
In-Situ Post-processing with NSU3D

Starting with version r-400, NSU3D can be used with the customized in-situ post-processing "post_proc"
library developed by Scientific Simulations LLC. To use this feature, NSU3D must be compiled with the
post_proc feature enabled and linked to the post_proc library.

The post_proc library enables the extraction of surface data, planar slices, volume isosurfces, entire volume
data and line/point probe values at run time in a parallel computing environment. Data extraction can be
performed at the end of a simulation run, and/or at periodic intervals during the run, thus enabling the
construction of dynamic simulation videos for time-dependent runs.

The post_proc library provides support for vtk output file formats as well as the tecplot *.dat *.plt and parallel
*.szplt file formats, when linked to the tecio library from tecplot.

Enabling in-situ postprocessing:

• Compilation and Installation:

To enable in-situ postprocessing, NSU3D must be compiled and linked to the post_proc library. First, to
compile the post_proc library, enter the post_proc source code directory and type

make

There are no other library dependencies for the post_proc source code compilation. The result of this
compilation will be the creation of the libppdata.a static library. To use the tecio library (enabling szplt
files for tecplot) the setting: DTECLIB = TECLIB_STATIC should be used at compile time. If the tecio
library is not available, the setting: DTECLIB = TECLIB_SHARED should be used. In this case, the tecio
library will only be available as a shared library but will not be required at run time if tecio files are not
specified.

In the NSU3D source code makefile, use the following settings:

POST_PROC=POST_PROC_ON
POST_PROC_DIR=pathname to post_proc library source code
POST_PROC_LIB=$(POST_PROC_DIR)/libppdata.a
INCLUDEH += -I$(POST_PROC_DIR)
INCLUDELIB += $(POST_PROC_LIB) -lstdc++ -lpthread -lm -ldl
INCLUDELIBB += $(POST_PROC_LIB)

• Optional Parameter Setting:

The optional parameter IN_SITU_POST_PROC is used to enable or disable the in-situ post-processing
capability. This parameter must be listed at the end of the standard NSU3D input file, along with other
optional parameters.

IN_SITU_POST_PROC = 1 enables in-situ post-processing, provided NSU3D has been compiled and
linked with the post_proc library. If this parameter is set = 1 and NSU3D has NOT been compiled with
the post_proc library, NSU3D will terminate execution after reading in all input parameters with an error
message. In this case, either setting IN_SITU_POST_PROC = 0 or removing it from the optional
parameter list (default) will enable execution of NSU3D without in-situ post processing.

IN_SITU_POST_PROC = 0 disables in-situ post-processing. If this optional parameter is not specified,
the default value is = 0. Note that in-situ postprocessing requires slightly more memory for steady-state
NSU3D runs (approximately 20% depending on cases). Therefore setting IN_SITU_POST_PROC = 0
reduces the memory footprint of the run for cases where in-situ postprocessing is not required.

• Input file for in-situ post processing: input.postproc

The post_proc library reads an input file that specifies what types of data are to be extracted and the
run-time frequency for data extraction. This file name is currently hardwired as:

input.postproc

This file should be created and placed in the run directory, in the same location as the nsu3d std input
file.

The input.postproc file is read at startup and checked for consistency. After this, the file is read at each
occurrence when a new data extraction operation is performed. In this manner, the input.postproc file
can be modified on the fly as the simulation progresses. However, user errors are not checked after the
initial startup, although errors will result in a data extraction being skipped rather than simulation failure.

If the input.postproc file is not found, either at the start of the run, or has been subsequently removed
during the simulation, no data extraction will occur and the post_proc library will not be used.

Detailed description of input.postproc file:
A sample input.postproc file is given below. This is a standard Fortran namelist file. "!"symbols identify
comment lines which are ignored by the reader. Key words are prefaced with the "&" symbol. These include
the frequency parameter, and keywords identifying the type of plot or data extraction to be performed. Each
plot type is terminated with a forward slash.

The default location for writing out all post_proc data files is in the subdirectory post_proc created by the
solver at runtime in the ./WRK directory. Note that, if it exists, the ./WRK/post_proc directory is purged and
re-created at startup of the flow solver. Output files can still be written to locations outside of this directory by
specifying file names with pathnames relative to the ./WRK/post_proc directory (for example
../../my_output/slice.szplt)

The sample input.post_proc file below illustrates the various plot types. Following the entries in this
example, the supported types are given as:

• data_def: This contains definitions for global default values. The data_def type contains the following
default parameters:

• Frequency: This parameter specifies the frequency of data extraction for the plot types
enumerated below in the file. In this case, data extraction will be performed every 100 cycles for all
plot types, by default. In addition, all plot type data extractions are performed at the end of the
simulation. If the frequency parameter is not specified under this data_def section, data extraction
occurs only at the end of the simulation run. The frequency parameter may be overridden for any
plot types. For example, the statement : frequency = -1 can be placed within the plot type
description as described below to force output only at the end of the run. For steady-state runs, the
frequency parameter refers to the number of nonlinear cycles on the last mesh of the MMESH
mesh sequencing inputs in the NSU3D input file. For time-dependent runs, the frequency
parameter refers to the number of time steps in the simulation.

