARAMETERS
NTIME_STEP DTACC DT_REF_LENGTH NTIME_STEP_OUT MESHMOTION
2880. 0.5 -1.0 30000. 1.0
MESH MOTION INPUT FILE
input2.meshmotion.nml
--

For static mesh cases, the paremter MESHMOTION is set=0 and no mesh motion inpu file is required. If
MESHMOTION**=1, the mesh motion input file name must be specified as shown above.

• MESH MOTION INPUT FILE: The name of the mesh motion file is specified here. The
mesh motion file is a Fortran namelist file that specifies rotation and translation values for
solid body motion of the mesh. An example of a mesh motion file is given below for the 4
bladed propellor WIPP test case.

!Overset mesh motion input file
!--
&mesh_motion_def
 mesh_id = 1,2,3,4
 rotcenterxyz(1:3) = 0.0,0.0,0.0
 omegaxyz(1:3) = 0.0,0.0,0.0456389419788
 gvtransxyz(1:3) = 0.0,0.0,0.0
/
!--
&mesh_motion_def
 mesh_id = 5
 rotcenterxyz(1:3) = 0.0,0.0,0.0
 omegaxyz(1:3) = 0.0,0.0,0.0
 gvtransxyz(1:3) = 0.0,0.0,0.0
/
!--

The parameters are defined as:

• mesh_motion_def: Key word in namelist identifying list of mesh motion parameters for one or
more component meshes.

• mesh_id: Specifies one or more mesh ids to which this motion applied. The ids are based on
the order in which the component meshes are specified in the mesh_file.replicate file. In this
case, the four blade meshes move with the same motion and the wing mesh is fixed. Note that
the last mesh (mesh_id=5) which represents the wing and bacground mesh is fixed and need
not be specified, since no motion is the default for all component meshes.

• rotcenterxyz(1:3): Center of rotation for mesh motion.

• omegaxyz(1:3): Rotation rate vector components.

• gvtransxyz(1:3): Grid velocity components for moving grid translation.

Determining the non-dimensional mesh grid velocities from dimensional or other non-dimensional quantities
is described in the NSU3D TIME DEPENDENT RUNS documentation. Note that the mesh motion input file is
also copied to the ./WRK directory at run time in order to produce an archival record of all inputs for the
current run.

Sample Test Cases

Test Case 1: Wing Aileron Simulation (static grids, steady state)
This case consists of a wing with a control surface simulated using a global mesh for the main wing overset
with a component mesh for the control surface. The overset mesh definition file (mesh_replicate) used for
this case is given below:

!---
!Overset mesh input file (mesh_replicate) for WINGCS case
!---
&number_of_meshes_def
 nreplicate = 2
 order = 1 !displace,scale
! order = 2 !scale,displace
/
&mesh_replicate_def
 mesh_file_name = '../grids/NACA0012_AR10_1.10Mn.merged.part.16'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 1.0,0.0,0.0,0.0 !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.0,0.0,0.0
/
!--
&mesh_replicate_def
 mesh_file_name = '../grids/NACA0012_Aileron_0.48Mn.merged.part.8'
 xscale = 1.0
 xdisplace(1:3) = 0.0,0.0,0.0
 rotation(1:4) = 0.0,1.0,0.0,10. !Axis and magnitude in degrees
 rot_center(1:3) = 0.0,0.0,0.0
 final_trans(1:3) = 0.715,2.5,0.0
/
!--

Note that the first mesh is not displaced from its original position. The second (control surface) mesh is
rotated about the y-axis by the aileron deflection value in degrees (10 degrees downwards corresponding to
positive rotation in y axis). The resulting mesh configuration is illustrated in Figure 1.1, including details in the
gap region showing the tight tolerances that can be handled by the overset mesh approach.

Figure 1.1: Illustration of wing/control-surface overset mesh configuration for 10 degree downward
deflection of control surface and associated mesh.

In the second case, simply changing the control surface mesh rotation value from +10 to -10 degrees
produces the following configuration with an upwards aileron deflection. In this manner, various different
configurations can be analyzed quickly without the need for remeshing.

Figure 1.2: Illustration of wing/control-surface overset mesh configuration for 10 degree upward deflection
of control surface and associated mesh.

Because this test case is a steady-state static overlapping mesh case, no mesh motion file is required. Using
the in-situ postprocessing library, slices through the combined overset mesh system can be generated as
shown below.

Figure 1.3: Illustration of plane slice through mesh overlap region.

By default, this slice cuts through all meshes in the overlapping regions. Using the mesh_id parameter, the
user can specify cuts through individual meshes in the overlapping mesh system. Figure 1.4 illustrates the
same slice applied only to the global wing mesh, and applied only to the control-surface component mesh,
respectively.

Figure 1.4: Illustration of plane slice through mesh overlap region spearated out for each mesh individually
using the mesh_id option.