• volume_def: Defines a volume plot or flow field data throughout the entire flowfield. The volume_def
type contains the following parameters:

• file_name: Specifies the file name for the output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. The suffix .plt indicates this will be a tecplot .plt or
szplt binary file. The file format can be specified also using the file_format key word described
below. The available file formats are described in the next section. If no suffix is recognized, vtk
format is assumed.

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• varname: These are the flowfield variables to be output. The variables are listed in any order
separated by commas. Misspelt or non-existing variable names are ignored. A list of available
types is given in the next section. Only the variables with is3Dvar = 1 can be output for volume
plots.

• frequency: Here the frequency parameter is set to -1, which results in the volume data only being
output at the end of the run. Note this can be applied to any of the plot types. Also note that volume
plots produce the largest files and should be used sparingly.

• surface_def: Defines a surface plot or flow field data on a boundary surface such as wall or aircraft
surface. The surface_def type contains the following parameters:

• file_name: Specifies the file name for the output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. Various examples are given in the sample file listing
below. The file format can be specified also using the file_format key word described below. The
available file formats are described in the next section. If no suffix is recognized, vtk format is
assumed.

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• outtype: Geometry surface attribute used to define the surface for data extraction. These can be
based on patches (patch), components (comp) or boundary conditions (bcs).

• bound_def: The names of the various geometry boundary surface attributes are listed upon which
the data is extracted according to the surface definition types in outtype above. Names that do not
exist are ignored. A list of supported types is given below.

• varname: These are the flowfield variables to be output. The variables are listed in any order
separated by commas. Misspelt or non-existing variable names are ignored. A list of available
types is given in the next section.

• frequency: The frequency parameter can be used to override the default frequency set at the top
of the input.postproc file.

• plane_slice_def: Defines data extracted by a planar cuts through the volume mesh or surface mesh.
Any number of planar cuts can be defined and all cuts will be written to a single file. Plots of integrated
forces over all planar cuts (i.e. for plotting wing span loads) can also be produced with the "varname"
"force" (see below). The plane_slice_def type contains the following parameters:

• file_name: Specifies the file name for the output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. The suffix .plt indicates this will be a tecplot .plt or
szplt binary file. The file format can be specified also using the file_format key word described
below. The available file formats are described in the next section. If no suffix is recognized, vtk
format is assumed. If the variable name (i.e. "varname") type "force" is specified, integerated
forces (CL, CD, CM etc.) will be computed for each surface slice and output to a file prefaced with
the key work "force_filename".

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• outtype: Attribute used to define the region to be cut by the plane for data extraction. This can be
a cut through the entire volume data of flow field (volume or field), or across the surface grid
based on patches (patch), components (comp) or boundary conditions (bcs).

• bound_def: For cases where the planar cut is over the surface mesh only, the various geometry
boundary surface attributes are listed upon which the data is extracted according to the surface
definition types in outtype above. Names that do not exist are ignored. A list of supported types is
given below. Note that for planar cuts of volume data, this variable is not used.

• mesh_id: For overset mesh cases only and only for plane_slice_def cases with outtype = volume
or field. Selects one of more component meshes. Default value is "all"

• varname: These are the flowfield variables to be output. The variables are listed in any order
separated by commas. Misspelt or non-existing variable names are ignored. A list of available
types is given in the next section.

• force varname option: In addition to the usual variable names, the name "force" can also be
used to trigger a plot of integrated forces across all the slices in this "plane_slice_def". Note
that the "force" varname automatically triggers Cp and Cf varname values to be output as
well, since these are required to compute integrated forces. Two additional output files are
called "force_wind.file_name" and "force_xyz.filename". This feature only applies to slices of
surface entities and is ignored for slices of "volume" or "field" as specified in the "outtype"
key word defined above. Two force files are output:

• force_wind.filename: This is the force file given in wind axes. For each slice station,
the file contains the following variables: "XC", "YC", "ZC", "CL", "CD", ""CLP", CLV",
CDP", "CDV", "CM_ROLL", "CM_PITCH", "CM_YAW", "CM_2D", "CHORD",
"REF_LENGTH". XC, YC and ZC correspond to the computed quarter chord point. All
force coefficients are computed in grid units and normalized by REF_LENGTH which is
reproduced from the flow solver input file. "CHORD" is the local chord as computed by
the slice routine and normalized by "REF_LENGTH". In this manner, the local force
coefficients based on the local chord can be obtained by multiplying by the "CHORD"
value (for example in a TECPLOT layout or macro). All 3D moment coefficients are
computed about the center of moment location prescribed in the flow solver input file.
The exception is the 2D pitching moment coefficient: CM_2D. This is computed using
the computed local chord length and the quarter chord point as specified in the XC, YC
and ZC values for each slice. (Note that moment coefficients about different points can
be computed from the information in this file.)

• force_xyz.filename: This is an auxiliary force file that contains similar quantities based
on body axes rather than wind axes.

• origin and normal: Each plane for a planar cut is defined by an origin and a normal vector in the
x-y-z coordinate system of the grid. Any number of planar cuts can be defined for a single
plane_slice_def entry. The origin and normal entries can be listed in any order, using the last index
to identify the specific plane number.

• bbox: Bounding box. An optional bounding box (rectangle or circle) can be defined for each field
slice beyond which the mesh and flow field data are cropped. The following options can be used:

• bbox(:) = ' ', no bounding box (default value). Also, if bbox keyword is not present no
bounding box is used.

• bbox(:) = 'circle': Creates a circular bounding region. Requires bbox1 as an input for the circle
radius:

• bbox1(:) = 100.0 : Radius of circular boundaring box, listed for each slice (:) or (slice
number)

• bbox(:) = 'rect' or 'rectangle': Rectangular bounding box. Requires bbox1 and bbox2 as inputs
for width and height of the rectangle.

• bbox1(:) = 100. : Width of rectangular boundaring box, listed for each slice (:) or (slice
number)

• bbox2(:) = 75.0 : Height of rectangular boundaring box, listed for each slice (:) or (slice
number)

• plane_crinkle_def: Similar to plane_slice_def above but uses crinkle cut to produce plane of
conforming cell faces. All parameters are the same with the following exceptions: The outtype field
must be replaced by the cut_type field:

• cut_type: Determines how crinkle-cut surface is defined. cut_type=node" selects faces with
nodes on either side of cutting place. cut_type=cell_center" selects cells based on position
of cell center relative to cutting plane.

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• isosurface_def: Defines isosurfaces to be output based on variable and value. Isosurfaces can also be
colored by other specified variables.

• file_name: Specifies the file name for the output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. Various examples are given in the sample file listing
below. The file format can be specified also using the file_format key word described below. The
available file formats are described in the next section. If no suffix is recognized, vtk format is
assumed.

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• varname: These are the flowfield variables to be output on the iso_surface. The variables are
listed in any order separated by commas. Misspelt or non-existing variable names are ignored. A
list of available types is given in the next section. Only the variables with is3Dvar=1 can be used.

• iso_varname: The flowfield variable used to extract the iso_surface. Misspelt or non-existing
variable name is ignored. A list of available types is given in the next section. Only the variables
with is3Dvar=1 can be used.

• iso_value: The value of the flowfield variable used to extract iso_surface (i.e. surface value).

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• frequency: The frequency parameter can be used to override the default frequency set at the top
of the input.postproc file.

• point_probe_def: Defines data extracted at the input point locations.

• file_name: Specifies the file name for the output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. Various examples are given in the sample file listing
below. The file format can be specified also using the file_format key word described below. The
available file formats are described in the next section. If no suffix is recognized, vtk format is
assumed.

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• varname: These are the flowfield variables to be output. The variables are listed in any order
separated by commas. Misspelt or non-existing variable names are ignored. A list of available
types is given in the next section.

• frequency: The frequency parameter can be used to override the default frequency set at the top
of the input.postproc file.

• pts: XYZ coordinates of the input probe points. The maximum number of zones is 50 and each
zone can consist of maximum 100 points

• line_probe_def: Defines data extracted on a line. There are four types of line definitions. The maximum
number of lines is 50.

• file_name: Specifies the file name for the output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. Various examples are given in the sample file listing
below. The file format can be specified also using the file_format key word described below. The
available file formats are described in the next section. If no suffix is recognized, vtk format is
assumed.

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• varname: These are the flowfield variables to be output. The variables are listed in any order
separated by commas. Misspelt or non-existing variable names are ignored. A list of available
types is given in the next section.

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• frequency: The frequency parameter can be used to override the default frequency set at the top
of the input.postproc file.

• npts: The number of points on one line. The default number is 51 points

• pt_begin: 1st point

• pt_end: last point

• norm: line direction

• delta : 1st space

• ratio : growth ratio

• line_type:

• uniform: the point distribution is uniform and required two input points (pt_begin and pt_end)

• stretch_1pt_norm_delta_ratio: the point distribution is stretched and required one input
point pt_begin, the line direction norm, the 1st space delta and the growth ratio ratio

• stretch_2pt_delta: the point distribution is stretched and required two input points pt_begin
pt_end and the 1st space delta. The growth ratio is computed.

• stretch_2pt_delta_ratio: the point distribution is stretched and required two input points
pt_begin pt_end, the 1st space delta and the growth ratio ratio. The last point is
approximated.

• line_type = stretch_1pt_wall_delta_ratio: the point distribution is stretched and required
one input point pt_begin, the 1st space delta and the growth ratio ratio. The code will search
the viscous wall and find the nearest point to the input point. The wall normal direction of that
point is used as the line direction.

• face_probe_def: Defines data extracted on the rectangle face. The maximum number of faces is 50.
The rectangle is defined by three input points.

• file_name: Specifies the file name the for output file. Can include a relative or absolute pathname.
As mentioned above, all post_proc data files are written to the subdirectory "post_proc" created by
the solver at runtime in the ./WRK directory. Various examples are given in the sample file listing
below. The file format can be specified also using the file_format key

word described below. The available file formats are described in the next section. If no suffix is
recognized, vtk format is assumed.