Isolating the slices through individual meshes is useful for visualizing the computed solution fields more
clearly, including for debugging purposes. The in-situ postprocessor can visualize the overset mesh IBLANK
values, which determine which mesh is dominant in overlap regions. By convention, IBLANK = 1 denotes
dominant mesh points or control volumes (i.e. solution computed on this mesh), IBLANK= -1 denotes fringe

points or control volumes (solution not computed but interpolated from dominant mesh), and IBLANK = 0
denotes a hole, or mesh region obscured by a body (i.e. not active in simulation). Figure 1.5 illustrates the
resulting IBLANK patterns on the slice plane through both meshes, showing how the overlapping meshes
have different values as expected, making this difficult to visualize clearly. This can be improved by
visualizing the IBLANK patterns on each mesh individually. Here, the second and third figures show the
IBLANK patterns on the slice plane obtained using the mesh_id parameter for each indvidual component
mesh, producing more informative plots.

Figure 1.5: Illustration of rendering of the IBLANK pattern on the single slice plane that includes both
overlapping meshes compared with IBLANK patterns rendered on each mesh slice individually.

Because the slice plane cuts through mesh cells and necessarily interpolates values between the cell
vertices, a more informative IBLANK plot can be obtained using the crinkle cut feature in the postprocessing
library. Figure 1.6 illustrates the IBLANK pattern on the crinkle cut planes which cut along cell faces, for each
mesh independently, producing a more clear picture of the individual IBLANK regions on each mesh.

Figure 1.6: Illustration of IBLANK pattern rendered on individual component mesh crinkle cuts, which is the
preferred approach for examining IBLANK patterns.

The aerodynamic flow over the wing/control-surface overset mesh configuration is computed for two
deflection values: +10 deg and -10deg. The flow conditions are Mach=0.6, Angle of attach = 2.0deg. RE=3M.
The NSU3D input file for these cases is reproduced below:

NSU3D INPUT FILE FOR WINGCS CASE
RESTARTF RESTARTT RNTCYC
0.0 0.0 00.
RESTART FILE
WRKab/restart.out
MMESH NTHREAD
1.0 1.0 (1st order = -1)
NCYC NPRNT N MESH MESHLEVEL CFLMIN RAMPCYC TURBFREEZE
50. 0.0 1. 1.0 1.0 0.0 0.
500. 0.0 4. 1.0 1.0 0.0 0.
CFL CFLV ITACC INVBC ITWALL TWALL
1.0 1000. 0.0 0.0 0.0 0.0
VIS 1 VIS 2 H FACTOR SMOOP NCYCSM
0.0 20. 0.00 0.00 0.0
C1 C2 C3 C4 C5 C
0.5321 1.3711 2.7744
FIL1 FIL2 FIL3 FIL4 FIL5 FIL6
1.0 1.0 1.0
--
COARSE LEVEL AND MULTIGRID PARAMETERS
CFLC CFLVC SMOOPC NSMOOC
1.0 1000. 0.0 0.0
VIS0 MGCYC SMOOMG NSMOOMG
4.0 2. 0.8 2.0
--
TURBULENCE EQUATION(S)
ITURB IWALLF WALLDIST
4. 0.0 1.0

CT1 CT2 CT3 CT4 CT5 CT6
1.0 1.0 1.0
CTC1 CTC2 CTC3 CTC4 CTC5 CTC6
1.0 1.0 1.0
VIST0 TSMOOMG NTSMOOMG
2.0 0.8 2.0
--
MACH Z-ANGLE Y-ANGLE RE RE_LENGTH
0.6 0.00 2.0 3000000. 1.0
--
FORCE/MOMENT COEFFICIENT PARAMETERS
REF_AREA REF_LENGTH XMOMENT YMOMENT ZMOMENT ISPAN REF_MACH
5. 1.0 0.25 0.0 0.0 2.0 -1.0
--
MESH DATA FILE
mesh_file.replicate
--
OPTIONAL PARAMETERS (MODIFY FROM DEFAULT VALUES SET IN set_lim_values.f)
PARAMETER NAME VALUE(real number with decimal)
IN_SITU_POST_PROC 1.0

Figure 1.7 illustrates the convergence for both aileron deflection cases, as well as the computed surface
pressure distributions. Note that the CL value for the downwards deflection case converges to CL=0.386,
whereas for the upwards deflection case the final CL is slightly negative, close to 0.0. This test case also
illustrates the ability of the overset mesh approach to handly close tolerances between geometry and
component meshes, which must be of the order of the local cell size.

Figure 1.7: Convergence history for positive and negative 10 deg. control surface deflection cases and
corresponding computed surface pressure distributions.

Test Case 2: WIPP Propeller Case (5 meshes, moving overset blade meshes)

	Enabling Overset Mesh runs in the NSU3D input file:
	Specifying Dynamic Overset Mesh Motion:
	Sample Test Cases
	Test Case 1: Wing Aileron Simulation (static grids, steady state)
	Test Case 2: WIPP Propeller Case (5 meshes, moving overset blade meshes)