• file_format: Specifies the file format. This can be used instead of specifying the file suffix in the
file_name above. This will also over-ride any file format specification in the file_name specification.
If no file format is recognized, vtk format is assumed.

• file_binary: For VTK formats, setting file_binary=0 produces an ASCII or readable text file.
Default is binary file (file_binary=1). Has no effect on tecplot files which are always binary.

• varname: These are the flowfield variables to be output. The variables are listed in any order
separated by commas. Misspelt or non-existing variable names are ignored. A list of available
types is given in the next section.

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• frequency: The frequency parameter can be used to override the default frequency set at the top
of the input.postproc file.

• face_type: only suppored type is uniform : the points on the face are evenly distributed in width
and height directions

• pt1: xyz coordinates of lower left point of the rectangle

• pt2: xyz coordinates of lower right point of the rectangle

• pt3: xyz coordinates of upper left point of the rectangle

• npts1: number of points in the width direction

• npts2: number of points in the height direction

Listing 1: Example of user input file for F6 regression test case: input.postproc

!--
 !input file for nsu3d post-process
!--
&data_def
! frequency = 0 !<--Never (commented out here)
! frequency = -1 !<--At end only. Note this is the default value if not specified
 frequency = 100 !<--Every 100 cycs and at end
/
!--
 &volume_def
 file_name = 'vol'
 varname = 'rho, rhou, rhov, rhow, rhoe, turb1'
 frequency = -1
!--
&surface_def
 file_name = 'out_comp_.plt'
 outtype = 'comp'
 bound_def = 'WING, FUSELAGE'
 varname = 'cp, mach'
/
!--
&surface_def
 file_name = 'out_bc_'
 file_format = 'plt'
 outtype = 'bcs'
 bound_def = 'all'
 varname = 'cp, mach'
/
!--
&surface_def
 file_name = 'out_patch_.szplt'
 outtype = 'patch'
 bound_def = '6:10,17:25,27:43'
 varname = 'yplus, cf , cfx , cfy , cfz'
/
!--
&plane_slice_def
 file_name = 'slice_circle_.szplt'
 varname = 'cp, mach'
 outtype = 'field'
 origin(:,1) = 140.,-80.0,0.0
 origin(:,2) = 155.,-130.0,4.7
 origin(:,3) = 167.,-180.0,12.0
 origin(:,4) = 180.,-230.0,18.0
 origin(:,5) = 195.,-280.0,22.5
 origin(:,6) = 226.,-330.0,26.5
 origin(:,7) = 247.,-380.0,30.5
 origin(:,8) = 268.,-430.0,35.0
 origin(:,9) = 288.,-480.0,41.0
 origin(:,10) = 307,-530.0,45.0
 origin(:,11) = 327.,-580.0,50.
 normal(1,:) = 11*0.0,
 normal(2,:) = 11*1.0,
 normal(3,:) = 11*0.0,
 frequency = -1

!
 bbox(:) = 11*'circle',
 bbox1(1) = 100.,
 bbox1(2) = 95. ,
 bbox1(3) = 90. ,
 bbox1(4) = 80. ,
 bbox1(5) = 75. ,
 bbox1(6) = 70. ,
 bbox1(7) = 65. ,
 bbox1(8) = 60. ,
 bbox1(9) = 55. ,
 bbox1(10) = 50. ,
 bbox1(11) = 45.,
/
!--
&plane_slice_def
 file_name = 'slice_rectangle_.szplt'
 varname = 'cp, mach'
 outtype = 'field'
 origin(:,1) = 140.,-80.0,0.0
 origin(:,2) = 155.,-130.0,4.7
 origin(:,3) = 167.,-180.0,12.0
 origin(:,4) = 180.,-230.0,18.0
 origin(:,5) = 195.,-280.0,22.5
 origin(:,6) = 226.,-330.0,26.5
 origin(:,7) = 247.,-380.0,30.5
 origin(:,8) = 268.,-430.0,35.0
 origin(:,9) = 288.,-480.0,41.0
 origin(:,10) = 307,-530.0,45.0
 origin(:,11) = 327.,-580.0,50.
 normal(1,:) = 11*0.0,
 normal(2,:) = 11*1.0,
 normal(3,:) = 11*0.0,
 frequency = -1
!
 bbox(:) = 11*'rectangle',
!
 bbox1(1) = 90. ,
 bbox1(2) = 85. ,
 bbox1(3) = 80. ,
 bbox1(4) = 75. ,
 bbox1(5) = 70. ,
 bbox1(6) = 65. ,
 bbox1(7) = 60. ,
 bbox1(8) = 55. ,
 bbox1(9) = 50. ,
 bbox1(10) = 45. ,
 bbox1(11) = 40.,
!
 bbox2(1) = 120.,
 bbox2(2) = 115. ,
 bbox2(3) = 100.,
 bbox2(4) = 90. ,
 bbox2(5) = 85. ,
 bbox2(6) = 80. ,
 bbox2(7) = 75. ,
 bbox2(8) = 60. ,

 bbox2(9) = 65. ,
 bbox2(10) = 60. ,
 bbox2(11) = 55.,
/
!--
&plane_slice_def
 file_name = 'slice_bound_.szplt'
 varname = 'cp cf force'
 outtype = 'comp'
 bound_def = 'FUSELAGE, WING'
 origin(:,1) = 140.,-80.0,0.0
 origin(:,2) = 155.,-130.0,4.7
 origin(:,3) = 167.,-180.0,12.0
 origin(:,4) = 180.,-230.0,18.0
 origin(:,5) = 195.,-280.0,22.5
 origin(:,6) = 226.,-330.0,26.5
 origin(:,7) = 247.,-380.0,30.5
 origin(:,8) = 268.,-430.0,35.0
 origin(:,9) = 288.,-480.0,41.0
 origin(:,10) = 307,-530.0,45.0
 origin(:,11) = 327.,-580.0,50.
 normal(1,:) = 11*0.0,
 normal(2,:) = 11*1.0,
 normal(3,:) = 11*0.0,
 frequency = -1
/
!--
 &point_probe_def

 file_name = 'point_'
 file_format = 'plt'
 varname = 'cp, mach, rhou,rhov,rhow'

 pts(:,:,1) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 2.285727809E+02, -8.000000000E+01, -9.996889337E+00,
 2.285724849E+02, -8.000000000E+01, -1.005945839E+01,
 2.285721888E+02, -8.000000000E+01, -1.012202744E+01,
 2.285718927E+02, -8.000000000E+01, -1.018459649E+01,

 pts(:,:,2) = 2.400446104E+02, -8.000000000E+01, -1.041767556E+01,
 2.400446104E+02, -8.000000000E+01, -1.021767556E+01,
 2.400446104E+02, -8.000000000E+01, -1.001767556E+01,
 2.400600239E+02, -8.000000000E+01, -9.972865147E+00,
 2.400754373E+02, -8.000000000E+01, -9.928054734E+00,
 2.400908508E+02, -8.000000000E+01, -9.883244322E+00,
 2.401062643E+02, -8.000000000E+01, -9.838433909E+00,
 2.401216777E+02, -8.000000000E+01, -9.793623496E+00,
 /
!--
 &line_probe_def

 file_name = 'line_'
 file_format = 'plt'
 varname = 'cp, mach, rhou,rhov,rhow'
!
 line_type(1) = 'uniform'
 pt_begin(:,1) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,

 pt_end(:,1) = 2.285585696E+02, -8.000000000E+01, -1.300020376E+01,

!
 line_type(2) = 'stretch_2pt_delta'
 pt_begin(:,2) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 pt_end(:,2) = 2.285585696E+02, -8.000000000E+01, -1.300020376E+01,
 delta(2) = 0.02
!
 line_type(3) = 'stretch_2pt_delta_ratio'
 pt_begin(:,3) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 pt_end(:,3) = 2.285585696E+02, -8.000000000E+01, -1.300020376E+01,
 delta(3) = 0.002
 ratio(3) = 1.15
!
 line_type(4) = 'stretch_1pt_wall_delta_ratio'
 pt_begin(:,4) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 delta(4) = 0.002
 ratio(4) = 1.15
 /
!--
 &line_probe_def

 file_name = 'line_'
 file_format = 'vtk'
 varname = 'cp, mach, uvel,vvel,wvel'
 !
 line_type(1) = 'uniform'
 pt_begin(:,1) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 pt_end(:,1) = 2.285585696E+02, -8.000000000E+01, -1.300020376E+01,

 !
 line_type(2) = 'stretch_2pt_delta'
 pt_begin(:,2) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 pt_end(:,2) = 2.285585696E+02, -8.000000000E+01, -1.300020376E+01,
 delta(2) = 0.02
 !
 line_type(3) = 'stretch_2pt_delta_ratio'
 pt_begin(:,3) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 pt_end(:,3) = 2.285585696E+02, -8.000000000E+01, -1.300020376E+01,
 delta(3) = 0.002
 ratio(3) = 1.15
 !
 line_type(4) = 'stretch_1pt_wall_delta_ratio'
 pt_begin(:,4) = 2.285730770E+02, -8.000000000E+01, -9.934320286E+00,
 delta(4) = 0.002
 ratio(4) = 1.15
 /
!--
&line_probe_def
!
 file_name = 'line5_'
 file_format = 'szplt'
 varname = 'cp, mach, uvel,vvel,wvel'

 line_type(1:5) = 5*'stretch_1pt_wall_delta_ratio'
 delta(1:5) = 5*0.002
 ratio(1:5) = 5*1.15

 pt_begin(:,1) = 68.6931, -130, 15.7146,
 pt_begin(:,2) = 89.2447, -130, 20.5009,
 pt_begin(:,3) = 119.25, -130, 20.1047,
 pt_begin(:,4) = 178.091, -130, 13.5398,
 pt_begin(:,5) = 236.476, -130, -0.111608
/
!--
 &face_probe_def
 !
 file_name = 'face_'
 file_format = 'szplt'
 varname = 'cp, mach, uvel,vvel,wvel'

 face_type(1) = 'uniform'

 pt1(:,1) = 250., -250, -17.,
 pt2(:,1) = 250., -210, -17.,
 pt3(:,1) = 250., -250, 20.,

 npts1(1) = 21
 npts2(1) = 21
 /
!--
 &isosurface_def
 file_name = 'iso_mach_'
 file_format = 'szplt'
 iso_varname = 'mach'
 iso_value(1:2) = 0.9, 1.0
 varname = 'mach, cp, pressure, rhou, rhov, rhow '
 frequency = 100
 /
!--
 &isosurface_def
 file_name = 'iso_vort_'
 file_format = 'szplt'
 iso_varname = 'vort_x'
 iso_value(1:2) = -0.002, -0.004,
 varname = 'pressure, mach, rhou, rhov, rhow '
 frequency = -1
 /
!--

Reference Section

List of Supported File Types
The output file names listed by the file_name parameter use the file suffix to control the format of the
resulting file. Alternatively, this can be specified in the file_format key word entry, which also overrides the
suffix specified in the output file name. Four general file formats are supported: tecplot *.dat (formatted or
ASCII) and *szplt (binary) and VTK (formatted and binary). VTK type files are the default, and produced when
the file format or suffix is not specified or not recognized, whereas tecplot file output requires that the tecio
parallel library is linked to NSU3D. Specifying the parameter file_binary=0 produces an ASCII or readable
text file for VTK files. The default is binary file (file_binary=1). This parameter has no effect on tecplot files
which are always binary unless the tecplot *.dat format is specified.

The default location for writing out all post_proc data files is in the subdirectory post_proc created by the
solver at runtime in the ./WRK directory. Note that, if it exists, the ./WRK/post_proc directory is purged and
re-created at startup of the flow solver. Output files can still be written to locations outside of this directory by
specifying file names with pathnames relative to the ./WRK/post_proc directory (for example
../../my_output/slice.szplt)

• Filetypes:

• .dat: Tecplot formatted (i.e. ASCII readable) file. (Not recommended for large files).

• .plt: Tecplot binary file (requires tecio library). For parallel execution, these revert to .szplt files.

• .szplt: Tecplot szplt parallel binary file (requires tecio library)

• .vtk: vtk file with xml format, with extension name pvtu(volume) or vtm(surface or slice)

• Default is binary. Can be output as ASCII text files using file_binary=0

• No extension, or unrecognized: append vtk type file extensions and write out vtk based files.

• the time step number or iteration number will be appended on the file name.

List of Supported definition and plot types

• data_def: General inputs and default values for all plot types

• frequency : Defines default frequency for output of all plot types. Note that additional frequency
parameters may be set in each individual plot type to override the default value set here.

• frequency = 100 : Output every 100 cycles AND at end of run

• frequency = 0 : Never output

• frequency = -1 : Output only at end of run
• volume_def: Outputs entire volume flow field data

• file_name types: .szplt, .vtk

• varname: See varname definition in next section with is3Dvar=1

• surface_def: Outputs values on a surface entity

• file_name types: .dat, .szplt, .plt, .vtk,

• outtype: patch, comp, bcs

• bound_def: Must correspond to patch, comp or bc type in mesh, see the definition in next sections

• varname: See varname definition in next section

• plane_slice_def: Outputs values on one or more planar slices through flow field or through a surface
entity

• file_name types: .dat, .szplt, .plt, .vtk

• outtype: volume (or field), or a surface type: patch, comp, bcs

• bound_def: Must correspond to patch, comp or bc type in mesh, see the definition in next sections

• mesh_id: For overset mesh cases only and only for plane_slice_def cases with outtype = volume
or field. Selects one of more component meshes. Default value is "all"

• varname: See varname definition in next section

• The Varname force can also be used to trigger a plot of integrated forces across all the slices
in a "plane_slice_def". Two additional output files are called "force_wind.file_name" and
"forces_xyz.file_name". See description below. Note this feature only applies to slices of
surface entities and is ignored for slices of "volume" or "field" as specified in the "outtype" key
word defined above.

• origin: XYZ coordinates of point in plane. 2D array defined as origin(1:3,1:NSLICE). (also serves
as center for bounding box below)

• normal: Normal vector for plane definition. 2D array defined as normal(1:3,1:NSLICE).

• bbox: Bounding box. An optional bounding box (rectangle or circle) can be defined for each field
slice beyond which the mesh and flow field data are cropped. The following options can be used:

• bbox(:) = ' ', no bounding box (default value). Also, if bbox keyword is not present no
bounding box is used.

• bbox(:) = 'circle': Creates a circular bounding region. Requires bbox1 as an input for the circle
radius:

• bbox1(:) = 100.0 : Radius of circular boundaring box, listed for each slice (:) or (slice
number)

• bbox(:) = 'rect' or 'rectangle': Rectangular bounding box. Requires bbox1 and bbox2 as inputs
for width and height of the rectangle.

• bbox1(:) = 100. : Width of rectangular boundaring box, listed for each slice (:) or (slice
number)

• bbox2(:) = 75.0 : Height of rectangular boundaring box, listed for each slice (:) or (slice
number)

• plane_crinkle_def: Similar to plane_slice_def above but uses crinkle cut to produce plane of
conforming cell faces. All parameters are the same with the following exceptions: the outtype field must
be replaced by the cut_type field:

• cut_type: Determines how crinkle-cut surface is defined. cut_type=node" selects faces with
nodes on either side of cutting place. cut_type=cell_center" selects cells based on position
of cell center relative to cutting plane.

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• isosurface_def: Outputs values on an iso_surface entity

• file_name types: .dat, .szplt, .plt, .vtk,

• varname: Variables to be output on the iso_surface. Only variables of type is3Dvar=1 can be
used.

• iso_varname: The flowfield variable used to extract the iso_surface. Misspelt or non-existing
variable name is ignored. A list of available types is given in the next section. Only variables with
is3Dvar=1 can be used.

• iso_value: The value of the flowfield variable (iso_varname) used to extract iso_surface (i.e.
surface value).

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• point_probe_def: Defines data extracted at the defined probe points.

• file_name types: .dat, .szplt, .plt, .vtk,

• varname: See varname definition in previous section

• pts: XYZ coordinates of input points. The maximum number of zones is 50 and each zone can
consist of maximum 100 points

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• line_probe_def: Defines data extracted along a line. There are four types of line definitions.

• file_name types: .dat, .szplt, .plt, .vtk,

• varname: See varname definition in previous section

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

• line_type:

• uniform: the point distribution is uniform and requires two input points: pt_begin and pt_end

• stretch_1pt_norm_delta_ratio: the point distribution is stretched and requires one input
point pt_begin, the line direction norm, the 1st space delta and the growth ratio ratio

• stretch_2pt_delta: the point distribution is stretched and requires two input points pt_begin
pt_end, and the 1st space delta. The growth ratio is computed.

• stretch_2pt_delta_ratio: the point distribution is stretched and requires two input points
pt_begin pt_end, the 1st space delta and the growth ratio ratio. The last point is
approximated.

• stretch_1pt_wall_delta_ratio: the point distribution is stretched and requires one input point
pt_begin, the 1st space delta and the growth ratio ratio. The code will search the viscous
surface and find the nearest point to the input point. The wall normal direction of that point is
used as the line direction.

• face_probe_def: Defines data extracted on a rectangular face.

• file_name types: .dat, .szplt, .plt, .vtk,

• varname: See varname definition in previous section

• face_type = uniform is supported now

• pt1: xyz coordinates of lower left point of the rectangle

• pt2: xyz coordinates of lower right point of the rectangle

• pt3: xyz coordinates of upper left point of the rectangle

• npts1: number of points in the width direction

• npts2: number of points in the height direction

• mesh_id: For overset mesh cases only. Selects one of more component meshes. Default value is
"all"

Outtype definition

• volume or field:

No further parameters. This option only valid for plane_slice_def (not valid for surface_def)

• patch:

bound_def must include a list of patch numbers. Example patch definition:

• 'ALL' or 'all' or ' : ' or ': all patches'

• ' 3:10 ' : patch list from No.3 to No.10

• ' 1, 4, 10' : patch No.1, No.4 and No. 10

• ' 1, 3:10, 20, 22' : patch list from No.3 to No.10 and No.1, No.20 and No.22

• comp:

bound_def must include a list of component names. The component names should be consistent with
the comp file.

• for example: 'FUSELAGE, WING', use 'ALL' or 'all' to include all components

• bcs:

bound_def must include a list of boundary condition names from the following: (use 'ALL' or 'all' to
include all bcs):

• "iobc1"

• "iobc2"

• "iobc3"

• "itbc"

• "insbc"

• "ifin"

• "ifout"

• "icore"

• "iprbc"

• "isymbc"

List of supported variable names

varname keyword is3Dv
ar

Density "density","DENSITY","rho","RHO" 1

x-momentum "rhou","RHOU" 1

y-momentum "rhov","RHOV" 1

z-momentum "rhow","RHOW" 1

Energy "rhoe","RHOE","energy","ENERGY" 1

u velocity (in x-direction) "u", "U", "uvel" 1

v velocity (in y-direction) "v", "V", "vvel" 1

w velocity (in z-direction) "w", "W", "wvel" 1

Turbulence variable 1 "turb1","TURB1" 1

Turbulence variable 2 "turb2","TURB2" 1

Turbulence variable 3 "turb3","TURB3" 1

Turbulence variable 4 "turb4","TURB4" 1

IBLANK: For overset
mesh cases

"iblank ","IBLANK" 1

Mach number "ma","Ma","MA","mach","MACH" 1

Pressure "pressure","pre","p","PRESSURE","PRE","P" 1

Coefficient of Pressure "cp","Cp","CP" 1

Coefficient of Total
Pressure

"cptotal","cpt","Cpt","CPT","CpT" 1

Temperature "temperature","temp","Temp","TEMP","t","T" 1

Entropy "entropy","ENTROPY" 1

Skin Friction Coefficient "cf","Cf","CF" 0

x-y-z-direction Cf "cfx","CFx","CFX" 0

Yplus "yplus","Yplus","y+","Y+","YPLUS" 0

Eddy "eddy","ed","EDDY","ED" 1

Itmask: Masking variable
for specified transition

"itmask","ITMASK" 1

Wall distance function for
Turbulence modeling

"dist","DIST","Dist" 1

Heatflux (at wall) "heatflux","HeatFlux","HEATFLUX","hflux","Hflux","HFLUX" 0

Vorticity "vorticity","VORTICITY","vort","Vort","VORT","omega","Omega" 1

x-component of vorticity "vorticity_x","VORTICITY_X","vort_x","VORT_X","omegax","vortx","V
ORTX"

1

y-component of vorticity "vorticity_y","VORTICITY_Y","vort_y","VORT_Y","omegay","vorty","V
ORTY"

1

z-component of vorticity "vorticity_z","VORTICITY_Z","vort_z","VORT_Z","omegaz","vortz","V
ORTZ"

1

Q-criterion "q_criterion","Q_criterion" 1

x-component of grid
velocity

"vel_grid_x","v_grid_x","velx_grid" 1

y-component of grid
velocity

"vel_grid_y","v_grid_y","vely_grid" 1

z-component of grid
velocity

"vel_grid_z","v_grid_z","velz_grid" 1

x-component of surface
grid velocity

"bvel_x" 0

y-component of surface
grid velocity

"bvel_y" 0

z-component of surface
grid velocity

"bvel_z" 0

Force: Triggers
integrated force plot
across all slices in a
plane_slice_def group
(i.e. for plotting wing
span loads)
(automatically triggers
output of Cp and Cf)

"force","FORCE" 0

Addendum for Overset Mesh Cases
For overset mesh cases, the default post_process behavior is to output quantities on all meshes of the
overset mesh set. The mesh_id parameter can be used to output data for certain plot types for individual
meshes of the set if needed.

• volume_def: For overset meshes, all mesh cells and data are output to a single file. Outputting volume
data for individual meshes is currently not supported. This can be done with the sequential
post-processing routines, using post_nsu3d and tecform individually for each mesh and restart file.

• surface_def: Surface plots cannot specify individual meshes of an overset mesh set. The surface
quantities specified such as bcs type will be output for all meshes. This applies also for patch numbers.
Specifying a specific patch number may result in multiple patches with the same number belonging to

different individual overset meshes being written to the same file. However, for components, NSU3D
renames each component from each mesh, appended with the mesh_id number. Therefore, when
specifying components to be output to file, the component name that is specific to a given overset mesh
can be specified.

• plane_slice_def:

• For plane_slice_def with outtype=volume (or field), the mesh_id parameter can be used to
isolate output for a particular mesh in the overset mesh sequence. mesh_id can specify one or
any number of meshes in the set. Default value is "all".

• For plane_slice_def with outtype= patch, comp or bcs, mesh_id is not functional. The output
behaves similarly to the surface_def files in this case where bound_def is used to specify
particular bcs, patch numbers of component names that apply to all meshes. However,
component numbers are specific to each overset mesh as described above.

• plane_crinkle_def: The mesh_id parameter can be used to isolate output for a particular mesh in the
overset mesh sequence. mesh_id can specify one or any number of meshes in the set. Default value is
"all"

• iso_surface_def: The mesh_id parameter can be used to isolate output for a particular mesh in the
overset mesh sequence. mesh_id can specify one or any number of meshes in the set. Default value is
"all"

• point_probe_def: The mesh_id parameter can be used to isolate output for a particular mesh in the
overset mesh sequence. mesh_id can specify one or any number of meshes in the set. Default value is
"all"

• line_probe_def: The mesh_id parameter can be used to isolate output for a particular mesh in the
overset mesh sequence. mesh_id can specify one or any number of meshes in the set. Default value is
"all"

• plane_probe_def: The mesh_id parameter can be used to isolate output for a particular mesh in the
overset mesh sequence. mesh_id can specify one or any number of meshes in the set. Default value is
"all"

Example Test Case:

Illustration of post_proc slices to examine wing span loads

Resulting plot from surface_def and slices defined in plane_slice_def using circle bounding boxes (left) and
rectangular bounding boxes (right). 11 slices in total, with only every second slice shown.

Spanwise lift distribution and local chord obtained from all 11 post_proc slice outputs

Line probe and face probe

Mach=0.9 isosurface and Sonic (Mach=1) isosurface colored by Cp

IsoSurface with Vort_x, colored by Mach number (using Roe scheme solution)

	Enabling in-situ postprocessing:
	Detailed description of input.postproc file:
	Listing 1: Example of user input file for F6 regression test case: input.postproc

	Reference Section
	List of Supported File Types
	List of Supported definition and plot types
	Outtype definition
	List of supported variable names
	Addendum for Overset Mesh Cases

	Example Test Case:
	Illustration of post_proc slices to examine wing span loads

